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The vertical heated-pipe is widely used in thermal engineering applications, as buoyancy

can help drive a flow, but several flow regimes are possible: shear-driven turbulence,

laminarised flow, and convective turbulence. Steady velocity fields that maximise heat transfer

have previously been calculated for heated pipe flow, but were calculated independently of

buoyancy forces, and hence independently of the flow regime and time-dependent dynamics

of the flow. In this work, a variational method is applied to find an optimal body force

of limited magnitude 𝐴0 that maximises heat transfer for the vertical arrangement, with

the velocity field constrained by the full governing equations. In our calculations, mostly at

𝑅𝑒 = 3000, it is found that streamwise-independent rolls remain optimal, as in previous steady

optimisations, but that the optimal number of rolls and their radial position is dependent

on the flow regime. Surprisingly, while it is generally assumed that turbulence enhances

heat transfer, for the strongly forced case, time-dependence typically leads to a reduction.

Beyond offering potential improvement through the targeting of the roll configuration for

this application, wider implications are that optimisations under the steady flow assumption

may overestimate improvements in heat transfer, and that strategies that simply aim to induce

turbulence may not necessarily be efficient in enhancing heat transfer either. Including time-

dependence and the full governing equations in the optimisation is challenging but offers

further enhancement and improved reliability in prediction.

Key words:

1. Introduction

Vertical heated pipe flow is widely used in engineering applications, e.g. in geothermal

energy capture, nuclear reactor cooling systems and fossil-fuel power plants, to transfer heat

from one device to another. The important difference from iso-thermal pipe flow is that

buoyancy, caused by the expansion of the fluid near the heated wall, can partially or even

fully drive the flow, referred to as mixed or natural convection. Mixed convection has been

widely researched, due to the interesting and significant effects of buoyancy on the dynamics
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of the flow and on heat-transfer performance. Buoyancy plays a different role in downward

versus upward flow. In the former, buoyancy acts in the opposite direction to the flow and

always enhances heat transfer. In an upward flow, buoyancy first deteriorates the heat transfer

(Ackerman 1970), then heat transfer recovers only when buoyancy is strong enough. Three

typical regimes for the heat-transfer characteristics are identified in upward heated flow,

namely shear turbulence, laminarised flow, and convective turbulence (Parlatan et al. 1996;

Yoo 2013; Zhang et al. 2020). (See also figure 1a.)

Extensive research has been conducted to understand the mechanism of heat transfer

deterioration in upward heated flow (Hall & Jackson 1969; Steiner 1971; Carr et al. 1973;

Polyakov & Shindin 1988; Satake et al. 2000; You et al. 2003; Bae et al. 2006; Jackson

2013; He et al. 2016). Hall & Jackson (1969) and Jackson & Hall (1979) proposed that

the reduced shear stress in the buffer layer caused by buoyancy leads to a reduction of

turbulence production, suppressing turbulence and even laminarising the flow, consequently

deteriorating the heat transfer. More recently, He et al. (2016) successfully reproduced the

laminarisation phenomenon by modelling the buoyancy with a radially dependent body force

added to the isothermal flow. They noticed that the body force causes little difference to

the key characteristics of turbulence (in particular, the turbulent viscosity), and proposed

that laminarisation is caused by the reduction of the ‘apparent Reynolds number’, which is

calculated based only on the pressure force of the flow (i.e. excluding the contribution from

the body force). A similar laminarisation phenomenon is also found in isothermal pipe flow,

where it has attracted much attention due to its implications for drag reduction (Hof et al.

2010; He et al. 2016; Kühnen et al. 2018; Marensi et al. 2019). Kühnen et al. (2018) examined

the phenomenon of laminarisation from the perspective of the self-sustaining process of shear

turbulence (Hamilton et al. 1995) and suggested that the decay of turbulence can be triggered

by modifying the flow such as to reduce transient growth. Marensi et al. (2019) investigated

this phenomenon using nonlinear stability analysis (Pringle & Kerswell 2010), and found

that nonlinear stability is enhanced in the presence of a body force that flattens the velocity

profile. Recently for the vertical heated pipe, Marensi et al. (2021) systematically studied

the flow regimes and found evidence that heat transfer deterioration and laminarisation are

caused by weakened streamwise vortices.

Enhanced heat transfer means more effective and efficient energy conversion or cooling,

and thus there have been many interesting investigations aimed at improving the heat transfer

in fluid systems. Strategies can generally be classified as active, passive and compound

remedies (Webb & Bergies 1983; Liu & Sakr 2013; Kumar & Kim 2015; Suri et al. 2018).

Active methods (Ohadi et al. 1991; Wang et al. 2020; Yuan et al. 2023) require an external

power input to improve heat transfer. For example, Ohadi et al. (1991) studied the effect

of corona discharge on forced-convection heat transfer in a tube. Wang et al. (2020); Yuan

et al. (2023) proposed a method of vibrating the boundary layer to enhance the heat transfer.

Passive methods include curving or twisting flow geometry, adding extended surfaces and

so on. Compound methods (Gau & Lee 1992; Naphon et al. 2017; Kareem & Gao 2018)

adopt both active and passive techniques. These strategies have significantly improved heat

transfer in many systems.

Many techniques for heat transfer enhancement have been developed empirically. Here

we seek a mathematical strategy that is ‘optimal’ with respect to a constrained magnitude

of an applied body force. In principle, maximisation of the heat transfer can be solved by

variational methods. However, the heat-transfer, measured by the Nusselt number Nu, is

a local field variable, depending on the gradient of the temperature evaluated at the wall,

which leads to awkward delta functions in a variational approach. A quantity is required for

variational formulations that is spatially global, but which measures the heat transfer at the

wall. A suitable quantity is the scalar dissipation (Grossmann & Lohse 2000), which has a
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history stemming back to its use in the study of mixing of passive scalars (Batchelor 1959).

In the thermal community, this has recently become known as the entransy dissipation (Guo

et al. 2007; Kostic 2017), where it was derived via an analogy between heat conduction and

electrical conduction. This quantity has been successfully used to optimise heat transfer in

various thermal systems, e.g. in heat exchangers (Guo & Xu 2012; Guo et al. 2010) and heat

exchanger networks (Chen et al. 2009).

For pipe flow, Meng et al. (2005) have sought a steady velocity field that maximises

heat transfer. Although the Navier-Stokes equation was not prescribed as a constraint, it

was shown that the velocity field must satisfy a similar equation, subject to a particular

force called the synergy force, which produces a velocity field that tends to align with the

temperature gradient (Guo 2001). Jia et al. (2014) did a similar optimisation but set power

consumption as a constraint condition. They also found that longitudinal swirl flow with

multi-vortex structure can enhance heat transfer greatly, and the number of vortexes of the

optimal velocity field increases for a larger power consumption. Wang et al. (2015) proposed

a similar criterion for heat transfer optimisation, exergy destruction minimisation, and a

similar optimal velocity field was found. Such heat transfer optimisations in pipe flow have

motivated several heat-transfer enhancement designs, e.g. the alternating elliptical axis tube

(Meng et al. 2005), discrete double-inclined ribs tubes (Li et al. 2009) and many other

interesting modifications (Liu & Sakr 2013; Sheikholeslami et al. 2015). However, the above

calculations have assumed a steady laminar flow, while it is common to find that the flow is

turbulent. There have been efforts to construct variational equations based on the Reynolds

Averaged Navier Stokes (RANS) turbulence description (Chen et al. 2007), but this approach

does not capture the detailed dynamical characteristics of the flow under heating conditions,

the self-sustaining mechanisms of the flow and transitions between the flow regimes, that we

wish to retain and optimise here. Motoki et al. (2018) also adopted a variational method to

find the optimal steady velocity field for plane Couette flow with the largest Nusselt number.

They found the optimal flow state is composed of streamwise-independent rolls at 𝑅𝑒 ∼ 101,

but there appear smaller-scale hierarchical quasi-streamwise vortex tubes near the walls in

addition to the large-scale rolls at 𝑅𝑒 ⩾ 102. Although Motoki et al. (2018) performed

calculations up to 𝑅𝑒 = 104, their analysis assumes a time-independent velocity field.

Optimisations need to be extended to include both the momentum equation for the velocity

field, in which the buoyancy term may affect the flow regime, and time-dependent flows,

such as turbulence. This requires a new framework that includes the dynamical effects of

the flow on the mean heat transfer. The fully nonlinear variational method has been used

in isothermal pipe flow by Pringle & Kerswell (2010) to find initial flow perturbations that

grow maximally. The smallest perturbation which triggers transition is called the ‘minimal

seed’. For a review of wider applications, see Kerswell (2018). In the context of pipe flow,

this framework has been successfully employed to find the minimal seed under various

conditions affecting the flow (Pringle & Kerswell 2010; Pringle et al. 2012; Marensi et al.

2019) and extended to induce transition ‘the other way’, i.e. with the aim to construct an

optimal ‘baffle’ that destabilises turbulence, thereby causing transition from turbulence to

the laminar state (Marensi et al. 2020; Ding et al. 2020). The minimal seed for transition

in vertical heated pipe flow has been calculated using the model of §2 (Chu et al. 2024).

Here, we extend this new nonlinear variational framework to maximise the heat transfer.

While previous optimisations in this geometry have identified optimal stationary velocity

fields that maximise the heat transfer, here we seek to optimise a time-independent body

force that modifies the time-dependent flow, which is subject to the full governing equations.

Although hard to accurately reproduce body forces in an engineering application, this is a

step towards guiding such an approach. It should also be noted that the present study mainly

focuses on improving heat transfer and understanding the physical mechanism – changes in



4

Figure 1: (𝑎) Regions of laminar flow (L), shear turbulence (S) and convective turbulence
(C). SL and SC indicate that the flow may be found in either of the two states. Re and 𝐶

are the Reynolds number and buoyancy parameters. (𝑏) Heat flux measured by Nu,
normalised by the value in the isothermal limit (𝐶 → 0), as a function of

𝐵𝑜 = 8 × 104 (𝑁𝑢 𝐺𝑟)/(Re3.425𝑃𝑟0.8). Present data from simulations at 𝑅𝑒 = 5300,
𝑃𝑟 = 0.7 and various 𝐺𝑟 = 16 Re𝐶. Upper and lower branches correspond to shear

turbulence and convective turbulence respectively. (Reproduced from Chu et al. 2025)

the pumping power are not considered, although they are indirectly limited by the amplitude

limit we apply to the force.

The plan of the paper is as follows. In §2 we present our model of vertical heated pipe

flow used for direct numerical simulation (DNS) and the variational equations used in

the optimisation. In §3, we first show behaviour for preliminary optimisations, including the

features of optimal force, and the effects of variation in the target time. Optimisations are then

performed in the laminarisation regime, shear turbulence regime and convective turbulence

regime. Finally, the paper concludes with a summary in §4.

2. Formulation

Consider flow upwards through a vertical pipe that passes through a hot room or chamber.

The fluid will reach the ambient temperature exponentially along the pipe, but will typically

do so over sufficiently long distances that the mean temperature can be approximated as

linear along subsections of the pipe. The local temperature gradient depends on the rate of

heat transfer, and hence on whether the flow is laminar or turbulent.

2.1. The heated pipe flow model

We begin with the model of Chu et al. (2025), which assumes a linear mean temperature over

the section of pipe considered. Axial periodicity of the velocity and temperature fluctuations

is also assumed, so that the model should be applied to a section downstream of a bend or

inlet effects. A particular feature of the model is that the mean axial temperature gradient is

allowed to vary in time, reflecting the flow-dependent nature of heat transfer, e.g. the flow can

transition from the shear-driven turbulent state to the convective state causing a significant

drop in the heat flux. Good correspondence with previous models and experimental results

under statistically steady conditions are shown in figure 1(b), where 𝐵𝑜 is an empirically

determined buoyancy parameter for which collapse over a large range of parameter sets is

observed (Jackson 2006).

Using cylindrical coordinates 𝒙 = (𝑟, 𝜙, 𝑧) for a pipe of radius 𝑅, the total temperature is

Focus on Fluids articles must not exceed this page length
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decomposed as

𝑇𝑡𝑜𝑡 (𝒙, 𝑡) = 𝑇𝑤 (𝑧, 𝑡) + 𝑇 (𝒙, 𝑡) − 2𝑇𝑏 (2.1)

where the wall temperature is given by 𝑇𝑤 (𝑧, 𝑡) = 𝑎𝑡𝑜𝑡 (𝑡)𝑧 + 𝑏, with some constant reference

temperature 𝑏, and 𝑇 (𝒙, 𝑡) carries the temperature fluctuations. Heat enters at the hot wall,

then exits via a sink term proportional to 𝑎𝑡𝑜𝑡 (𝑡) (see (2.3) below). Let ⟨·⟩ denote the

volume integral and (1/𝑉)⟨·⟩ be spatial average. Temperature fluctuations in the model have

a fixed positive spatial average𝑇𝑏 = (1/𝑉)⟨𝑇⟩, maintained by adjustments in the temperature

gradient 𝑎𝑡𝑜𝑡 (𝑡). As 𝑇𝑏 is fixed, the temperature difference between the wall and bulk is

constant in the model. The constant factor −2𝑇𝑏 has been inserted in (2.1) so that the

fluctuations 𝑇 (𝒙, 𝑡) are positive and are largest at the heated wall, where 𝑇 |𝑟=𝑅 = 2𝑇𝑏. The

heat flux through the wall per unit area is 𝑞𝑤 = 𝜆 (𝜕𝑇/𝜕𝑟) |𝑟=𝑅, where 𝜆 is the thermal

conductivity of the fluid and the overline denotes the time average. For laminar flow, radial

heat flux is purely conductive, as the flow is purely streamwise. The key quantity that measures

the observed heat flux through the wall relative to the value for laminar flow is the Nusselt

number

Nu =
2𝑅 𝑞𝑤

𝜆 (𝑇 |𝑟=𝑅 − 𝑇𝑏)
. (2.2)

Whilst this definition for Nu is conventional for pipe flows, it is not precisely 1 for the laminar

case, mostly due to a geometric scale factor. (Also, 𝑇 (𝑟) and thereby 𝑞𝑤 for the laminar

case, are not trivially determined, hence the practical dimensional-based approximation.)

However, Nu will always be presented in the ratio with the value observed in the absence

of the body force, denoted Nu𝐹=0, so that such factors drop out. We will sometimes use the

instantaneous Nu(𝑡), where the time average is dropped.

Nondimensionalisation using the temperature scale 2𝑇𝑏, the length scale 𝑅, and velocity

scale 2𝑈𝑏, where 𝑈𝑏 is the mean flow speed, and assuming the Boussinesq approximation,

leads to the dimensionless governing equations

𝜕𝑇

𝜕𝑡
+ (𝒖𝑡𝑜𝑡 · ∇)𝑇 =

1

𝑅𝑒 𝑃𝑟
∇2𝑇 − 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡) , (2.3)

𝜕𝒖𝑡𝑜𝑡

𝜕𝑡
+ (𝒖𝑡𝑜𝑡 · ∇)𝒖𝑡𝑜𝑡 = −∇𝑝𝑡𝑜𝑡 +

1

𝑅𝑒
∇2

𝒖𝑡𝑜𝑡 +
4

𝑅𝑒
(1 + 𝛽′ (𝑡) + 𝐶𝑇) 𝒛̂ , (2.4)

∇ · 𝒖𝑡𝑜𝑡 = 0 , (2.5)

where 𝒖𝑡𝑜𝑡 (𝒙, 𝑡) is the velocity field. The dimensionless boundary condition for the temper-

ature is then 𝑇 = 1 and the no-slip condition is applied to the velocity, 𝒖𝑡𝑜𝑡 = 0, at 𝑟 = 1.

Axial periodicity over a distance 𝐿 is assumed for the temperature fluctuations and velocity.

The dimensionless fixed bulk temperature and flow rate are respectively (1/𝑉)⟨𝑇⟩ = 1/2
and (1/𝑉)⟨𝒖𝑡𝑜𝑡 · 𝒛̂⟩ = 1/2, and these two conditions determine values for 𝑎𝑡𝑜𝑡 (𝑡) and the

excess pressure fraction 𝛽′ (𝑡) via the spatial averages of the respective governing equation.

The Reynolds and Prandtl numbers are 𝑅𝑒 = 2𝑈𝑏𝑅/𝜈 and 𝑃𝑟 = 𝜈/𝜅, where 𝜈 and 𝜅 are the

kinematic viscosity and thermal diffusivity respectively. The third dimensionless parameter

𝐶 =
𝐺𝑟

16 𝑅𝑒
, (2.6)

measures the buoyancy force relative to the pressure gradient force that drives laminar

isothermal flow, d𝑝𝑡𝑜𝑡/d𝑧 = 4/Re, where 𝐺𝑟 = 𝛾𝑔(𝑇 |𝑟=𝑅 − 𝑇𝑏) (2𝑅)
3/𝜈2 is the Grashof

number, 𝛾 is the coefficient of volume expansion, and 𝑔 is gravitational acceleration. The

parameters 𝐺𝑟 and the Richardson number 𝑅𝑖 = 𝐺𝑟/Re2 are often used in systems involving

buoyancy, but in this application the pressure gradient force scales inversely with Re, and

the parameter 𝐶 is more readily interpreted: When 𝐶 = 1, buoyancy forces are expected to
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of similar magnitude to the pressure gradient force, and fundamental changes in flow are

observed for𝐶 = 𝑂 (1−10). Figure 1(a) shows the regimes of flow for the model. The switch

at 𝐶 ≈ 4 is due to a convection-driven linear instability to helical modes.

For this configuration, the laminar solution does not have a simple analytic form, and must

be computed numerically. We consider perturbations from the laminar state, subscripted with

0, and decompose variables as 𝒖𝑡𝑜𝑡 = 𝒖0 + 𝒖, 𝑝𝑡𝑜𝑡 = 𝑝0 + 𝑝, 1 + 𝛽′ (𝑡) = 1 + 𝛽0 + 𝛽(𝑡),
𝑇 = 𝛩0 + 𝛩, 𝑎𝑡𝑜𝑡 (𝑡) = 𝑎0 + 𝑎(𝑡). The perturbations then satisfy

𝜕𝛩

𝜕𝑡
+ 𝑢0

𝜕𝛩

𝜕𝑧
+ 𝑢𝑟

𝑑𝛩0

𝑑𝑟
+ (𝒖 · ∇)𝛩 =

1

𝑅𝑒𝑃𝑟
∇2𝛩 − 𝑢𝑧𝑎0 − (𝑢0 + 𝑢𝑧)𝑎(𝑡) , (2.7)

𝜕𝒖

𝜕𝑡
+ 𝑢0

𝜕𝒖

𝜕𝑧
+ 𝑢𝑟

𝑑𝑢0

𝑑𝑟
𝒛̂ + (𝒖 · ∇)𝒖 = −∇𝑝 +

1

𝑅𝑒
∇2

𝒖 +
4

𝑅𝑒
(𝐶𝛩 + 𝛽(𝑡)) 𝒛̂ , (2.8)

∇ · 𝒖 = 0 , (2.9)

where 𝒖 = (𝑢𝑟 , 𝑢𝜙, 𝑢𝑧). Further details on the numerical model can be found in Chu et al.

(2024) and Chu et al. (2025).

2.2. Variational optimisation of a body force for heat transfer

In the following, we suppose that a body force 𝑭(𝒙) is appended to the right-hand sides of

the Navier–Stokes equations (2.4) and (2.8), then seek to optimise the form of 𝑭(𝒙) such

that it maximises Nu, subject to a constraint on the magnitude of 𝑭. The scalar dissipation
1
2
𝜆(∇𝑇)2 will be used as a proxy for the heat transfer (Batchelor 1959; Grossmann & Lohse

2000). (The relationship between Nu and the scalar dissipation is shown in Appendix A.)

The term ‘entransy dissipation’ is also being used in thermal science (Guo et al. 2007; Kostic

2017). Here, the time-averaged quantity

𝐽 =
1

T

∫ T

0

1

2
⟨(∇𝑇)2⟩ d𝑡. (2.10)

is used as our objective function. The way in which the scalar dissipation is used depends

upon the thermal boundary condition (Appendix A). As the fixed temperature boundary

condition is applied, maximal 𝐽 corresponds to maximised ‘dissipation’ of 𝑇2 and larger heat

flux. (For the fixed heat flux boundary condition, minimal 𝐽 corresponds to minimal thermal

resistance within the body, and hence maximum heat flux.)

In this work, we seek for the first time an optimal that is subject to the full governing

equations for the velocity field. A Lagrangian is constructed as follows:

L =
1

𝑁

𝑁
∑︁

𝑖=1

𝐽𝑖 − 𝜆0

(〈

1

2
(𝑭)2

〉

− 𝐴0

)

−

𝑁
∑︁

𝑖=1

∫ T

0

⟨𝒗𝑖 · (NS(𝒖𝑖))⟩d𝑡

−

𝑁
∑︁

𝑖=1

∫ T

0

⟨Π𝑖 (∇ · 𝒖𝑖)⟩d𝑡 −

𝑁
∑︁

𝑖=1

∫ T

0

⟨𝜋𝑖 (Tem(𝛩𝑖))⟩d𝑡

−

𝑁
∑︁

𝑖=1

∫ T

0

Γ𝑖 ⟨(𝒖𝑖 · 𝒛̂)⟩d𝑡 −

𝑁
∑︁

𝑖=1

∫ T

0

𝑄𝑖 ⟨(𝛩𝑖)⟩d𝑡.

(2.11)

As the initial condition for the velocity field could be turbulent, to improve the robustness

of the results we apply the optimisation to 𝑁 initial velocity fields. The variables 𝜆0, Π𝑖 ,

𝜋𝑖 (𝒙, 𝑡), Γ𝑖 (𝑡), 𝑄𝑖 (𝑡) and 𝒗𝑖 (𝒙, 𝑡) = (𝑣𝑟 ,𝑖 , 𝑣𝜙,𝑖 , 𝑣𝑧,𝑖) are Lagrange multipliers. The first term,

the ensemble average of the time-averaged scalar dissipation, is the objective function to

be maximised. The second term fixes the amplitude of the body force; the spatial average
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of |𝑭 | is given by
√︁

2𝐴0/𝑉 . Next, the velocity perturbation 𝒖 is constrained to satisfy the

Navier–Stokes equation NS(𝒖) and the continuity equation, and the temperature perturbation

satisfies the temperature equation Tem(𝛩), each over the period from 𝑡 = 0 to 𝑡 = T . The last

two terms ensure that the velocity satisfies the fixed mass flux and that the bulk temperature

is fixed.

Taking variations of L with respect to each variable and setting them equal to zero, we

obtain the following set of Euler–Lagrange equations. The adjoint Navier–Stokes, temperature

equation and continuity equations are

𝜕L

𝜕𝒖𝑖
=
𝜕𝒗𝑖

𝜕𝑡
+ 𝑢0

𝜕𝒗𝑖

𝜕𝑧
− 𝑣𝑧,𝑖𝑢0

′
𝒓 + ∇ × (𝒗𝑖 × 𝒖𝑖) − 𝒗𝑖 × ∇ × 𝒖𝑖 + ∇Π𝑖+

1

𝑅𝑒
∇

2
𝒗𝑖 − 𝜋𝑖𝛩

′
0 𝒓̂ − 𝜋𝑖∇𝛩𝑖 − 𝜋𝑖 (𝑎(𝑡) + 𝑎0(𝑡)) 𝒛̂ − Γ𝑖 𝒛̂ = 0. (2.12)

𝜕L

𝜕𝛩𝑖
=
𝜕𝜋𝑖

𝜕𝑡
+ 𝑢0

𝜕𝜋𝑖

𝜕𝑧
+

4

𝑅𝑒
𝑣𝑧,𝑖𝐶 + 𝒖𝑖 · ∇𝜋𝑖 +

1

𝑅𝑒𝑃𝑟
∇

2𝜋𝑖 −𝑄𝑖 −
1

T
∇

2𝑇𝑖 = 0 , (2.13)

∇ · 𝒗𝑖 = 0 . (2.14)

The compatibility conditions (terminal conditions for backward integration of (2.12) and

(2.13) ) are given by

𝛿L

𝛿𝒖𝑖 (𝒙,T)
= −𝒗𝑖 (𝒙,T) = 0, (2.15)

𝛿L

𝛿𝛩𝑖 (𝒙,T)
= −𝜋𝑖 (𝒙,T) = 0 (2.16)

and the optimality condition is

𝛿L

𝛿𝑭
= −𝜆0𝑭 +

1

𝑁

𝑁
∑︁

𝑖=1

∫ T

0

𝒗𝑖 d𝑡 = 0. (2.17)

For an arbitrary initial 𝑭 and set of initial conditions 𝒖𝑖 , the force 𝑭 is incrementally updated

to produce a maximum in L where where 𝛿L/𝛿𝑭 should vanish. An iterative algorithm

similar to that in Pringle et al. (2012) is applied. The update for 𝑭 at ( 𝑗 + 1)th iteration is

𝑭
( 𝑗+1)

= 𝑭
( 𝑗 ) − 𝜖0

𝛿L

𝛿𝑭 ( 𝑗 )
. (2.18)

where 𝜖0 is a small value, controlled using a procedure described in Pringle et al. (2012). 𝜆0

is determined by the condition that ⟨[𝑭(𝒙) ( 𝑗+1) ]2⟩ = 2 𝐴0.

2.3. Numerical methods

Calculations are carried out using the open-source code Openpipeflow (Willis 2017).

Variables are discretised in the domain {𝑟, 𝜙, 𝑧} = [0, 1] × [0, 2𝜋] × [0, 2𝜋/𝛼], where

𝛼 = 2𝜋/𝐿, using Fourier decomposition in the azimuthal and streamwise direction and finite

difference in the radial direction, e.g.

𝒖(𝑟𝑠, 𝜙, 𝑧) =
∑︁

𝑘< |𝐾 |

∑︁

𝑚< |𝑀 |

𝒖𝑠𝑘𝑚ei(𝛼𝑘𝑧+𝑚𝜙) , 𝑠 = 1, ..., 𝑆 (2.19)

where the radial points 𝑟𝑠 are clustered towards the wall. Temporal discretisation is via

a second-order predictor-corrector scheme, with Euler predictor for the nonlinear terms

and Crank-Nicolson corrector. To keep the nonlinear optimisations manageable, a Reynolds

number 𝑅𝑒 = 3000 and 𝑃𝑟 = 0.7 are adopted with a domain of length 𝐿 = 10 radii. We
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(a) (b)

(c) (d)

Figure 2: (𝑎) Instantaneous Nusselt number Nu(𝑡) as the iteration proceeds, where Nu𝐹=0
refers to the value of the unforced case. (𝑏) Dimensionless time-averaged scalar

dissipation, (time-averaged) Nu, and Nu(T ) versus iteration, normalised by their values at

the zeroth iteration. (𝑐) The residual ⟨(𝛿L/𝛿𝑭)2⟩ versus iteration. (𝑑) Magnitude of the

components of body force 1
2
⟨𝐹2
𝑟 ⟩,

1
2
⟨𝐹2
𝜙
⟩, 1

2
⟨𝐹2
𝑧 ⟩ versus iteration. The optimisation is run

at 𝐴0 = 5 × 10−7,T = 400, 𝐶 = 3, 𝑅𝑒 = 3000.

use mesh resolution of 𝑆 = 64, 𝑀 = 48, 𝐾 = 42, and the size of the time step is Δ𝑡 = 0.01.

This resolution is sufficient to maintain a drop-off in the amplitude of the coefficients by

three to four orders magnitude, which experience has shown to be sufficient for accurate

simulation of shear-driven turbulence. For the 𝐶 considered here, the convective state is less

computationally demanding to simulate.

3. Results

In order to assess the parameters of the optimisation method, we first show preliminary

optimisations in §3.1. Then, we optimise the body force to maximise the heat transfer in the

three typical flow regimes of vertical heated pipe flow, i.e. the laminarisation regime (§3.2),

shear turbulence regime (§3.3) and convective turbulence regime (§3.4). (Parameter regimes

for this model are shown in figure 1.)

3.1. Preliminary optimisation

For the laminar case, the state is unique and we require only one initial velocity field, 𝑁 = 1.

We start with the unforced laminarised flow at Re = 3000, 𝐶 = 3, and take random fields for

the initial force (such as a turbulent velocity field). Results from a preliminary optimisation

with 𝐴0 = 5 × 10−7,T = 400 are shown in figure 2. The instantaneous Nusselt number,

Nu(𝑡), normalised by the mean for the unforced flow, Nu𝐹=0, is shown in figure 2(𝑎) for each
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Figure 3: Optimised body forces for target time horizons (a) T = 50, (b) T = 100, (𝑐)
T = 200, (d) T = 600 at 𝐶 = 3, 𝐴0 = 5𝑒 − 7, 𝑅𝑒 = 3000, 𝑁 = 1. Colours indicate the

streamwise component, while arrows represent the cross-stream components of the body
force. (a) and (b) share the first colourbar, (c) and (d) share the second. The largest arrow

has magnitude 2.38 × 10−4 in (a), 2.36 × 10−4 in (b), 2.93 × 10−4 in (c) and 3.21 × 10−4

in (d).

iteration. The final value increases by more than 80% over the unforced laminar case. Figure

2(𝑏) shows the objective function 𝐽 (2.10), the (time-averaged) Nusselt number Nu (2.2) and

the final value of the instantaneous Nusselt number Nu(T ), versus iteration, normalised by

values for the unforced case. Changes in these quantities show good agreement, indicating

that the global (volume integrated) scalar dissipation quantity effectively captures the local

(boundary) heat transfer behaviour measured by the Nusselt number. Figure 2(𝑐) shows the

residual of the calculation, which drops quickly in first 50 iterations then more gradually.

(Spikes are related to the method that seeks to increase 𝜖0 as much a possible, which

affects the magnitude of the residual via 𝜆0.) Usually, the optimisation is stopped when

the change in the Nusselt number drops below 10−5. Figure 2(𝑑) tracks the amplitude of

the three components of the body force versus iteration. The amplitude of the streamwise

component drops significantly, while the amplitude of the cross-stream components increases.

This suggests that the cross-stream components of the body force play a dominant role in

enhancing heat transfer, whereas the contribution of the streamwise component is nearly

negligible.

If the time horizon T is long enough, then Nu is optimised for the steady response to

the force. Figure 2(a), suggests that T should be greater than 200. Indeed, the form of

the optimal is found to change when increasing T from 50 to 100, and again to 200, but

increasing further to 600, the optimal is essentially the same up to a rotation, as shown in

figure 3. Interestingly, the optimal body force optimised for a short target time has perfect

rotational symmetry. That the force induces rolls is consistent with the steady velocity fields

computed by Meng et al. (2005). The time horizon T is an extra parameter here, and as it

is increased, the azimuthal wave number 𝑚 decreases. This is consistent with smaller-scale

vortices growing more rapidly (Schmid 2007), thereby increasing the heat transfer within a

shorter time. With a longer target time, however, the larger-scale mode is more effectively

amplified for the given magnitude of force.

It is found that the distribution of the body force is almost uniform in the streamwise

direction. Although streamwise dependence of the force was included as a possibility in the

preliminary calculations, it was not expected – structures sweep rapidly through the domain,

leading to streamwise independence in the time-integrated update to 𝑭
( 𝑗 ) in the optimisation.

In the isothermal calculations of Marensi et al. (2020), streamwise-dependent forces were

not identified even with domains 5 times longer. Therefore, to simplify the form of the

body force and to accelerate convergence, we constrain the body force to be streamwise-

independent in the optimisations of the following sections by zeroing coefficients of the

streamwise-dependent Fourier modes.
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Figure 4: Instantaneous Nusselt number normalised by the value for unforced flow for
several force amplitudes, starting from a laminar initial condition at 𝐶 = 3, 𝑅𝑒 = 3000.

The vertical dashed line indicates the optimisation target time T = 600.

3.2. Optimisation in the laminarisation regime

3.2.1. Optimal force for the laminar state

Having examined properties of the parameters necessary for optimisation, in this section

we consider optimisation in the laminarised regime at 𝐶 = 3,Re = 3000 in more detail. In

particular, we examine the dependence of the rotational symmetry on 𝐴0 and the presence

of local optimals (dependent on the initial guess for the force).

For the laminar initial condition, as we have assumed streamwise independence for the

force, a small streamwise-dependent perturbation must be added to the initial velocity so that

transition to turbulence may be triggered if the resulting two-dimensional flow is unstable.

We add a perturbation of magnitude 𝐸0 =
1
2
⟨𝒖2⟩ ≈ 10−7 and set a longer T = 600 to allow

the occurrence of transition. Figure 4 shows the instantaneous Nusselt number, Nu(𝑡), for

several 𝐴0. Optimisation improves the heat transfer substantially: for 𝐴0 = 10−7 heat transfer

is almost 50% greater than that of the unforced flow, and for 𝐴0 = 5×10−7 is almost doubled.

For slightly higher 𝐴0 = 6 × 10−7, Nu(𝑡) experiences a sudden increase near the end of

the optimisation target time and fluctuates thereafter, indicating the onset of turbulence. (At

𝐴0 = 5 × 10−7, transition is observed very late, at around 𝑡 = 1000, and interestingly, the

transition does not lead to a larger Nu. This phenomenon will be discussed later.)

The typical amplitude-dependent form of the forces obtained from optimisations are given

in figure 5(a-d). (As the axial component is at least an order of magnitude smaller, it is not

shown.) At small 𝐴0, the body force has a single pair of rolls. At increased force amplitude,

figure 5(b) illustrates how the vortex structure gradually approaches the wall, reducing the

spatial scale in both the radial and spanwise directions. This is actually found to be a local

optimal for this 𝐴0, as two pairs of rolls may be squeezed in to increase Nu a little further. At

larger 𝐴0, more rolls are seen in figure 5(c-d). For the largest 𝐴0, turbulence is triggered within

T , and the optimisation struggles to converge to a well-organised optimal force. However, a

preference for roll structures of larger 𝑚 is clear. The form and increase in wavenumber is

consistent with the calculations of Meng et al. (2005); Jia et al. (2014); Wang et al. (2015)

for steady flow.

We have observed that optimal body forces display rotational symmetry of different

azimuthal wave numbers 𝑚 in figures 3 and 5. We let 𝑂2 denote an optimal with 2-

fold rotational symmetry. This optimal may have non-zero Fourier coefficients only for

𝑚 = 0, 2, 4, 6, 8, ..., but note that this does not exclude a force with only non-zero modes

𝑚 = 0, 4, 8, ..., which corresponds to an optimal 𝑂4 with 4-fold rotational symmetry. To

Rapids articles must not exceed this page length
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Figure 5: Optimised body forces at

(a)𝐴0 = 10−8, (b)𝐴0 = 10−7, (c)𝐴0 = 5 × 10−7, (c)𝐴0 = 6 × 10−7, starting from a
laminar initial condition at 𝐶 = 3,T = 600, 𝑅𝑒 = 3000. The largest arrow has magnitude

4.85 × 10−5 in (a), 1.87 × 10−4 in (b), 4.05 × 10−4 in (c) and 4.26 × 10−4 in (d). As the
axial component is at least an order of magnitude smaller, it is not shown.

O1

O2

O3

(a) (b)

Figure 6: (a) Nusselt number of final state Nu(T ) versus iteration for different initial

forces, with 𝐴0 = 10−7, 𝐶 = 3, 𝑅𝑒 = 3000. The legend indicates the initial force, and the
resulting local optimal forces are labelled on the curves. (b) Normalised (time-averaged)
Nusselt numbers at 𝐶 = 3, 𝑅𝑒 = 3000 versus 𝑂𝐹𝑚 for force amplitudes 𝐴0 indicated in
the legend. The global optimal is highlighted with a dashed circle. For dashed lines, the
forced flow state remains laminar. For solid lines, the forced state is turbulent and the

values are time-averages.

examine the influence of the azimuthal periodicity, and to simplify the optimisation further,

we consider optimal forces restricted to azimuthal Fourier modes of wavenumbers 0 and 𝑚

only, and denote them𝑂𝐹𝑚. Note that rotational symmetry is imposed only on the force, and

not on the velocity field.

Optimisations have been computed for𝑂𝐹𝑚, then used as starting forces for optimisations

in the full space 𝑂1. In this way, we examine the dependence on 𝑚 to determine which

rotational symmetry is the global optimal. The Nusselt numbers of the final states, Nu(T ),
as a function of iteration are shown in figure 6(a) starting from the 𝑂𝐹𝑚 forces. Three

optimisations starting from random initial forces are also shown. Several observations can

be made. Firstly, there are multiple local optimals𝑂𝑚, of which𝑂2 (figure 5(c)) is the global

optimal for this 𝐴0. Secondly, the optimal of type 𝑂𝑚 does not produce much greater Nu

than the optimal 𝑂𝐹𝑚, of the reduced Fourier space, used as the starting force. Thirdly, if

the starting force is quite perturbed, such as for the random initial forces, it is most likely to

end up at the global optimal. Similarly, the optimisation starting from 𝑂𝐹4 (light green line)

appears to pass close to 𝑂1, but ends at the global optimal 𝑂2.

As we have observed that 𝑂𝑚 does not produce much greater Nu than 𝑂𝐹𝑚, for small 𝐴0
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(b)(a)

Figure 7: Enhanced Nu of forced flows at 𝐶 = 3, 𝑅𝑒 = 3000. (a) Instantaneous Nu(𝑡) for
flows forced by𝑂𝐹1. (b) Nu (time-averaged) for flows forced by𝑂𝐹𝑚 in the turbulent state

(solid lines) and Nu(T ) for the stabilised streamwise-independent state (dashed lines).

at least, we directly compare Nu of the flow forced by 𝑂𝐹𝑚 for several 𝑚 to determine the

global optimal. Figure 6(b) shows the Nusselt number, calculated using averages over 5000

time units for each simulation. For the dashed lines, the final state is still laminar and good

convergence is easily achieved. For the solid lines at larger 𝐴0, the final state is turbulent,

which renders convergence difficult. For the latter case, and for convenience in this section,

the force has been calculated using an artificially stabilised two-dimensional flow, by putting

𝐾 = 1 in (2.19) (equivalent to adding no three-dimensional perturbation, 𝐸0 = 0). The

optimal force leads to an artificially stabilised optimal velocity field, as for the optimal steady

velocity fields reported by Meng et al. (2005); Jia et al. (2014); Wang et al. (2015) . The

force is then applied, here resulting in a fully three-dimensional time-dependent turbulent

simulation, from which Nu is calculated. (In principle, the stabilisation of the flow during

optimisation may render the force no longer optimal. This is examined further for each initial

flow regime, and is found to be a good approach for intermediate𝐶. We will show this for the

convective case in §3.4.) As 𝐴0 increases, the rotational symmetry 𝑚 of the (global) optimal

increases, from 𝑚 = 1 at 𝐴0 = 10−8, to 𝑚 = 2 at 𝐴0 = 10−7, and is 𝑚 ≈ 5 at substantially

larger 𝐴0 = 10−5. However, it should be noted that Nu is not strongly dependent on 𝑚.

3.2.2. The path to transition and effect on heat transfer

Figure 7(a) shows the instantaneous Nusselt number Nu(𝑡) for flows forced by𝑂𝐹1 at several

force amplitudes. At small 𝐴0, the flow is reshaped into a two-dimensional forced laminar

state. With an increase of force amplitude to 𝐴0 = 6 × 10−7, the flow does not transition to

turbulence directly — instead, the two-dimensional state quickly forms, then transitions later

to a travelling wave solution. Figure 8 shows the two-dimensional reshaped laminar solution

and a travelling wave solution found in the flow forced by 𝑂𝐹1 at 𝐴0 = 6 × 10−7 (𝑡 ≈ 500

and 𝑡 ≈ 1500 of figure 7(a) respectively). In isothermal flow, forces have been used to find

travelling wave solutions, via homotopy (Faisst & Eckhardt 2003; Wedin & Kerswell 2004),

but were only found by this method for higher rotational symmetry 𝑚 ⩾ 2. The travelling

wave solution has larger Nu compared with the two-dimensional reshaped laminar solution.

With further increase of force amplitude, the flow transitions from the two-dimensional

state to a (mildly) chaotic three-dimensional state, and finally also converges to a travelling

wave state at a later time (not shown here). At 𝐴0 = 10−5, the flow directly transitions to

a strong chaotic three-dimensional state, along with a greatly increased Nu. However, this

is not always the case, and in fact figure 7(b) shows that at larger 𝐴0 the transition from
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(a) (b)

Figure 8: Isosurfaces of streamwise velocity for (a) the streamwise-independent state at
𝑡 = 500 and (b) the travelling wave solution at 𝑡 = 1500, for flow forced by 𝑂𝐹1 with

𝐴0 = 6 × 10−7. Red/yellow are at 20% of the min/max streamwise velocity.

(b)(a)

Figure 9: Time series of (a) instantaneous Nu(𝑡) and (b) instantaneous energy of rolls

𝐸𝑟𝑜𝑙𝑙 = 𝐸 (𝑢𝑟 ) + 𝐸 (𝑢𝜙), 𝐸 (𝑢𝑟 ) =
1
2
⟨𝑢2
𝑟 ⟩, 𝐸 (𝑢𝜙) =

1
2
⟨𝑢2
𝜙
⟩, for flow forced by 𝑂𝐹4 at

𝐶 = 3, 𝑅𝑒 = 3000 at two different 𝐴0. Solid lines are for the forced turbulent state, and
dashed lines are for the streamwise-independent (artificially stabilised) state.

two-dimensional flow (stabilised by setting 𝐾 = 1) to the chaotic three-dimensional state

leads to a decrease in Nu, except for the case 𝑚 = 1.

It is interesting that the more chaotic state does not necessarily lead to an improvement in

heat transfer. For the case where the flow is forced by𝑂𝐹4, the instantaneous Nusselt number

Nu(𝑡) and the roll energy 𝐸𝑟𝑜𝑙𝑙 (𝑡) = 𝐸 (𝑢𝑟 ) +𝐸 (𝑢𝜙) are shown in figure 9 for two amplitudes

𝐴0. At 𝐴0 = 10−6 heat transfer increases after transition, but at 𝐴0 = 10−5 it is reduced

after transition. In both cases, the energy of rolls increases, but in the latter case by not

as much. Stronger rolls are typically associated with enhanced heat transfer, but this shows

that higher roll energy alone does not necessarily correspond to more efficient heat transfer.

Figure 10 shows the contours of the radial temperature gradient 𝜕𝑇/𝜕𝑟 evaluated at the

boundary, for the forced laminar and forced turbulent states, normalised by the mean radial

temperature gradient of the unforced flow. When the flow is forced by 𝑂𝐹4 with 𝐴0 = 10−6,

the laminar state (figure 10(a)) exhibits distinct regions of strong and weak heat transfer.

After the transition (figure 10(b)), these regions are not fixed, and the regions of higher heat

flux widen and intensify a little. At 𝐴0 = 10−5 (figure 10(c-d)), the regions of higher heat

flux also widen after the transition, but are less organised and weaker than for the steady

flow, despite the slightly increased roll energy. This suggests that the streamwise vortices in

the forced turbulent states are not as efficient as those in the forced laminar states. The rolls

are unsteady in forced turbulent states and move further from the wall intermittently due
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Figure 10: Contours of the radial temperature gradient 𝜕𝑇
𝜕𝑟

at the boundary at
𝐶 = 3, 𝑅𝑒 = 3000, normalised by the unforced laminar radial temperature gradient. The

flow is forced by 𝑂𝐹4 with (a,b) 𝐴0 = 10−6 and (c,d) 𝐴0 = 10−5, the flow states are taken
in (a,c) from the forced laminar state (𝑡 = 1000) and (b,d) forced turbulent state

(𝑡 = 1000).

to the waving of low-speed streaks, leading to a nonuniform heat transfer distribution. Heat

transfer is enhanced on the sides where the rolls are positioned close to the wall, but weakens

as the rolls move further away from the wall. Overall, the transition to the forced turbulent

state involves two main competing effects on heat transfer: the first is the enhancement by the

rolls, which increases heat transfer by facilitating better mixing, the second is unsteadness

of the rolls, which at larger 𝐴0 can reduce heat transfer due to inconsistency in their position

near the wall. The case 𝑂𝐹1 is an exception in figure 7(b), where the transition to a chaotic

state leads to an increase in Nu – only one pair of rolls is inefficient and the unsteadiness can

lead to the creation of additional rolls.

In this section, we have shown that optimisations in the laminarised regime can substantially

enhance heat transfer, with the optimal forcing inducing axially aligned rolls of increasing

azimuthal symmetry — though with only a weak dependence of 𝑁𝑢 on 𝑚. Interestingly,

triggering turbulence does not necessarily lead to an increase in Nu, as the resulting unsteady

rolls are less efficiently positioned for heat transfer.

3.3. Optimisation in the shear turbulence regime

Returning to smaller 𝐶, the shear-turbulence case is the most challenging, as the flow state

remains highly chaotic. As turbulence is already effective in enhancing heat transfer relative

to the laminarised case, it is not obvious that optimisation should be able to improve heat

transfer substantially.

We focus on the case 𝐶 = 1 at Re = 3000. For the highly chaotic flow, it is difficult to

apply the method with a large target time (Pringle & Kerswell 2010; Pringle et al. 2012;

Marensi et al. 2019), and convergence was found to fail for T even as low as 100. However,

reasonably good convergence was found for T = 50. Although this is not sufficient time to

capture the statistics of the end state, it is sufficient time for a response to be observed, so that

it is reasonable to examine whether the heat transfer has been pushed in the right direction.

Figure 11(𝑎) shows the instantaneous Nusselt number Nu(𝑡) for flows forced by the full

space optimal 𝑂1 with 𝐴0 = 10−6. The optimisation, although with a short target time, still

increases the Nusselt number significantly. Surprisingly, table 1 shows that the (subsequent

time-averaged) Nu/Nu𝐹=0 does not change significantly with more initial conditions 𝑁 ,

despite that the short T might suggest greater dependence on the initial condition, nor does

Nu vary significantly with rotational symmetry. Structures of the optimised forces are shown

in figure 12 for 𝑁 = 1 and 3 (the cases for 𝑁 = 9 are almost identical to 𝑁 = 3). Although Nu

varies very little with 𝑁 , for 𝑂1 the structure of the optimal force does change – going from
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Figure 11: Instantaneous Nusselt number for flows forced by 𝑂1 at 𝐴0 = 10−6, where the
legend indicates the number of initial velocity fields used in the optimisation. The time

horizon T = 50 is marked by the vertical dashed line.

𝑁 𝑂1 𝑂3 𝑂5 𝑂𝐹3 𝑂𝐹5
1 1.22 1.16 1.25 1.18 1.27
3 1.22 1.18 1.27 1.18 1.26
9 1.20 1.18 1.27 1.17 1.25

Table 1: Nu/Nu𝐹=0 for flows forced by optimal forces indicated. 𝑁 is the number of
initial velocity conditions used in the optimisation.

𝑁 = 1 to 3 initial conditions, the force develops towards a structure more like the𝑂3 optimal,

but larger 𝑁 slightly improves convergence. Optimising for 𝑂3 itself, the structure clearly

becomes more regular as 𝑁 is increased. For 𝑂𝐹3 (third column), 𝑂5 and 𝑂𝐹5 (not shown),

the structure of the force does not change for larger 𝑁 , so that only one initial velocity field

is sufficient. This is reasonable for larger 𝑚, as the angular section [0, 2𝜋/𝑚] of the force is

determined by 𝑚 angular subsections of the rotationally unconstrained velocity field.

Although we have computed optimals only for a short T , our results strongly suggest

that inducing rolls remains optimal even for flow already turbulent, in the shear-turbulence

regime. As before, it is interesting to examine whether or not there is a strong dependence

on the rotational symmetry 𝑚. Figure 13(a) shows the Nusselt number for flows forced by

𝑂𝐹𝑚 (solid) and 𝑂𝑚 (dashed) for several 𝑚, using 𝑁 = 1 for 𝑂𝐹𝑚 and 𝑁 = 3 for 𝑂𝑚. For

small 𝑚 = 1, 2, the force 𝑂𝑚 appears to produce larger Nu than 𝑂𝐹𝑚, but this is because

the optimisation for 𝑂1 actually found a structure closer to that for 𝑂3, previously seen in

figure 12 (cf. (e) and (f)), and similarly, the 𝑂2 optimal is structurally more like 𝑂4, seen

in figure 14 (cf. (a) and (c)). Constraining the number of rolls strictly, by using the single

Fourier mode, the rolls of 𝑂𝐹3 are a little stretched (figure 14(e)) relative to those of 𝑂3

(figure 14(b)), but for 𝑚 > 3 there is essentially no visible difference between 𝑂𝑚 and 𝑂𝐹𝑚.

For 𝑚 ⩾ 3, Nu is relatively insensitive to the wavenumber (figure 13(a)).

An interesting observation is the occurrence of laminarisation of the shear turbulence when

forced by 𝑂𝐹1 at low amplitudes 𝐴0 = 10−7. A very similar observation was reported by

Willis et al. (2010), where there the roll-force was beneficial for drag reduction in isothermal
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Figure 12: Forces 𝑂1, 𝑂3 and 𝑂𝐹3 optimised using 𝑁 initial velocity fields at 𝐴0 = 10−6,

𝐶 = 1. The largest arrow has magnitude 6.95 × 10−4 in (a), 7.52 × 10−4 in (b),

5.76 × 10−4 in (c), 8.14 × 10−4 in (d), 6.60 × 10−4 in (e), 5.76 × 10−4 in (f).

flow. Here, as the turbulent flow enhances heat transfer, the laminarisation can lead to a

reduction in the heat transfer, i.e. Nu/Nu𝐹=0 < 1, see figure 13(b).

Optimisation for a steady laminar flow can be imposed by setting 𝐾 = 1 in (2.19), as

applied in §3.2. Figure 13(b) compares optimisation with the short T (solid lines) with

steady laminar optimisation (dashed lines) with T = 600. Particularly for larger 𝐴0, it should

be noted that including the time dependence of the flow in the optimisation does improve the

resulting Nu over the steady assumption, despite the short T . There is an exception for the

𝑚 = 1, 2 case at the largest 𝐴0, however, where the short-time optimal results in an unusual

force structure, see, e.g., figure 14(e). For the structure of the optimal forces, when optimised

for the steady two-dimensionalised state (figure 14(g-i)) these forces may induce flows that

are similar to those of previous calculations (Meng et al. 2005; Jia et al. 2014; Wang et al.

2015), although there the optimisations were independent of the flow regime.

Overall, it is found that for the shear-turbulent regime, rolls remain optimal, but the best

choice of azimuthal wavenumber may differ from that in the laminarised flow regime, i.e.

there is dependence on𝐶 through the governing equations. Including time-dependence in the

optimisation, the rolls are notably closer to the wall (figure 14(d-f )). It is possible that this

difference is linked to the flattened turbulent mean velocity profile in the shear-turbulence

state, which leads to a lift-up process more localised towards the near-wall region.

3.4. Optimisation in the convective turbulence regime

Here, optimisation was first considered for a weakly convective turbulent state at 𝐶 = 4. As

the velocity fields in the convective state are time-dependent, optimisations were initially

performed using several initial velocity fields (𝑁 > 1) at this 𝐶 and random initial forces.

However, even for small 𝐴0 = 10−7 it was found that the flow is rapidly laminarised by

the force, it approaches a two-dimensional streamwise-independent state with enhanced Nu.

Therefore in this case, like at 𝐶 = 3 for the laminarisation regime, 𝑁 = 1 is sufficient.

Also like the laminarised case, the optimal Nusselt number shows substantial improvement

compared to the unforced case, 50% at 𝐴0 = 10−7, and the structure of the optimal, although

calculated for 𝑂1, looks very similar to that of figure 5(c), close to 𝑂2 symmetry. Due to the
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(b)(a)

Figure 13: Normalised Nusselt numbers for flows at 𝐶 = 1, 𝑅𝑒 = 3000 subject to optimal
forces in the full and reduced rotational symmetries. (a) Comparison between 𝑂𝐹𝑚 (solid
lines) and 𝑂𝑚 (dash lines). (b) Comparison between 𝑂𝐹𝑚 optimised for shear turbulence

(solid line) and a steady two-dimensional laminar state (dashed line).

Figure 14: Optimal forces at 𝐴0 = 10−6, 𝐶 = 1. The largest arrow has magnitude

6.01× 10−4 in (a), 6.60× 10−4 in (b), 5.50× 10−4 in (c),5.15× 10−4 in (d), 5.76× 10−4

in (e), 5.40 × 10−4 in (f), 6.34 × 10−4 in (g), 5.55 × 10−4 in (h), 5.99 × 10−4 in (i).
𝑁 = 1 initial velocity condition is used for 𝑂𝐹𝑚 and 𝑁 = 3 initial velocity conditions are
used for 𝑂𝑚. In the ‘steady’ case, axial-independence is imposed on the velocity which

results in a steady response velocity to the force.
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Figure 15: Flows forced by 𝑂1 stabilised to larger 𝐶. Here 𝐴0 = 10−7. The vertical dashed
line indicates the optimisation target time T = 600.

laminarisation by the new force at 𝐶 = 4, optimisations for 𝑂𝐹𝑚 exhibit similar behaviour

to those for the laminarised case at 𝐶 = 3.

We therefore optimise heat transfer at larger 𝐶 to examine how far this laminarisation

phenomenon occurs. Time evolutions for Nu(𝑡) optimised at𝐶 = 4−8,T = 600, 𝐴0 = 10−7,

for 𝑂1 are shown in figure 15. With increased buoyancy force, laminarisation by the force

still occurs at 𝐶 = 5, 6, but disappears at 𝐶 = 7, 8. Although the turbulence does not decay,

the Nusselt number at 𝐶 = 7 only fluctuates slightly. At 𝐶 = 8, the amplitude of fluctuations

in Nu(𝑡) are similar to those of the unforced flow, but with a higher mean value.

Due to the laminarisation, the optimisations at 𝐶 = 5− 7 were found to be well converged,

but as turbulence remained stronger for 𝐶 = 8, convergence was poor. Following the

success of the short-time optimisation in the shear turbulence regime, we performed short-

T optimisations at 𝐶 = 8. In this case, an intermediate value of T = 200 was sufficient

to achieve good convergence. Based on the observations for optimisations in the shear

turbulence regime, we consider optimisation in the reduced space 𝑂𝐹𝑚. Figure 16(a) shows

Nu(𝑡) for𝑂𝐹4 as an example. The target time T is not sufficient to capture the statistics of the

endstate, but is sufficient to capture the initial response to the force. With an increase in force

amplitude, the Nusselt number gradually increases. Figure 16(b) compares 𝑂𝐹𝑚 optimised

for the unsteady convective turbulence versus optimisation for the artificially stabilised steady

two-dimensional laminar state (setting 𝐾 = 1 as before). Unlike for shear-turbulence, this

time they show little difference, and the optimal forces are close in structure, similar to figure

14(i-m) – when the flow is not too chaotic, including time dependence in the optimisation

does not improve the Nusselt number further.

Towards more chaotic convective turbulence, a further optimisation was carried out at

𝐶 = 16. Due to the stronger chaos, the target time was again reduced to T = 100. Comparison

between 𝑂𝐹𝑚 optimised with the short T (solid line) and a steady two-dimensional laminar

state (dash line) is shown in figure 17(a). Improvement for the short-T optimisation starts

to be seen at larger 𝐴0 = 10−5. The roll structures of the force optimised with the short

T at all amplitudes are found to be located closer to the wall than for the corresponding

steady calculation. 𝑂𝐹5 at 𝐴0 = 10−5 for the two optimisations are shown in figure 17(b,c).

Such roll structures improve Nu at a larger force amplitude, similar to optimisation in the

shear-turbulence regime. Similar conclusions were drawn at 𝐶 = 32.

Further optimisations were also performed at 𝑅𝑒 = 5000, 𝐶 = 1 and 40, corresponding

to the strong shear-turbulence and convective-turbulence regimes (see figure 1). A short

target time T = 40 was necessary for optimisations with unsteady flows in both cases, due
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(b)(a)

Figure 16: (a) Instantaneous Nusselt number for flow forced by 𝑂𝐹4 at several 𝐴0 at
𝑅𝑒 = 3000, 𝐶 = 8. The vertical dashed line indicates the optimisation target time

T = 200. (b) Comparison between 𝑂𝐹𝑚 optimised with unsteady convective turbulence
(solid line) and with a two-dimensional steady velocity (dash line).

to very strong chaos. Comparison between Nu for 𝑂𝐹𝑚 at 𝐴0 = 10−5 optimised with the

short T (solid line) and when imposing a steady two-dimensional laminar state during the

optimisation (dashed line) are shown in figure 17(d). The inclusion of time-dependence leads

to an improvement in Nu in both cases at 𝐶 = 1 and 𝐶 = 40. The roll structures of the force

optimised using unsteady flow are found to be closer to the wall than when steady flow is

imposed via suppression of streamwise dependence (figure 17(e,f )).

In this section we have found that the added force can laminarise convective turbulence,

where it returns to a streamwise independent state. Pushing Re and 𝐶 to larger values,

such that the flow is chaotic, further enhancement in Nu is found when time-dependence is

included in the optimisation, and rolls are again found to be located closer to the wall.

4. Conclusions

In this work we have developed a heat transfer optimisation method, based on a variational

technique (Pringle & Kerswell 2010; Marensi et al. 2020), designed to identify the optimal

body force that maximises heat transfer, in particular, subject to the time-dependent governing

equations for the flow and subject to limited amplitude of the force. Focussing primarily on

the feasibility and practicality of the method, optimisations have been conducted mostly at

𝑅𝑒 = 3000 with the constant temperature boundary condition, but the method has been

applied to flows initially in each of the typical states of vertical heated pipe flow, i.e. shear

turbulence (𝐶 = 1) laminarised flow (𝐶 = 3), and convective turbulence (𝐶 ⩾ 4).
Our optimisations confirm that the optimal body force is predominantly characterised by

near-wall vortex structures that are uniform in the streamwise direction. This is consistent

with optimised steady velocity fields that have been computed, e.g. Meng et al. (2005). Direct

comparison with previous results is not straight-forward, however, since the optimisations

were for the velocity field, rather than for a force, and the velocity field was independent

of a buoyancy term (i.e. independent of 𝐶). Although such optimisations were not subject

to a momentum equation for the velocity, the velocity was found to satisfy an equation

similar to the Navier-Stokes equation with the addition of the ‘synergy force’, of the form

𝑭𝑠 = 𝑐 𝐴∇𝑇 + 𝒖 · ∇𝒖, in which 𝒖 is time-independent. The scalar field 𝐴(𝒙) is a Lagrange

multiplier for the heat equation, and the constant 𝑐 is a free parameter that is inversely

proportional to a Lagrange multiplier of the viscous dissipation of the velocity field. The

forces added to the Navier-Stokes in the present case are (4/Re)𝐶 𝑇 𝒛̂ + 𝑭. Whilst we have
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Figure 17: Optimisation at larger parameters. Top row: 𝐶 = 16, Re = 3000, 𝐴0 in key to

(a), 𝑂𝐹5 for steady and unsteady flow in (b) and (c). Bottom row: Re = 5000, 𝐴0 = 10−5,
𝐶 in key to (d), 𝑂𝐹6 at 𝐶 = 1 for steady and unsteady flow in (e) and (f ). In (a,d), solid is
for the turbulent state, and dashed line indicates a force optimised with a steady state. The

largest arrow has magnitude 1.4 × 10−3 in (b), 1.9 × 10−3 in (c),1.7 × 10−3 in (e) and

2.4 × 10−3 in (f).

made comparisons with optimisations we have obtained for 𝑭 with a steady response velocity,

it should be cautioned that this is not directly equivalent to comparing with 𝑭𝑠, the latter

of which may not exist if subject to limited magnitude, as only 𝑐 can be varied. Viscous

dissipation is not considered in our calculations, while unrestricted dissipation corresponds

to 𝑐 → ∞ in the synergy approach. The novelty and advantage of our approach is that 𝒖 is

subject to the (steady/unsteady) governing equations, where 𝒖 may be significantly affected

by the flow regime determined by 𝐶, an optimal 𝑭 exists for arbitrarily small amplitude 𝐴0,

which changes with variation in 𝐴0, and the target time T is also an extra parameter in our

calculations.

Forces optimised with different target times were found to exhibit different rotational

symmetry. Specifically, the short-time optimal forces corresponded to larger azimuthal

wave numbers, while for T ≳ 400 the optimal force is unique with smaller azimuthal

wavenumber. This flow pattern aligns with linear optimal perturbations that aim to maximise

flow perturbation growth in isothermal flow (Schmid 2007). Forcing such modes efficiently

modifies the flow. An implication of this result is that if there is limited time to impel a

change in the velocity field, or if we link reduced response time with passage through a short

section of pipe, then larger 𝑚 might be favoured.

In the laminarisation regime (𝐶 = 3), heat transfer increases with force amplitude 𝐴0, as

expected, then increases significantly at the point at which time-dependent flow is triggered

by the force. To reduce computational costs considerably, we opted to compare the Nusselt

number of flows forced by optimals constrained in the Fourier space, 𝑂𝑚 and 𝑂𝐹𝑚 (the

former keeping modes 0, 𝑚, 2𝑚, ... and the latter only keeping modes 0 and 𝑚). This method

is found to be efficient and permits examination upon dependence on 𝑚. (Optimisation in the

full space 𝑂1 leads to an 𝑂𝑚 with 𝑚 unspecified.) For very small 𝐴0, rotational symmetry
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𝑚 = 1 is favoured, then 𝑚 increases with 𝐴0. However, rather than the enhancement in Nu

spiking for a particular 𝑚, the enhancement is similar over a broad range in 𝑚. Also for the

laminarisation regime, there is a jump up in Nu when turbulence is first triggered, but for

larger 𝐴0 turbulence does not necessarily lead to an increase in Nu. Visualisations of heat

flux reveal that disorganisation caused by unsteadiness of the rolls inhibits heat transfer. An

implication if this result is that an approach that seeks to simply trigger turbulence may not

be efficient in enhancing Nu. Organised rolls may be better than turbulent rolls, depending

on the amplitude of roll that can be achieved.

Optimisation in the shear-turbulence regime (𝐶 = 1) is challenging, as the flow is highly

time-dependent and chaotic, preventing the long target times T ≳ 400 used in the laminar

case. However, the method is found to still be effective for much shorter times, with T = 50.

Optimisations for unsteady and steady flow have been compared. (Short T for the former, for

the latter, imposing axial-independence results in a flow that is steady in response to the force

that is captured with a long T .) It is found that including time-dependence results in a force

with rolls located closer to the wall and leads to flows with greater Nu. Similarly, in the more

chaotic convective state at 𝐶 = 16 , 32; Re = 3000, and the flow at 𝐶 = 1 , 40 ; Re = 5000,

optimisations with short T show roll structures closer to the wall. Therefore, the location of

the vortex is another consideration for potential application.

While it is acknowledged that accurately inducing the desired flow in practice is challeng-

ing, optimisations under the laminar steady state assumption, such as those by Meng et al.

(2005), have inspired designs like the alternating elliptical axis tube, discrete double-inclined

ribs tubes (Li et al. 2009) and many other applications (Liu & Sakr 2013; Sheikholeslami

et al. 2015). Our results suggest that additional factors are worthy of consideration – the

distance of the rolls from the wall affects the heat transfer, turbulence can both enhance or

disrupt heat transfer. These will also be affected by the flow regime, here influenced by the

alignment of buoyancy with the vertical pipe axis. Response time is another parameter, which

may affect the choice of 𝑚 in this case.

An important consideration that we have not directly included in our optimisation is the

associated pumping power required for the flow, nor the power expended by the force. For

our calculations, the proportional increase in wall friction and Nu are similar, but it should

be noted that simply increasing the pressure gradient does not lead to a proportional increase

in heat transfer. Indeed, for laminar flow, Nu is independent of Re (Su & Chung 2000).

Table 2 shows the energy consumption and a performance evaluation criterion (PEC) close

to the popular measure developed by Webb & Eckert (1972), used in Meng et al. (2005)

and the more recent review of Li et al. (2023). We have replaced the friction ratio measured

by ¤𝑊𝑃/ ¤𝑊𝑃,𝐹=0 with ( ¤𝑊𝑃 + ¤𝑊𝐹)/ ¤𝑊𝑃,𝐹=0 in order to include the work done by the added

force. The calculation using steady flow overestimates the enhancement, by 16% and 31%

for the relatively quiescent cases at Re = 3000, 𝐶 = 3 and 𝐶 = 8, and more substantially

when the flow is chaotic, by 55% and 57% at 𝐶 = 1 (shear turbulence) and 𝐶 = 16 (strong

convection-driven turbulence). It is overestimated by 126% for the case at Re = 5000, 𝐶 = 1.

In summary, including the full governing equations for the velocity provides a greater range

of parameters that are found to influence the optimal force configuration. Further including

time-dependence in the optimisation is challenging, but can lead to further enhancement of

the heat transfer and significantly improves reliability in prediction of the overall heat transfer

enhancement.
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𝑅𝑒 = 3000 𝑅𝑒 = 5000

𝐶 1 3 8 16 1

Unforced ¤𝑊𝑃,𝐹=0 3.63 × 10−2 2.09 × 10−2 1.78 × 10−2 1.13 × 10−2 3.46 × 10−2

Steady

¤𝑊𝑃 5.24 × 10−2 4.65 × 10−2 3.54 × 10−2 1.93 × 10−2 4.23 × 10−2

¤𝑊𝐹 6.93 × 10−4 6.65 × 10−4 6.61 × 10−4 4.3 × 10−3 7.08 × 10−4

𝑁𝑢/𝑁𝑢𝐹=0 (pred.) 1.76 3.04 2.69 2.18 1.52
𝑁𝑢/𝑁𝑢𝐹=0 (obs.) 1.49 2.75 2.29 1.75 1.23
PEC 1.31 2.10 1.81 1.37 1.14

Unsteady

¤𝑊𝑃 5.52 × 10−2 n/a 3.61 × 10−2 2.04 × 10−2 4.37 × 10−2

¤𝑊𝐹 2.40 × 10−3 n/a 1.2 × 10−3 1.5 × 10−3 1.7 × 10−3

𝑁𝑢/𝑁𝑢𝐹=0 1.57 n/a 2.34 1.81 1.30
PEC 1.34 n/a 1.83 1.45 1.19

Table 2: Energy consumption of flow forced by 𝑂𝐹5 at Re = 3000 and 𝑂𝐹6 at Re = 5000,

with 𝐴0 = 10−5 and several 𝐶. ¤𝑊𝑃 = ⟨ 4
𝑅𝑒 (1 + 𝛽

′
)𝑢𝑡𝑜𝑡 ,𝑧⟩ is the pumping power.

¤𝑊𝐹 = ⟨|𝑭 · 𝒖𝑡𝑜𝑡 |⟩ is rate of the work done by the optimal force. For the ‘Steady’ case, the
flow is restricted to be axially-independent during the optimisaton, which leads to steady
flow and a ‘predicted’ Nu. The force is then applied in a DNS to calculate the ‘observed’

Nu. For the ‘Unsteady’ case, the flow is three-dimentionsal and time-dependent in the
optimisation. The performance evaluation criteria (PEC) is defined

PEC = (𝑁𝑢/𝑁𝑢𝐹=0)/(( ¤𝑊𝑃 + ¤𝑊𝐹 )/ ¤𝑊𝑃,𝐹=0)
1
3 . Flow is laminarised (steady) for the case

marked ‘n/a’.
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Appendix A. Scalar dissipation

We start from the dimensionless governing equation for temperature

𝜕𝑇

𝜕𝑡
+ (𝒖𝑡𝑜𝑡 · ∇)𝑇 =

1

𝑅𝑒 𝑃𝑟
∇2𝑇 − 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡) . (A 1)

Multiplying (A 1) by the temperature 𝑇 and integrating in time from 0 to T , we obtain a new

balance equation for 𝑇2,

∫ T

0

1

2

(

𝜕

𝜕𝑡
𝑇2 + (𝒖𝑡𝑜𝑡 · ∇)𝑇

2

)

d𝑡 =

∫ T

0

(

𝑇

𝑅𝑒 𝑃𝑟
∇2𝑇 − 𝑇 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡)

)

d𝑡 . (A 2)

We aim for a statistically steady state, and therefore drop the first term on the left hand side.

Integrating (A 2) over the entire domain, the second term also vanishes, as it transports 𝑇2

but conserves the total. Applying integration by parts on the first term on the right hand side
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term leads to

0 ≈

∫ T

0

(

1

𝑅𝑒𝑃𝑟
⟨∇ · (𝑇∇𝑇) − (∇𝑇)2⟩ − ⟨𝑇 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡)⟩

)

d𝑡 . (A 3)

Note the ‘dissipation’ term involving ⟨(∇𝑇)2⟩ can only lead to a reduction in 𝑇2. Pulling this

term across and applying the divergence theorem gives
∫ T

0

1

𝑅𝑒 𝑃𝑟
⟨(∇𝑇)2⟩ d𝑡 ≈

∫ T

0

(∮

1

𝑅𝑒 𝑃𝑟
𝑇 ∇𝑇 · d𝑺 − ⟨𝑇 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡)⟩

)

d𝑡 . (A 4)

The surface integral term can be rewritten, given that 𝑇 is constant at the wall (and applying

periodicity at the ends)
∮

1

𝑅𝑒 𝑃𝑟
𝑇 ∇𝑇 · d𝑺 = 𝑇 |𝑟=1

∫

1

𝑅𝑒 𝑃𝑟
∇𝑇 · d𝑺 = 𝑇 |𝑟=1𝑄𝑖𝑛 , (A 5)

where 𝑄𝑖𝑛 is the total heat flux, entering at the wall. For the heat sink term in (A 4) we make

the further approximation that ⟨𝑇 𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡)⟩ ≈ 𝑇𝑏 ⟨𝒖𝑡𝑜𝑡 · 𝒛̂ 𝑎𝑡𝑜𝑡 (𝑡)⟩ = 𝑇𝑏 𝑄𝑜𝑢𝑡 , where

𝑄𝑜𝑢𝑡 represents the total net rate at which heat is carried out of the domain. (Observe that for

a spatially uniform heat sink 𝜖 , as in Marensi et al. (2021), no approximation is necessary:

⟨𝑇 𝜖 (𝑡)⟩ = 𝑇𝑏 ⟨𝜖 (𝑡)⟩ = 𝑇𝑏 𝑄𝑜𝑢𝑡 . While that models a temporal rather than axial change in

temperature, very little difference is observed, see figure 1(b). Note that the velocity profile

tends to be ‘flatter’, i.e. providing a more uniform heat sink, when the flow is turbulent.)

Assuming that on average 𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 , (A 4) becomes
∫ T

0

1

𝑅𝑒 𝑃𝑟
⟨(∇𝑇)2⟩ d𝑡 ≈

∫ T

0

(𝑇 |𝑟=1 − 𝑇𝑏)𝑄𝑖𝑛 d𝑡 . (A 6)

This equation implies the maximisation (minimisation) principle for ⟨(∇𝑇)2⟩ – when the

temperature difference is fixed, maximising the left hand side implies the largest 𝑄𝑖𝑛, and

hence the largest Nu. (When 𝑄𝑖𝑛 is fixed, minimising the left hand side implies the smallest

temperature difference, and hence the largest Nu.)

REFERENCES

Ackerman, J. W. 1970 Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed
tubes .

Bae, Joong Hun, Yoo, Jung Yul, Choi, Haecheon & McEligot, Donald M 2006 Effects of large density
variation on strongly heated internal air flows. Physics of Fluids 18 (7).

Batchelor, George K 1959 Small-scale variation of convected quantities like temperature in turbulent
fluid part 1. general discussion and the case of small conductivity. Journal of fluid mechanics 5 (1),
113–133.

Carr, AD, Connor, MA & Buhr, HO 1973 Velocity, temperature, and turbulence measurements in air for
pipe flow with combined free and forced convection. Trans. ASME J. Heat Transfer 95, 445–452.

Chen, Lin, Chen, Qun, Li, Zhen & Guo, Zeng-Yuan 2009 Optimization for a heat exchanger couple based
on the minimum thermal resistance principle. International Journal of Heat and Mass Transfer
52 (21-22), 4778–4784.

Chen, Qun, Ren, Jianxun & Meng, Ji-an 2007 Field synergy equation for turbulent heat transfer and its
application. International Journal of Heat and Mass Transfer 50 (25-26), 5334–5339.

Chu, Shijun, Marensi, Elena & Willis, Ashley P 2025 Modelling the transition from shear-driven
turbulence to convective turbulence in a vertical heated pipe. Mathematics 13 (2), 293.

Chu, Shijun, Willis, Ashley P & Marensi, Elena 2024 The minimal seed for transition to convective
turbulence in heated pipe flow. Journal of Fluid Mechanics 997, A46.

Ding, Zijing, Marensi, Elena, Willis, Ashley & Kerswell, Rich 2020 Stabilising pipe flow by a baffle
designed using energy stability. Journal of Fluid Mechanics 902, A11.



24

Faisst, Holger & Eckhardt, Bruno 2003 Traveling waves in pipe flow. Physical Review Letters 91 (22),
224502.

Gau, C & Lee, CC 1992 Impingement cooling flow structure and heat transfer along rib-roughened walls.
International Journal of Heat and Mass Transfer 35 (11), 3009–3020.

Grossmann, Siegfried & Lohse, Detlef 2000 Scaling in thermal convection: a unifying theory. Journal
of Fluid Mechanics 407, 27–56.

Guo, Jiangfeng & Xu, Mingtian 2012 The application of entransy dissipation theory in optimization
design of heat exchanger. Applied Thermal Engineering 36, 227–235.

Guo, Zengyuan 2001 Mechanism and control of convective heat transfer: Coordination of velocity and heat
flow fields. Chinese Science Bulletin 46, 596–599.

Guo, Zengyuan Y, Liu, Xiongbin B, Tao, Wenquan Q & Shah, Ramesh K 2010 Effectiveness–thermal
resistance method for heat exchanger design and analysis. International Journal of Heat and Mass
Transfer 53 (13-14), 2877–2884.

Guo, Zeng-Yuan, Zhu, Hong-Ye & Liang, Xin-Gang 2007 Entransy—a physical quantity describing heat
transfer ability. International Journal of Heat and Mass Transfer 50 (13-14), 2545–2556.

Hall, W. B. & Jackson, J.D. 1969 Laminarization of a turbulent pipe flow by buoyancy forces. In Mechanical
Engineering, , vol. 91, p. 66. ASME-AMER SOC MECHANICAL ENG 345 E 47TH ST, NEW
YORK, NY 10017.

Hamilton, James M, Kim, John & Waleffe, Fabian 1995 Regeneration mechanisms of near-wall
turbulence structures. Journal of Fluid Mechanics 287, 317–348.

He, S, He, K & Seddighi, M 2016 Laminarisation of flow at low reynolds number due to streamwise body
force. Journal of Fluid mechanics 809, 31–71.

Hof, Björn, De Lozar, Alberto, Avila, Marc, Tu, Xiaoyun & Schneider, Tobias M 2010 Eliminating
turbulence in spatially intermittent flows. science 327 (5972), 1491–1494.

Jackson, JD 2013 Fluid flow and convective heat transfer to fluids at supercritical pressure. Nuclear
Engineering and Design 264, 24–40.

Jackson, J.D. & Hall, W.B. 1979 Influences of buoyancy on heat transfer to fluids flowing in vertical tubes
under turbulent conditions .

Jackson, John Derek 2006 Studies of buoyancy-influenced turbulent flow and heat transfer in vertical
passages. In International Heat Transfer Conference 13. Begel House Inc.

Jia, H, Liu, ZC, Liu, W & Nakayama, A 2014 Convective heat transfer optimization based on minimum
entransy dissipation in the circular tube. International Journal of Heat and Mass Transfer 73, 124–
129.

Kareem, Ali Khaleel & Gao, Shian 2018 Mixed convection heat transfer enhancement in a cubic lid-
driven cavity containing a rotating cylinder through the introduction of artificial roughness on the
heated wall. Physics of Fluids 30 (2).

Kerswell, RR 2018 Nonlinear nonmodal stability theory. Annual Review of Fluid Mechanics 50, 319–345.

Kostic, Milivoje M 2017 Entransy concept and controversies: A critical perspective within elusive thermal
landscape. International Journal of Heat and Mass Transfer 115, 340–346.
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