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Abstract. Chronic thromboembolic pulmonary hypertension (CTEPH) presents 

challenges for pulmonary artery segmentation due to vascular remodeling, steno-

sis, and obstructions. This study evaluates a 7-layer dilated convolutional neural 

network (CNN) with Tversky loss, applied to computed tomography angiography 

(CTA) images that were preprocessed with image enhancement techniques. The 

model achieved a Dice score of 0.792 on non-CTEPH data but scored 0.693 on 

CTEPH data, reflecting the challenges of manual segmentation, where smaller 

branches are often missed. While the results align with other research, advanced 

3D CNN models have shown higher accuracy. Future work should refine ground 

truth data and explore 3D models to better capture CTEPH-specific complexities. 

Keywords: 3D segmentation, AI, CTEPH. 

1 Introduction 

Pulmonary hypertension is a clinical condition characterised by an increase in the mean 

pulmonary pressure >20 mmHg, measured at right heart catheterisation. Imaging mo-

dalities such as magnetic resonance (MRI) or computed tomography (CT) play a crucial 

role during the diagnosis, assessment, and patient follow-up of PH patients [1]. Over 

the past two decades, tools based on computer modelling and artificial intelligence [2] 

have emerged, supporting the clinical decision-making process.  

Among these tools, blood flow hemodynamics simulations could provide a deeper 

understanding of pressure and flow distribution, and they could be used to predict the 

changes that may occur after surgical intervention [3], as it is the case in chronic throm-

boembolic hypertension (CTEPH). Often, the development of personalised models of 

the pulmonary vasculature relies on quick and sensible image segmentation and geom-

etry reconstruction. Various research teams [4-8] have proposed AI-based tools for de-

tailed pulmonary arterial segmentation and reconstruction, showing high agreement 
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with manually segmented ground truth. However, these methods are not focused on 

CTEPH patients, who present significant arterial remodeling, stenosis, webs, and bands 

[9], complicating the task. 

This paper evaluates whether a 2D convolutional neural network, supported by im-

age processing techniques, can offer accurate pulmonary arterial tree segmentation in 

CTEPH.  

2 Materials and methods 

2.1 Datasets 

The proposed segmentation method was developed using two image datasets. The first, 

referred to as SheffCTEPH has CTA images from 14 CTEPH patients, collected at the 

Sheffield Pulmonary Disease Unit. All patients provided written consent for data col-

lection.  

The images have matrix dimensions of 512x512 pixels, with stack heights ranging 

from 905 to 1256 slices per patient. The mean in-plane resolution is 0.72 mm/pixel, and 

the average slice thickness is 0.625 mm. 

The second dataset consists of CTA volumetric images and corresponding masks 

from 100 subjects, available through the PARSE challenge [7]. The stack height of 

these images varies between 228 to 376 slices. Since no information on the clinical 

conditions of these subjects is available, this dataset is referred to as noCTEPH. 

2.2 Generation of the ground truth masks 

The images were segmented using the MIMICS software package 

(www.materialise.com). 3D geometry rendering, visualisation and comparison of cases 

was performed with 3D Slicer (www.slicer.org/). All the 2D image processing as well 

as AI model implementation and evaluation were performed in MATLAB R2023b 

(www.mathworks.com), using various built-in toolboxes, including the Image Pro-

cessing Toolbox and Deep Learning Toolbox.  

  It is important to note that the masks for the SheffCTEPH dataset were generated 

from 3D reconstructed geometries, which were cleaned and smoothed for haemody-

namic model-based analysis. Due to this process, the level of detail at the branch level 

was reduced for some CTEPH patients. 

2.3 Image preprocessing  

All the images went through several preprocessing steps including contrast enhance-

ment, pixel values scaling and normalisation, image cropping and resizing. The image 

contrast enhancement was achieved after clipping the pixel values between -800 and 

500 Hounsfield units (HU), followed by min-max pixel scaling and normalisation in 

the [0, 1] interval.  

http://www.materialise.com/
http://www.mathworks.com/
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Cropping all the volumes with a rectangle that includes the structures delimited by 

the outside lungs border was further applied. The creation of this region of interest 

(ROI) included: (i) binarisation of the volume central slice with an optimal threshold 

value chosen based on the histogram using the Otsu method [10], (ii) cropping the gray-

scale image with a rectangle that frames the object with the largest perimeter in the 

binary image, (iii) binarising the newly cropped grayscale image and create its negative 

to outline the lungs, (iv) retaining the two lungs from the complement image, (v) crop-

ping the lung mask with a rectangle that fully encloses them, and (vi) cropping all im-

ages in the volume according to the new coordinates. For each data volume, the crop-

ping coordinates were determined based on the image corresponding to the middle 

slice. Finally, all the images were resized at 512 x 512 and individually saved as .png 

files. Figure 1 shows the 2D image preprocessing steps illustrated on a slice.  

 

 

Fig. 1. Images preprocessing steps 

2.4 AI based images segmentation 

For the task of image segmentation a dilated convolutional neural network (DCNN)[11] 

architecture was used. The dilated convolutions allow the network to capture features 

at multiple scales, which is essential for detecting the fine details of small arteries while 

also understanding the broader context required for segmenting larger arteries, both 

being present in the CT images of the pulmonary arteries. By expanding the receptive 

field without reducing spatial resolution, the network can accurately differentiate small, 

intricate vessels alongside larger structures, making it well-suited for this type of med-

ical imaging task. 
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The network's first layer processes grayscale images with a 512x512 matrix size on 

a single channel, followed by six convolutional blocks. Each block includes a convolu-

tional layer with 64 filters (3x3), batch normalization to stabilize training, and ReLU 

activation for non-linearity. To capture features at different scales, dilation factors (1, 

2, 4, 8, 16, 32) were applied, increasing with network depth. The final 1x1 convolu-

tional layer reduces the number of channels to match the number of classes, preparing 

the output for the softmax layer to generate pixel-wise class probabilities. 

The training was carried out using the Adam optimizer, with a learning rate of 1e-4, 

for 100 epochs, in mini-batches of 4 images. The Tversky loss function [12], with α=0.3 
and β=0.7, chosen empirically after trying several configurations, was used to penalize 

false negative predictions (white pixels defined as background) in an attempt to com-

pensate for the class imbalance.  

The dataset was split into 70% for training, 10% for validation, and 20% for testing, 

ensuring that no .png images from the same subject appeared in more than one set to 

avoid data leakage and improve model generalization. 

A final image post-processing step, based on simple morphological operations such 

as opening (using a structural disk element with a radius of 1) and hole filling, was 

applied to the test set masks before evaluating the final results. 

3 Results and discussions 

The results were evaluated on the entire test set, as well as separately on each type of 

images to better underline the challenges in the CTEPH cohort. Figure 2 shows a com-

parison between the ground truth mask and the mask estimated by the trained neural 

network for images from both categories (CTEPH and noCTEPH). Generally, the net-

work successfully identifies the large arteries, but the agreement with smaller blood 

vessels is weaker, especially for the SheffCTEPH data.  

Table 1. Evaluation metrics computed on the test set 

 
 

JACCARD DICE ACCURACY

NoCTEPH artery 0.656 0.792 0.897

background 0.995 0.997 0.996

SheffCTEPH artery 0.530 0.693 0.835

background 0.992 0.996 0.994

NoCTEPH+SheffCTEPH artery 0.557 0.715 0.850

background 0.993 0.996 0.994
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Fig. 2. Examples of 2D images from the test sets with corresponding ground truth and predicted 

masks 

Examples of reconstructed geometry from the 2D segmented masks are shown in 

Figure 3 and 4. It can readily be noticed that while the AI-based segmentation model 

provides results closer to those of the human expert for the noCTEPH set, it predicts 

more arterial vessels than the ground truth in CTEPH cases. The CTEPH examples in 

Figure 4 highlight both the tortuosity of the vascular tree in these patients and the arte-

rial path obstruction in the proximal vessels.  

The qualitative results were supported by the quantitative data presented in Table 1, 

expressed as the mean Dice and Jaccard indices [13] as well as accuracy, based on 

binary pixel classification across all slices. 

As it can be noticed, the highest artery Dice score of 0.792 was achieved for the 

noCTEPH set, while the lowest score of 0.693 was recorded for the CTEPH set. The 

mixed test set scored 0.715. The lower score for the CTEPH cases is influenced by the 

ground truth segmentation, which missed unconnected branches that were not identified 

during manual segmentation. 
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Fig. 3. Geometry reconstructions of the masks from the noCTEPH test set 

 

 

Fig. 4. Geometry reconstructions of the masks from the SheffCTEPH test set 

The results for the entire set are in the range of those reported by the 25 teams par-

ticipating in the Parse Grand challenge [7], where the highest score was 0.7969. On the 

same Parse dataset, L. Lou. et. al [4] reported with their 2D-CNN a mean dice score of 

0.7816. Superior results were showed for the more complex, 3D CNN, as it is the case 

of M. Zulfiqar et. al [6] or J. Han et. al [5], reporting mean dice scores of 0.8775 and 

0.8659, respectively. It is important to note that these results were obtained from ge-

neric lung CTA images, with no mention of CTEPH cases. A few research groups re-

ported results on CTEPH data, such as H. Suzuki et. al [14] who focused on main 
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pulmonary artery segmentation, showing a dice score of 0.968, or Kim et. al. [15] who 

presented a deep learning-based pulmonary arterial tree segmentations in CTEPH but 

did not provide evaluation scores. In contrast, our research utilizes specialized image 

enhancement techniques and a CNN modified with Tversky loss to specifically address 

the unique challenges of segmenting pulmonary arteries in CTEPH patients—a domain 

that has been relatively underexplored in existing studies. This approach not only pro-

vides critical insights but also achieves significant improvements in segmentation ac-

curacy for this particularly complex patient group. 

4 Conclusions 

This study explored the use of a 7-layer dilated convolutional network with Tversky 

loss for segmenting pulmonary arteries in 2D CTA images. Image enhancement tech-

niques were applied during preprocessing to support the segmentation of arteries in 

both CTEPH and non-CTEPH cases. The model achieved a Dice score of 0.792 in non-

CTEPH cases but struggled in CTEPH cases, with a lower score of 0.693, likely due to 

missing details in the ground truth caused by complex vascular alterations typical of 

CTEPH. While the performance aligns with similar 2D CNN-based studies, more ad-

vanced 3D models and refined segmentation processes could improve accuracy and 

clinical relevance in CTEPH cases. 
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