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12 Abstract

13 This paper presents findings of demonstration of CO, capture by rotating packed bed absorber using
14 real biomass flue gases. There are two main objectives of the study presented here: (1) performance
15 assessment of pilot scale rotating packed bed CO; capture absorber with real biomass flue gases (2)
16  the impact of impurities in biomass flue gases on the solvent. The demonstration was carried out at
17  the waste to energy and CO; capture facilities at the Energy Innovation Centre of the University of
18  Sheffield. Rotating packed bed (RPB) absorber was used to capture CO, from biomass flue gas
19  generated by a grate boiler. CO, loadings and solvent concentrations were measured using Mettler
20  Toledo auto-titrator.

21 Particulates content of the flue gas was measured, and particulates were collected for further analysis
22 at the boiler exit and absorber inlet by Electrical Low Pressure Impactor (ELPI®+) manufactured by
23 Dekati®. The particulate samples were analysed by ICP-OES to investigate the impact of metals in the

24 flue gas coming from the biomass on the solvent degradation. Solvent samples were collected and
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analysed with ICP-MS and lon Chromatography to quantify build-up of metals and anions in the solvent
over time.

There is very limited information on this subject in open literature. The short-term tests presented
here can serve as a starting point for further longer-term investigations into the impact of biomass
flue gas contaminants on the solvent behaviour and the solvent management requirements during

CO; capture from biomass flue gases.
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Nomenclature

BECCS

CAPEX

CCs

cv

DETA

EIC

ELPI

ESP

EU

FTIR

HEA

HEF

IC

ICP

ICP-MS

ICP-OES

LCOE

MCPD

MEA

OPEX

PB

PCCC

PHW

ppm

RPB

Bio-Energy with CCS

Capital Expenditure

Carbon Capture and Sequestration
Calorific Value

diethylenetriamine

Energy Innovation Centre

Electrostatic Low Pressure Impactor
Electro-Static precipitator

European Union

Fourier Transform Infra-red spectrometry
N-(2-hydroxyethyl)-acetamide
N-(2-hydroxyethyl) formamide

lon Chromatography

Inductively Coupled Plasma

Inductively coupled plasma — Mass Spectrometry
Inductively Coupled Plasma — Optical Emission Spectroscopy
Levelized Cost of Electricity

Medium Combustion Plant Directive
Monoethanolamine

Operational Expenses

Packed Bed

Post Combustion CO, Capture
Pressurised Hot Water

parts per million

Rotating Packed Bed
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1 Introduction

Negative greenhouse gas emissions are required to achieve net zero targets to compensate for hard
to abate industries such as steel, cement, and long-distance transport like shipping and aviation [1].
Arguably, negative emissions can be achieved either by direct air capture (DAC) or bioenergy with
CCS (BECCS). DAC systems are normally small scale and can be installed anywhere to remove CO;
from atmosphere. However, CO, capture plants for BECCS plants can only be installed next to a
bioenergy plant. However, energy consumption per ton of CO;, captured for DAC systems is currently
higher as compared BECCS.

UK’s biggest renewable power producer, Drax power station in North Yorkshire, providing 12% (14
TWh) of UK’s renewable power using biomass (bio-energy) had reduced carbon emissions from the
power plant by 80% [2] by switching from coal to biomass. Currently, four boilers at the Drax power
plant are using biomass to generate 2.6 GW of renewable power. Decarbonizing the bio-energy i.e.
deploying CO, capture at the biomass power plants such as Drax have huge potential for net negative
emissions and to meet 2050 net zero targets set by the UK Government.

Solvent based post combustion CO; capture (PCCC) is the most advanced and well understood
process and is a leading contender to be deployed to capture and store CO, from biomass flue gases
and thus achieving negative CO, emissions.

Traditionally PCCC process employs packed columns for absorption and desorption. However, due to
the slow rate of reaction of traditional CO; capture solvents such as Monoethanolamine (MEA),
usually 30wt% solution, the size of the packed towers can be substantial in terms of height and
diameter resulting in high CAPEX, OPEX and impact on LCOE. For example, a capture plant integrated
with a 960MW coal fired power plant will require absorber and desorber sizes of approximately 20m
x 64m and 13m x 40m, in diameter and height, respectively [3]. Rotating packed bed (RPB) initially
proposed for CO, capture by Ramshaw and Mallinson [4] offers a next generation process intensified
technology to address this challenge. RPBs enhance the mass transfer coefficient [5] by providing

centrifugal force to improve slip velocity, flooding characteristics and interfacial shear stress.

4
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Due to enhanced mass transfer coefficient, higher concentrations of solvent can be utilised in RPB
absorbers as compared to conventional absorbers resulting in increase in capture capacity and thus
reduction in costs of CO2 capture. The scale up of RPBs to industrial scale units could be a challenge.
Maximum practical achievable diameter and speed of rotation will dictate the capture capacity.
Moreover, wettability of packing and optimum L/G ratios to avoid flooding and channelling could also
be decisive parameters for the scaleup. However, it is sometimes beneficial to install relatively
smaller absorber units in parallel, particularly in the case of gas fired power plants which go frequent
load changes to accommodate renewables intermittency. In this case some of the capture units can
be turned on and off based on the load on the parent plant.

However, most of the studies so far on CO2 capture by RPBs has been conducted on lab scale [6-13].
Chamchan et al. 2017 [11] conducted a comparative study on PB and RPB absorber using 30% CO,
content flue gas to represent blast furnace. Using 30 wt% MEA solvent it was demonstrated that the
two types of absorbers performed similarly but the RPB has a volume of approximately one-third
that of PB absorber. The RPB absorber had an inner diameter of 0.12 m, an outer diameter 0.36 m,
and a height of 0.06 m. However, the PB absorber they used was very small (0.1m dia and 2m high)
compared to conventional absorbers thus providing very short residence time for absorption.
Moreover, the reboiler duties of ~8 GJ/ton of CO;, obtained with both PB and RPB absorbers were
almost double the optimum values.

Wau et al. 2017 [12] compared CO; capture performance using RPB and PB absorbers for gas turbine
flue gas compositions using 7m (30 wt%) MEA and observed that with similar volume of packing, RPB
absorber can capture 1.2 to 4.6 times higher amount of CO; depending upon the gas flow. Moreover,
they observed that RPB performed better than PB even at higher lean loadings of 0.34 mol/mol
indicating faster reaction rate with RPB even with shorter residence time. However, the RPB absorber
used for the study was relatively small having the inner diameter of 2.5 cm, outer diameter 12.5 cm,

and height of the packing of 2.3 cm.
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Sheng et al. 2018 [13] investigated performance of PRB absorber under varying operational
conditions using diethylenetriamine (DETA) solvent. The RPB they used had outer and inner
diameters of 15cm and 5 cm, respectively and axial depth of packing of 5.3 cm. However, the study
was focussed only on absorption rather than a cyclic absorption and desorption process as would be
in the real plant.

Although some studies are performed on RPB at small scale, see Akram et al. 2025 [14] for further
details, there is no open access practical demonstration of BECCS with RPB at pilot scale available in
open literature. This project demonstrated the performance of a 1 tpd CO; capture capacity RPB
absorber with real biomass flue gases generated by a 250 kW, biomass boiler.

The particulates in biomass flue gas can carry volatile metals. Industrial biomass boilers are usually
equipped with gas clean up technologies such as ESP and bag filters which can remove up to 99.9%
particulates. However, there is still a chance that very fine sub-micron particle can pass through to
the capture plant and accumulate over time. In this case, some of the volatile metals carried over
with the particulates and enter the solvent can have impact on the capture process through solvent
degradation and foaming resulting in increased operational costs. Moreover, they can shorten the
plant lifetime through corrosion caused by the degradation products. Corrosion is caused mainly by
degradation compounds such as Heat Stable Salts (HSS) [15-16]. Mechanisms of solvent degradation
reactions are complex and are influenced by the presence of metals [17]. Therefore, during this study
particulates emissions were monitored by a Dekati® ELPI®+ at the boiler exit and the absorber inlet.
Particulate samples were also collected at both locations for post analysis by Inductively Coupled
Plasma — Optical Emission Spectroscopy (ICP-OES). Moreover, solvent samples were collected from
the plant frequently and analysed by ICP-OES and lon Chromatography (IC) for build-up of metals and

anions in the solvent, respectively.
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2 Experimental facilities

Flue gas generated by biomass boiler was fed to the RPB absorber for CO; capture. Overall setup
used for the demonstration experiments is provided as simplified flow diagram in Figure 1a. The
Figure shows the schematic of the integrated biomass boiler and RPB CO; capture plant with an
indication of particulates and gas sampling locations. Figure 1b shows picture of the RPB absorber
and desorber installation.

MEA (35%wt) was used as solvent. Higher concentrations of MEA are expected to increase
corrosiveness of the solvent. So, the 35wt% MEA is expected to be slightly corrosive and higher
degradation potential than 30% MEA (considered as standard benchmark solvent for comparison
with new more advanced solvents). However, on the other hand higher MEA concentrations have
higher absorption capacity and thus can potentially reduce power consumption in the CO, capture
process.

The rich and lean solvent samples were analysed by a Mettler Toledo auto-titrator for CO, loadings
and MEA concentrations for all the test conditions. Moreover, biomass fuel was analysed and
particulate samples at the boiler exit and absorber inlet were collected and analysed. Solvent
samples were also collected and analysed using ICP and IC. Further details of the experimental setup
and analytical measurements are provided in the following sections.

Figure 1: Overall experimental setup
2.1 Description of the capture plant

The pilot scale Rotating Packed Bed (RPB) CO; capture plant at the EIC is capable of capturing 1 tpd
CO; based on 90% capture from coal combustion flue gas (~15% CO.). The RPB has an inner diameter
(Di) of 95mm, an outer diameter (D,) of 1100mm and an axial depth of 45 mm. Surface area of the
packing is 1150 m%/m3 and void fraction is 0.914.

The RPB plant is integrated with the conventional packed bed (PB) plant. Both plants have full

absorption and desorption cycles. Rotational speed on RPB absorber and desorber can go up to 800
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rpm and 590 rpm, respectively. The operation can be switched between the two plants (RPB and PB
plants) by adjusting relevant valve positions. RPB desorber is fed with steam from a dedicated boiler
capable of delivering steam at up to 10 bar. The conventional packed bed stripper/reboiler is fed with
Pressurised Hot Water (PHW) and can be operated at up to 180 °C. Further details of the plant can be
found in Akram et al. 2025 [14]. For these tests, the RPB absorber was operated with the conventional
desorber to investigate RPB absorber performance for capture efficiency.

The capture plant is integrated with site combustion facilities including grate boiler/waste to energy
plant, gasifier, biodiesel engine and gas turbine. The plant can also be fed from a dedicated synthetic
gas mixing skid comprising 3 bulk gas streams: CO,, N, and Air, each of 6-300 Nm3/h flow range and a
trace gas (NO,, SO>) injection capability. During these tests flue gas generated by the grate boiler using
virgin wood was fed to the CO; capture plant, drawn via a fan located on the capture plant (inlet of the
absorber).

The capture plant is also equipped with gas clean-up/conditioning facilities for flue gas cleaning e.g.
Sulfur & HCl scrubbing. These steps can be applied to any flue gas source within the site. However, as
the gas analysis confirmed that there was not significant presence of SO; and HCl in the flue gas (~ 1
ppm), these treatment units were bypassed during these tests. This is in line with industrial application,
e.g. Drax, where the flue gas desulphurisation units were decommissioned after the switch from coal
to biomass fuels were completed. The flue gas was cooled down to near ambient temperatures before
entering the absorber due to long pipe run between the boiler and the capture plant. The gas entering
the absorber was considered saturated at ambient conditions while leaving the absorber was at higher
temperatures due to exothermic reaction between MEA and CO,. As a result, net water loss can be
expected from solvent system. The flue gas path leaving the absorbers has two U-bends to remove
condensed water from the gas. The condensed water is directed back to the absorber sump. The
remaining water loss is compensated by transfer of water from water wash to the solvent system. This
water transfer is automatically controlled by maintaining liquid levels in the plant by the PLC control

system.
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Flow rate of the flue gas into the absorber was measured by a pitot type flow meter. Gas analysis can
be performed at 6 different locations in the plant. During these tests, gas analyses were carried out at
the RPB absorber inlet and outlet. Alongside gas composition measurements, temperature and

pressure were also recorded at both locations for mass balance calculations.
2.2 Description of the boiler

The 250 kWth moving grate fired biomass/WtE boiler, is capable of burning a range of virgin biomass
and waste fuels. Further details of the biomass boiler are provided in Norizam et al. 2024 [18].

High combustion temperatures (1000-1100 °C) as well as appropriate residence time of the
combustion gases ensure a clean burning process. Furthermore, particulate removal is achieved in two
distinct steps using a multi cyclone system followed by an electrostatic precipitator (ESP) to adhere to
the strict emissions limits of the Medium Combustion Plant Directive (MCPD). The directive applies
emission limits values of SO, (200 mg/Nm?3), NO, 650 (mg/Nm?3) and dust (50 mg/Nm?) to units firing
solid biomass with a rated thermal input of each unit equal to or greater than 1MW;, and less than or

equal to 5MWj,.

During these tests, gas analyses were only performed at the capture plant, RPB inlet and outlet. On
the boiler side, exhaust gas oxygen content and combustion chamber temperatures were monitored

to control the fuel and air flows to achieve the target CO, concentration in the flue gas.
2.3 Fuel:

Virgin wood chips were used as a fuel and thus a source of flue gas for the capture plant. The fuel
was provided by a local Yorkshire based company, Maxchips. Table 1 shows analysis of the biomass
alongside techniques used to perform them. Due to budget limitation only one biomass sample was
analysed. However, the biomass for the whole test campaign was delivered as one load so it is not

expected to have significant compositional differences.
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Metal content of the biomass was of particular interest as some of the metals are found to have
negative impact on MEA, benchmark solvent for this application. Therefore, biomass samples were
analysed for several common metals found in biomass. For the analysis, the biomass samples were
ashed, the ash was then digested with the aqua regia method. The resulting solution was filtered,
diluted and run on the ICP-OES. Following standard methods were used for the analysis.
e ISO 16967:2015 Solid biofuels for the determination of major elements — Al, Ca, Fe, Mg, P,
K, Si, Na and Ti

e |SO 16968:2015 Solid biofuels for the determination of minor elements

Table 1: Fuel analysis

Analysis Units Technique As Received Dry Ground
(AR) results (DG) results
Gross CV MJ/kg Bomb 14.4 19.18
calorimetry
Net CV MJ/kg By calculation 12.83 17.92
Moisture % Gravimetric 25 -
Ash % w/w 0.4 0.5
Carbon % w/w Elemental 37.2 49.6
Hydrogen % wW/w analyser 4.3 5.8
Nitrogen % w/w 0.4 0.5
Oxygen % wW/w By calculation 32.7 435
Volatile matter % w/w Gravimetric 62.4 83.1
Fixed carbon % w/w By calculation 12.3 16.4
Sulphur/Sulphate % w/w lon 0.02 0.03
Chlorine/Chloride % w/w Chromatography 0.03 0.04

10
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Antimony - Sb mg/kg
Chromium - Cr mg/kg
Copper - Cu mg/kg
Lead - Pb mg/kg
Manganese mg/kg
Nickel - Ni mg/kg
Vanadium -V mg/kg
Zinc-Zn mg/kg
Aluminium - Al mg/kg
Barium - Ba mg/kg
Boron - B mg/kg
Calcium - Ca mg/kg
Iron - Fe mg/kg
Magnesium - Mg mg/kg
Phosphorous - P mg/kg
Potassium - K mg/kg
Silicon - Si mg/kg
Sodium - Na mg/kg
Strontium - Sr mg/kg
Titanium - Ti mg/kg

ICP-OES

11 14
3 4

2.9 3.8
0.9 1.2
45 60

2 2.6
0.3 0.4
9.1 12

97 129
10 14

1.7 2.3
916 1220
100 133
125 166
81 108
378 504
50 67

94 125
4.4 5.8
5.7 7.6

2.4 Measurements:

Following measurements were recorded during the tests.

e Temperatures, flows and pressures on the CO, capture plant

e Gas concentrations and temperatures on the grate boiler

11
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e Gaseous compositions were measured by Gasmet FTIR and a stack analyser
e Particulates were measured at the boiler exit and absorber inlet using Dekati® ELPI®+
e Particulate samples were collected with the Dekati® ELPI®+ and analysed by ICP-OES

e Acid-base titrations were performed for monitoring MEA concentration and CO; loadings

Solvent samples were collected for post analysis by ICP-OES and IC

2.4.1 Gasmet DX4000 FTIR:

The gas samples from the plant are routed to the gas analysis setup (FTIR) through heated filters,
heated sampling lines and a heated cabinet housing solenoids for sample switching. The sequence and
sampling time is user defined and can be changed in the FTIR software as and when required. The
entire sampling system is heated up to 180°C to avoid condensation.

Two FTIRs were employed to continuously measure gas compositions at absorber inlet and outlet. As
FTIR measurements are affected by unknown degradation products, a stack analyser (Servomax 4000
series with CO; sensor) was also used to measure CO; concentrations at the absorber outlet in parallel
to the FTIR. The stack analyser measured dry gas so a chiller was used to remove water from the flue

gas. The stack analyser was calibrated with certified gas compositions in cylinders provided by BOC.

2.4.2 Mettler Toledo auto-titrator:

To maintain the solvent composition and assess capture performance, solvent analyses were
performed by Mettler Toledo auto-titrator to measure MEA concentration and CO; loadings in both
the rich and lean solvent streams. For these tests, rich and lean solvent samples were collected directly
from the plant and analysed manually using the titrator for MEA concentration and CO; loadings.
2.4.3 Dekati® ELPI®+:

The Dekati® ELPI®+ (Electrical Low Pressure Impactor), is a widely-used and well-characterized particle
size spectrometer for real-time particle measurements. The ELPI®+ enables measurement of real-time
particle size distribution and concentration in the size range of 6 nm — 10 um at 10 Hz sampling rate.

In the ELPI®+, particles are classified into 14 size fractions in a cascade impactor.

12
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For these tests, the ELPI® analyser was used to monitor particulate concentrations and to collect
particulate samples at the boiler exit and RPB absorber inlet. Polycarbonate impactor collection foils,
coated with a high temperature grease (Apiezon-H), were used during the tests.

The PM sampling consisted of a PM10 cyclone, a Dekati ediluter, a Dekati low pressure impactor
(ELPI+), a pressure gauge, and a vacuum pump. The flue gas was drawn using a stainless-steel probe
with a diameter of 10 mm at a flowrate of 10 L/ min. The PM10 cyclone removed particles larger than
10pum aerodynamic diameter. An ejection diluter (Dekati®eDiluterTM) was used to dilute the sample
with total dilution ratio (DR) of 25. Number and mass concentrations of particles were assessed based
on discrete size distributions through the 14 stages (with size ranges of 10 nm — 10 um) of the impactor.
The whole sampling system including the sampling probe, cyclone, ELPI+, and the connecting tubes
were all heated to a temperature of 180 °C to prevent the condensation of acidic gases and

agglomeration of wet particles.

2.4.41CP

The particulates collected by ELPI®+ were digested in an acid prior to analysing by ICP. Digestion of
sample was done by an open top method (for major metals 0.1ppm to % levels) for ICP analysis. The
sample preparation procedure involved:

e  Weigh the filter before placing into a clean dry 50ml conical flask

Add 5ml of aqua regia and place the flask on a heating equipment

Adjust the temperature so the acid just bubbles and brown fumes appear

Digest the sample for 30 min, cool for 10min then remove the filter

Make up to 50 ml in a volumetric flask with distilled water

2.4.5 lon Chromatography

lon Chromatography was used to measure anion concentrations in the solvent samples for acetate,
formate, nitrate, nitrite and oxalate. Following methods were used for the analyses.

Instrument: ThermoScientific ICS5000; Column: AS19+AG19 4um (2X250 2X50)

Temperature: 40 °C; Injection: 10ul

13
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Method for oxalate: 0.25ml/min flow, 30min run, Eluent Isocratic: KOH, 15mM

Method for other anions: 0.25ml/min flow, 40min run, Eluent gradient: KOH, 2 to 30mM

3 Test

The experimental conditions used for the tests: Flue gas flow = 150 m3/h; stripper pressure = 1.5 bara;

RPB absorber speed = 400 rpm. Solvent flow rate was changed to vary L/G ratio. The PHW temperature

matrix:

was changed to achieve desired capture efficiency.

Table 2 presents average values of the measured parameters and their standard deviations, over 30 -
60 mins steady state test period. Each test took 6-8 hrs, resulting in 5-10 solvent circulations depending

upon the solvent flow. Absorber exit CO, concentration was monitored continuously. Flat line through

CO; concentration over a period (minimum 30 min.) was considered as a steady state.

Table 2: Test conditions (the values in the parentheses represent standard deviations

Flue gas conditions at absorber inlet

Flow rate COa2 conc. 02 conc. Temperature | Solvent flow | L/G ratio
m3/h % % °C kg/h kg/kg
149.86 (3.15 10.59 (0.49) | 10.68 (0.59) 9.0 (0.3) 352.97 (1.4) 1.8
149.98 (3.43 10.84 (0.31) | 10.74(0.49) 14.2 (0.12) 386.1 (2.98) 2.0
150.04 (3.45 10.55(0.49) | 11.11(0.59) 14.2 (0.06) 428 (2.09) 2.2
150.04 (1.18 10.41(0.27) | 11.41(0.43) 13.8 (0.25) 470 (2.28) 2.4
149.97 (1.22 10.56 (0.27) | 11.63(0.34) 14.4 (0.28) 511.9 (1.6) 2.6
150.0 (1.16) 10.29 (0.33) 11.89 (0.4) 9.3 (0.07) 699.9 (1.87) 3.0

4 Results and discussion:

Performance of the RPB absorber is assessed under varying L/G ratios. Moreover, potential

challenges faced by CO, capture from real biomass flue gases are highlighted in the following

sections.
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4.1 Capture performance

Capture performance is normally measured as percentage removal of CO; (capture efficiency, %) and
energy required to remove a unit amount of CO; (reboiler duty, GJ/ton of CO, removed). Moreover,
capture performance is optimised based on these two performance indicators to achieve maximum
capture efficiency at minimum reboiler duty. CO, loadings of rich and lean solvent streams are used
to measure absorption and desorption capacity. Capture process can be optimised for minimum
reboiler duty based on stripper temperature profiles. Results for the above-mentioned performance
indicators are presented in the following sections. Comparative results of the RPB absorber with

conventional packed bed absorber have been published in [14].

4.1.1 Capture efficiency and reboiler duty

Capture efficiency is calculated based on the CO; concentration at the inlet and outlet of the absorber.
Figure 2 provides the results of reboiler duty and capture efficiency as a function of liquid to gas (L/G)
ratio. Capture efficiency for all the tests was slightly lower than 90%, as it was hard to achieve steady
state due to variations in the flue gas composition (see section 4.2.1). However, reboiler duty shown a
variable trend ranging from 4.3 to 9.4 MJ/kg. At L/G ratio of 1.8, reboiler duty increased exponentially
compared to that at L/G ratio of 2 indicating solvent flow was too low for the experimental conditions
and significantly lower lean loading was required to achieve the desired capture efficiency. It can be
observed from the figure that optimum reboiler duty of 4.3 MJ/kg is achieved at L/G of ~2. Beyond this
L/G ratio, reboiler duty has slightly increasing trend with increase in L/G ratio.

The RPB absorber is driven by 4.7 KW motor. For these tests the RPB was operated at 400 rpm which
is 50% of the full speed. The power consumption by the motor was not directly measured but can be
roughly estimated by calculations. The calculated electricity usage by the motor at 50% of the rated
capacity is 0.6 kW (2.2 MJ/h). This increases energy consumption (reboiler duty + motor consumption)
by less than 2% for all the conditions tested.

Figure 2: Capture efficiency and reboiler duty as a function of L/G ratio
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4.1.2 CO» loadings

Figure 3 shows CO; loadings as a function of L/G ratio. As can be observed from the figure that lean
loading at L/G ratio of 1.8 is significantly lower than that at L/G ratio of 2 and the gap between the
lean and rich loading at this L/G ratio is wider (higher solvent capacity requirement). This is an
indication that stripper must work harder to achieve a desired capture efficiency under these
conditions hence significantly higher reboiler duty as observed in Figure 2. Also, it can be noted that
at L/G > 2, rich loading has slightly decreasing trend with increase in L/G ratio due to higher solvent
flows. It is also worth noting that rich loading was always well below the theoretical maximum of 0.5
mol/mol for MEA indicating that solvent was not fully loaded. It could be due to low residence time
in the RPB absorber. This also highlights that reboiler duty can be reduced by increasing residence
time and thus increasing rich loading to close to theoretical maximum of 0.5 mol/mol and capture
more CO,. This subject is discussed in detail in Akram et al. [14] and RPB design improvements are
proposed to improve capture efficiency and in turn reboiler duty.

Figure 3: CO; loadings as a function of L/G ratio

4.1.3 Stripper temperature profile

Temperature profile in the stripper is measured by nine thermocouples placed at different locations
along the stripper height. Stripper temperature profiles can be characterised into three distinct modes;
baseline region, inflection point and exponential region. Further details about these profile categories
can be found in [19,20].

Figure 4 shows stripper temperature profile for the experiments. The second temperature
measurement from the top of the column (at 7.1m height) is influenced by the incoming condensate
from the reflux drum and thus is not included in the plot. It can be observed from the figure that at
the lowest solvent flow rate tested, 353 kg/h (L/G = 1.8), stripper temperature profile lies in the
exponential region. In order to achieve high capture efficiency under these conditions very low lean
loading is required as shown in figure 3 resulting in high reboiler duty as shown in Figure 2. As the

solvent flow rate increased, the temperature profile changed to transition region which is the desired
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operational regime. As solvent flow is further increased, the temperature profile shifts to the left. As
previously described, the lowest reboiler duty is measured at 386 kg/h solvent flow (L/G = 2).
Temperature profile for this test is significantly different to that at L/G = 1.8 and lies in the transition
region. The temperature profile for the L/G ratios of 2.2 — 2.6 is similar. With further increase in
solvent flow, the profile slowly shifts to the left and eventually will fall into the baseline region with
further increase in solvent flow.

Figure 4: Stripper temperature profile
The data presented highlights optimum operating regime under these conditions using the RPB.
Based on the data obtained, the RPB absorber is now being upgraded to increase the packed volume
to try to increase rich loading to maximum achievable with MEA (0.5 mol/mol). This may result in

lowering reboiler duty.

4.2 Challenges

One of the major challenges during the test campaign was the flue gas composition variability
leading to longer test times required for the capture plant to get to steady state. Moreover, carry
over of volatile metals present in the biomass via particulates in the flue gas can influence the

capture plant performance. These aspects are discussed in the following sections.
4.2.1 Flue gas composition variation

As mentioned previously, flue gas composition from the boiler to the capture plant was variable,
resulting in longer test times for the capture plant to reach steady state. Figure 5 plots flue gas
composition (0,, CO,, NO, CO) for a typical operational day at the inlet of the capture plant. As can
be observed from the plot, CO, concentration varied from 8.7 to 11.4%. This is in conjunction with O,
variation from 9.7 to 12.9% as shown in the plot. The O, concentration can vary due to several
factors, including variable size or moisture content of the fuel, agglomeration or build-up of material
on the boiler grate. Also, it is clear from the plot that when 02 level drops, a peak is observed in the

CO concentration which was mostly around 800 ppm but occasionally reached ~1500 ppm. However,
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average CO concentration over the day was ~70 ppm. CO,, O, and NO content of the flue gas during
the day averaged at 10.29%, 11.5 % and 60 ppm, respectively. Both NO and NO, concentrations were
measured but NO; concentration was negligible so almost all the NOx was as NO.
Inlet air flow, fuel input and furnace pressure were monitored continuously and stayed reasonably
constant throughout the experiments. The variation in the CO; and O, concentrations was due to
periodic collapses within the bed, due to the movement of the grate steps which move the fuel along
the grate, combined with the effect of fuel shrinkage during burnout. As these collapses occur, they
expose additional unburnt fuel surface area within the bed to the combustion air and increase CO,
production rate, as these particles burn out the CO; starts to drop. There is a minimum O,
concentration under which the CO formation increases significantly and consistently for this boiler.
The boiler was operated close to the O, limit to maximise CO, concentration in the flue gas.
Particulate concentrations were measured both downstream of the ESP and upstream of the
absorber while CO concentration was measured at the absorber inlet. Generally, higher the CO,
higher the soot. However, the correlation between CO and dust concentrations weren't part of the
scope of this study so no effort was made to establish a correlation.
Figure 6 plots CO, concentration in the absorber inlet and outlet flue gases for a typical operational
day. As can be observed from the figure that outlet CO, followed the same trend as the inlet and any
variation in the inlet CO; concentration was quickly realised in the outlet gas. The reason for this
could be the short residence time in the RPB absorber. In the conventional absorber the impact of
inlet CO; variation is dampened to some extent due to higher residence times. Moreover, this could
be less of a problem at commercial scale plants as, from a legislation point of view, it is the average
capture efficiency which is more important rather than instant values. Nevertheless, the flue gas
composition variation makes it hard to adjust the capture plant to a specific capture efficiency.
Figure 5: Gas composition at the absorber inlet

Figure 6: CO; concentration at the inlet and outlet of absorber
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4.2.2 Solvent degradation (35wt% MEA)

One of the main challenges with the absorption-based CO, capture process is solvent degradation
and corrosion. Corrosion rate can be influenced by process conditions, plant material, plant section,
solvent concentration, CO; concentration, dissolved oxygen [21] as well as impurities in the flue gas
being treated. Loss of MEA due to degradation could be very high, 2.4 kg of MEA per ton of CO;
captured [22] or even up to 3.6 kg of MEA per ton of CO; captured [23] depending upon the
operational conditions and flue gas characteristics. Oxidative degradation mostly happens in the
absorber sump [24] is responsible for around 95% degradation of MEA [25] and is accelerated by the
presence of metal ions [26-28].

Biomass contains volatile metals which can be transported to the solvent system via small
particulates and can contribute to solvent degradation. Therefore, particulates concentrations were
measured at the boiler exit and absorber inlet. Particulates samples were collected, and post
analysed for metallic content. Furthermore, solvent samples were also collected frequently and were
analysed for build-up of some common metals and anions.

Rate of ammonia emissions in the absorber exit gas can be directly related to the rate of solvent
degradation. In the following sections, ammonia emissions, particulates measurements and metallic
content, accumulation of metals in the solvent and their potential impact on the solvent degradation

are discussed.

4.2.2.1 Ammonia emissions

Ammonia is a degradation product of MEA. A clear correlation between ammonia emissions and
metal concentration has been observed during pilot scale test campaigns [25,29]. Therefore,
emissions of ammonia are monitored and are considered to be a way of monitoring rate of
degradation in CO, capture plants. Higher the emissions of ammonia, higher the rate of degradation.
The rate of degradation is influenced by many factors, one of them is oxygen content of the flue gas

to be thought of responsible for oxidative degradation. The rate of degradation is enhanced by the
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presence of certain impurities in the flue gas as well as metals from the construction material. These
are further discussed in the following sections.

Figure 7 plots oxygen concentration in the absorber inlet flue gas and ammonia emissions at the
outlet of absorber. It can be observed that the oxygen content in the gas has a direct impact on the
ammonia emissions and both follow the same trend. Most of the data is very consistent indicating
increase in oxygen content of the flue gas results in increased ammonia emissions. However, it is
worth noting that ammonia emissions were always below 25 ppm.

The reason for increase in ammonia emissions from 6ppm to 12ppm is not known. It is understood
that oxidative solvent degradation is caused by the presence of oxygen but is accelerated by other
factors such as operational conditions, presence of dissolved metals etc. Therefore, it cannot be
concluded that all the ammonia is emitted due to the effect of oxygen alone due to the involvement
of other factors.

The relatively low ammonia emissions indicate slow rate of degradation. Losses of MEA due to
degradation during the test campaign are estimated to be 1.1 kg/t CO,, considerably lower than 2.4
kg/tCO, measured by [22] during CO; capture from coal flue gas. This might be due to short duration
of the tests (116 hrs) and the solvent was not significantly degraded over the test period. Moreover,
the tests were started with fresh MEA (35%) solvent and the solvent inventory was maintained by
the plant control system by transferring water from water wash for compensating water losses.

Figure 7: Impact of flue gas oxygen content on ammonia emissions

4.2.2.2 Particulate measurements:

Particulates can carry volatile metals which can have detrimental impact on the solvent. The level of
particulates in the flue gas depends upon many factors such as boiler technology, gas treatment system
as well as length of flue gas path between the source and capture plant.

The data measured with the Dekati ELPI®+ particulate analyser is presented in Figure 8 for number,
size and mass distribution as a function of particle aerodynamic diameter. Due to small number of

particulates at the absorber inlet, it took around ~4 hrs to collect reasonable amount of sample for
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analyses. The data presented for metallic concentrations of the particulate samples can be considered
as averaged over the sample collection period as whole of the collected sample was digested and
analysed.

As can be noted that the plot only shows up to PM1 particles as in the case of particle measurements
at the absorber inlet, plate no 10 (>PM1) did not record any particles due to an error in the analyser.
It can be observed from the Figure that some of the bigger particles observed at the boiler exit did
not reach the absorber inlet and likely attached to the pipe walls due to several factors including
impact to walls wetted by condensation in the pipework. Average mass of particulates at the boiler
exit was 21.6 mg/m3 while at the absorber inlet it was 1.5 mg/m?3, indicating that ~93% of
particulates mass was lost in the pipework. Particle number distribution shows that a large number
of very small particles was present at the inlet to the absorber. This is likely due to the formation and
growth of volatile particulate matter and aerosols formation as the exhaust cools down in the
pipeline resulting in condensation. However, it should be noted that the measurements at the boiler
exit, and absorber inlet were performed on different days, so the above explanations are not
conclusive, however the boiler operational conditions on both days were the same so particulates
characteristics should not be significantly different. Nevertheless, the data highlights that significant
number of particulates can enter the solvent system via the flue gas and can have impact on the
solvent.

Figure 8: Particulates size and number distribution at grate boiler exit and absorber inlet
Average particulates mass concentration of 22 mg/m?3 at the boiler exit (after ESP) during the tests
was considerably lower than the limits 50 mg/m? imposed by the MCPD [30]. However, the particle
mass concentration dropped to 1.5 mg/m?3 at the inlet to the absorber. Particles in the form of soot
can result in increased MEA emissions due to possibility of formation of aerosols. Khakharia et al.
2013 [31] did aerosol formation experiments using aerosol generator capable of producing
controlled amounts of soot and dosing sulphuric acid aerosol to a mobile CO, capture mini-plant.

They observed that soot particles having a number concentration in the order of 10*/cm3and
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108/cm? resulted in MEA emissions in the order of 35 and 70 ppmv, respectively. During this study
average particulates mass and number concentrations were 1.5 mg/m3 and 1.07x10%/cm?,
respectively which resulted in average MEA emissions of ~80 ppmv, which is not far from that
measured by Khakharia et al. [31]. The maximum flue gas temperature (35 °C) measured near the
flue gas sampling location was also close to that measured by Khakharia et al., 34 °C [31]. Although
the average particle number during this study was similar to that measured by Khakharia et al. [31],
smaller particles in the range of 0.012 pm were considerably higher in the order of 2.5x108/cm?.
Therefore, MEA emissions are expected to be much higher than those measured by Khakharia et al.
[31]. However, the absorber exit gas sampling point in this study was ~6m away from the absorber so
it is possible that MEA vapours may have been condensed in the unlagged pipework and separated
from the flue gas in the u-bend before the sampling point.

Twence waste to energy plant measured relatively higher MEA emissions of 150-400 mg/Nm? with
slightly higher particulates concentration at the absorber inlet, in the range of 3.4x107 /cm3- 1.2x108
/cm? [32]. The data highlights that higher particulates concentration at the absorber inlet can
potentially result in increased MEA emissions. A Brownian Demister Unit (BDU) installed at the
absorber inlet was affective in removing up to 99% of the particulates entering the absorber and
emissions of MEA were dropped to below 15 mg/Nm?3 reference limit [32].

The intensified CO; mass transfer into the solvent can result in elevated temperatures in the RPB due
to exothermic reaction and thus higher absorber exit gas temperatures. This can result in higher carry
over of solvent potentially needing better wash columns designs to cool the gas and efficiently remove
carried over solvent. During this study, however, due to the absorber gas sampling point considerably
away from the absorber, the impact on the carry over solvent was not considerable and most of the
liquid condensed in the pipe work. The existing water wash was able to remove most of the carried

over solvent.
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4.2.2.3 Particulates sample analyses

It can be observed from Table 1 that Calcium, Potassium, Sodium, Aluminium, Magnesium,
Phosphorus and Iron were present in significant amounts in the biomass. The metals can enter the
capture plant solvent as sub-micron particles. It is not fully understood how the presence of different
metals impacts the solvent degradation behaviour. However, it is observed that presence of Iron
which is also present in Stainless Steel can cause significant solvent degradation. Therefore,
particulate samples and MEA solvent samples were collected and analysed to investigate the impact
of the metals on the solvent.
Particulate samples were collected at the boiler exit and absorber inlet, and are analysed at the
laboratories at Leeds University by ICP-MS. The results are presented in Table 3. The table shows the
amount of various metals in mg/kg of sample collected at different ELPI analyser plates,
characterised by plate Di (um). Some of the plates (Di = 0.022 um and below; Di =2 pm and above)
did not collect enough sample so were not analysed. Also, during the sampling at absorber inlet,
particulate analyser plate no. 10 (Di = 1.238 um) had some technical issues and did not log any
particles.
The data indicates that significant amounts of K, Zn, Na, Si, Fe, Mn were present in the particulate
samples. Moreover, the amount of metals in particulates collected on different plates (Di) vary.
Generally, highest amount is present in the middle plates. Some of the metals (Hg, P, S, Zr and Pd)
were below the detection limit of the analyser. Also, Ti and V were mostly below the detection limits.
Although Ca was in the highest concentration in the biomass sample analysis, it was not the highest
in the particulate samples. On the other hand, K was present in the highest amounts followed by Zn,
Na and Fe. The reason for relatively lower concentration of Ca in the particulates samples could be
that CaO reacts with HCl to form CaCl, at the flue gas conditions by the following reaction [33].

Ca0 (s) + HCl (g) = CaClz (s) + H,0 (g)
CaCl; is hygroscopic in nature and as flue gases contain significant amounts of moisture, CaCl, can

form hydrates which at low temperatures can completely dissolve and form an aqueous solution by a
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534  phenomenon called deliquiescence [34] well known in the deposits induced corrosion in the boiler
535 industry. This phenomenon may have resulted in some of the Ca to be dissolved and settled in
536  different sections of the boiler and the pipework. This hypothesis is also supported by negligible HCI

537  presence in the flue gas at the inlet to the absorber.

538 Table 3: ICP-MS results of particulate samples (mg/kg)
Boiler exit

Plate

no. 3 4 5 6 7 8 9 10
Di (um) [ 0.0316 | 0.0577 0.103 0.18 0.296 0.47 0.757 1.265
K (39) 360939 355561 180591 | 44130.1 19400 6467.9 | 4327.5 999.7
Na (23) 12898.1 16891.5 14599.3 5242 1233.9 358.3 220.3 63.6
Zn (66) 27211.2 | 25520.8 | 20181.8 8301.8 1632.1 455.7 294.5 96
Fe (56) 15597.8 4641.8 1090.9 160.7 187.9 81.3 91.7 73
Li (7) <LOD 82.7 65.9 23.4 6 1.8 1.2 0.4
B (11) 268.2 196.8 23.3 4.7 2.1 3.5 3.9 2.4
Mg (24) <LOD 1222.2 153.4 54.8 22.5 31.3 68.6 108
Al (27) <LOD 2223.6 145.8 41 <LOD <LOD <LOD <LOD
Si (28) 181638 56248.3 4898.7 849.3 819.3 758.2 915.2 541.1
P (31) <LOD <LOD 1637 336.4 <LOD <LOD <LOD <LOD
Ca (43) <LOD 12075.9 567.6 140.4 204.3 264.1 350 622.3
Ti (48) <LOD <LOD <LOD 39 <LOD <LOD <LOD 2.7
V (51) <LOD <LOD 1.2 <LOD 0.2 <LOD <LOD <LOD
Cr(52) 2761.2 755.3 261.6 46 45.4 15.4 12.6 10.6
Mn (55) 1563.2 1128.4 898.5 305.6 73.5 27.7 34.3 33.2
Co (59) 13.2 3.4 2 0.4 0.5 0.1 0.1 0.1
Ni (60) 1541.8 191.3 70 169.9 16 4.7 5.6 3.6
As (75) <LOD <LOD 31.3 13.8 2 <LOD <LOD <LOD
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Sr (88) <LOD 47.2 131 4.3 1.3 1 24 35
Cd (111) 165.5 145.5 104.1 39.1 9 2.9 1.9 0.6
Sn (118) <LOD 31.2 27.7 9.2 2.6 0.5 0.4 0.3
Absorber inlet
Plate
no. 3 4 5 6 7 8 9 10°
Plate Di
(pm) 0.02 0.032 0.057 0.111 0.213 0.419 0.734 1.238
K (39) 649084 | 784153 276575 | 91869.2 | 34867 15793 | 4967.6 -
Na (23) 29952.4 | 42059.6 | 14609.6 | 4775.2 | 1737.6 762.1 282.3 -
Zn (66) 50174.1 | 68869.7 | 25776.8 | 7879.6 | 2911.8 | 1178.4 | 403.4 -
Fe (56) 5186.6 3141.9 1659.1 251.6 966.3 68.2 1333 -
Li (7) 214.2 290.3 104.6 333 131 5.5 1.8 -
B (11) <LoD" <LOD 30.2 204 <LOD 2.6 3.6 -
Mg (24) <LOD 552.6 278.1 74.6 32.5 18.9 37.8 -
Al (27) 1652.2 <LOD 499.2 <LOD 41 <LOD 98.3 -
Si (28) 31359.8 | 9849.3 5358.1 1515.1 300.7 854.8 540 -
P (31) <LOD <LOD <LOD <LOD <LOD <LOD <LOD -
Ca (43) <LOD <LOD 3178.1 726.9 213.3 91.1 466.6 -
Ti (48) <LOD 117.1 180.9 <LOD 15.2 3.2 343 -
V (51) <LOD <LOD 34 1.1 0.5 <LOD <LOD -
Cr (52) 1367.1 828.1 388.8 71.2 343 19.3 9 -
Mn (55) 2468.5 3260.4 1164.1 377.7 129.6 60.9 26.8 -
Co (59) 104 5.7 4.5 0.6 0.2 0.2 0.5 -
Ni (60) 333.6 154.1 51.3 42.2 <LOD 26 671.1 -
As (75) 184.3 2155 57.3 16.5 5.6 3.2 <LOD -
Sr (88) 43.5 57.1 23.2 6.8 24 1.4 2.2 -
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Cd (111) 167.8 227.2 83.2 27.1 11.2 4.6 14 -

Sn (118) 88 192 46.1 133 5.3 2.4 0.9 -

*LOD - Level of Detection; * - Plate no. 10 for boiler exit measurements developed a fault and did not record particles

Figure 9: K, Zn, Na and Fe in particulate samples at boiler exit and absorber inlet

Figure 10: Percentage loss of metals between boiler and absorber

Figure 9 plots the metals found in the highest quantities in the particulates i.e. K, Zn, Na, Ca, Mg and
Fe at the boiler exit and absorber inlet as a function of particle diameter. As can be observed from
the Figure that only PM1 particles are reported due to the reason that the analyser did not record
any particles bigger than PM1 (Plate no. 10) in the case of measurements at the absorber inlet. The
figure shows that the magnitude of K is around ten times higher than Zn, the next highest. The figure
highlights that most of the metals were present in the smaller particles. The figure also indicates
that a significant mass of the metals was lost between the boiler and the absorber. The mass of
metals lost between the boiler exit and absorber inlet varies ranging between 70 and 90% for most
of the metals, see Figure 10. The loss varies from 40% for Ni to 100% for P which was below the

detection limit at the absorber inlet.

4.2.2.4 Solvent analysis

In order to investigate the impact of volatile metals present in biomass on the solvent degradation,
rich and lean solvent samples were collected at the end of each day and were analysed using ICP-OES
for a number of metals present in biomass and construction material (Stainless steel). The results
were similar for both of the samples so only lean samples analysis are presented here, Figure 11. It
can be observed from the Figure that there was a significant presence of Potassium, Calcium and
Sodium metals which are also present in significant amounts in biomass, see Table 1. Potassium was
found to be in the highest amount in the solvent samples, followed by Na, Ca and Fe. Zn was found

to be lower in the solvent samples while was relatively high in the particulate samples. ZnO is
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insoluble in water and MEA while ZnCl, is soluble in both water and MEA. Therefore, it is possible
that most of the Zn in the particulates was present as ZnO and settled in the capture plant.
Potassium tends to increase over time although rate of increase slowed down towards the end,
however, Sodium and Calcium did not show much change over the test period. Potassium and
Sodium are normally present in fly ash as K;O and Na,O both of which can react with water to form
respective hydroxides. The hydroxide, KOH and NaOH, both are used for CO; capture. The reason for
continued increase in potassium but steady concentration of sodium over the test period needs
further investigation. Part of the reason could be that the total amount of potassium in the
particulates at the absorber inlet was ~20 times higher as compared to Sodium. Other metals such as
Fe, Mg etc. are also found in small amounts but were below 2 mg/kg at the end of the test campaign.
The presence and accumulation of some of these metals may accelerate or inhibit solvent
degradation [35-43] resulting in plant corrosion and thus increasing operational costs as well as

costly equipment replacement.

Table 4: Critical metals accumulation

Cu Cr Ni Fe \Y
mg/kg of particulates
Absorber | (average of all the plates) - 388.3 | 213.1 | 1800 | 1.66
inlet Cumulative (mg) over the
test period (116 hrs) 10.13 | 5.56 | 46.98 | 0.04
mg/kg of solvent (last
sample at 116 hrs) 0.08 | 0.25 | 0.15 1.85
Solvent
Cumulative (mg) in total
solvent inventory (450kg) | 36 | 112.5| 67.5 | 832.5
%age from flue gas 9 8.2 5.6 -
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Table 4 shows cumulative content of some of the critical metals at absorber inlet and in the solvent.
The data presented in table 4 indicates that even if all the metals in the flue gas entering the
absorber were to dissolve in the solvent the contribution from the flue gas is less than 10%. Schallert
et al. 2014 [40] reported that particulates undergo leaching with MEA solution to a small extent
indicating that the contribution of metallic content from the biomass flue gas into the solvent may
have been even less than those calculated in the table assuming that 100% of the metallic content in
the particulates entering the absorber is dissolved in the solvent. This highlights that majority of the
metals were from metal corrosion from the plant potentially caused by the presence of heat stable
salts [44] rather than from the biomass flue gases. The order of magnitude of the metals is also
similar to that in SS304, Fe>Cr>Ni.
Clery et al. [45] during lab tests highlighted that metals present in the biomass ashes were also
present in the solvent. However, the amounts of metals present in the solvent during the current
pilot scale demonstration were not in line with the quantities present in the biomass or particulates
sampled at the absorber inlet but, as mentioned earlier, mostly seem to be coming from the plant
corrosion.

Figure 11: ICP-OES analysis of MEA samples
The solvent samples were also analysed for build-up of anions, using lon Chromatography, Figure 12,
for the presence and accumulation of these degradation products [46-50]. Formate, was observed to
be present in highest amounts (~70 ppm) followed by nitrate (~27 ppm), and nitrite (~22 ppm).
Oxalate was found to be very low (~2 ppm).
Comparing data from different pilot scale test campaigns Buvik et al. [46] found that acetate and
formate were dominant degradation products, but the order of magnitude was different based on
process conditions. The average concentration of formate, acetate and oxalate was found to be 2500,
800 and 500 mg/kg per 1000 hrs, respectively. However, most of these studies were on coal and
some on gas combustion but none was on biomass. Rieder et al. [51] observed that formate ions

were typically the most abundant HSS at pilot scale. Same observation was made by Buvik et al. [43]
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and observed that formate, acetate and oxalate made almost half of the HSS content. The current
data indicates that the ratio of acetate to formate was in the order of 4 comparable with that
reported by [52] who measured 5 times acetate as compared to formate. However, [53] reported
acetate to formate ratio of 1/5 at Technology Centre Mongstad test campaign.

Figure 12 highlights that during current study, formate and acetate concentrations dropped after 90
hrs of operation with acetate seeing a big drop. As the boiler conditions were the same and same
biomass was used, the oxygen content or the biomass composition is not expected to change
significantly. Therefore, it is likely that these species reacted with MEA and other degradation
products to from organic HSS [47]. Concentrations of nitrate and nitrite seem to be steady and below
30 ppm until the end of the test campaign. It is possible that nitrite and nitrite were being produced
and also consumed and converted to other species during the process. Formaldehyde can reduce
nitrate to nitrite and ultimately to nitrogen gas in the presence of metal catalyst [54]. Reduction in
nitrate concentration around 80 hrs may also be due to the same phenomenon.

Total accumulation of measured HSS during this study over the 116 hrs operational period was 163
ppm, at a rate of 1.4 ppm/h. Thompson et al. [55] observed HSS accumulation at a rate of 48 ppm/hr
over 200 hrs in 30% MEA which is around 34 times higher than the current study. Threshold for HSS
has been reported to be up to 0.5% of the weight of the solvent as benchmark to assess purification
requirements of the solvent to remove HSS and other degradation products [56]. The threshold
levels for oxalate and formate are 250 and 500 ppm, respectively [47]. These thresholds were never
reached during the current tests, likely due to short duration but the concentrations of the HSS
observed were not increasing at an alarming rate. However, there will be some point after which
solvent will have to be purified using methods such as thermal reclaiming or by removing HSS and
other degradation products by methods such as ion exchange membranes. These will increase
operational costs and may results in solvent loss and further degradation during the process [55].
Therefore, a balance need to be established at which point and to what extent the solvent need to

be cleaned or purified to optimise the process and minimise costs.
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During the present study after 116 hrs of operation, total HSS accumulation of the measured species
was 0.005% considerably lower than those reported in literature. Thompson et al. [55] and Knudsen
et al. [57], observed 1% and 0.75%, respectively, HSS accumulation over 200 hrs of operation in 30%
MEA. Gao et al. [58], in pilot scale experiments reported HSS accumulation rate of 0.2% and 0.4%
after 100 and 200 hrs, respectively. Similarly, Wilson et al. [59] reported accumulation of HSS at a
rate of 0.4% at Sask power Boundary Dam plant. It has been recommended to use solvent
management techniques such as reclaiming if concentration of HSS exceeds 1.5wt% [60].

The relatively lower HSS accumulation during the current study could be due the presence of K, Ca
and Na metals in the biomass flue gas which accumulate in the solvent and can act as degradation
inhibitors for MEA [43]. This indicates that removal of metals from the flue gas has to be prioritised
carefully. Therefore, it is required to enhance the flue gas cleaning requirements to remove the
elements which are detrimental to the solvent before entering the solvent system. Once they are
part of the solvent system, the cleaning requirements are different. Solvent reclaiming options are
being investigated to keep the solvent relatively clean using different techniques such as thermal
reclaiming but these investigations are at early stages. Generally, plant operation should be
controlled to maintain suitable conditions to reduce solvent degradation.

The current study demonstrated BECCS experimentally in the real industrially relevant environment
using real biomass flue gases. However, the tests were of short duration (116 hrs), and therefore it is
not possible to investigate degradation trends thoroughly. However, the data acquired can provide
useful insight for further studies on the solvent degradation by biomass flue gases. Longer term tests
with real biomass flue gas and modelling of degradation chemistry are required to better understand
the impact of contaminants in biomass flue gases on the behaviour of solvent in the CO; capture
plants.

Figure 12: Anion concentrations in solvent samples
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5 Conclusions:

Bioenergy with CCS can play a vital role in providing negative CO, emissions required to meet net zero
targets by 2050. However, the impact of biomass flue gas on the solvent behaviour is far from
understood. Longer term tests with real biomass flue gas are required to better understand the impact
of biomass flue gas contaminants on the solvent behaviour. Based on the data presented here,
following conclusions can be drawn.

Flue gas composition varied significantly requiring more time to achieve steady state on the capture
plant. However, depending upon the design of the boiler combustion control system, this issue may
be less pronounced at commercial scale and can be overcome by averaging the data over longer
periods. Nevertheless, boiler control systems should be designed to provide flue gas composition as
consistent as possible to precisely quantify the energy consumption for stripping CO; in the capture
plant and to optimise the process.

Capture efficiency and reboiler duty varied as a function of L/G ratio and minimum reboiler duty was
found at L/G = ~2 where capture efficiency was around 85%.

To achieve maximum benefit, rich loadings should be close to theoretical maximum value, 0.5 mol/mol
for MEA. However, CO; loadings measurements have indicated that maximum rich loading under the
operational conditions was ~0.4 mol/mol. Thus, the data highlights that the current RPB absorber
design requires modification to achieve higher rich loadings. Moreover, the reason for lower rich
loading in the RPB absorber appears to be short residence time, and it is anticipated that it may
perform better with more reactive solvents than MEA.

Particulate measurements at the boiler exit and absorber inlet has shown that ~93% of the particulates
by mass were lost in the pipework and did not reach the capture plant. Most of the lost particles were
larger particles as can be expected. Further investigations are needed to understand this strong effect
in this testing facility.

Significant amount of Potassium was observed in the particulate’s samples collected at the absorber

inlet and in the solvent samples. Similarly, Sodium was also present abundantly at both places, in
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particulates and in solvent. However, Zn was relatively low in the solvent samples although was present
in significant amounts in particulate samples.

Formate, nitrate, nitrite and acetate were found in significant quantities in the solvent samples, while
oxalate concentration was very low (<2ppm). The data indicates that solvent degraded relatively
quickly at the start, within ~20 hrs, but was relatively stable after that over the test period. As the tests
were of only 116 hrs duration, it is possible that degradation could have been increased if the tests
were to continue.

It is not possible to quantify the impact of volatile metals on the solvent degradation due to the
involvement of several factors, but it is understood that presence of some metals in the solvent
catalyse the degradation process while some metals act as degradation inhibitors. Therefore, solvent
management techniques should be designed to reduce solvent losses due to overcleaning and to
control the process in such a way that only species are removed which are detrimental to the process.
This may require multiple technologies in series.

The test campaign was relatively short due to budget limitations. Therefore, it is anticipated that the
accumulation of flue gas contaminants and degradation products has not reached saturation and
interaction of degradation products/dissolved metals with the solvent was limited [52]. However, the
data presented here can serve as a starting point for further investigation in this field. Longer term test
campaigns with more rigorous analysis are required to better understand the interactions between
different species in the solvent system and threshold concentration of the species for triggering

accelerated degradation.
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Figure 6: CO, concentration at the inlet and outlet of absorber
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Figure 8: Particulates size and number distribution at grate boiler exit and absorber inlet
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Figure 9: K, Zn, Na and Fe in particulate samples at boiler exit and absorber inlet
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Figure 11: ICP-OES analysis of MEA samples (grey area indicates particulates collection period at the absorber inlet)
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Figure 12: Anion concentrations in solvent samples



