
This is a repository copy of Refined BPS numbers on compact Calabi-Yau threefolds from 
Wilson loops.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/230832/

Version: Published Version

Article:

Huang, M.-X. orcid.org/0000-0002-7347-9273, Katz, S. orcid.org/0000-0002-3123-6126, 
Klemm, A. orcid.org/0000-0001-5499-458X et al. (1 more author) (2025) Refined BPS 
numbers on compact Calabi-Yau threefolds from Wilson loops. Journal of High Energy 
Physics, 2025 (8). 178. ISSN: 1126-6708

https://doi.org/10.1007/jhep08(2025)178

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/230832/
https://eprints.whiterose.ac.uk/


J
H
E
P
0
8
(
2
0
2
5
)
1
7
8

Published for SISSA by Springer

Received: May 21, 2025

Accepted: July 17, 2025

Published: August 22, 2025

Refined BPS numbers on compact Calabi-Yau

threefolds from Wilson loops

Min-xin Huang ,a,b Sheldon Katz ,c Albrecht Klemm d,e and Xin Wang a,b

aInterdisciplinary Center for Theoretical Study,

University of Science and Technology of China,

96 Jinzhai Road, Hefei, Anhui 230026, China
bPeng Huanwu Center for Fundamental Theory,

96 Jinzhai Road, Hefei, Anhui 230026, China
cDepartment of Mathematics, University of Illinois Urbana-Champaign,

1409 W. Green St., Urbana IL, 61801, U.S.A.
dBethe Center for Theoretical Physics, Universität Bonn,

Nußallee 12, 53115 Bonn, Germany
eDepartment of Mathematical and Physical Sciences, University of Sheffield,

S3 7RH Sheffield, U.K.

E-mail: minxin@ustc.edu.cn, katzs@illinois.edu,

aoklemm@th.physik.uni-bonn.de, wxin@ustc.edu.cn
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corresponding very massive M2-brane states can be treated as Wilson loop particles and the

refined topological string partition function on X becomes a sum of terms proportional to

associated refined Wilson loop expectation values. The resulting ansatz for the complete

refined topological partition function on X is written in terms of the proportionality coefficients

which depend only on the ϵ deformations and the Wilson loop expectations values which

satisfy holomorphic anomaly equations. Since the ansatz is quite restrictive and can be further

constrained by the one-form symmetries and E-string type limits for large base curves, we

can efficiently evaluate the refined BPS numbers on X, which we do explicitly for local gauge

groups up to rank three and h11(X) = 5. These refined BPS numbers pass an impressive

number of consistency checks imposed by the direct counting of these numbers using the

moduli space of one dimensional stable sheaves on X and give us numerical predictions for

the complex structure dependency of the refined BPS numbers.
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1 Introduction and summary

Wilson loop operators are gauge invariant operators whose expectation value gives a measure

of quark confinement introduced in [1], where the relation of the string approach to strong

interactions was already pointed out. In the AdS4 × S5 conformal gauge string theory

correspondence this expectation value has been calculated to leading order in the ’t Hooft

coupling as the string world-sheet volume in the AdS space bounding the loop of the gauge

theory on the boundary [2]. Direct localisation calculations of the expectation value of circular

supersymmetric Wilson loops in 4d N = 2 supersymmetric gauge theory were performed

in [3] to prove that the latter are related to a Gaussian matrix model.

It has been a very fruitful approach to study lower dimensional rigid, i.e. non-gravitational,

supersymmetric theories to start with string, M- or F-theory compactifications on compact

Calabi-Yau spaces X and take a local limit of X in which the gravity sector decouples,

an approach that is known as geometric engineering of rigid (gauge) theories. Since the

refinement can be clearly defined for these rigid theories we propose in this paper to go in the

opposite direction and start from local rigid gauge theories and reconstruct properties of the

refined spectrum of supergravity completions in the topological sector of the corresponding

string theory. As in the above case of Gauge theory/Gravity duality, Wilson loop expectation

values in the gauge theory play a key role in this program. Of course we do not claim that these

theories are dual, however the use of Wilson line operators and of the one-form symmetries

put severe constraints on the structure of the gravity completion. Moreover if several local

limit exists we get consistency conditions on the structure of our ansatz. More concretely we

study the enumeration of spinning massive BPS states in 5d N = 1 supergravity theories on

R4 × S1 from M-theory compactification on compact Calabi-Yau threefolds. Our approach

connects the local and the global case using Wilson loop operators, wrapping along the time

circle S1, of the gauge theories in rigid limits of the 5d supergravity theory, addressing the

questions raised in the weak gravity conjecture [4]. Since all our Calabi-Yau manifolds are

elliptically fibred, F-theory compactifications yield 6d N = (1, 0) theories and we can in

particular focus on the Kaluza-Klein (KK) theories arising from the circle compactification.

In the weak gravity limit of the 5d KK theory, where the gauge force dominates, the BPS

spectrum is captured by gauge theories in rigid limits of the 5d supergravity theory. In this

limit, the KK particles become very massive, freezing all their dynamical degrees of freedom,

so that they effectively act as sources for Wilson loop operators along the time direction.

Based on this argument, we propose an ansatz (3.35) for the BPS partition function, which

states that it can be expressed as a linear combination of Wilson loops in all representations.

This ansatz also meets the requirement by the Completeness Hypothesis [5], which states that

any gauge theory coupled to gravity, there must exist charged matter in every representation

of the gauge group, and suggests the broken of one-form symmetry for the supergravity theory.

Furthermore, we argue in section 3.4 that the structure of the expansion is constrained by

one-form symmetries of the 5d gauge theories as well as by the positivity and integrality of

the Kähler parameter expansion of the compact Calabi-Yau threefold.

A benefit of our approach is that the gauge theory partition functions, as well as the

expectation values of Wilson loop operators, can be exactly calculated, even on the Omega-

deformed background. For instance, one can in principle apply localization methods [6–13],

– 2 –
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introduce additional very heavy hypermultiplets [14–17], utilize blowup equations [16, 18] as

well as refined holomorphic anomaly equations [17, 18] to calculate the refined BPS partition

functions or the refined BPS numbers for Wilson loops in arbitrary 5d N = 1 quantum field

theories and in arbitrary representations. By expanding the partition functions of gravity

theories in the form of (3.35) and using these expressions for the Omega-deformed Wilson

loops, up to a few additional coefficients that only depend on the Omega-deformed parameters

ϵ1,2, we formally define refined BPS partition functions for 5d supergravity theories, leading

to refined BPS counting for the spinning BPS states in 5d supergravity theories.

In fact, by employing the refined holomorphic anomaly equations for Wilson loops

studied in [17, 18] to the ansatz (3.35), we obtain a novel refined holomorphic anomaly

equations for compact Calabi-Yau threefolds (3.75). The undetermined coefficients in the

ansatz are holomorphic ambiguities, which can be fixed with a few additional inputs of

refined BPS numbers. For the first few orders, these inputs can be obtained from one-loop

contributions from the matter content of 6d supergravity theories and the higher instanton

string contributions of their 6d SCFT limits. As a concrete test of our proposal, we explicitly

fix the first few undetermined coefficients in the ansatz (3.35) for a few compact elliptically

fibered Calabi-Yau threefolds X up to h1,1(X) = 5. These calculations are also consistent with

the refined results in [19] and the mathematical calculations performed in sections 5.1–5.3.

Some of these geometric calculations have been used to fix boundary conditions, while others

serve as checks. We also observe in section 3.4.1 that even if one is only interested in the

unrefined GV invariants, our proposal gives a new way to use the refinements to compute GV

invariants. All refined BPS numbers turn out to be non-negative. This is compatible with

their interpretations as dimensions of vector spaces. The latter might be finite dimensional

representations of hidden geometrical symmetries.

2 Refinement on local and global Calabi-Yau threefolds

M-theory compactified on a Calabi-Yau threefold X yields an N = 1 supergravity theory with

eight conserved supercharges. Its BPS states come from wrapping the M-theory membrane or

fivebrane on holomorphic curves or divisors in X respectively. The Poincaré representations

of these BPS states are fixed by their representations (jL, jR) with respect to the little group

SU(2)L × SU(2)R ⊂ Sp(4) (2.1)

of the 5d Lorentz group and their non-vanishing masses, which are proportional to their

charges γ in a lattice Γ. The multiplicities Nγ
jL,jR

∈ N of these BPS states depend on

the particular fibre X in the family X →֒ X → M over the deformation space M of the

Calabi-Yau threefold within which eight supercharges are preserved. These multiplicities

are of great physical interest as they count light states in the effective action including

those which are proposed to account for the microscopic entropy of supersymmetric black

holes in the uncompactified dimensions. Mathematically they are related to the counting

of perverse sheaves on X.

The geometric description [20] of at least some of these BPS states becomes clearer in

the 4d Type IIA compactification on X obtained from 5d by circle compactification. This

– 3 –
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4d N = 2 supergravity theory also has eight supercharges and is related to the 5d theory

by the exact 4d/5d correspondence [20, 21]. Here the charge lattice can be identified with

the K-theory charge lattice of D(2K)-branes of the type IIA theory

Γ = (q0, qA, pA, p0) (2.2)

in the even cohomology group ⊕3
k=0H2k(X) of X. In particular the BPS states coming from

the M-theory membrane become bound states of D0 and D2 branes labelled by the D0 brane

charge q0 ∈ Z and the D2-brane charge qA identified with the curve class β ∈ H2(X,Z). The

5d/4d correspondence [21] identifies the left spin with the D0 brane charge

q0 = 2
jL

(p0)2
. (2.3)

The holomorphic topological string free energies Fg(t) to genus g encodes completely the

non-vanishing unrefined BPS indices nβ
g with charge D6 brane charge one1 and no D4 brane

(D0, D2, D4, D6)q,p = (q0, β, 0, 1) (2.4)

[20, 22], where β ≤ β(g) has to be below the Castelnuovo bound [23]. These BPS indices nβ
g

are invariant under complex structure deformations within the family X [20]. They are related

to the actual BPS multiplicities by a weighted summation over the right spins and a triangular

change in the left spin basis In
∗ =

(
2[0]∗ +

[
1
2

]
∗

)⊗n
=
∑

j≥0

((
2n

n−j

)
−
(

2n
n−2−j

)) [
j
2

]
∗

as

∑

g=0

nβ
g Ig

L =
∑

jR

(−1)2jR(2jR + 1)Nβ
jL,jR

[
jL

2

]

L
. (2.5)

In contrast to the cases of local toric Calabi-Yau spaces X, the complete solution of even

the unrefined topological string on compact Calabi-Yau spaces X is an open problem due to

incomplete knowledge of the boundary conditions in the direct integration of the holomorphic

anomaly equations, which prevents the holomorphic ambiguity from being completely fixed [23].

Recently using the wall crossing to (D0, D2, D4, D6)p,q = (n, β, r, 0) BPS states and the

modular gauge indices of supersymmetric gauge theories of ranks r = 1 [24] and r = 2 [25],

these boundary conditions have been improved [24, 25]. The data currently available for

hypergeometric one parameter Calabi-Yau threefold families are accessible here [26]. If X is

a local Calabi-Yau space, supergravity decouples and in this so-called rigid limit one gets

an R symmetry SU(2)R acting on the supersymmetry algebra which in this case do not

depend on the complex structure.

2.1 Refinement on local Calabi-Yau spaces

Refined holomorphic anomaly equations for local Calabi-Yau and geometrical engineered

gauge theories were studied in [27, 28]. The boundary conditions on local Calabi-Yau are

completely determined and the results in the large radius limit coincide with topological

vertex [29] and the localization calculation using the Bialiniki-Birula decomposition [30].

1The charge multiplicity of the highest dimensional brane determines the rank of the gauge group with

maximal dimensional support and is called therefore the rank r.

– 4 –
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In the gauge theory context [6] defines a five dimensional index using the global U(1)R ⊂
SU(2)R charge that is manifest in any rigid N = 1 supersymmetric theory in 5d as well

as in its circle compactification to 4d

ZBP S(ϵL, ϵR, t) = TrHBP S
(−1)2(jL+jR)e−2ϵLjLe−2ϵRjRe−2ϵRjReβH . (2.6)

Here the jL/R denote the operators that correspond to the Cartan generators of the SU(2)L/R

above, while jR denotes the charge operator of the U(1)R global symmetry. First note that due

to supersymmetry and the insertion of the Fermion number operator (−1)2(jL+jR) the trace

receives only contributions from the BPS groundstate of the Hamiltonian H ∼ (Q2
L + Q2

R).

The mass of the BPS states is related to its charge and for the bound states between D2

and D0 branes under considerations is therefore ultimately to the varying β, q0 in (2.4). The

twisting of the jR by the global U(1)R symmetry is essential so that the expansion coefficients

in the expansion of (2.6) with respect to

qL = eϵL = e
1
2

(ϵ1−ϵ2) and qR = eϵR = e
1
2

(ϵ1+ϵ2) (2.7)

are invariant BPS indices. The latter are related to geometrical perverse sheaf counting

problems and in particular to the positive integral invariants Nβ
jL,jR

∈ N.

First note that geometrically the U(1)R is directly related to the C∗ isometry of the

toric local Calabi-Yau spaces Xtor [30]. The latter can be pulled back to the moduli space of

Pandharipande Thomas invariants [31] of stable pairs of sheaves in order to define a virtual

Bialinicki-Birula decomposition on the latter, which refines the localisation calculation [30] to

evaluate their individual coefficients in an ϵ1, ϵ2 expansion. Using the latter and the refined

Castelnuovo bounds enables one to calculates the index ZBP S(ϵL, ϵR, H) to arbitrary orders

in qL/R and the Kähler parameter eβ·t. After identifying F(ϵL, ϵR, t) = log(ZBP S(ϵL, ϵR, H)),

H = t and reorganizing the result in form the suggested by [20]

F(ϵL, ϵR, t) =
∑

β∈H2(X,Z)

β ̸=0

∞∑

k=1
jL,jR=0

(−1)2(jL+jR)Nβ
jL,jR

χjL
(qk

L) χjR
(qk

R)

k I(kϵ1, kϵ2)
ek β·t, (2.8)

where

I(ϵ1, ϵ2) = 2 sinh

(
ϵ1

2

)
2 sinh

(
ϵ2

2

)
and χj(x) =




j∑

m=−j

xm


 , (2.9)

the refined BPS invariants Nβ
jL,JR

are obtained. This lead to the first systematic geometric

approach to define and calculate of the Nβ
jL,jR

for toric local Calabi-Yau threefolds in and

outside the gauge theory context and in particular directly for local O(−3) → P2 [30].

On local toric Calabi-Yau manifolds the refined topological vertex [29], the refined

holomorphic anomaly equations [27, 28], direct localisation calculations [30], the extension of

the blowup equations from four dimensional N = 2 supersymmetric gauge theories to five

dimensions [32] allow the in-principle calculation of all refined BPS invariants. The refined

holomorphic anomaly equations [33] and further extended blowup equations [34–39] apply in

great generality to local Calabi-Yau manifolds based on elliptically fibered surfaces. They

are confirmed by the elliptic index calculations in (2, 0) and (1, 0) supersymmetric theories

– 5 –
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from F-theory in six dimensions [40–43]. Many relevant example calculations are performed

in the cited literature and will be used as boundary conditions in the local limits of our

compact elliptically fibred Calabi-Yau manifolds below.

In [44] an index calculation was proposed related to geometrisation of D6 branes arising

from an eleven dimensional M-theory background Z11 = (V × R1
time) → X, a fibration of

a Taub-Nut geometry [45, 46]. The base X is a six dimensional manifold, which has to

have sufficiently many (toric) isometries in order to allow localisation calculations, and in

the most relevant case is simply a toric Calabi-Yau manifold as above. In special cases the

refined topological vertex results [29] have been reproduced [44]. V is in general a rank

two holomorphic vector bundle equipped with a (k multi-centered) Taub-Nut metric ds2
T N ,

det(V) = KX and U(1) ⊂ SU(2) ⊂ U(2) isometries. For the latter to exist the authors [44]

assume a global splitting of V = L1 ⊕ L2 into line bundles. Using the ideas of Kaluza-

Klein monopoles from the Taub-Nut metric [45, 46] one concludes that one can pick the

M-theory circle within the U(1) isometry and thereby reduce M-theory on Z11 to a type IIA

compactification Z10 = (KX ×R1,1) → X with k D6 branes wrapped on X. Further [44] argue

that for k = 1 one gets a quite general prescription. On the question of the existence of a global

Calabi-Yau orientation, i.e. a compatible choice of the square root of (Kvir

M̂β

)1/2 see section 5,

is speculated from the physics point of view in [44], but whether the approach can contribute

to actual calculation of refined BPS numbers on compact Calabi-Yau manifolds is an open

question. A mathematical proof of the existence of a canonical orientation is given in [47].

2.2 Refinement proposal for compact Calabi-Yau threefolds

Since in supergravity one expects no global symmetries [48], one cannot use the twisting by

the global U(1)R charges to define a protected index for the refined BPS states as in (2.6).

However in this case one still has a protected supersymmetric index called nβ
g defined in (2.5)

that is conjectured to be invariant under complex structure deformations [20]. There are two

related mathematical formulations to calculate the unrefined invariants. Directly inspired

from physical model of the D2-D0 brane moduli space [20, 49] is the attempt to reconstruct

the SUL(2) × SUR(2) Lefshetz actions on the cohomology of this moduli space of a D2-brane

supported on a curve C. Mathematically this moduli space is identified with a degenerate

Jacobian fibration Jacg(C) over the family of image curves C of genus g. The Lefshetz action

on its cohomology can be reconstructed by the Abel Jacobi map from Hilbp(C) to Jacg(C)

and at least if the degenerations are mild many calculations can be performed [22]. As

reviewed in section 5 we extend there the approach of [50] of reconstructing the cohomology

on the moduli of 1-dimensional stable sheaves F supported on C with ch2 = β and χ(F ) = n.

An elaborate example for the complex structure dependence of the Nβ
jR,jL

is provided

in section 5.3.3. It is based on the simple geometry of smooth ruled surfaces S ∈ X. The

projection map ρ : S → C with P1 fibres maps to a curve Cg of genus g. Such geometries were

studied in terms of N = 2 Higgs transitions where geometrically the P1 fibre shrinks [51, 52].

They occur for example in hypersurfaces p = 0 in toric varieties P∆ [53] defined by the 4d

reflexive lattice polytope ∆ which together with ∆̂ form a dual pair (∆, ∆̂). If a codimension

two face θ2 with inner points l(θ2) is dual to a codimension three edge θ̂3 in ∆̂ with inner

points l(θ̂3) then some monomial deformations of p that in general represent complex structure

– 6 –
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deformation of X cannot occur, instead there exist K = l(θ2) · l(θ̂3) additional independent

Beltrami differentials µk, k = 1, . . . K in H1(M̂, TM̂ ) which correspond to non-polynomial

complex structure deformations. The latter are frozen to particular values in the toric

embedding of X. If g = l(θ2) ̸= 0 and l(θ̂3) = 1 then for these frozen values of the moduli

a rule surface S ⊂ X over a genus g curve Cg is realized. If l̂(θ3) > 1 a surface S ⊂ X

with several such components Si exist, where over each point in the base the l(θ̂3) = n P1’s

intersect with negative Cartan matrix of An. Let us consider a genus zero curve in the class

β represented by a fibre P1. The moduli space of each P1 Mβ is identified with Cg and the

SU(2)L × SUR(2) Lefshetz decompositions yields Rβ
B = 2g [0, 0] +

[
1
2 , 1

2

]
. As explained in

section 5.3.3, if the geometry is deformed w.r.t. to µk deformations, the holomorphically

embedded curve Cg disappears and the P1 are fixed to 2g − 2 points, which corresponds to

the representation Rβ
A = (2g − 2)[0, 0]. Clearly the weighted trace (2.5) over jR yields the

same nβ
b while the Nβ

jL,jR
change before and after the complex structure deformation.

The point is that the ansatz (3.35) for the refined invariants of X with Wilson loops is

so restrictive that one we fix the boundary condition according to the representations Rβ
B or

Rβ
A the predicted refined numbers Nγ

A/B, jR,jL
in many other classes γ ∈ H2(X,Z) change in

a way we can at least in part confirm by the geometric methods as explained in section 5.3.3.

For K3 fibred Calabi-Yau threefolds proposals for the refined in where made in [54]

based on modularity considerations and for elliptically fibred Calabi-Yau threefolds in [19]

based on an ansatz for the refined holomorphic anomaly equations. These proposals provide

eventually additional boundary conditions for the ansatz made in (3.35). Once they are

fixed again we can make the consistency checks.

Mathematical definitions of GV invariants based on moduli spaces of D2-D0 branes

require the notion of an orientation introduced in [55]. We review several issues regarding

orientations at the beginning of section 5. Each moduli space has a virtual canonical bundle.

An orientation is a choice of square root of this bundle, and these choices must satisfy

a compatibility condition. While there can be more than one square root, a canonical

orientation can be constructed [47]. Given an orientation, a perverse sheaf of vanishing cycles

on the moduli space can be constructed [56], which is then used to define the (unrefined)

GV invariants [50]. It is observed in [50] that different orientations can lead to different

GV invariants. However, if the orientation is Calabi-Yau, which means that it is trivial

on the fibers of the Hilbert-Chow morphism mapping a D2-D0 brane to its support curve,

then the resulting GV invariant is independent of the choice of Calabi-Yau orientation [50].

Calabi-Yau orientations are conjectured to exist [50]. The conjecture is open as of this writing.

In particular, it is not know if the canonical orientation of [47] is necessarily Calabi-Yau.

Orientations can also be used to define the refined GV numbers, at least under certain

conditions. The dimensions of cohomologies of perverse pushforwards of the perverse sheaf

of vanishing cycles gives rise a generating function, a Laurent polynomial in two variables.

In trying to match to [20], one can hope that this Laurent polynomial is the character of

a finite-dimensional representation of SU(2) × SU(2), but there is no proof of that fact, or

even a reason from mathematics to suspect that this is the case in general. If the perverse

sheaf of vanishing cycles supports a pure Hodge module, then we do have a representation of

SU(2) × SU(2), arriving at a mathematical definition of refined GV numbers which produces

– 7 –
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the correct unrefined GV invariants in all known cases. In the general case where the

perverse sheaf only supports a mixed Hodge module, a definition of refined GV numbers was

proposed in [57] by using the associated graded (pure) Hodge module of the mixed Hodge

module. However, this proposal has been shown to produce the incorrect GV invariants in

an example [50]. In all of our computations used to identify boundary conditions, we will

be in the situation of pure Hodge modules. Indeed, most of the moduli spaces we study

are smooth, in which case the associated perverse sheaf of vanishing cycles supports a pure

Hodge module. Also, we know of no counterexamples to the existence of an SU(2) × SU(2)

representation in the general case.

3 Wilson loop calculation and topological string

This section reviews the calculation of expectation values for half-BPS Wilson loop operators

on the Coulomb branch of five-dimensional N = 1 supersymmetric quantum field theories.

Furthermore, we review the realization of Wilson loops in M-theory and topological string

theory, and explain their connection to the BPS spectrum of compact elliptically fibered

Calabi-Yau threefolds.

3.1 Wilson loops in gauge theories

In the study of topological string theory on a local Calabi-Yau threefold X [58–60], the 5d

N = 1 supersymmetric quantum field theory (SQFT) on R4
ϵ1,ϵ2

× S1 is naturally engineered

from M-theory compactification on X. In particular the partition function of refined topo-

logical string theory on X [29] encodes the degeneracies Nβ
jL,jR

of the BPS particles with

charge β ∈ H2(X,Z) in the left, right (jL, jR) spin representations of the SU(2)L × SU(2)R

little group of the 5d massive particles.

In gauge theory, another important observable is the correlation function of the Wilson

loop operator encoding further BPS degeneracies Ñβ
jL,jr

. Wilson loop operators are gauge

invariant operators that arise from the parallel transport of the gauge field Aµ around closed

loops. These operators also have a supersymmetric version in supersymmetric quantum

field theory. For instance, in a 5d N = 1 gauge theory, we can define a half-BPS Wilson

loop operator as [61, 62]

Wr = TrrT
(

i

∮

S1
dt (A0(t) − ϕ(t))

)
, (3.1)

which is located at the origin of the 4d space R4 and winding around the Euclidean time

circle S1. This type of Wilson loop is also called Polyakov loop. Here T denotes the time

ordering operator, r is a representation for the gauge field Aµ, A0(t) = A0(x⃗ = 0, t) is the

zero component of the gauge field and ϕ(x⃗ = 0, t) is the scalar field in the vector multiplet

which accompanies the gauge field to preserve half of the supersymmetry. The insertion of

the half-BPS Wilson loop operator can be also realized by introducing a half-BPS static,

heavy and electrically charged particle at the origin of R4. We will refer to such a particle

as a Wilson loop particle.

Consider a 5d SQFT that is described by a gauge theory with gauge group G. On

the Coulomb branch of the moduli space, the scalar field ϕ in the vector multiplet has

– 8 –
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D3

F1 0 1 2 3 4 5 6 7 8 9

D5 • • • • • •

NS5 • • • • • •

5(p,q) • • • • • θ

F1 • •

D3 • • • •

Figure 1. IIB description of the 5d Wilson loops in the SU(2) theory. The (p, q) five-brane web

diagram on the left illustrates the (p, q) five-brane configuration in the x5,6 directions. It is the dual

diagram of the corresponding toric description of the local Calabi-Yau X = O(−2, −2) → P1 × P1.

The half-BPS Wilson loop in the fundamental representation of SU(2) is realized by the fundamental

string F1 stretched between a D5 brane and the D3 brane. In the description on the right, the brane

configurations are detailed, with tan θ = p

q
for a five-brane with charge (p, q).

non-trivial expectation values in the Cartan subalgebra of the gauge group G. The gauge

group G is broken to its Abelian subgroup U(1)r with r = rank G the rank of the gauge

group. The representation r becomes the non-negative electric charge q̂i, also referred to

as gauge charges, of the Wilson loop particle under the i-th Abelian gauge subgroup U(1),

and is denoted by r = [q̂1, · · · , q̂r].

We are interested in the BPS partition functions of 5d theories in the presence of half-BPS

Wilson loop operators. These partition functions can be computed as a sum of the k-instanton

supersymmetric index of the ADHM quantum mechanics which can be read off from the

IIB brane realization [9, 63–65]. An illustration of the IIB (p, q) five-brane web description

for 5d SU(2) theory can be found in figure 1. In this case, the rank of the gauge group is 1

so the representation of the Wilson loop can be labeled by a single positive integer q̂. The

half-BPS Wilson loop operators are realized by adding semi-infinite F1 strings with charge 1,

stretched between D3 branes and D5 branes. The lowest energy modes on such F1 strings

are fermionic, so there can be at most one F1 string stretched between a D3 brane and a

D5 brane. To obtain the Wilson loop partition function in the representation r = [q̂], we

need to insert q̂ D3 branes along the x0,7,8,9 directions.

3.2 Connection to topological string theory

In M-theory, dynamic electric particles in the 5d quantum field theory are obtained from

M2-branes wrapping holomorphic 2-cycles in the Calabi-Yau threefold X. The rank r of

the gauge group is determined by the number of compact divisors in X given by Betti

number r = bc
4(X). It was proposed in [16] that the insertion of a Wilson loop particle with

charge r = [q̂1, · · · , q̂r] can be realized by inserting a wrapped non-dynamic M2-brane over a

non-compact curve Ĉ, ending on boundary branes. See [66] for a more extensive study of the

boundary branes and the related generalized symmetry operators. This geometric definition

can be used to define the loop operators in 5d SQFTs without gauge theory description. The

electric charges of the Wilson loop particles are computed as the intersection numbers of the

– 9 –



J
H
E
P
0
8
(
2
0
2
5
)
1
7
8

compact divisors Di, i = 1, · · · , r, and the non-compact curve Ĉ = q̂1Ĉ1 + · · · + q̂rĈr, where

Di · Ĉj = δi,j , i, j = 1, · · · , r. (3.2)

It follows that the electric charges q̂i are computed as

q̂i = Di · Ĉ, i = 1, · · · , r. (3.3)

In the presence of Wilson loop operators, the corresponding refined BPS degeneracies Ñβ
jL,jR

for Wilson loops describe the number of BPS states coming from M2-branes wrapping curves

C + Ĉ, with [C] = β ∈ H2(X,Z). It was proposed in [16, 17] that the BPS sector has

the BPS expansion

FW,q̂(ϵ1, ϵ2, t, t̂) = I |q̂|−1(ϵ1, ϵ2)
∑

β∈H2(X;Z)

∑

jL,jR

(−1)2jL+2jRÑβ
jL,jR

χjL
(qL)χjR

(qR)eβ·t+q̂·t̂ ,

(3.4)

where the notation is like in (2.8), (2.9) and q̂ = [q̂1, · · · , q̂r] is the charge vector for the

Wilson loop with total charge |q̂| = q̂1 + · · · + q̂r, ti, i = 1, · · · , b2 are Kähler moduli of the

Calabi-Yau threefold X, t̂i, i = 1, · · · , b4 are Kähler moduli related to the non-compact curves

Ĉi. Note that there is no multi covering sum and I(ϵ1, ϵ2) is the momentum factor encoding

the dynamical contributions of the Wilson lines. The expectation values of the Wilson loop

operators are denoted by ⟨Wq̂⟩ and can be computed from the generating function

Zgen = exp


∑

q̂i≥0

1∏r
i=1 q̂i!

FW,q̂(ϵ1, ϵ2, t, t̂ )


 = eF(ϵ1,ϵ2,t)


1 +

∑

|q̂|>0

1∏r
i=1 q̂i!

⟨Wq̂⟩eq̂·m̂


 ,

(3.5)

where F(ϵ1, ϵ2, t) = FW,[0](ϵ1, ϵ2, t) is the refined topological string free energy for the local

geometry X and m̂ ∼ t̂ represent the masses of the Wilson loop particles, which will be

defined in (3.10) in the context of their connection to compact Calabi-Yau threefolds. More

precisely, the subscript q̂ in the Wilson loop operator Wq̂ indicates the Wilson loop is in the

tensor product representation r⊗q̂1
1 ⊗ · · · ⊗ r⊗q̂r

r , where ri = [0, · · · , 0, q̂i = 1, 0, · · · , 0] is the

representation with minimal charge in the i-th factor of the gauge group. The aspects of the

generating functions in Gromov-Witten theory are currently under investigation in [67].

In [17], it was proposed that the BPS spectrum of the Wilson loops can be computed

by adding a hypermultiplet with mass mi in the minimal representation ri, providing an

alternative way to understand the BPS expansion of the Wilson loops. In the large mass

limit mi → −∞,2 the particle in the hypermultiplet corresponds to the Wilson loop particle

in the 5d gauge theory. However, the heavy half-BPS particle obtained in this way is not

precisely the Wilson loop particle, as the dynamic term I(ϵ1, ϵ2) defined in (2.9) must be

absorbed into the mass mi to define the effective mass of the Wilson loop particle:

Mi = I−1(ϵ1, ϵ2) emi . (3.6)

2The minus sign arises from the notation for the Kähler parameters used in this paper.
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Ĉ

(a)

Vol(Ĉ) → ∞

Ĉ

∞

(b)

Figure 2. Brane diagrams in the x5,6 directions. (a) The brane diagram for SU(2) gauge theory with

one flavor. Ĉ is the curve class related to the edge in the diagram. (b) The brane diagram with an

infinitely long curve Ĉ.

For example, in the SU(2) case, we can introduce a hypermultiplet in the fundamental

representation, where the IIB brane diagram is described in figure 2, with additional (1, 1)

strings lying on the (1, 1) five-branes along Ĉ. The curve Ĉ is obtained from the one point

blowup of P1 × P1 and then flopping the exceptional curve e1 of the blowup to obtain Ĉ

as the flopped P1. In the large mass limit where the volume of Ĉ is taken to infinity, only

one semi-infinite (1, 1) string can survive. This (1, 1) string corresponds to the half-BPS

Wilson loop in 5d in the fundamental representation, a bosonic cousin of the fermionic

Wilson loop depicted in figure 1. Higher representations can be introduced by adding more

fundamental matter, which can be done in the geometry by blowing-up local P1 × P1 q̂ times,

with exceptional curves ei, i = 1, · · · , q̂. Denoting the curve classes for the two P1 factors by

h1, h2, we deduce that the refined BPS number for the Wilson loop with charge q̂ can be

identified with the refined BPS number of the blown-up geometry via

Ñd1h1+d2h2
jL,jR

= N
d1h1+d2h2−e1−···−eq̂

jL,jR
, if q̂ ≤ 8, (3.7)

which has been proposed and verified in [17].3 The additional momentum factor I in the

generating function (3.4) comes from the normalization of the mass parameter (3.6).

It was proposed in [17] that the Wilson loop partition functions satisfy refined holomorphic

anomaly equations, which are reformulated in [18] to the refined holomorphic anomaly

equations for the BPS sectors as

∂̄īF
(n,g)
q̂ =

1

2
C̄jk

i


DjDkF (n,g−1)

q̂ +
∑

n′,g′,q̂′

′
r∏

i=1

(
q̂i

q̂′
i

)
DjF (n′,g′)

q̂′ DkF (n−n′,g−g′)
q̂−q̂′


 . (3.8)

The prime sum means the sum is over 0 ≤ n′ ≤ n, 0 ≤ g′ ≤ g and 0 ≤ q̂′
i ≤ q̂i by excluding

(n′, g′, q̂′
i) = (0, 0, 0) and (n′, g′, q̂′

i) = (n, g, q̂i). The charge q̂′ is defined as q̂′ = [q̂′
1, · · · , q̂′

r].

3The flop of ei has class −ei, so in the flopped geometry, the right hand side of (3.7) is just a rephrasing of

our previous description of Wilson loops. We are asserting that this formula is still valid in the unflopped

local geometry, since flopping a curve corresponds to an analytic continuation of the function described in

appendix A.3.
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The binomial coefficients in the last summation come from the permutation of q̂i strings

with charge 1. In the holomorphic limit, F (n,g)
q̂ is the genus (n, g) free energy of the BPS

sector defined from the genus expansion

FW,q̂ =
∞∑

n,g=0

(ϵ1 + ϵ2)2n(ϵ1ϵ2)g+|q̂|−1F (n,g)
q̂ . (3.9)

In the special case |q̂| = 0, the refined holomorphic anomaly equations (3.8) reduce to the

conventional refined holomorphic anomaly equations for local Calabi-Yau threefolds [27, 28].

3.3 Connection to compact Calabi-Yau threefolds

In the last section, we reviewed the connection between the Wilson loops and topological

strings on non-compact Calabi-Yau threefolds. The key consequence is that if a Calabi-Yau

threefold X can reduce to a non-compact Calabi-Yau threefold X∗ by taking the volumes of

some of the curve classes Ĉ1, · · · to infinity, one can treat the BPS particles from M2-branes

wrapping over Ĉ1, · · · as Wilson loop particles and the topological string partition functions

on X in some curve class degrees are proportional to the partition functions of Wilson loops

in the 5d gauge theory coming from M-theory compactified on X∗. In this section, we provide

evidence and physical arguments that the correspondence to Wilson loops can be generalized

to a compact Calabi-Yau threefold X.

Consider a 5d N = 1 supergravity theory obtained from M-theory compactified on X.

Denote a compact curve in X as Ĉ. In the large volume limit of Ĉ, the volume of X becomes

infinite and the gravity in the 5d theory is decoupled. Under this limit, the half-BPS particles

arising from M2 branes wrapping Ĉ become heavy and their dynamic degrees of freedom

are frozen. Consequently, we can effectively treat these particles as Wilson loop particles in

the local theory. Thus, we expect the topological string partition function on X, with at

least Ĉ1, · · · degree one, can be calculated from the BPS partition functions of the Wilson

loops. Furthermore, since the calculations for the partition functions of Wilson loops can

be refined, we expect that this approach provides a framework for calculating refined BPS

numbers for compact Calabi-Yau threefolds.

More precisely, let C, Ĉ ∈ H2(X;Z) denote curves in the compact Calabi-Yau threefold

X, with t, t̂ as the corresponding Kähler parameters. In a local limit by taking t̂ to −∞, we

obtain a non-compact Calabi-Yau threefold X∗ with Kähler parameters t. Let Di ∈ H4(X∗;Z)

represent the compact divisors in X∗ and let ϕi denote the dual Kähler parameters associated

with Di. The gauge charge neutral combination

m̂ = t̂ −
∑

i

q̂iϕi, q̂i = Di · Ĉ, (3.10)

defines the effective masses for the Wilson loop particles, where the parameters ϕi are Coulomb

parameters in the effective 5d local theory. If all the intersection numbers satisfy q̂i ≤ 1, in

the following expansion of the compact Calabi-Yau free energy

F(t, t̂; ϵ1, ϵ2) =
∑

β̂

Fβ̂(t; ϵ1, ϵ2)eβ̂·m̂, (3.11)
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we claim Fβ̂(t; ϵ1, ϵ2) with β̂ · q̂ = 1 is proportional to the refined BPS sector (3.4) of the

Wilson loop in the local theory with charge β̂. In the following, we study examples to

test our statement.

Elliptic P2. Our first example is the smooth elliptic fibration over P2, also known as the

Calabi-Yau hypersurface denoted by X18(1, 1, 1, 6, 9). This case is a two parameter model,

as discussed in [68, 69], with the following Mori cone charges:

l(1) = ( −6 ; 2 3 1 0 0 0 )

l(2) = ( 0 ; 0 0 −3 1 1 1 )

↓
D

(3.12)

This geometry has a local limit obtained by taking t1 → −∞. In this limit the global

elliptically fibered Calabi-Yau threefold reduces to a local geometry O(−3) → P2, where

the compact divisor D is the base P2. In this case, the dual parameter associated with D

is given by ϕ = − t2
3 and the effective mass for the Wilson loop particle is m̂ = t1 + t2

3 . In

the expansion of the refined free energy

F(t1, t2; ϵ1, ϵ2) =
∞∑

d1=0

Fd1(t2; ϵ1, ϵ2)ed1m̂ , (3.13)

Fd1 captures the contributions from the curve classes (d1, d2 ≥ 0). The leading term F0 is the

refined free energy for local P2, calculated in [27], and the subleading term F1 is factorized as

F1(t2; ϵ1, ϵ2) = f(ϵ1, ϵ2)FP2

W,[1](ϕ) , (3.14)

where FP2

W,[1] =
〈
W P2

[1]

〉
, calculated in [16–18], is the VEV of the Wilson loop for local P2 in

the representation with minimal gauge charge 1. The factor

f(ϵ1, ϵ2) =
546 − (q−1

− + q−)(q−2
+ + 1 + q2

+)

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
, q± = e

1
2

(ϵ1±ϵ2) , (3.15)

is the generating function for the refined BPS numbers of the class of the elliptic fiber, which

has degree (d1, d2) = (1, 0). Physically, the factor f(ϵ1, ϵ2) is the ‘frozen’ contribution from the

M2-brane wrapping on the elliptic fiber in the massive limit m̂ → −∞. At genus zero, we find

ϵ1ϵ2F1(t2; ϵ1, ϵ2)|ϵ1,2→0 = 540e− 1
3

t2 (1 − 2et2 + 5e2t2 − 32e3t2 + 286e4t2 + · · · ) , (3.16)

which indeed agrees with the genus zero GV invariants at dE = 1.

Elliptic F0. Our second example is the elliptic fibration over the Hirzebruch surface F0.

This is a three-parameter model whose Mori cone generators are given by

l(1) = ( −6 ; 2 3 1 0 0 0 0 )

l(2) = ( 0 ; 0 0 −2 1 0 0 1 )

l(3) = ( 0 ; 0 0 −2 0 1 1 0 )

↓
D

(3.17)
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In the limit t1 → −∞, we obtain the local F0 geometry with the compact divisor D = F0. The

5d low-energy effective theory corresponding to the local geometry is the 5d SU(2)0 theory,

where the subscript 0 denotes the theta angle 0. The dual parameter ϕ associated with D is

defined as ϕ = − t2
2 , which is the Coulomb parameter for SU(2)0, and the effective mass for

the Wilson loop particle is given by m̂ = t1 + 1
2 t2. The refined free energy has the expansion

F(t1, t2, t3; ϵ1, ϵ2) =
∞∑

d1=0

Fd1(t2, t3; ϵ1, ϵ2)ed1m̂ , (3.18)

where the leading term F0 is the refined free energy for local F0 and the subleading term

F1 is factorized

F1(t2, t3; ϵ1, ϵ2) = f(ϵ1, ϵ2)FF0

W,[1](ϕ, m) , (3.19)

where FF0

W,[1] =
〈
W

SU(2)0

[1]

〉
is the VEV for the Wilson loop in the fundamental representation

of the gauge algebra su(2) and m is the mass parameter defined from the instanton counting

parameter q = em. Here f(ϵ1, ϵ2) is the frozen contribution of the Wilson loop particle, which

can be calculated from the BPS spectrum of the M2-brane wrapping the curve class l(1) as

f(ϵ1, ϵ2) =
488 − (q−1

− + q−)(q−1
+ + q+)2

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
. (3.20)

Elliptic F1, phase I. The third example is the elliptic fibration over the Hirzebruch surface

F1, whose Mori cone generators are

l(1) = ( −6 ; 2 3 1 0 0 0 0 )

l(2) = ( 0 ; 0 0 −2 1 0 0 1 )

l(3) = ( 0 ; 0 0 −1 −1 1 1 0 )

↓ ↓
D1 D2

(3.21)

This geometry has two local limits which are local F1 and local half K3. In the limit t1 → −∞,

we obtain local F1 with the compact divisor D1 = F1. The 5d low-energy effective theory

corresponding to this local geometry is the 5d SU(2)π theory with theta angle π. The dual

parameter ϕ associated with D1 is defined as ϕ = − t2
2 , which is the Coulomb parameter for

the SU(2)π theory, and the effective mass for the Wilson loop particle is given by m̂ = t1 + 1
2 t2.

The refined free energy has the expansion

F(t1, t2, t3; ϵ1, ϵ2) =
∞∑

d1=0

Fd1(t2, t3; ϵ1, ϵ2)ed1m̂, (3.22)

where

F1(t2, t3; ϵ1, ϵ2) = f(1,0,0)(ϵ1, ϵ2)
(
FF1

W,[1] + · · ·
)

. (3.23)

In (3.23), FF1

W,[1] =
〈
W

SU(2)π

[1]

〉
is the VEV for the Wilson loop in the fundamental representa-

tion of the gauge algebra su(2) and m is the mass parameter defined from the instanton couting
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parameter q = em. Here · · · is the contribution from the curve class β = (d1, d2, d3) = (1, 0, 1),

where the corresponding BPS particle has 0 gauge charge and is therefore not captured by

the Wilson loop calculations. We will return to these omitted contributions in section 5.1.4.

The factor f(ϵ1, ϵ2) is the frozen contribution of the Wilson loop particle, which can be

calculated from the BPS spectrum of M2-branes wrapping the curve associated with l(1)

and takes the form

f(ϵ1, ϵ2) =
488 − (q−1

− + q−)(q−1
+ + q+)2

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
. (3.24)

Another local limit is obtained by taking t2 → −∞. The corresponding local geometry

is the local half K3, which is related to the circle compactification of the 6d E-string theory.

The 6d E-string theory has a tensor multiplet. On the tensor branch, a non-zero tensor

parameter ϕ0 is turned on, which corresponds to the Kähler parameters as ϕ0 = t3 + 1
2 t1.

The shift 1
2 t1 is added to make the SL(2,Z) duality in the fiber direction more manifest

as has been discussed in [70, 71]. See appendix B.4 for more details about the partition

function of the E-string theory.

Consider the expansion of the refined free energy

F(t1, t2, t3; ϵ1, ϵ2) =
∞∑

d2=0

F ′
d2

(t1, t3; ϵ1, ϵ2)ed2(t2+t3). (3.25)

We expect that the subleading contribution of the expansion (3.25) at d2 = 1 is factorized as

F ′
1(t1, t3; ϵ1, ϵ2) = ZK3(ϵ1, ϵ2, τ)

(〈
WE-str,[1]

〉
+ · · ·

)
, (3.26)

where τ = t1
2πi and

〈
WE-str,[1]

〉
=

ZE-str,[1]

ZE-str,[0]
is the VEV for the Wilson surface defect calculated

in [72] and reviewed in appendix B.4. Wilson surfaces of a 6d theory are surface operators

that carrying tensor charges.4 Here · · · corresponds to contributions at the curve classes

β = (d1, d2, d3) = (d1, 1, 1), d1 ≥ 0 which have zero tensor charge and are therefore not

captured by the Wilson surface calculations. The factor ZK3(ϵ1, ϵ2, τ) arises because all the

curve classes (d1 ≥ 0, 1, 0) have tensor charge 1. These contributions combine to give the

effective tension of the Wilson surface defect, which is the refined partition function of the

K3 fibration over P1. A possible refinement for this partition function was proposed in [54] as

ZK3(ϵ1, ϵ2, τ) =
2E4(τ)E6(τ)

η(τ)18θ1(ϵ1, τ)θ1(ϵ2, τ)
+

(−2 + q+ + q−1
+ )η(τ)2

q
5
6 θ1(ϵ1, τ)θ1(ϵ2, τ)

, (3.27)

where θi(z, τ) are the Jacobi theta functions, η(τ) is the Dedekind eta function and E4(τ), E6(τ)

are the weight 4 and the weight 6 Eisenstein series.

4Under circle compactification, the Wilson surface in E-string theory reduces to the corresponding Wilson

loop of the 5d Kaluza-Klein (KK) theory. Then the tensor charges are identified as the gauge charges of the

5d KK theory.
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Elliptic F1, phase II. There exists another Calabi-Yau phase corresponding to the flopping

of the curve l(3) in (3.21). The Mori cone generators for this phase are given by

l(1) = ( −6 ; 2 3 0 −1 1 1 0 )

l(2) = ( 0 ; 0 0 −3 0 1 1 1 )

l(3) = ( 0 ; 0 0 1 1 −1 −1 0 )

↓ ↓
D1 D2

(3.28)

In the limit t1, t3 → −∞, we obtain local P2 with the compact divisor D1. Similarly, in the

limit t2, t3 → −∞, we obtain local E8 del Pezzo surface dP8 with the compact divisor D2.

Define m̂ = t3 + t1 + 1
3 t2 as the effective mass for Wilson loop particles in both of these local

theories. Consider the expansion of the refined free energy

F(t1, t2, t3; ϵ1, ϵ2) =
∞∑

d3=0

Fd3(t1, t2; ϵ1, ϵ2)ed3m̂ . (3.29)

At d3 = 1, the M2-brane over l(3) provides the Wilson loop particle for both local theories

simultaneously. Therefore F1 should be factorized as

F1 = f(ϵ1, ϵ2)FP2

W,[1](ϕ)
(
FdP8

W,[1](ϕ
′) + · · ·

)
(3.30)

where ϕ = −1
3 t2, ϕ′ = −t1 are the Coulomb parameters for the 5d quantum field theories

corresponding to local P2 and local dP8 respectively. The factor f(ϵ1, ϵ2) is calculated from

the BPS spectrum of M2-branes wrapping the curve associated with l(3) and takes the form

f(ϵ1, ϵ2) =
1

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
. (3.31)

The terms · · · in (3.30) correspond to contributions of the curve class β = (d1, d2, d3) = (1, 0, 1)

which have zero gauge charge and are therefore not captured by the Wilson loop calculations.

3.4 Proposal for the general case

In the previous subsection, we demonstrated that the refined free energy of a compact

elliptically fibered Calabi-Yau threefold X can be related to the Wilson loop amplitudes of a

local Calabi-Yau X∗, which is obtained from the local limit of X by taking the volume of

a specific curve class Ĉ to infinity. In this section, we extend this analysis to more general

cases, exploring how the refined BPS partition function of compact Calabi-Yau threefolds

can similarly be connected to Wilson loop amplitudes in their corresponding local limits.

In the most general case, we can find a curve class Ĉ ∈ H2(X;Z) in the compact

Calabi-Yau threefold X whose large volume limit consists of neighborhoods Xi of mutually

disjoint connected compact divisors D(1), D(2), . . . , D(n), each defining a local theory TXi
.

Decomposing D(i) into its components D
(i)
j , we have the Wilson loop charges

q
(i)
j := D

(i)
j · Ĉ ≥ 0, D

(i)
j ∈ H4(Xi;Z). (3.32)
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In terms of D
(i)
k ∈ H4(Xi;Z) and a basis C

(i)
l for H2(Xi;Z), the charge matrix Q

(i)
G,kl is

defined as

D
(i)
k · C

(j)
l = Q

(i)
G,kl δij , k = 1, · · · , b4(Xi); l = 1, · · · , b2(Xj). (3.33)

The partition function for each local theory ZXi
(t(i)) = ZXi

(ϵ1, ϵ2; t(i)) depends on the Kähler

parameters t
(i)
j , j = 1, · · · , b2(Xi), which can be reformulated in the 5d gauge theory in terms

of Coulomb parameters ϕ
(i)
j , j = 1, · · · , ri and mass parameters m

(i)
l , l = 1, · · · , fi by

t
(i)
j =

ri∑

l=1

ϕ
(i)
l Q

(i)
G,lj +

fi∑

l=1

m
(i)
l Q

(i)
F,lj , (3.34)

where ri = b4(Xi) is the rank of the gauge group and fi = b2(Xi) − b4(Xi) is the rank of the

flavor group. The charge matrix Q
(i)
G was defined in (3.33) and Q

(i)
F is the intersection matrix

of selected non-compact divisors and the compact curves C
(i)
j . These matrices respectively

compute the gauge charges and flavor charges of the BPS particles arising from wrapping

an M2-brane on C
(i)
j .

We claim that the partition function of the compact Calabi-Yau threefold can be written

as a linear combination of Wilson loop partition functions in the local theory TXi
in all

representations. Physically, it can be explained as follows. Consider the 5d N = 1 supergravity

theory on R4 × S1 obtained from M-theory compactification on the compact Calabi-Yau

threefold X. In the large volume limit of the curve class Ĉ, the supergravity theory is

effectively described by a sequence of 5d local gauge theories TXi
. The half-BPS particles

from M2-branes on the Ĉ direction become heavy, carry electric charges q̂(i), and become the

sources of the half-BPS Wilson loops along the time direction S1 in each local theory TXi
.

Thus, from the viewpoint of each local theory, the partition function of X should be expressed

in terms of the partition functions of Wilson loops in TXi
. We arrive at the structure

ZX(t) =
n∏

i=1

ZXi
(t(i)) ·

[
1 +

∞∑

k=1

e km̂Zk

]
, (3.35)

where

m̂ = t
Ĉ

−
n∑

i=1

b4(Xi)∑

j=1

q
(i)
j ϕ

(i)
j (3.36)

is the effective mass for the Wilson loop particle, ϕ
(i)
j are Kähler parameters with respect to

bases in H2(Xi;Q) that are dual to D
(i)
j which are also the Coulomb parameters in each local

theory TXi
and Zk is a product of linear combinations of Wilson loops satisfying the ansatz

Zk(t) =
n∏

i=1

∑

h
(i)
1 ,··· ,h

(i)
ri

≥0

∑

β
(i)
m ∈Z

P
(i)

[h
(i)
1 ,··· ,h

(i)
ri

],k;β
(i)
m

〈
W

(i)

[h
(i)
1 ,··· ,h

(i)
ri

]

〉
eβ

(i)
m ·m(i)

, (3.37)

up to coefficients

n∏

i=1

P
(i)

[h
(i)
1 ,··· ,h

(i)
ri

],k;β
(i)
m

(ϵ1, ϵ2) =
P[eϵ1 , eϵ2 ]

∏k
l=1 4 sinh(lϵ1/2) sinh(lϵ2/2)

, (3.38)
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where P[eϵ1 , eϵ2 ] is a Laurent polynomial of eϵ1,2 which can be determined from additional

input for refined BPS numbers.

The expectation values of the Wilson loops have the asymptotic behavior when the

Coulomb parameters ϕ(i) are large:

〈
W

(i)

[h
(i)
1 ,··· ,h

(i)
ri

]

〉
= eh

(i)
1 ϕ

(i)
1 +···+h

(i)
ri

ϕ
(i)
ri

(
1 + O(et(i)

)
)

. (3.39)

Moreover, in the bracket on the right hand side of (3.39), the series expansion can be

reformulated in terms of the bases t(i) with integral degrees. The summation in (3.37) can be

reduced via two additional constraints (3.41) and (3.44). These constraints can be derived

from the one-form symmetry for the local gauge theories, along with the positivity and

integrality conditions as follows:

• One-form symmetry:

Denote the one-form symmetry of the 5d local theory TXi
by Γ

(1)
i =

∏
j Z

p
(i)
j

. As

pointed out in [73], Γ
(1)
i can be calculated from the Smith normal form of the charge

matrix

SNF(Q
(i)
G ) = U (i) · Q

(i)
G · V (i) =




p
(i)
1 0 · · · 0 · · · 0

0 p
(i)
2 · · · 0 · · · 0

...
. . .

...
...

0 · · · p
(i)
ri · · · 0




, (3.40)

where the main diagonal entries are positive integers satisfying p
(i)
1 ≤ · · · ≤ p

(i)
ri . Here

U (i) and V (i) are invertible unimodular matrices satisfying det U (i) = det V (i) = 1, and

both their entries and those of their inverse matrices are integers. Let c
(i)
j,1, · · · , c

(i)
j,ri

be the integral one-form symmetry charges for the Wilson loops under Z
p

(i)
j

. Then

the charge of

〈
W

(i)

[h
(i)
1 ,··· ,h

(i)
ri

]

〉
under Z

p
(i)
j

is c
(i)
j,1h

(i)
1 + · · · + c

(i)
j,ri

h
(i)
ri mod p

(i)
j . The first

constraint on (3.37) is that the Wilson loops must have the same charge under the

one-form symmetry Γ(i)

c
(i)
j,1h

(i)
1 +· · ·+c

(i)
j,ri

h(i)
ri

= k(c
(i)
j,1q

(i)
1 +· · ·+c

(i)
j,ri

q(i)
ri

) mod p
(i)
j , i = 1, · · · ,n. (3.41)

Note that if p
(i)
j = 1, the condition (3.41) is trivial, hence we only need to consider the

non-trivial one-form symmetries with p
(i)
j > 1.

• Positivity and integrality:

If we replace the Coulomb parameters and mass parameters of the local gauge

theory with the Kähler parameters of the compact Calabi-Yau threefold, their degrees

in the expansion of the partition function must be non-negative and integral. Define the

total charge matrix Q
(i)
Tot =

(
Q

(i)
G

Q
(i)
F

)
which is a b2(Xi) × b2(Xi) matrix. For a 5d gauge
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theory, the charge matrix is an invertible matrix, hence according to (3.34) we have

(ϕ(i), m(i))j =

b2(Xi)∑

l=1

t
(i)
l

(
Q

(i)
Tot

)−1

lj
, j = 1, · · · , b2(Xi). (3.42)

For any given k, from (3.35), (3.37) and (3.39), the relevant part we need to consider is

ri∑

j=1

(h
(i)
j − kq

(i)
j )ϕ

(i)
j +

fi∑

l=1

β
(i)
m,lm

(i)
l =

b2(Xi)∑

l=1

β
(i)
l t

(i)
l . (3.43)

The second constraint is that the coefficient β
(i)
l must be a non-negative integer for any

l = 1, · · · , b2(Xi) and i = 1, · · · , n:

β
(i)
l =

ri∑

j=1

(
Q

(i)
Tot

)−1

lj
(h

(i)
j − kq

(i)
j ) +

b2(Xi)∑

j=ri+1

(
Q

(i)
Tot

)−1

lj
β

(i)
m,j−ri

∈ Z≥0 (3.44)

Comment. In the following, we demonstrate that condition (3.41) can be derived from

condition (3.44) by borrowing ideas from [74]. More precisely, for any p
(i)
j defined in (3.40), if

there exists a set of integers n
(i)
1 , · · · , n

(i)
b2(Xi)

, such that the action of the one-form symmetry5

ϕ
(i)
l → ϕ

(i)
l + 2πi

c
(i)
j,l

p
(i)
j

, m
(i)
l → m

(i)
l , (3.45)

is identical to the B-field shift of the complexified Kähler parameters

t
(i)
l → t

(i)
l + 2πi n

(i)
l , (3.46)

then according to (3.43),

ri∑

j=1

(h
(i)
j − kq

(i)
j )

c
(i)
j,l

p
(i)
j

=

b2(Xi)∑

l=1

β
(i)
l n

(i)
l . (3.47)

If (3.44) is satisfied, we conclude that

ri∑

j=1

(h
(i)
j − kq

(i)
j )

c
(i)
j,l

p
(i)
j

∈ Z , (3.48)

which gives rise to condition (3.41).

In the following, we prove that (3.45) can be generated by (3.46). Without loss of

generality, we drop the index i which represents the i-th non-compact Calabi-Yau threefold Xi.

Define the Smith normal forms of the gauge and flavor charge matrices QG and QF as

SNF(QG) = UG · QG · VG =
(
PG,r×r 0r×f

)
r×b2

, (3.49)

5More precisely, this is the effect of the one-form symmetry action on the Coulomb branch partition function.
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and

SNF(QF ) = UF · QF · VF =
(
0f×r PF,f×f

)
f×b2

, (3.50)

respectively. Here PG,r×r = diag(p1, · · · , pr) and PF,f×f = diag(pF,1, · · · , pF,f ) are diagonal

matrices where the diagonal entries are the main diagonal entries for the Smith normal forms

of QG and QF respectively. The inverse total charge matrix can be expressed as

Q−1
Tot =

(
A B

)
(3.51)

where

A = VG ·
(

P −1
G

C

)
· UG, B = VF ·

(
D

P −1
F

)
· UF , (3.52)

satisfying

QF · A = 0, QG · B = 0 . (3.53)

If the shift (3.45) can be generated from (3.46), according to (3.42),

n · A = c̃, n · B = 0 (3.54)

where c̃l =
cj,l

pj
. We find there are r sets of solutions for n, given by the rows of the r×b2 matrix

N = P −1
G ·

(
PG 0r×f

)
· V −1

G . (3.55)

It is easy to check all entries of N are integers. Substituting the solutions (3.55) to (3.54),

we find the one-form symmetry charges are expressed as

cj,l

pj
=
(
P −1

G · UG

)
jl

, (3.56)

which indeed have the correct property.

3.4.1 The ansatz for elliptic P2

In this section, we verify (3.35) for the model elliptic P2, where the Mori cone charges are

described in (3.12). Define m̂ = t1 + 1
3 t2 as the effective mass of the Wilson loop particle in line

with (3.10). In the large mass limit m̂ → −∞, the geometry of elliptic P2, which is denoted

by X, reduces to the local Calabi-Yau threefold X∗ = O(−3) → P2, which corresponds to a

5d non-Lagrangian theory TX∗ . Based on the ansatz (3.35), the partition function for the

compact Calabi-Yau threefold X can be expressed as

ZX(t1, t2, ϵ1, ϵ2) = ZX∗(t2, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ek m̂Zk(t2, ϵ1, ϵ2)

]
(3.57)

where

Zk(t2, ϵ1, ϵ2) = Pk

〈
W[k]

〉
+

⌊ k
3 ⌋∑

l=1

P̃k,l

〈
W[k−3l]

〉
. (3.58)
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Here,
〈
W[k]

〉
represents the Wilson loop6 of charge k in TX∗ , which has been computed

in [18](see also [16, 17]) using refined holomorphic anomaly equations. The second term on

the r.h.s. of (3.58) represents the only possible additional contribution permitted under the

constraints of the one-form symmetry Z3 and the positivity and integrality condition (3.44).

The coefficients Pk = Pk(ϵ1, ϵ2) can be determined from refined BPS numbers in the

fiber direction. In the limit t2 → −∞, as studied in [17], the VEVs of the Wilson loop

operators have the asymptotic values
〈
W[k]

〉∣∣∣
t2→−∞

= e− k
3

t2 . (3.59)

Using f(ϵ1, ϵ2) defined in (3.15), one finds upon defining Pk from the expansion

∞∑

k=0

Pkek t1 = exp




∞∑

k,l=1

1

k
f(kϵ1, kϵ2)ek l t1


 , (3.60)

we indeed obtain the correct refined BPS expansion in the fiber direction:

ZX(t1, t2, ϵ1, ϵ2)|t2→−∞ = exp




∞∑

k,l=1

1

k
f(kϵ1, kϵ2)ek l t1


 . (3.61)

The coefficients P̃k,l = P̃k,l(ϵ1, ϵ2), which are rational functions of q1,2 = eϵ1,2 , are determined

from additional boundary conditions. In general, they take the form

P̃k,l(ϵ1, ϵ2) =
P̃k,l(q+, q−)

∏k
s=1 4 sinh(sϵ1/2) sinh(sϵ2/2)

, (3.62)

where P̃k,l are Laurent polynomials of q±.

Consequently, we can solve the refined BPS numbers by considering the expansion

ZX(t1, t2, ϵ1, ϵ2) = exp




∞∑

k=1

∞∑

dE=0

1

k
FdE

(k t2, kϵ1, kϵ2)ek dE m̂


 , (3.63)

where the free energy FdE
has the expansion

FdE
(t2, ϵ1, ϵ2) = I−1

∞∑

dB=0

∑

jL,jR

(−1)2jL+2jRNβ
jL,jR

χjL
(q−)χjR

(q+) e(dB− 1
3

dE)t2 (3.64)

For instance, for dE = 1, we have:

F1(t2; ϵ1, ϵ2) = f(ϵ1, ϵ2)
〈
W[1]

〉
. (3.65)

For dE = 2, we find

F2(t2; ϵ1, ϵ2) =

[
f(ϵ1, ϵ2) +

1

2
f(2ϵ1, 2ϵ2) +

1

2
f2(ϵ1, ϵ2)

] 〈
W[2]

〉

− 1

2
F1(2t2; 2ϵ1, 2ϵ2) − 1

2
F2

1 (t2; ϵ1, ϵ2).

(3.66)

6The 5d SQFT TX∗
corresponding to local P2 is a non-Langrangian theory without a gauge group. The

concept of Wilson loops arises from additional M2-branes on non-compact curves in M-theory.

– 21 –



J
H
E
P
0
8
(
2
0
2
5
)
1
7
8

2jL\2jR 0 1 2 3

0 546

1 1 1

dB = 1

2jL\2jR 0 1 2 3 4 5 6

0 546

1 1 1 1

dB = 2

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 546 1 546 1 1

1 1 2 2 546 1

2 1 1 1

dB = 3

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 546 1 546 3 1092 5 546 4 546 2

1 1 2 4 546 5 1092 6 1092 4 2

2 1 3 5 546 5 546 3 1

3 1 2 2 546 1

4 1 1 1

dB = 4

Table 1. The refined BPS numbers for dE = 1.

2jL\2jR 0 1 2 3 4

0 148785 546 2

1 546 1 546 1

2 1 1 1

dB = 1

2jL\2jR 0 1 2 3 4 5 6 7

0 546 2 148787 546 2

1 546 2 1092 1 546 1

2 2 3 2 1

dB = 2

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11

0 3 546 148790 1092 298123 1092 4 546 2

1 1 546 3 2184 6 2184 148791 1638 4 1

2 1 3 6 546 7 1092 5 546 2

3 1 2 3 2 1

dB = 3

Table 2. The refined BPS numbers for dE = 2.
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2jL\2jR 0 1 2 3 4 5 6 7 8

0 2184 298122 26981318 298123 2184 4 1

1 148789 2730 446912 2730 148793 1092 4

2 1092 6 2730 7 1638 4 546 1

3 3 5 5 2 1

dB = 2

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 4 2184 298130 26985686 745037 81244800 745037 5460 148797 1638 5

1 1092 148800 4368 893831 8736 1191954 26987324 745045 4914 13 546 3

2 5 2730 16 6552 148810 8190 446927 6006 148802 2184 7 1

3 8 546 16 1638 19 2730 15 1638 8 546 2

4 1 2 5 6 5 2 1

dB = 3

Table 3. The refined BPS numbers for dE = 3.

The refined BPS numbers determined from (3.65) and (3.66) are listed in table 1 and table 2

respectively. For dE = 3, we have

F3(t2; ϵ1, ϵ2) = P3

〈
W[3]

〉
− 1

6
F3

1 (t2; ϵ1, ϵ2) − 1

2
F1(t2; ϵ1, ϵ2)F1(2t2; 2ϵ1, 2ϵ2)

− 1

3
F1(3t2; 3ϵ1, 3ϵ2) − F1(t2; ϵ1, ϵ2)F2(t2; ϵ1, ϵ2) + P̃3,1(ϵ1, ϵ2).

(3.67)

where

P3 = f1 + f2
1 +

1

6
f3

1 +
1

2
f1f2 +

1

3
f3, fk = f(kϵ1, kϵ2), (3.68)

and P̃3,1(ϵ1, ϵ2) is undetermined. Equation (3.67) shows that the refined BPS numbers in

the fiber direction fully determine the refined BPS numbers for dE = 3, except for the curve

class degree (dB, dE) = (1, 3), which depends on the expression for P̃3,1. Here we list the

refined BPS numbers for the first few base degrees with dB > 1 in table 3. They agree with

the calculations at low genera in [19, appendix A]. In section 5.1.7 we will give a geometric

explanation for the necessity of a contribution to Z3 beyond P3

〈
W[3]

〉
.

Although our primary interest lies in the refinement of the topological string on a

compact Calabi-Yau threefold, it is still worthwhile to check the ansatz at the unrefined level

ϵ1 = −ϵ2 = λ. Using the unrefined BPS invariants that are calculated from the modular

bootstrap method in [70] and the BPS invariants of Wilson loops calculated in [18], we

determine the unknown coefficients P̃k,l for k ≤ 12. We confirm that the overlapping BPS

invariants from (3.57) are consistent with the calculations in [70]. In particular, we observed

that P̃k,l has the structure

P̃k,l(λ, −λ) =
(−1)k (2 sinh(λ/2))4l

∏k
s=1 (2 sinh(sλ/2))2

∑

j

cje−jλ, (3.69)

where the summation runs over all the integers |j| < 1
2k(k+1)− 3

2 l(l+1)+k l and cj are integers.

3.5 Refined holomorphic anomaly equations for compact Calabi-Yau threefolds

In this section, we derive refined holomorphic anomaly equations for compact Calabi-Yau

threefolds based on the ansatz (3.35) and the refined holomorphic anomaly equations (3.8)

for Wilson loops.
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As proposed in [17, 18], the refined holomorphic anomaly equations (3.8) for Wilson loop

amplitudes can be reformulated as a master equation, in the form of the heat kernel equation:

[
∂̄ī − ϵ1ϵ2

2
C̄jk

ī
DjDk

]
Zr(t, t̄, ϵ1, ϵ2) = 0, (3.70)

where

Zr(t, t̄, ϵ1, ϵ2) = exp



∑

n,g≥0,
n+g>0

F (n,g)
0 (ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1


 ⟨Wr⟩ (t, t̄, ϵ1, ϵ2) (3.71)

for Wilson loops in arbitrary representations r. By combining the ansatz (3.35) (3.37) and

the master equation for Wilson loops (3.70), we obtain

[
∂̄

(i)

j̄
− ϵ1ϵ2

2
C̄

(i)kl

j̄
D

(i)
k D

(i)
l

]
ZX(t, t̄, m̂, ϵ1, ϵ2) = 0, (3.72)

where the superscript (i) in ∂̄
(i)

j̄
, C̄

(i)kl

j̄
and D

(i)
k indicates they are defined on the moduli spaces

for each local Calabi-Yau threefold Xi. The variables t = (t(1), · · · , t(n)) and t̄ = (t̄(1), · · · , t̄(n))

are collections of the holomorphic and anti-holomorphic coordinates for the moduli spaces of

Xi. ZX is a non-holomorphic version of the refined partition function by excluding the genus

zero free energies of each non-compact Calabi-Yau threefold Xi. Define the genus expansion

ZX(t, t̄, m̂, ϵ1, ϵ2) = exp


∑

β̂

Fk(t, t̄; ϵ1, ϵ2)ek m̂


 (3.73)

where

Fk(t, t̄; ϵ1, ϵ2) =
∞∑

n,g=0

(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F (n,g)
k (t, t̄). (3.74)

We propose that there exist refined holomorphic anomaly equations on the union of the

moduli spaces of the local Calabi-Yau threefold Xi:

∂̄
(i)

j̄
F (n,g)

β̂
=

1

2
C̄

(i)kl

j̄


D

(i)
k D

(i)
l F (n,g−1)

β̂
+

∑

n′,g′,β̂′

′
D

(i)
k F (n′,g′)

β̂′
D

(i)
l F (n−n′,g−g′)

β̂−β̂′


 . (3.75)

The prime sum means the sum is over 0 ≤ n′ ≤ n, 0 ≤ g′ ≤ g and 0 ≤ β̂′
i ≤ β̂i by excluding

(n′, g′, β̂′) = (0, 0, 0) and (n′, g′, β̂′) = (n, g, β̂). In the holomorphic limit, we obtain

∂

S(i)kl
F (n,g)

β̂
=

1

2


D

(i)
k D

(i)
l F (n,g−1)

β̂
+

∑

n′,g′,β̂′

′
D

(i)
k F (n′,g′)

β̂′
D

(i)
l F (n−n′,g−g′)

β̂−β̂′


 , (3.76)

where S(i) are the propagators for the B-models of Xi.
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3.6 Refined holomorphic anomaly equations for elliptic P2

In this section, as an example, we study the refined holomorphic anomaly equations (HAE)

for the elliptic P2 geometry.

Define t = t2
2πi in terms of the Kähler parameter for the base P2 and τ = t1

2πi in terms

of the Kähler parameter for the elliptic fiber. The free energy near the MUM point can be

expanded in terms of Q = e2πit and q = e2πiτ as

F(Q, q; ϵ1, ϵ2) = F0(Q; ϵ1, ϵ2) +
∞∑

dE=1

FdE
(Q; ϵ1, ϵ2)(qQ1/3)dE , (3.77)

where F0(Q; ϵ1, ϵ2) is precisely the free energy for local P2. We refer the reader to [75] for

the B-model calculations of local P2, where we will use the same notation therein. For each

coefficient of (qQ1/3)dE , we have the genus expansion

FdE
(Q; ϵ1, ϵ2) =

∞∑

n,g=0

(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F (n,g)
dE

(Q). (3.78)

The combination qQ1/3 corresponds to the effective mass for the Wilson loop particle which

comes from the smallest nontrivial curve class which intersects with the base P2 with

intersection number 0. In the B-model, suppose we have the complex structure parameters

z that are related to the Kähler parameters t, and denote the propagator for local P2 by

S = Szz.7 The following HAEs can be checked recursively (see section 6)

∂

∂S
F (0,0)

dE
=

1

2

dE−1∑

d′
E

=1

DF (0,0)
d′

E

· DF (0,0)
dE−d′

E

, (3.79)

where

F (0,0)
dE=1 = 540z− 1

3 . (3.80)

We conjecture for any dE ≥ 1, F (0,0)
dE

is regular at the conifold point and orbifold point, but

is singular at the large volume point with F (0,0)
dE=1 ∼ Q−dE/3.

For generic genus (n, g), according to (3.76), the following holds

∂F (n,g)
dE

∂S
=

1

2


D2F (n,g−1)

dE
+

∑

d′
E

,n′,g′

′
DF (n′,g′)

d′
E

· DF (n−n′,g−g′)
dE−d′

E


 , (3.81)

for any dE > 0 and n, g ≥ 0. Here the prime sum means we sum over all the integers 0 ≤ n′ ≤ n,

0 ≤ g′ ≤ g and 0 ≤ d′
E ≤ dE by excluding (n′, g′, d′

E) = (0, 0, 0) and (n′, g′, d′
E) = (n, g, dE).

Here D is the covariant derivative defined as

DF (n,g)
dE

= ∂zF (n,g)
dE

, D2F (n,g)
dE

= (∂z + Γzz
z )∂zF (n,g)

dE
, (3.82)

where Γzz
z is the Christoffel symbol on the moduli space. When dE = 0, the refined HAE’s

become the equations for local P2 proposed in [27] and they are valid for n + g ≥ 2. The

7See [17, section 4.4] for detailed expressions for S and z.
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holomorphic anomaly equation can be solved recursively by directly integrating over the

propagator S. Up to a holomorphic ambiguity f
(n,g)
dE

(z), the genus (n, g) free energy can be

completely solved. We make the ansatz on the holomorphic ambiguity

f
(n,g)
dE

(z) = z−
dE
3




2(n+g−1)+dE∑

i=1

ai

∆i
+

o∑

i=0

biz
i


 (3.83)

for suitable constants ai, bi, where

∆ = 1 + 27z, (3.84)

is the discriminant and

o =

⌊
1

3
(2n + 2g + dE)

⌋
. (3.85)

We conjecture that the free energy F (n,g)
dE>0 is regular at the conifold point and orbifold

point, which provides quite enough boundary conditions to fix most of the coefficients in

the holomorphic ambiguity (3.83). However, we still need the information for the refined

BPS numbers

ngL,gR

dB ,dE
, dB − dE/3 ≤ 0 (3.86)

to solve the ambiguity completely. Since we know the complete BPS numbers for (dB, dE) =

(0, dE), we can completely determine the refined BPS numbers for dE = 1, 2, and dB ≥ 0.

For instance, at genus (0, 0):

F (0,0)
1 = 540z− 1

3 , F (0,0)
2 =

405

2 z8/3
(80S − 37z2) .

At genus (0, 1):

F (0,1)
1 = 3z−13/3∆−1(10S2 + 5Sz2 + 11z4 + 297z5) ,

F (0,1)
2 =

9

4 z26/3∆2
(800S4 + 200S3z2 + 130S2z4 + 11610S2z5 + 675Sz6 + 33345Sz7

− 413z8 + 371790Sz8 − 23652z9 − 319302z10) .

At genus (1, 0):

F (1,0)
1 =

1

4
z−7/3∆−1(30S − 116z2 − 3537z3) ,

F (1,0)
2 =

3

16 z20/3∆2
(1200S3 + 600S2z2 + 64800S2z3 − 9490Sz4 − 466290Sz5

+ 4243z6 − 7639920Sz6 + 236007z7 + 2732292z8) .

These calculations match with the calculations from the ansatz (3.57).
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4 Examples

In this section, based on the ansatz (3.35) and the calculations for Wilson loops, we compute

the refined BPS numbers for several elliptically fibered Calabi-Yau threefolds with the base

B = Fn, where Fn is a Hirzebruch surface. In the limit where the size of the elliptic fiber

becomes infinity, the corresponding 5d theories reduce to 5d gauge theories with gauge groups

SU(N). We classify these compact Calabi-Yau threefolds by the ranks of their corresponding

5d gauge groups.

In general, for F-theory compactification on an elliptically fibered Calabi-Yau threefold,

the low-energy physics is described by a 6d N = (1, 0) supergravity theory. With further

circle compactification of the 6d theory, we obtain a 5d KK theory, which can also be obtained

from M-theory compactified on the same elliptically fibered Calabi-Yau threefold. The BPS

partition functions are identical for the 6d theory and the 5d KK theory. Therefore, the BPS

spectrum arising from the one-loop contributions of these 6d supergravity theories as well

as their 6d SCFT or little string limits, provides additional input to fix the ansatz (3.35).

For this reason, we review 6d N = (1, 0) supergravity theories in appendix A.

Consider the compactification of a 6d N = (1, 0) theory on a circle. At the unrefined

level ϵ2 = −ϵ1, the leading behavior of the genus zero and genus one free energies is fully

controlled by the anomaly 4-form polynomial Xα
4 , α = 1, · · · , b2(B), defined in (A.4). At

the refined level, the 4-form polynomial is modified by an additional term that corresponds

to the SU(2)R R-symmetry, written in the form:

Xα
4 = −aα

4
p1(M6) +

∑

i

bα
i tr F 2

i + yαc2(R). (4.1)

Here the coefficients aα, bα
i are anomaly coefficients determined by the classical geometric data,

and yα are undetermined. The term p1(M6) is the first Pontryagin class of the tangent bundle

of the six dimensional spacetime M6 where the 6d supergravity theory lives, Fi are the field

strengths of the non-Abelian gauge symmetries, and c2(R) is the second Chern class of the

background SU(2)R R-symmetry bundle. With the anomaly 4-form polynomial (4.1) and the

matter content of the 6d theory, the leading behavior of the refined genus zero and genus one

free energies are derived in (A.28), (A.29) and (A.30). By considering the 5d SU(N) gauge

theory limit and comparing the refined free energies with (A.47), we can finally determine yα.

For the case where the base of the elliptic fibration is a Hirzebruch surface Fn, the

anti-canonical class of the base is −KB = 2E + (n + 2)F , where E and F are divisors in the

base with intersection numbers E2 = −n, F 2 = 0, E · F = 1. We order the divisor classes as

(F, E). The values of aα, the intersection matrix Ωαβ and its inverse are given by

a = (n + 2, 2), Ω =

(
0 1

1 −n

)
, Ω−1 =

(
n 1

1 0

)
. (4.2)

The values of bα correspond to the locations of singular fibers. We will clarify their values

and determine yα in the following example sections.
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Comment on Jacobi-form ansatz. On the tensor branch, the partition functions of 6d su-

pergravity theories compactified on T 2 can be expanded in terms of the tensor parameters tb as

Z6d = e
1

ϵ1ϵ2
E
Z1-loop


1 +

∑

k>0

Zk(z; τ)ek·tb


 (4.3)

Here, τ denotes the Kähler parameter of the elliptic fiber and z collectively represents

ϵ1, ϵ2, and all other Kähler parameters in the fiber direction. The quantities E and Z1-loop

are defined in (A.15) and (A.22) respectively. The functions Zk(z; τ) are elliptic genera

of worldsheet theories describing k-strings. They are meromorphic Jacobi-forms of weight

zero, whose indices can be computed from the geometries [70, 76, 77]. In the 6d SCFT

limit, it has been proposed in [43, 78] that the Jacobi-form indices are extracted from the

anomaly polynomial via the replacement rule (A.18). This method has also been applied

to the 6d supergravity case [79]. If one naively applies the replacement rule to the refined

anomaly polynomial (4.1), we obtain

Index(Zk) = −1

2
kαΩαβkβ(ϵ2

+ −ϵ2
−)+kαΩαβ


−aβ

4
(ϵ2

1 +ϵ2
2)+

∑

i

bβ
i

∑

i′,j′

Ki′j′

i ϕi′ϕj′ −yβϵ2
+


 .

(4.4)

For elliptic P2,

Ω = 1, bi = 0, a = 3, y = −19

36
(4.5)

the resulting index becomes

Index(Zk) =
1

2
k(3 − k)ϵ1ϵ2 − 89k

144
(ϵ1 + ϵ2)2. (4.6)

The appearance of a large denominator 144 is unusual compared to other cases. However,

this result agrees with the expected index from the refined holomorphic/modular anomaly

equation proposed in [19]. It would interesting to explore whether a modular expression

for Zk exists at the refined level.

4.1 Rank 1 examples

In this section, we compute the refined BPS numbers for elliptic fibrations over the Hirzebruch

surfaces F0 and F1. Since many details have been addressed in previous works, we focus

on the ansatz (3.35) for these two models and refer the readers to [19, 70] for discussions

on other aspects.

4.1.1 Elliptic F0

Let’s consider the example elliptic F0, whose Mori cone charges can be found in equation (3.17).

The triple intersection ring and the evaluation of the second Chern class c2 on the Kähler

forms are given by

R = 8J3
1 + 2J2

1 J2 + 2J2
1 J3 + J1J2J3, (4.7)
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and

{
∫

c2Ji} = {92, 24, 24} , (4.8)

respectively. We are following the usual conventions here. The Ji are the Kähler generators

dual to the l(i), and a triple intersection evaluates to the coefficient of the corresponding

monomial in R, and is zero if the corresponding monomial doesn’t occur in R.

The 6d N = (1, 0) supergravity theory corresponding to this geometry has one tensor

multiplet, no vector multiplets, and 244 hypermultiplets:

H = 244, V = 0, T = 1. (4.9)

Therefore the spin content in the fiber direction, according to (5.23) or appendix A.2, is

given by

β = (dE , d2, d3) = (dE , 0, 0) :

[
1

2
, 1

]
⊕
[

1

2
, 0

]
⊕ 488 [0, 0] . (4.10)

The genus zero and genus one free energies are

F (0,0) = tb1tb2τ +
1

3
τ3 + O(et), (4.11)

F (0,1) = −tb1 − tb2 − 11

6
τ + O(et), (4.12)

F (1,0) =
1

2
(tb1 + tb2) +

1

4
yαtbα

+
23

24
τ + O(et), (4.13)

where τ = t1, tb1 = t2 − τ, tb2 = t3 − τ . By considering the exchange symmetry of t2 and t3

arising from the exchange of two P1’s in the base F0 = P1×P1, we further assume yα=1 = yα=2.

In the large elliptic fiber limit t1 → −∞, we obtain local F0 with the compact surface

D = F0. This local geometry corresponds to 5d pure SU(2)0 theory with theta angle 0. The

curve l(1) corresponds to the Wilson loop particle with charge 1 in the resulting 5d gauge

theory. The rank of the gauge symmetry is r = 1 and the rank of the flavor symmetry is

f = 1. The total charge matrix for the 5d theory is

QTot =

(
QG

QF

)
=

(
−2 −2

0 1

)
. (4.14)

With these preparations, we obtain the relations

t1 = m̂ + ϕ, t2 = −2ϕ, t3 = −2ϕ + m, (4.15)

where ϕ is the Coulomb parameter, m = log q is the instanton parameter and m̂ is the

effective mass of the Wilson loop particle for the 5d gauge theory. Substituting (4.15) into

the genus zero and genus one free energies and comparing with (B.5), we find they are

consistent and determine y = (− 5
12 , − 5

12).

From the positivity and integrality conditions (3.44), we find

−1

2
(h − k) − βm, βm ∈ Z≥0, (4.16)
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such that the ansatz (3.35) is expressed as

ZX(t1, t2, t3, ϵ1, ϵ2) = ZX∗(t2, t3, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(t2, t3, ϵ1, ϵ2)

]
, (4.17)

where

Zk(t2, t3, ϵ1, ϵ2) = Pk

〈
W[k]

〉
+

⌊ k
2 ⌋∑

l=1

l∑

βm=0

eβmmP̃k,l,βm

〈
W[k−2l]

〉
. (4.18)

In the second term on the r.h.s. of (4.18), one finds the gauge charges of the Wilson loops are

decreasing by 2, which is consistent with the one-form symmetry Z2 for the 5d SU(2)0 theory.

Denote the refined BPS number contribution at the curve class β as

fβ(ϵ1, ϵ2) =
∑

jL,jR

(−1)2jL+2jRNβ
jL,jR

χjL
(q−)χjR

(q+)

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
. (4.19)

The coefficients Pk = Pk(ϵ1, ϵ2) can be extracted from the expansion

∞∑

k=0

Pkqk = exp




∞∑

k,l=1

1

k
f1,0,0(kϵ1, kϵ2)qkl


 , (4.20)

where

f1,0,0(ϵ1, ϵ2) =
488 − (q−1

− + q−)(q−2
+ + 2 + q2

+)

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
, (4.21)

is the factor determined from the refined BPS numbers in the fiber direction (4.10). For

k = 1, we find

Z1(t2, t3, ϵ1, ϵ2) = P1

〈
W[k]

〉
. (4.22)

For k = 2, 3, 4, additional input for the refined BPS numbers of the curve classes8 β =

(2, 1, 0), (3, 1, 0), (4, 1, 0), (4, 2, 0), (4, 1, 1) allows us to fix the undetermined coefficients P̃ .

For instance,

P̃2,1,0 = P̃2,1,1 = −2f1,0,0(ϵ1, ϵ2) − f1,0,0(2ϵ1, 2ϵ2) + f2,1,0(ϵ1, ϵ2),

P̃3,1,0 = P̃3,0,1 = −2f1,0,0(ϵ1, ϵ2)2 − f1,0,0(3ϵ1, 3ϵ2) + f3,1,0(ϵ1, ϵ2)

+ f1,0,0(ϵ1, ϵ2)(−f1,0,0(2ϵ1, 2ϵ2) + f2,1,0(ϵ1, ϵ2) − 3),

...

Fortunately, the refined BPS content in the curve class direction β = (dE , d1, 0) has been

proposed in [54] and is summarized in (3.27) for d1 = 1. As has been proposed in [80], for

d1 > 1, the contributions are generated by Hecke transformations of those at d1 = 1, leading to

ZX(t1, t2, t3, ϵ1, ϵ2)|t3→−∞ = exp

[
∞∑

k,l=1

1

k
f1,0,0(kϵ1, kϵ2)ek l t1

+
∞∑

d2=1

1

d2
ed2(t1+t2)

∑

ad=d2
a,d∈Z

∑

b(mod d)

ZK3
(

aϵ1,2;
aτ + b

d

)]
,

(4.23)

8We note that the refined BPS numbers of the curve classes β = (dE , d2, d3) and β = (dE , d3, d2) are

identical due to the exchange symmetry of two P1’s in the base.
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2jL\2jR 0 1

0 1

(dE , d2, d3) = (0, 1, 0)

2jL\2jR 0 1 2

0 488

1 1 1

(dE , d2, d3) = (d, d, 0), d > 0

2jL\2jR 0 1 2 3

0 280964 1

1 1 488 1

2 1 1

(dE , d2, d3) = (2, 1, 0)

2jL\2jR 0 1 2 3 4

0 15928440 2 1

1 2 281452 2

2 2 488 1

3 1 1

(dE , d2, d3) = (3, 1, 0)

2jL\2jR 0 1 2 3 4 5

0 410133618 4 488 1

1 3 16209892 4 1

2 488 4 281452 3

3 1 2 488 1

4 1 1

(dE , d2, d3) = (4, 1, 0)

2jL\2jR 0 1 2 3 4

0 15928440 2 1

1 2 281452 2

2 2 488 1

3 1 1

(dE , d2, d3) = (3, 2, 0)

2jL\2jR 0 1 2 3 4 5 6

0 6749497860 6 281452 3

1 6 426343510 8 488 2

2 281452 7 16210380 5 1

3 2 488 5 281452 3

4 1 2 488 1

5 1 1

(dE , d2, d3) = (4, 2, 0)

Table 4. The refined BPS numbers of elliptic F0 for dE ≤ 4, d2 = 1, 2 and d3 = 0.

for τ = t1
2πi . By using the refined partition function (3.27), equation (4.23) completely solves

the refined BPS numbers of curve classes β = (dE , d2, 0). In table 4, we provide the first

few refined BPS numbers. From these results, except for the refined BPS numbers of the

curve class β = (4, 1, 1), we completely determine the refined BPS numbers of curve classes

β = (dE , d2, d3) for dE ≤ 4 and any d2, d3 ≥ 0. We list the refined BPS numbers for the first

few degrees in table 8, table 9, table 10 and table 11. Note that the BPS numbers of the

curve class β = (3, 2, 0) in table 4 are not used to determine the ansatz. However, we find

that the refined BPS numbers of this curve class, as listed in table 10, precisely match those

in table 4, providing an independent consistency check on our calculations.
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4.1.2 Elliptic F1

In this section, we compute the refined BPS partition function for the elliptic F1 model. As

described in section 3.3, the geometry of the elliptic F1 has two phases. In phase I (3.21),

there are two local limits: local F1 which is obtained by taking the volume of l(1) to infinity,

and local half K3 which is obtained by taking the volume of l(2) to infinity. These two local

limits correspond to the 5d SU(2)π theory with theta angle π and the 6d E-string theory

respectively. In phase II (3.28), there are two local limits, respectively obtained by taking the

volume of l(3) to infinity in addition to taking the volume of l(1) or l(2) to infinity, yielding

local P2 and local dP8, respectively.

Phase I. In this phase, The triple intersection ring and the evaluation of the second Chern

class c2 on the Kähler forms are

R = 8J3
1 + 3J2

1 J2 + J1J2
2 + 2J2

1 J3 + J1J2J3 , (4.24)

and

{
∫

c2Ji} = {92, 36, 24} , (4.25)

respectively.

This phase is described by an elliptic fibration over F1. Its corresponding 6d N = (1, 0)

supergravity theory has the same numbers of 6d (1, 0) supermultiplets as the elliptic F0

model, therefore the spin contents in the fiber direction are the same as those in (4.10). The

genus zero and genus one free energies are given by

F (0,0) =
1

2
(t2

b1
+ 2tb1tb2)τ +

1

3
τ3 + O(et) , (4.26)

F (0,1) = −3

2
tb1 − tb2 − 11

6
τ + O(et) , (4.27)

F (1,0) =
3

4
tb1 +

1

2
tb2 +

1

4
yαtbα

+
23

24
τ + O(et) , (4.28)

where τ = t1, tb1 = t2 − τ, tb2 = t3 − 1
2τ .

By decoupling gravity, the 6d supergravity theory admits a 6d SCFT limit which is the

E-string theory. For a 6d SCFT with a single tensor branch associated with the −n curve in

Fn, the coefficient of y is the dual Coxeter number of the corresponding gauge group [81]. In

the case of the 6d supergravity theory, we expect that after subtracting the contribution from

the overall form corresponding to the base Kähler parameter m̂6d = tb1 + 1
n tb2 , the anomaly

polynomial 4-form of the 6d supergravity theory is identical with the anomaly polynomial

4-form of the 6d SCFT. This consistency condition imposes a constraint on y:

y2 − 1

n
y1 = −h∨

G . (4.29)

For the E-string theory, where n = 1 and h∨
G = 1, this constraint implies y2 = y1 − 1.

In the local limit t1 → −∞, we obtain the 5d SU(2)π theory with theta angle π. Physically,

this 5d gauge theory can be achieved if we first compactify the 6d theory on a circle and

then decouple all the KK modes.
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In this local limit, the total charge matrix for the 5d theory is

QTot =

(
QG

QF

)
=

(
−2 −1

0 1

)
, (4.30)

so that the Kähler parameters are expressed as the Coulomb parameter ϕ and mass parameter

m in the form:

t1 = m̂ + ϕ, t2 = −2ϕ, t3 = m − ϕ, (4.31)

where m̂ is the effective mass of the Wilson loop particle as before. Substituting (4.31) into

the genus zero and genus one free energies and compare it with (B.5), we find they are

consistent and determine y = (−2
9 , −11

9 ).

From the positivity and integrality conditions (3.44), we find

β2 = −1

2
(h − k) − 1

2
βm, β3 = βm ∈ Z≥0, (4.32)

such that the ansatz (3.35) is expressed as

ZX,phase I(t1, t2, t3, ϵ1, ϵ2) = ZX∗(t2, t3, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(t2, t3, ϵ1, ϵ2)

]
, (4.33)

where

Zk(t2, t3, ϵ1, ϵ2) = Pk

〈
W dP1

[k]

〉
+

k∑

l=1

∑

β2,β3≥0,
2β2+β3=l

eβ3 mP̃k,β2,β3

〈
W dP1

[k−l]

〉
, (4.34)

where Pk is the same as the elliptic F0 case defined in (4.20). The one-form symmetry for

the 5d theory is broken due to the theta angle. As a result, both even and odd charges

appear in (4.34).

As a check on the ansatz (4.33), we determine the coefficients P̃k,β2,β3 up to k = 3.

To fully determine them, we need additional input for refined BPS numbers of the curve

classes β = (dE , d1, d2) satisfying

2d2 + d3 ≤ dE ≤ 4, d2, d3 ≥ 0. (4.35)

For d3 = 0, the BPS spectrum can be obtained under the reasonable assumption that it is

also provided by equation (4.23). For d2 = 0, we expect the BPS spectrum to coincide with

that of the E-string theory, which has been calculated in [33, 82]. The solution to (4.35) also

contains the curve class β = (3, 1, 1), where both d2 and d3 are non-zero. This case can not

be determined from the local 5d/6d theory calculations, as explained in section 3.3.

After fixing the ansatz, we compare the overlapping BPS spectrum obtained from (4.33)

with the BPS spectrum related to the Wilson surface of the E-string theory (3.26), and

find exact agreement.
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Phase II. The geometry of the elliptic F1 model has another phase (3.28) obtained by

flopping the curve l
(3)
I in phase I. In this phase, the elliptic fibration structure is broken. The

refined BPS numbers in phase I are related to those in phase II via9

N
βI=(dE ,d2,d3)
jL,jR

=





N
βII=(dE ,d2,dE+d2−d3)
jL,jR

, βI ̸= (0, 0, 1) ,

N
βII=(0,0,1)
jL,jR

, βI = (0, 0, 1) .
(4.36)

The calculations for the refined BPS numbers in phase II provide an independent check

of our results in phase I.

By taking the volume of the flopped l
(3)
I which becomes l

(3)
II in (3.21) to infinity, we

obtain two neighboring non-compact Calabi-Yau threefolds: X1 = O(−3) → P2 and the

massless local del Pezzo surface X2 = dP8. They have mutually disjoint connected compact

divisors D1 and D2 respectively. The curve l
(3)
II has intersection number 1 with both D1

and D2, indicating that it corresponds to the charge one Wilson loop particle in both local

theories. This leads to the following ansatz:

ZX,phase II(t1, t2, t3, ϵ1, ϵ2) = ZX1(t2, ϵ1, ϵ2)ZX2(t1, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ek m̂Zk(t1, t2, ϵ1, ϵ2)

]
,

(4.37)

where m̂ = t3 + t1 + 1
3 t2, and

Zk(t1, t2, ϵ1, ϵ2) =

⌊ k
3 ⌋∑

l=0

k∑

l′=0

P̃k,l,l′

〈
W P2

[k−3l]

〉〈
W dP8

[k−l′]

〉
. (4.38)

Here
〈
W P2

[k]

〉
are VEVs for Wilson loops in the 5d theory TX1 which only depend on the

Kähler parameter t2 and ϵ1,2;
〈
W dP8

[k]

〉
are VEVs for Wilson loops for the 5d SU(2) + 7 F

theory10 that only depends on the Kähler parameter t1 and ϵ1,2. P̃k,l,l′ are undetermined

coefficients as usual, which shall be fixed with additional input for refined BPS numbers. In

particular, Pk = P̃k,0,0 can be completely determined from the expansion:

∞∑

k=0

Pkqk = exp




∞∑

k,l=1

1

k
f0,0,1(kϵ1, kϵ2)qkl


 , (4.39)

where

f0,0,1(ϵ1, ϵ2) =
1

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2)
, (4.40)

is calculated from the BPS spin [0, 0] of the curve class βII = (0, 0, 1). For k = 1, there is

an additional coefficient, which is determined as:

P̃1,0,1 = f1,0,1(ϵ1, ϵ2). (4.41)

The expression of f1,0,1(ϵ1, ϵ2) is the same as equation (4.21) according to (4.36). Following

with a similar procedure, by using the minimal input from the overlapping refined BPS

numbers with phase I, we solve the ansatz up to k = 3 and find exact agreement for the

other overlapping refined BPS numbers.

9These relations can be obtained by the analytic continuation of the partition function.
10The refined BPS numbers for dP8 Wilson loops can be found in [18, table 25], table 6 and table 7 for

k = 1, 2, and 3 respectively.
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4.2 Rank 2 examples

In this section, we study two compact elliptically fibered Calabi-Yau hypersurfaces, whose

local limits give 5d SU(3) gauge theories. Their dual polytopes and Mori cone charges are:

ν∗
i l(1) l(2) l(3) l(4)

0 0 0 0 0 −1 0 −3

−1 0 0 0 0 0 0 1

0 −1 0 0 1 0 0 1

2 3 −1 −n 0 0 1 0

1 2 0 1 0 1 0 0

2 3 1 0 0 0 1 0

2 3 0 −1 0 1 −n 0

1 1 0 0 −2 1 0 1

2 3 0 0 1 −2 −2 + n 0

(4.42)

Here, n indicates that the base for the elliptic fibration is the Hirzebruch surface Fn. In

the following subsections, we study the cases n = 0, 1, and leave the mathematical analysis

for section 5.2.

4.2.1 Model 2A: elliptic fibration over F0

l(1) = ( 0 ; 0 1 0 0 0 0 −2 1 )

l(2) = ( −1 ; 0 0 0 1 0 1 1 −2 )

l(3) = ( 0 ; 0 0 1 0 1 0 0 −2 )

l(4) = ( −3 ; 1 1 0 0 0 0 1 0 )

↓ ↓
D1 D2

(4.43)

In this section, we study the geometry whose Mori cone charges are described in (4.43). We

refer to this geometry as Model 2A. It is an elliptically fibered Calabi-Yau threefold with

base F0. Its non-trivial Hodge numbers are h1,1 = 4, h2,1 = 214.

The 6d N = (1, 0) supergravity theory corresponding to this geometry is a 6d Sp(1)

theory with 16 fundamental hypermultiplets. Therefore, the numbers of hypermultiplets,

vector multiplets and tensor multiplets are given by

H = 247, V = 3, T = 1. (4.44)

Among the 247 hypermultiplets, 2 × 16 = 32 are charged under the gauge group Sp(1), while

the remaining 247 − 32 = 215 are neutral. Here 215 = h2,1 + 1 which precisely matches the

result provided in (A.14). From the matter content, we conclude that the non-vanishing

refined BPS numbers at the curve classes β = (d1, 0, 0, d4) are given by

β = (n, 0, 0, 2n) : [1/2, 1] ⊕ [1/2, 0] ⊕ [0, 1/2] ⊕ 430[0, 0]

β = (n, 0, 0, 2n ± 1) : 32[0, 0]

β = (n, 0, 0, 2n ± 2) : [0, 1/2]

(4.45)
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for all possible n ∈ Z satisfying β > 0.

In the local limit t4 → −∞, the geometry reduces to a non-compact Calabi-Yau threefold,

denoted X. It has compact surfaces D1 = F2 and D2 = F0, corresponding to the 5d SU(3)1

theory with Chern-Simons level 1. The total charge matrix for the 5d theory is

QTot =

(
QG

QF

)
=




−2 1 0

1 −2 −2

0 0 1


 , (4.46)

and the Wilson loop particle corresponding to l(4) has gauge charge (1, 0). The Kähler

parameters are expressed in terms of the Coulomb parameters ϕi and the mass parameter

m in the form:

t1 = −2ϕ1 + ϕ2, t2 = ϕ1 − 2ϕ2, t3 = m − 2ϕ2, t4 = m̂ + ϕ1, (4.47)

where m̂ is the effective mass of the Wilson loop particle.

Using the inverse of the total charge matrix

Q−1
Tot =




−2
3 −1

3 −2
3

−1
3 −2

3 −4
3

0 0 1


 , (4.48)

the positivity and integrality conditions (3.44) impose the constraints

β1 = −2

3
(h1 − k) − 1

3
h2 − 2

3
βm, β2 = −1

3
(h1 − k) − 2

3
h2 − 4

3
βm , β3 = βm ∈ Z≥0. (4.49)

The solution to (4.49) gives the ansatz for the partition function:

ZX(t1, t2, t3, t4, ϵ1, ϵ2) = ZX∗(t1, t2, t3, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(t1, t2, t3, ϵ1, ϵ2)

]
, (4.50)

where

Zk(t1, t2, t3, ϵ1, ϵ2) =
∑

h1+2h2=k−3l−4βm

h1,h2,l,βm≥0

eβm mP̃[h1,h2],k;βm

〈
W

SU(3)1

[h1,h2]

〉
.

(4.51)

Here m = log q = t3 − 2
3(t1 + 2t2) is the instanton counting parameter of the 5d SU(3)1

theory as defined in (4.47). For a 5d SU(3) theory, the one-form symmetry is Z3. The Wilson

loop in the representation [h1, h2] has the one-form symmetry charge h1 + 2h2. However,

adding a Chern-Simons term at level 1 breaks the one-form symmetry completely, making it

trivial. Indeed, we find there is no particular constraint on the one-form symmetry charge

h1 + 2h2 in (4.51).

To verify the ansatz (4.50), we determine the coefficients P̃[h1,h2],k;βm
up to k = 3. This

requires additional input from non-vanishing refined BPS numbers at curve classes

β = (0, 0, 0, 1), (0, 0, 0, 2), (1, 0, 0, 2), (1, 0, 0, 3), (2, 1, 0, 3) , (4.52)
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which have been determined in (4.45), except for the curve class β = (2, 1, 0, 3). In particular,

for any given k, P[k,0] = P̃[k,0],k;0 are extracted from

∞∑

k=0

P[k,0]q
k = exp

[
∞∑

k=1

1

k

(
f0,0,0,1(kϵ1, kϵ2)qkl + f0,0,0,2(kϵ1, kϵ2)q2kl

)]
. (4.53)

For k = 1, the only undetermined coefficient is P[1,0], which is completely determined

by (4.53). For k = 2, we find

P̃[0,1],2;0 = −f0,0,0,1(2ϵ1, 2ϵ2) − 2f0,0,0,2(ϵ1, ϵ2) + f1,0,0,2(ϵ1, ϵ2) . (4.54)

For k = 3, we find

P̃[1,1],3;0 = − f0,0,0,1(ϵ1, ϵ2)f0,0,0,1(2ϵ1, 2ϵ2) − f0,0,0,1(3ϵ1, 3ϵ2) − 2f0,0,0,1(ϵ1, ϵ2)f0,0,0,2(ϵ1, ϵ2)

+ f0,0,0,1(ϵ1, ϵ2)f1,0,0,2(ϵ1, ϵ2) + f1,0,0,3(ϵ1, ϵ2) , (4.55)

P̃[0,0],3;0 =f0,0,0,1(3ϵ1, 3ϵ2) − 3f1,0,0,3(ϵ1, ϵ2) + f2,1,0,3(ϵ1, ϵ2) . (4.56)

With the exception of β = (2, 1, 0, 3), the refined BPS numbers for all curve classes β =

(d1, d2, d3, d4), d4 ≤ 3 are determined. We present the data for the refined BPS numbers at

the first few curve class degrees in the supplementary material at the external link [26].

At the unrefined level ϵ1 = −ϵ2 = λ, the BPS data for the curve class degrees β =

(d1, 1, 0, d4) can be fixed from a generalization of the K3 fibration over P1 with one mass

parameter. We find

Z(d2,d3)=(1,0) = exp

[
∞∑

k=1

1

k

(
fd1,1,0,d4(kλ, −kλ)e2πid1τ+d4z

)]

= −φ−2,1(z)(E3
4 + E2

6) + 2φ0,1(z)E4E6

12η24φ−2,1(λ)
, (4.57)

where E4 = E4(τ), E6 = E6(τ) are the Eisenstein series, and φ−2,1(z), φ0,1(z) are the

generators of weak Jacobi forms with weights −2 and 0, and index 1.

4.2.2 Model 2B: elliptic fibration over F1

l(1) = ( 0 ; 0 1 0 0 0 0 −2 1 )

l(2) = ( −1 ; 0 0 0 1 0 1 1 −2 )

l(3) = ( 0 ; 0 0 1 0 1 −1 0 −1 )

l(4) = ( −3 ; 1 1 0 0 0 0 1 0 )

↓ ↓
D1 D2

(4.58)

In this section, we study the geometry whose Mori cone charges are given in (4.58). We refer

to this geometry as Model 2B. It is an elliptically fibered Calabi-Yau threefold with base

F1. Its non-trivial Hodge numbers are h1,1 = 4, h2,1 = 202.

The 6d N = (1, 0) supergravity theory corresponding to this geometry is a 6d Sp(1) theory.

The gauge group is defined along the curve l(2) + l(3), such that the anomaly coefficients bα
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are b = (1, 1). From the anomaly cancellation constraints (A.5)–(A.7), we determine that the

theory has 22 hypermultiplets in the fundamental representation. From the matter content, we

conclude that the non-vanishing refined BPS numbers at the curve classes β = (d1, 0, 0, d4) are

β = (n, 0, 0, 2n) : [1/2, 1] ⊕ [1/2, 0] ⊕ [0, 1/2] ⊕ 406[0, 0]

β = (n, 0, 0, 2n ± 1) : 44[0, 0]

β = (n, 0, 0, 2n ± 2) : [0, 1/2]

(4.59)

for all possible n ∈ Z satisfying β > 0. Moreover, we expect that if d2 = 0, all refined

BPS numbers at the curve classes β = (d1, 0, d3, d4) can be determined from the partition

function of the 6d E-string theory.

In the local limit t4 → −∞, the geometry reduces to a non-compact Calabi-Yau threefold,

denoted X, with compact surfaces D1 = F3 and D2 = F1. It corresponds to the 5d SU(3)2

theory with Chern-Simons level 2. The total charge matrix for the 5d theory is

QTot =

(
QG

QF

)
=




−2 1 0

1 −2 −1

0 0 1


 , (4.60)

and the Wilson loop particle corresponding to l(4) has gauge charge (1, 0). The Kähler

parameters are expressed in terms of the Coulomb parameters ϕi and the mass parameter

m in the form:

t1 = −2ϕ1 + ϕ2, t2 = ϕ1 − 2ϕ2, t3 = m − ϕ2, t4 = m̂ + ϕ1, (4.61)

where m̂ represents the effective mass of the Wilson loop particle.

Using the inverse matrix for the total charge matrix

Q−1
Tot =




−2
3 −1

3 −1
3

−1
3 −2

3 −2
3

0 0 1


 , (4.62)

the positivity and integrality conditions (3.44) provide the constraints

β1 = −2

3
(h1 − k) − 1

3
h2 − 1

3
βm, β2 = −1

3
(h1 − k) − 2

3
h2 − 2

3
βm , β3 = βm ∈ Z≥0 , (4.63)

leading to the ansatz for the partition function:

ZX(t1, t2, t3, t4, ϵ1, ϵ2) = ZX∗(t1, t2, t3, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(t1, t2, t3, ϵ1, ϵ2)

]
, (4.64)

where

Zk(t1, t2, t3, ϵ1, ϵ2) =
∑

h1+2h2=k−3l−2βm

h1,h2,l,βm≥0

eβm mP̃[h1,h2],k;βm

〈
W

SU(3)2

[h1,h2]

〉
.

(4.65)

To verify the ansatz (4.64), we determine the coefficients P̃[h1,h2],k;βm
up to k = 3. This

requires additional input from non-vanishing refined BPS numbers for the curve classes

β = (0, 0, 0, 1), (0, 0, 0, 2), (1, 0, 0, 2), (1, 0, 1, 2), (1, 0, 0, 3), (1, 0, 1, 3), (2, 1, 0, 3). (4.66)
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With the exception of β = (2, 1, 0, 3), the refined BPS numbers for all of these curve

classes (4.66) can be determined from (4.59) and the partition function of E-strings. For

instance, those obtained from the E-string partition function are

β = (1, 0, 1, 2) : [1/2, 1/2] ⊕ 248[0, 0], (4.67)

and there is no BPS content for β = (1, 0, 1, 3). We present the data for the refined BPS

numbers of the curve classes β = (d1, d2, d3, d4) with d1 + d2 ≤ 7 and d3, d4 ≤ 3, except for

β = (2, 1, 0, 3), in the supplementary material at the external link [26].

4.3 Rank 3 examples

In this section, we study the compact elliptically fibered Calabi-Yau hypersurfaces, whose

dual polytopes and Mori cone charges are:

ν∗
i l(1) l(2) l(3) l(4) l(5)

0 0 0 0 −3 0 0 0 0

−1 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 0 0 1

2 3 −1 0 0 0 1 0 0

2 3 0 1 0 0 0 1 0

2 3 n −1 0 0 0 1 0

2 3 2 0 −2 1 0 ∗ 1

2 3 1 0 1 −2 1 ∗ 0

2 3 0 0 0 1 −2 ∗ 0

1 1 1 0 3 0 0 0 −2

(4.68)

where n = 1, 2, 3 and the detailed expression for l(4) can be found in (4.96), (4.73) and (4.85)

respectively.

The 6d N = (1, 0) supergravity theories corresponding to these geometries are 6d G2

theories with (10 − 3n) fundamental hypermultiplets. We determine V = 14, which is the

dimension for the adjoint representation of G2, and H = 273 − 29 × 1 + 14 = 258. The

fundamental representation of G2 has 6 non-zero weights and one zero weight; therefore,

among the 258 hypermultiplets, there are Hneutral = 258 − 2 × (10 − 3n) × 6 = 198 + 18n

neutral hypermultiplets.

From the matter content, we conclude that the non-vanishing refined BPS numbers for

the curve classes β = (d1, d2, 0, 0, d5) are

β = (2n, n, 0, 0, 3n) : [1/2, 1] ⊕ [1/2, 0] ⊕ 2[0, 1/2] ⊕ (198 + 18n)[0, 0]

β = (2n, n, 0, 0, 3n) ± β∆+
s

: [0, 1/2] ⊕ (20 − 6n)[0, 0]

β = (2n, n, 0, 0, 3n) ± β∆+
l

: [0, 1/2]

(4.69)

for all possible n ∈ Z satisfying β > 0. Here β∆+
l

and β∆+
s

represent the long and short

roots of G2 respectively. In our notation, they are

β∆+
l

= (2, 0, 0, 0, 3), (1, 0, 0, 0, 3), (1, 0, 0, 0, 0), (4.70)

β∆+
s

= (1, 0, 0, 0, 2), (1, 0, 0, 0, 1), (0, 0, 0, 0, 1). (4.71)

– 39 –



J
H
E
P
0
8
(
2
0
2
5
)
1
7
8

If d3 = 0, all refined BPS numbers for the curve classes β = (d1, d2, 0, d4, d5) are determined

from the partition functions of the 6d SCFTs G2 + (10 − 3n)F, which have been calculated

for n = 1, 2 with d4 = 1 in [83, appendix D] and for n = 3 with arbitrary d4 ≥ 0 in [84].

In section 5.3.3, we discuss complex deformations, which correspond to Higgsing processes

in physics. For instance, by turning on a special expectation value for one of the mass

parameter m = ϵ+, the gauge group G2 is broken to its subgroup SU(3) with the same rank,

and the (10 − 3n) fundamental hypermultiplets are reduced to (9 − 3n) fundamental and

anti-fundamental hypermultiplets of SU(3). In the unrefined case, the special expectation

value of m is still 0, which doesn’t change the unrefined GV invariants. After Higgsing,

the refined BPS numbers (4.69) become

β = (2n, n, 0, 0, 3n) : [1/2, 1] ⊕ [1/2, 0] ⊕ 2[0, 1/2] ⊕ (198 + 18n)[0, 0]

β = (2n, n, 0, 0, 3n) ± β∆+
s

: (18 − 6n)[0, 0]

β = (2n, n, 0, 0, 3n) ± β∆+
l

: [0, 1/2]

(4.72)

In the following subsections, we study the Wilson loop expansion and compute the

refined BPS numbers for these models.

4.3.1 Model 3A: elliptic fibration over F2

l(1) = ( −3 ; 1 0 0 0 0 −2 1 0 3 )

l(2) = ( 0 ; 0 0 0 0 0 1 −2 1 0 )

l(3) = ( 0 ; 0 0 1 0 0 0 1 −2 0 )

l(4) = ( 0 ; 0 0 0 1 1 0 −2 0 0 )

l(5) = ( 0 ; 0 1 0 0 0 1 0 0 −2 )

↓ ↓ ↓ ↓
D1 D2 D3 D4

(4.73)

The Moric cone charges for the compact elliptically fibered Calabi-Yau hypersurface X that

has been described in (4.68) with n = 2, are written in (4.73). The divisors D1, D2, D3, D4

occur in local limits.This geometry has non-trivial Hodge numbers h1,1 = 5, h2,1 = 233.

In the local limit t5 → −∞, the geometry reduces to a non-compact Calabi-Yau threefold,

denoted by X, which contains compact surfaces D1 = F2, D2 = F0 and D3 = F2.

D1 D2 D3

(4.74)

The non-compact geometry X is a toric Calabi-Yau threefold, whose toric diagram is depicted

in (4.74). It corresponds to the 5d SU(4)0 theory with Chern-Simons level 0, where the
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one-form symmetry is Z4. The total charge matrix and its inverse for the 5d theory are

QTot =

(
QG

QF

)
=




−2 1 0 0

1 −2 1 −2

0 1 −2 0

0 0 0 1




, Q−1
Tot =




−3
4 −1

2 −1
4 −1

−1
2 −1 −1

2 −2

−1
4 −1

2 −3
4 −1

0 0 0 1




, (4.75)

and the Wilson loop particle corresponding to l(5) has gauge charge (1, 0, 0). The Kähler

parameters are written in terms of the Coulomb parameters ϕi and the mass parameter

m in the form:

t1 = −2ϕ1 + ϕ2, t2 = ϕ1 − 2ϕ2 + ϕ3, t3 = ϕ2 − 2ϕ3 t4 = m − 2ϕ2, t4 = m̂ + ϕ1,

(4.76)

where m̂ is the effective mass of the Wilson loop particle.

From the inverse of the total charge matrix, we derive the positivity and integrality

conditions:

β1 = −3

4
(h1 − k) − 1

2
h2 − 1

4
h3 − βm, β2 = −1

2
(h1 − k) − h2 − 1

2
h3 − 2βm ,

β3 = −1

4
(h1 − k) − 1

2
h2 − 3

4
h3 − βm, β4 = βm ∈ Z≥0,

(4.77)

which determine the structure of the partition function for the compact Calabi-Yau threefold:

ZX(t, ϵ1, ϵ2) = ZSU(4)0
(ϕ, m, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(ϕ, m, ϵ1, ϵ2)

]
, (4.78)

where

Zk(ϕ, m, ϵ1, ϵ2) =
∑

k1+2k2+3k3=k

P[k1,k2,k3]

〈
W

SU(4)0

[k1,k2,k3]

〉

+

⌊ k
4

⌋∑

l=1

l∑

βm=0

eβmm
∑

h1+2h2+3h3=k−4l

P̃[h1,h2,h3],k,βm

〈
W

SU(4)0

[h1,h2,h3]

〉
.

(4.79)

Here m = log q = t4 − t1 − 2t2 − t3 is the instanton counting parameter of the 5d SU(4)0

theory defined in (4.76). For a Wilson loop operator with charge [h1, h2, h3] in the SU(4)

theory, the charge under the one-form symmetry Z4 is h1 + 2h2 + 3h3. The ansatz (4.79)

also indicates that the one-form symmetry is preserved for the SU(4)0 theory.

To verify the ansatz (4.78), we determine the coefficients P and P̃ up to k = 4. This

requires additional input for refined BPS numbers for the curve classes

β = (0, 0, 0, 0, 1), (1, 0, 0, 0, 2), (1, 0, 0, 0, 3), (2, 1, 0, 0, 3) (4.80)

and11

β = (2, 0, 0, 1, 4), (2, 1, 0, 0, 4), (3, 2, 1, 0, 4). (4.81)

11We have used the condition that there are no refined BPS numbers for the curve classes (1, 0, 0, 0, 4)

and (2, 0, 0, 0, 4).
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Except for β = (3, 2, 1, 0, 4), all other curve classes in (4.80) and (4.81) can be fixed from (4.69)

or (4.72) and BPS invariants from the 6d SCFT limit:

G2 + 4F β = (2, 0, 0, 1, 4) : [0, 3/2] ⊕ 8[0, 1] ⊕ 29[0, 1/2] ⊕ 8[0, 0] (4.82)

SU(3) + 3(F + F) β = (2, 0, 0, 1, 4) : 15[0, 1/2] (4.83)

For instance, we find Pk,0,0 can be solved via

∞∑

k=0

P[k,0,0]Q
k = exp

[
∞∑

k=1

f0,0,0,0,1(kϵ1, kϵ2)
Qk

k

]
, (4.84)

and other coefficients P and P̃ are determined using a similar method to that used for

the rank 2 models. We summarize the first few BPS numbers for Model 3A before and

after deformation in [26].

4.3.2 Model 3B: elliptic fibration over F3

l(1) = ( −3 ; 1 0 0 0 0 −2 1 0 3 )

l(2) = ( 0 ; 0 0 0 0 0 1 −2 1 0 )

l(3) = ( 0 ; 0 0 1 0 0 0 1 −2 0 )

l(4) = ( 0 ; 0 0 0 1 1 −1 −1 0 0 )

l(5) = ( 0 ; 0 1 0 0 0 1 0 0 −2 )

↓ ↓ ↓ ↓
D1 D2 D3 D4

(4.85)

In the local limit t5 → −∞, the geometry reduces to a non-compact Calabi-Yau threefold,

denoted by X, with compact surfaces D1 = F1, D2 = F1 and D3 = F3.

D1 D2 D3

(4.86)

The non-compact geometry X is a toric Calabi-Yau threefold, whose toric diagram is depicted

in (4.86). It corresponds to the 5d SU(4)1 theory with Chern-Simons level 1, where the

one-form symmetry is broken. The total charge matrix and its inverse for the 5d theory are

QTot =

(
QG

QF

)
=




−2 1 0 −1

1 −2 1 −1

0 1 −2 0

0 0 0 1




, Q−1
Tot =




−3
4 −1

2 −1
4 −5

4

−1
2 −1 −1

2 −3
2

−1
4 −1

2 −3
4 −3

4

0 0 0 1




, (4.87)
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and the Wilson loop particle corresponding to l(5) has gauge charge (1, 0, 0). The Kähler

parameters are expressed in terms of the Coulomb parameters ϕi and the mass parameter

m in the form:

t1 = −2ϕ1 + ϕ2, t2 = ϕ1 − 2ϕ2 + ϕ3, t3 = ϕ2 − 2ϕ3 t4 = m − ϕ1 − ϕ2, t4 = m̂ + ϕ1,

(4.88)

where m̂ is the effective mass of the Wilson loop particle and m = log q = t4 − 5
4 t1 − 3

2 t2 − 3
4 t3

is the instanton counting parameter for the 5d SU(4)1 theory.

The positivity and integrality conditions are given by

β1 = −3

4
(h1 − k) − 1

2
h2 − 1

4
h3 − 5

4
βm, β2 = −1

2
(h1 − k) − h2 − 1

2
h3 − 3

2
βm ,

β3 = −1

4
(h1 − k) − 1

2
h2 − 3

4
h3 − 3

4
βm, β4 = βm ∈ Z≥0 ,

(4.89)

leading to the ansatz for partition function for the compact Calabi-Yau threefold:

ZX(t, ϵ1, ϵ2) = ZSU(4)1
(ϕ, m, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ekm̂Zk(ϕ, m, ϵ1, ϵ2)

]
, (4.90)

where

Zk(ϕ, m, ϵ1, ϵ2) =
∑

h1+2h2+3h3=k−4l−3βm

h1,h2,h3,l,βm≥0

eβm mP̃[h1,h2,h3],k,βm

〈
W

SU(4)1

[h1,h2,h3]

〉
.

(4.91)

With the additional input of the refined BPS numbers from (4.69) or (4.72) and those

from its 6d SCFT limit:

G2 + F β = (2, 0, 0, 1, 3) : [0, 2] ⊕ 2[0, 3/2] ⊕ 3[0, 1] ⊕ 2[0, 1/2] ⊕ 2[0, 0] (4.92)

β = (2, 0, 0, 1, 4) : [0, 2] ⊕ 2[0, 3/2] ⊕ 2[0, 1] ⊕ 2[0, 1/2] ⊕ [0, 0] (4.93)

SU(3) β = (2, 0, 0, 1, 3) : [0, 1] ⊕ [0, 0] (4.94)

β = (2, 0, 0, 1, 4) : empty (4.95)

we determine a closed form expression for (4.90) up to k = 4. Using these results, we calculate

the first few refined BPS numbers for the Model 3B before and after deformation, with

the exception of β = (3, 2, 1, 0, 4), and summarize them in the supplementary material at

the external link [26].

4.3.3 Model 3C: elliptic fibration over F1

l(1) = ( −3 ; 1 0 0 0 0 −2 1 0 3 )

l(2) = ( 0 ; 0 0 0 0 0 1 −2 1 0 )

l(3) = ( 0 ; 0 0 1 0 0 0 1 −2 0 )

l(4) = ( 0 ; 0 0 0 1 1 0 −1 −1 0 )

l(5) = ( 0 ; 0 1 0 0 0 1 0 0 −2 )

↓ ↓ ↓ ↓
D1 D2 D3 D4

(4.96)
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In the local limit t5 → −∞, the geometry reduces to a non-compact Calabi-Yau threefold,

denoted by X, with compact surfaces D1 = F3, D2 = F1 and D3 = F1.

D1 D2 D3

(4.97)

The non-compact geometry X is a toric Calabi-Yau threefold, whose toric diagram is depicted

in (4.97). It corresponds to the 5d SU(4)−1 theory with Chern-Simons level −1, where the

one-form symmetry is broken. The total charge matrix and its inverse for the 5d theory are

QTot =

(
QG

QF

)
=




−2 1 0 0

1 −2 1 −1

0 1 −2 −1

0 0 0 1




, Q−1
Tot =




−3
4 −1

2 −1
4 −3

4

−1
2 −1 −1

2 −3
2

−1
4 −1

2 −3
4 −5

4

0 0 0 1




, (4.98)

and the Wilson loop particle corresponding to l(5) has gauge charge (1, 0, 0). The Kähler

parameters are expressed in terms of the Coulomb parameters ϕi and the mass parameter

m in the form:

t1 = −2ϕ1 + ϕ2, t2 = ϕ1 − 2ϕ2 + ϕ3, t3 = ϕ2 − 2ϕ3 t4 = m − ϕ2 − ϕ3, t4 = m̂ + ϕ1,

(4.99)

where m̂ is the effective mass of the Wilson loop particle.

The positivity and integrality conditions are given by

β1 = −3

4
(h1 − k) − 1

2
h2 − 1

4
h3 − 3

4
βm, β2 = −1

2
(h1 − k) − h2 − 1

2
h3 − 3

2
βm ,

β3 = −1

4
(h1 − k) − 1

2
h2 − 3

4
h3 − 5

4
βm, β4 = βm ∈ Z≥0.

(4.100)

leading to the ansatz for partition function for the compact Calabi-Yau threefold:

ZX(t, ϵ1, ϵ2) = ZSU(4)−1
(ϕ, m, ϵ1, ϵ2)

[
1 +

∞∑

k=1

ek m̂Zk(ϕ, m, ϵ1, ϵ2)

]
, (4.101)

where

Zk(ϕ, m, ϵ1, ϵ2) =
∑

h1+2h2+3h3=k−4l−5βm

h1,h2,h3,l,βm≥0

eβm mP̃[h1,h2,h3],k,βm

〈
W

SU(4)−1

[h1,h2,h3]

〉
.

(4.102)

With the additional input of the refined BPS numbers from (4.69) or (4.72), we determine

a closed form expression for (4.101) up to k = 4. Using these results, we calculate the

first few BPS numbers for Model 3C before and after deformation, with the exception of

β = (3, 2, 1, 0, 4), and summarize them in the supplementary material at the external link [26].
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5 Geometric computations of refined BPS numbers

In this section, we extend the mathematical attempts and methods used to define refined

BPS numbers from [50, 57, 85] and surveyed in [19]. Some of these computations are used as

input for solving for boundary conditions used in section 4 to compute refined BPS numbers.

Other computations serve to provide many checks on the validity of the methods of sections 3

and 4 and the resulting computations of refined BPS numbers.

We start with a quick summary of the mathematical definitions which we use, referring

to the above references for more detail. Let X be a compact Calabi-Yau threefold and let

β ∈ H2(X) be a curve class. Let M̂β denote the moduli space of 1-dimensional stable sheaves

F with ch2(F ) = β and χ(F ) = 1, and let Mβ be the Chow variety of 1-cycles of class

β. In the physical setup, M̂β is the space of D2-D0 branes with a fixed unit of D0-brane

charge [20, 49]. There is the Hilbert-Chow morphism πβ : M̂ red
β → Mβ.

The moduli space M̂β supports a d-critical locus structure [86], which provides M̂β with

a virtual canonical bundle Kvir
M̂β

. In our situation, Kvir
M̂β

can be described as the line bundle

whose fiber at F ∈ M̂β is canonically identified with the 1-dimensional vector space

(
Kvir

M̂β

)

F
=

3⊗

i=0

(
det Exti(F, F )

)⊗(−1)i

. (5.1)

One of the conditions for a space to support a d-critical locus structure is that is it locally

isomorphic to the critical locus of a superpotential. The superpotential then locally gives rise

to a perverse sheaf of vanishing cycles. A global condition is needed to determine how to

glue these perverse sheaves together to obtain a perverse sheaf Φβ on all of M̂β, leading to

the notation of an orientation [55]. For fixed β, an orientation is simply a choice of square

root (Kvir
M̂β

)1/2 of Kvir
M̂β

. There is also a compatibility condition between orientation choices

for different β. We will return to this point later. Since Ext∗(F, F ) describes open string

states, it is tempting to speculate that orientations are related to a Pfaffian arising from the

evaluation of a fermion determinant over the moduli space of sheaves.

If M̂β is smooth, then Kvir
M̂β

is just the square of the ordinary canonical bundle, so a

natural choice of orientation is (Kvir
M̂β

)1/2 = K
M̂β

. With this orientation choice, the perverse

sheaf of vanishing cycles is Φβ = C[dim M̂β ], the shift of the constant sheaf by dim M̂β places

to the left in the derived category.

At this point we make a technical assumption made in [50]: we assume that the orientation

is a Calabi-Yau orientation, meaning that it is trivial on the fibers of πβ. It is conjectured

in [50] that Calabi-Yau orientations exist.

A proposal for mathematically defining the refined BPS numbers was made in [57];

however a counterexample to this proposal (which even produced the incorrect unrefined

BPS invariants) was pointed out in [50]. The authors of this last paper also pointed out the

refined BPS numbers can be consistently defined by the definitions in [57] for Calabi-Yau

orientations when Φβ (with rational coeffients instead of complex coefficients) underlies a

polarized pure Hodge module. We now elaborate on what this means.

We let DY be the sheaf of differential operators on a smooth Y , which comes with an

increasing filtration FpDY ⊂ DY of differential operators of order at most p. Part of the
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data of a pure Hodge module on Y is a coherent sheaf M of (left) DY -modules,12 with an

increasing filtration F•M, satisfying

FpDY · FqM ⊂ Fp+qM, (5.2)

with equality for q ≫ 0.

To a DY -module M we associate the de Rham complex

DR(M) = [M → Ω1
Y ⊗OY

M → · · · Ωd
Y ⊗OY

M], (5.3)

where d = dim Y and the rightmost term is in degree 0. It turns out that DR(M) is a

perverse sheaf on Y . In fact, DR sets up an equivalence of categories between the category

of regular holonomic DY modules and (complex) perverse sheaves on Y . Before giving the

next condition, we give a basic example.

Given a family f : X → Y of smooth projective varieties parametrized by a smooth Y ,

we have the local system of rational cohomologies Hk = Rkf∗Q, a sheaf of rational vector

spaces on Y whose fiber at y ∈ Y is Hk(f−1(y),Q), each of which underlies a pure polarized

Hodge structure of weight k after tensoring with C. In addition, we have a Hodge filtration on

the holomorphic vector bundle M = Hk ⊗Q OY , together with the Gauss-Manin connection

satisfying Griffiths transversality. A sign change in the indices turns the decreasing Hodge

filtration F •M into an increasing filtration F•M, and then (5.2) is just Griffiths transversality.

If M more generally is any vector bundle with connection, then the de Rham complex

is exact except for the first term, and the kernel of the first map is the local system of flat

sections of M, placed in degree −d. For example, if M is Hk ⊗Q OY as above, then DR(M)

is quasi-isomorphic to (Hk ⊗Q C)[d] in the constructible derived category of Y , and is a

perverse sheaf, which arises as the complexification of the perverse sheaf Hk[d] of rational

vector spaces. More generally, the notion of a pure Hodge module requires

DR(M) ≃ rat(M) ⊗Q C (5.4)

for some perverse sheaf rat(M) of rational vector spaces. As just explained, this condition

holds for in our basic example.

Now if Y = M̂β is smooth and the orientation (Kvir
M̂β

)1/2 = K
M̂β

is chosen, the result-

ing perverse sheaf Φβ = C[dim M̂β] is the complexification of the rational perverse sheaf

Q[dim M̂β] and is the de Rham complex of OY endowed with the natural structure of a

DY -module by application of differential operators to functions. We see that the perverse

sheaf C[dim M̂β ] on smooth M̂β associated with the natural orientation support a pure Hodge

module and can be reliably used to compute the refined BPS numbers.

While there are additional technical conditions on the notion of a pure Hodge module,

we content ourselves with noting that if Y is a point, then M is just a vector space arising as

the complexification of a rational vector space, and the decreasing filtration F•M inferred

from F•M is precisely the Hodge filtration of a Hodge structure of pure weight on M.

12There is an equivalent theory using right D-modules, with some ultimately minor differences. See [87] for

more details.
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A thorough treatment would require a deeper dive into Saito’s theory of pure Hodge

modules and mixed Hodge modules, but we trust that the above comments give the reader

a sufficient sense of the theory. We refer the interested reader to the summary [88] for

more details.

After choosing a Calabi-Yau orientation, we obtain perverse sheaves of vanishing cycles

Φβ on M̂β [50] as already mentioned. If Φβ underlies a pure Hodge module (which is the

case if M̂β is smooth, in which case we take Φβ = C[dim M̂β]), then the decomposition

theorem [89] says that R(πβ)∗Φβ decomposes into a direct sum of shifts of the perverse

cohomologies of Rπβ∗Φβ:

Rπβ∗Φβ =
⊕

i

pHi (Rπβ∗Φβ

)
[−i], (5.5)

where [−i] denotes a shift of i places to the right in the derived category of complexes of

sheaves of vector spaces on Mβ with constructible cohomology. In section 5.1.5 we will

express the perverse sheaves pHi
(
Rπβ∗Φβ

)
as a direct sum of simple perverse sheaves IC(Li)

associated with local systems Li on Zariski open subsets of subvarieties of Mβ.

Cup product with a relatively ample class for πβ induces maps

pHi (Rπβ∗Φβ

) → pHi+2 (Rπβ∗Φβ

)
, (5.6)

which are identified by hard Lefshetz with the raising operators of an SU2 action, identified

with the (SU2)L action. Furthermore, given an ample class on Mβ, we similarly get maps

on hypercohomologies

Hj
(
Mβ , pHi (Rπβ∗Φβ

)) → Hj+2
(
Mβ, pHi (Rπβ∗Φβ

))
, (5.7)

which are identified with the raising operators of an SU2 action, identified with the (SU2)R

action. The unrefined BPS invariants can then be deduced from the SU2 ×SU2 representation

in the usual way, recovering the definition of [50], where it is proven that the unrefined

BPS numbers are independent of the choice of Calabi-Yau orientation (and the purity of

the mixed Hodge module is not required).

Conjecture. The refined BPS numbers defined as above are independent of the choice of

Calabi-Yau orientation which leads to a perverse sheaf Φβ supporting a pure Hodge module.

Remark. In [50], an example is given for which there are no orientations which lead to a

perverse sheaf Φβ supporting a pure Hodge module. So even if the above conjecture is true,

we are not making a proposal for a mathematical definition of the refined BPS numbers in

the most general case. However, in all examples that we are aware of where Φβ does not

support a pure Hodge module, the maps (5.6) and (5.7) nevertheless define an action of

SU2 × SU2, even though no proof of that fact is available.

Despite this remark, many of our examples will deal with special case where M̂β is

smooth, in which case we have Φβ = C[D] with D = dim M̂β. For many of our examples,

we also have that Mβ is smooth and the fibers of πβ are connected curves C of some fixed

arithmetic genus g. Since the space of stable rank 1 sheaves on C has dimension g, we see
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that dim Mβ = D − g. The typical stalk of R−Dπ∗C[D] is H0(C,C), which is canonically

isomorphic to C. Therefore R−Dπ∗C[D] is canonically isomorphic to the constant sheaf C on

Mβ. Since C[D − g] is a perverse sheaf on Mβ, we can rewrite this result as

pH−g (Rπβ∗C[D]
)

= C[D − g], (5.8)

and pH−h
(
Rπβ∗C[D]

)
= 0 for h > g, as C has no negative cohomologies. Thus the maximum

of 2jL is g. For the right spins associated with 2jL = g, we look at the Lefschetz of

H∗(Mβ,C[D − g]), which is just the ordinary Lefschetz of Mβ with a shift of indices. We

arrive at a generalization of an assertion of [20].

Fact 1. Assuming moduli spaces are smooth, for families of connected curves of arithmetic

genus g, the maximum left spin is g, and the corresponding right spin content is given by

the Lefschetz of the base Mβ.

Since the sum of a relatively ample class for πβ and the pullback to M̂β of an ample class

on Mβ is ample on M̂β, we arrive at a generalization of another assertion of [20].

Fact 2. Assuming M̂β is smooth, the diagonal SU2 is given by the Lefschetz of M̂β.

An important point is that the refined BPS numbers can depend on the choice of

orientation, so some consistency is required between the orientation choices for different

β if there is any hope of a refined holomorphic anomaly equation being satisfied. This

required consistency is part of the definition of an orientation in [55]. We content ourselves

with a few comments here.

Given sheaves F ∈ M̂β and F ′ ∈ M̂β′ , we compute using Serre duality that the fiber

⊗(det Exti(F ⊕ F ′, F ⊕ F ′))⊗(−1)i
of Kvir

M̂β+β′
at F ⊕ F ′ is

⊗3
i=0(det Exti(F, F ))⊗(−1)i ⊗ ⊗3

i=0(det Exti(F ′, F ′))⊗(−1)i ⊗ (⊗3
i=0(det Exti(F, F ′))⊗(−1)i

)⊗2.

(5.9)

Thus it makes sense to require the consistency condition of orientations

(Kvir
M̂β+β′

)1/2 ≃ (Kvir
M̂β

)1/2 ⊗ (Kvir
M̂β′

)1/2 ⊗ L, (5.10)

where L is a line bundle whose fiber at F ⊕ F ′ is ⊗3
i=0(det Exti(F, F ′))⊗(−1)i

.

We have abused notation in the above since χ(F ⊕ F ′) = 2 shows that F ⊕ F ′ is not an

element of M̂β+β′ as written. However, an analogous compatibility condition is required in [55,

Definition 15] for the entire derived category and the above abuse of notation is simply the

result of oversimplified exposition of the full extent of the required compatibility conditions.

We note that if the M̂β is smooth, then Ext1(F, F ) is the fiber of the tangent bundle

of M̂β at the point F while Ext0(F, F ) is the fiber of the trivial bundle. It follows that the

fiber of Kvir
M̂β

at F is (det Ext1(F, F ))⊗−2, so this bundle is just the square of the ordinary

canonicial bundle. It is then natural to choose the orientation (Kvir
M̂β

)1/2 to simply be the

ordinary canonical bundle of M̂β. It is straightforward to check that if F and F ′ both

lie in smooth moduli spaces and these orientation choices are made, then the consistency

condition (5.10) follows automatically.
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This discussion shows that the orientation choices associated with Facts 1 and 2 above

are consistent for different β, fulfilling a requirement for a holomorphic anomaly equation

to be possible.

5.1 Rank 1 theories

We now consider a compact elliptically fibered Calabi-Yau threefold π : X → B. Let f

denote the fiber class. Identifying B with the zero section S of π, we can write a curve

class on X as β + dEf , with β ∈ H2(B,Z).

For B = P2, we can identify β with its degree dB and refer to curves of class β + dEf as

curves of degree (dB, dE). For B = F0 and B = F1, we have H2(B,Z) ≃ Z2. In the case of F0

we choose the two distinct fiber classes as generators, while for F1 we take generators {E, F },

where E is the −1 curve and F is the class of a P1 fiber of F1. We will describe curve classes

on F0 and F1 by two degrees (d2, d3) relative to the appropriate chosen set of generators.

5.1.1 dE = 1

In this section we compute several refined BPS numbers for dE = 1, providing supporting

evidence for (3.65) and its analogues for the F0 and F1 bases.

5.1.2 Maximum left spin

In this brief section, we apply Fact 1 above to all base degrees, finding complete agreement

with the bottom rows of tables 1, 8, and 12.

Letting C be a connected curve of class β+f with β ∈ H2(B,Z), we have S ·C = KS ·β+1,

which is negative unless B = F1 and C is the −1 curve.

In all of the other cases, S · C < 0 implies that C has a component which is contained

within S. Letting D be the union of all components contained in S, we see that C = D ∪ f ,

where D is identified with a curve in B of class β and f is an elliptic fiber. Since S ∩ f is

a point p and C is connected, necessarily D ∩ f = p, and the moduli space Mβ,1 of these

curves is identified with the universal curve {(p, D)|p ∈ D} of degree β. A standard argument

(reviewed in [19]) shows that Mβ,1 is a projective bundle over B: the natural projection

Mβ,1 → P2 has fiber over p ∈ B the projective space of curves in B degree β which contain p.

Explicitly for B = P2, MdB ,1 is a P(d2
B

+3dB−2)/2-bundle over P2, with Lefschetz rep-

resentation [
d2

B + 3dB − 2

4

]
⊗
[
1
]
, (5.11)

expanding to





[
3
2

]
⊕
[

1
2

]
dB = 1[

d2
B

+3dB+2
4

]
⊕
[

d2
B

+3dB−2
4

]
⊕
[

d2
B

+3dB−6
4

]
dB > 1.

(5.12)

Furthermore, C has arithmetic genus g(dB) = (d2
B − 3dB + 4)/2, corresponding to the rows

of table 1 with 2jL = (d2
B − 3dB + 4)/2. The jR contents of these rows are in complete

agreement with (5.12).

We next perform the analogous computations for the F0 and F1 bases.
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For F0, we have that D is a curve of genus (d2 − 1)(d3 − 1), M(d2,d3),1 is a Pd2d3+d2+d3−1-

bundle over F0 with Lefschetz

[
d2d3 + d2 + d3 − 1

2

]
⊗
([

1
]

⊕
[
0
])

, (5.13)

agreeing with the bottom rows of table 8 (2jL = (d2 − 1)(d3 − 1) + 1).

For F1, initially omitting the exceptional case (d2, d3) = (1, 0) we have that D is a

curve of genus (2d2d3 − d2
2 − d2 − 2d3 + 2)/2, M(d2,d3),1 is a P(2d2d3−d2

2+d2+2d3−2)/2-bundle

over F1 with Lefschetz

[
2d2d3 − d2

2 + d2 + 2d3 − 2

4

]
⊗
([

1
]

⊕
[
0
])

, (5.14)

agreeing with the bottom rows of table 12.

In the exceptional case, the curve class (d2, d3) = (1, 0) is represented only by the −1

curve E ⊂ F1. Let G = π−1(E), a half-K3. The self-intersection of E inside G is also −1 by

the adjunction formula. If C ⊂ X has class E +f , then since C ·E = 0 as an intersection in G,

either C = E ∪f for a fiber f meeting E, or C is disjoint from E. If C is disjoint from E, then

C is irreducible and must be a section of the elliptic fibration π : G → E, since C ·f = 1. Then

π|C : C → E is an isomorphism. Thus C has genus 0 and does not contribute to 2jL = 1.

So we may assume that we are in the first case C = E∪f . To give a curve C of this form is

equivalent to specifying the point p = E ∩F ∈ E. This gives M(1,0),1 ≃ E ≃ P1 with Lefschetz

[1/2], again in agreement with the bottom row of the (d2, d3) = (1, 0) part of table 12.

5.1.3 Generalities

We consider stable sheaves F of class (β, 1). Equivalently, F has no torsion subsheaves and

any nontrivial proper subsheaf G ⊂ F satisfies χ(G) < 1 (which is the same as requiring

χ(Q) ≥ 1 for all surjections F → Q). We represent ch2(F ) by a curve D + f (D can be

reducible and/or have multiplicities). We let p = D ∩ f . Consider the sheaf F |f . Since this

sheaf could have torsion supported at p, we put

Ff = (F |f ) /torsion, (5.15)

and similarly put

FD = (F |D) /torsion. (5.16)

Lemma. We have a short exact sequence

0 → F → FD ⊕ Ff → Op → 0, (5.17)

with F → FD and F → Ff both surjective. Furthermore, FD ∈ M̂β,0 and Ff ∈ M̂0,1.

Conversely, given any short exact sequence as above with FD ∈ M̂β,0, Ff ∈ M̂0,1, with F → FD

and F → Ff both surjective, then F ∈ M̂β,1, FD ≃ F |D/torsion, and Ff ≃ F |f /torsion.
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Remark. We have already noted that the moduli of the sheaves Ff in (5.17) corresponds

to f(ϵ1, ϵ2) in (3.65). The moduli of the sheaves FD and the point p corresponds to the

Wilson loop VEV
〈
W[1]

〉
[17].

Proof. The natural surjections F → FD and F → Ff combine to give a map F → FD ⊕ Ff .

This map is clearly an isomorphism away from p, so its kernel and cokernel are torsion sheaves

supported at p. Since F has no torsion subsheaves by stability, the map is injective and we

get a short exact sequence

0 → F → FD ⊕ Ff → T → 0, (5.18)

where T is a torsion sheaf supported at p. Stability also implies that s := χ(Ff ) ≥ 1.

Since the intersection number of the section and the fiber is 1, we see that p must be

a smooth point of f . Since Ff is torsion free of rank 1 on f , it is locally free at p and

Ff ⊗ Op ≃ Op. If the map Ff → T were zero, then Ff would be identified with a subsheaf of

F , violating stability. So Ff maps onto a nontrivial subsheaf T ′ ⊂ T , necessarily isomorphic

to Op by Ff ⊗ Op ≃ Op.

Writing σ : FD → T , we put F ′
D = σ−1(T ′). Recalling T ′ ≃ Op, we get a short exact

sequence

0 → F → F ′
D ⊕ Ff → Op → 0, (5.19)

so that χ(F ′
D) = 2 − s. Since the surjection F → FD factors through F ′

D, we conclude that

F ′
D = FD. Stability then forces s = 1, and χ(FD) = 1 as well.

Since a destablizing quotient of FD or Ff would destablize F , we conclude that FD and

Ff are both stable. The proof of the converse statement is similar and left to the reader.

The association of Ff to F defines a map ϕ : M̂β,1 → M̂0,1. We will compute the

refined BPS numbers for degree (β, 1) by computing the refined numbers for degree (0, 1)

and analyzing the fibers of ϕ. We will also relate these fibers to Wilson loops in some cases.

But first, we review the computation of the refined numbers for degree (0, 1) [19]. First

M̂0,1 → M0,1 is identified with X → B as follows. The sheaves Ff fit into a short exact

sequence

0 → Of → Ff → Oq → 0 (5.20)

for a point q ∈ f , arising from applying Ext(−, OX) to the short exact sequence

0 → Iq,f → Of → Oq → 0, (5.21)

where Iq,f is the ideal sheaf of holomorphic functions on f which vanish at q. Since f is

determined uniquely by q ∈ X, we see that M̂β,1 ≃ X. Letting p = f ∩ S ∈ S ≃ B, we

see that p ∈ B determines the fiber f , and M0,1 ≃ B, the map ϕ being identified with the

elliptic fibration π : X → B itself.

Since g = 1, Fact 1 tells us that the jR content for 2jL = 1 is given by the Lefschetz of

B, so [1] for B = P2 and [1] ⊕ [0] for B = F0 of F1. Fact 2 tells us that the diagonal SU2 is

identified with the Lefschetz of X, which is (2 + 2h2,1(X))[0] ⊕ [3/2] ⊕ (h1,1(X) − 1)[1/2].

Combining these two facts we conclude that the refined BPS spectrum in degree (0, 1) is
[

1

2
, 1

]
⊕
(
2 + 2h2,1(X)

) [
0, 0
]

⊕
(
h1,1(X) − 2

) [
0,

1

2

]
(5.22)
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for B = P2 and
[

1

2
, 1

]
⊕
[

1

2
, 0

]
⊕
(
2 + 2h2,1(X)

] [
0, 0
]

⊕
(
h1,1(X) − 3

) [
0,

1

2

]
(5.23)

for B = F0 or F1.

In [90, Proposition 5], the decomposition theorem was applied to identify Rπ∗R as a

direct sum of shifts of certain real IC sheaves, some of which are associated to gauge group

factors. To compute Rπ∗C instead, we simply tensor all terms with C and arrive at complex

IC sheaves. It can be checked that for the P2 and Fk cases, (5.22) and (5.23) can alternatively

be deduced by taking hypercohomologies of the IC sheaves and considering the Lefschetz

actions. As this check is not relevant to the rest of this paper, we say no more here, leaving

details to the interested reader.

Given FD ∈ M̂β,0 and Ff ∈ M̂0,1, we need to classify all surjections FD ⊕ Ff → Op. If

the map Ff → Op were zero, then Ff would be identified with a subsheaf of F , violating

stability. Since Ff ⊗ Op ≃ Op, the map F → Op is canonical up to multiplication by a

nonzero scalar, so is canonical up to isomorphism.

Similarly, FD → Op is a surjection, so these maps are classified up to isomorphism by

the projectivization of Hom(F ⊗ Op, Op).

5.1.4 Genus 0 base curve

If the curve D in the section S has genus 0, we can determine the moduli spaces M̂dB ,1 in the

P2 case, and M̂(d2,d3),1 in the F0 and F1 cases. These moduli spaces turn out to be smooth, so

their Lefschetz actions are identified with the diagonal SU(2)-action by Fact 2. The maximum

left spin in these cases is 2jL = 1, since connected curves D ∪ f have arithmetic genus 1.

Thus the diagonal SU(2) together with the previously determined 2jL = 1 contributions

completely determine the SU(2) × SU(2) BPS spectrum in the genus 0 cases.

Given F ∈ M̂β,1 we have the exact sequence (5.17) with sheaves FD ∈ M̂β,0 and Ff ∈ M̂0,1.

We claim that FD ≃ OD. We assume this claim for the moment and will justify it presently.

It follows that FD ⊗ Op ≃ Op, so there is a unique surjection FD → Op up to scalar. Thus

given FD and Ff , the sheaf F is uniquely determined up to isomorphism by (5.17).

Returning to the fibration M̂β,1 → M̂0,1 and using FD ≃ OD, the fiber is just the

projective space of curves D of degree β which contain a fixed point p. This determines

the diagonal SU(2) as the tensor product of the Lefschetz of M̂0,1 with the Lefschetz of

the projective space.

Before turning to examples, we first justify the claim FD ≃ OD using an argument

from [91]. Since χ(FD) = 1 and H i(B, FD) = 0 for i > 1, we must have H0(B, FD) ̸= 0.

Identify a nonzero global section s of FD with a map OX → FD. Since FD has pure dimension

1, the map must factor through OD′ for some curve D′ ⊂ D. Since D has genus 0, it follows

that D′ also has genus 0 (as can be seen from the classification of genus zero curves on

P2, F0, and F1) and so χ(OD′) = 1. If D′ ≠ D, the inclusion OD′ ⊂ FD destabilizes F , as

these two sheaves both have χ = 1. We conclude that D′ = D, in which case the inclusion

OD →֒ FD must be an isomorphism.

Specializing to the genus 0 case for the P2 base (i.e. dB = 1 or dB = 2), We have

M̂0,1 ≃ X, with Lefschetz 546 [0] ⊕
[

3
2

]
⊕
[

1
2

]
and the fiber of M̂dB ,1 → M̂0,1 is P(d2

B
+3dB−2)/2,
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the moduli space of plane curves of degree dB passing through a fixed point. We conclude

that the diagonal Lefschetz is

[
d2

B + 3dB − 2

4

]
⊗
(

546
[
0
]

⊕
[

3

2

]
⊕
[

1

2

])
(5.24)

which is

[2] ⊕ 2 [1] ⊕ [0] ⊕ 546
[

1
2

]
dB = 1

[
7
2

]
⊕ 2

[
5
2

]
⊕ 2

[
3
2

]
⊕
[

1
2

]
⊕ 546 [2] dB = 2

(5.25)

in agreement with the diagonal restrictions in table 1 and therefore the entire SU(2) × SU(2)

representation.

Similarly, the diagonal restrictions in tables 8 and 12 can be checked by the same method

for the genus zero cases d2 = 1 or d3 = 1 for F0 and (d2, d3) = (0, 1), (2, 2), or (1, d3) with

d3 > 0 for F1. For both the F0 and F1 bases, the Lefschetz of M̂0,1 ≃ X is

488
[
0
]

⊕
[

3

2

]
⊕ 2

[
1

2

]
, (5.26)

and the dimension of the projective spaces are easily worked out.

In the exceptional F1 case (d2, d3) = (1, 0), we necessarily have D = E, and M̂(1,0),1 is

the inverse image G of E in the elliptic fibration X → F1, which is identified with half-K3,

with Lefschetz [1] ⊕ 9[0]. Combining this diagonal Lefschetz with the 2jL = 1 content (1/2),

one might conclude that the BPS spectrum is [1/2, 1/2] ⊕ 8[0, 0]. However we have missed

240 BPS states (these are the contributions at degree (1, 0, 1) omitted in (3.23)). Identifying

half K3 with the blowup of P2 and 9 points, and E with the ninth exceptional curve, we

readily check by computing intersections that any of the 240 (−1) curves in dP8 also have

base degree (1, 0) and dE = 1 (recall that in this exceptional case, the argument that C is

of the form D ∪ f fails). As each of these curves have genus 0, their spins are [0, 0] and we

arrive at the complete BPS spectrum [1/2, 1/2] ⊕ 248[0, 0].

In summary, we have completely verified tables 8 and 12 in all cases with genus 0

base curve.

5.1.5 Genus 1 base curve

Continuing to assume dE = 1, if the base curve D has genus 1 (so dB = 3 for P2, (d2, d3) = (2, 2)

for F0, or (d2, d3) = (2, 3) or (3, 3) for F1), we now have g = 2 and the BPS spectrum has

contributions from 2jL = 0, 1, 2. Thus the diagonal SU(2) together with the jL = 2 content

are not sufficient to determine the BPS spectrum. Below we will describe a new method which

gives the 2jL = g − 1 content directly, allowing us to determine the entire BPS spectrum.

The method applies more generally to give the jL = g − 1 content for curves of arbitrary

base degree, providing more checks and predictions. However, for g > 2 this information

is no longer sufficient for determining the entire BPS spectrum.

The moduli space M̂dB ,1 again parametrizes stable sheaves F on C = D ∪ f fitting

into a short exact sequence (5.17). Since D has genus 1, the argument associated with
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the fiber class applies and the sheaves FD are parameterized by D together with a point

r ∈ D, corresponding to an extension

0 → OD → FD → Or → 0. (5.27)

For P2 we have the map

ϕ : M̂3,1 → M̂0,1 ≃ X, (5.28)

sending F to Ff .

We claim that the fibers of ϕ are all isomorphic to a P7-bundle over the blowup of P2 at

a point. Once the claim has been demonstrated, using the Lefschetz [1] ⊕ [0] of the blowup

of P2 together with the fibration structure, we arrive at the Lefschetz of M̂3,1

[
7

2

]
⊗
( [

1
]

⊕
[
0
])

⊗
(

546
[
0
]

⊕
[

3

2

]
⊕
[

1

2

])
(5.29)

which expands to

546

[
9

2

]
⊕ 1092

[
7

2

]
⊕ 546

[
5

2

]
⊕
[
6
]

⊕ 4
[
5
]

⊕ 7
[
4
]

⊕ 7
[
3
]

⊕ 4
[
2
]

⊕
[
1
]
, (5.30)

agreeing with the diagonal restriction of the dB = 3 row of table 1.

To complete the computation of the diagonal restriction, we compute the fiber of ϕ over

Ff ∈ M̂0,1. Let p be the point where f meets the section. The sheaves FD are given by

extensions (5.27) with p ∈ D and r ∈ D. We distinguish the cases r ≠ p and r = p and split

the fiber into two contributions: ϕ−1(Ff ) = ϕ−1(Ff )r ̸=p ∪ ϕ−1(Ff )r=p.

If r ≠ p, then FD is locally free at p so that FD ⊗ Op ≃ Op. It follows that there is

a unique surjection FD → Op up to scalar multiple, so that the sheaf F defined by (5.17)

is uniquely determined up to isomorphism by Ff and FD. Since the set of degree 3 plane

curves passing through distinct points r and p is parametrized by P7, we conclude that

ϕ−1(Ff )r ̸=p is a P7 bundle over P2 − {p}.

For r = p, there are two subcases. If D is smooth at p, then FD is locally free at p, so

as in the preceding paragraph, F is uniquely determined up to isomorphism by Ff and FD.

If D is singular at p, then FD is not locally free at p and after tensoring (5.27) with Op we

see that FD ⊗ Op ≃ O2
p, and the surjections FD → Op up to scalar are parametrized by P1,

introducing additional moduli in ϕ−1(Ff )r=p beyond those corresponding to FD. We identify

this P1 with the exceptional divisor E of the blowup P̃2 of P2 at p.

We can at last construct a P7 bundle ϕ−1(Ff ) → P̃2, at least set-theoretically. We

have already constructed this fibration on ϕ−1(Ff )r ̸=p and we turn to completing this by

exhibiting a P7 bundle ϕ−1(Ff )r=p → E.

If F ∈ ϕ−1(Ff )r=p with FD smooth at p, we send F to the tangent space to D at p,

identified with a point of E. If FD is singular at p, we send F to the point of E corresponding

to the surjection FD → Op.

Finally, we check that the map ϕ−1(Ff )r=p → E just constructed is a P7 bundle. Pick a

point in E, corresponding to a tangent direction in P2 at p. The set of all degree 3 curves in

P2 which contain p and a specified tangent direction is parametrized by a P7. While these
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curves can be either smooth at p or singular at p, we have completely accounted for all of the

moduli in either case and our computation of the diagonal restriction is complete.

The analysis for F0 and the (d2, d3) = (2, 3) case for F1 is similar. For F0 we have

instead of (5.28)

ϕ : M̂(2,2),1 → X, (5.31)

and the fibers of ϕ are P6 bundles over the blowup of F0 at a point. So the Lefschetz

of M̂(2,2),1 is

[
3
]

⊗
([

1
]

⊕ 2
[
0
])

⊗
(

488
[
0
]

⊕
[

3

2

]
⊕ 2

[
1

2

])
(5.32)

which expands to
[

11

2

]
⊕ 6

[
9

2

]
⊕ 488

[
4
]

⊕ 13

[
7

2

]
⊕ 1464

[
3
]

⊕ 13

[
5

2

]
⊕ 488

[
2
]

⊕ 6

[
3

2

]
⊕
[

1

2

]
, (5.33)

agreeing with the diagonal restriction of the (d2, d3) = (2, 2) row of table 8.

For the (d2, d3) = (2, 3) case of F1 we have

ϕ : M̂(2,3),1 → X (5.34)

and the fibers are P6 bundles over F̃1. The Lefschetz representation coincides with (5.32)

and (5.33), and agrees with diagonal restriction of the (d2, d3) = (2, 3) part of table 12.

There is a subtlety in the F1 (d2, d3) = (3, 3) case: if the point r in (5.27) is contained

in the −1 curve E, then FD is unstable, requiring additional techniques to describe M̂(3,3),1.

We content ourselves with an outline of the issue. The (3, 3) class is 3E + 3F . Since

(3E + 3F ) · E = 0 and r ∈ E, we see that D must contain E as a component, and then (5.27)

implies that (FD)|E ≃ OE(1) in the generic case where D contains E with multiplicity

1. Write D = D′ + E, with D′ being in the class 2E + 3F . Then the subsheaf of FD

consisting of sections vanishing on D′ (forcing the sections to vanish at the point D′ ∩ E) is

isomorphic to OE , destabilizing FD. Accordingly, a blowdown of the moduli space naively

constructed as in the previous cases is required to arrive at M̂(3,3),1. The result is that the

fibers of ϕ : M̂(3,3),1 → M(3,3),1 are P7 bundles over F1 rather than P7 bundles over the

blowup of F1 at a point, and again we find agreement using this description of the fibers

of ϕ. We omit the details.

Our final geometric calculation in the rank 1 cases is the jR content of the rows immediately

above the bottom rows of the tables, i.e. 2jL = g − 1. For a curve class β in the base, we

have the map

πβ : M̂β,1 → Mβ,1. (5.35)

The fiber of πβ over a curve D ∪ f with D and f smooth is the product of (compactified)

Jacobians J(D) × J(f) ≃ J(D) × f . The sheaf R1πβ∗CMβ,1
on Mβ,1 restricts to a local

system Lβ on the dense open subset M◦
β,1 ⊂ Mβ,1 of curves D ∪ f with D and f smooth, as

the dimensions of the cohomology groups H1(J(D) × f,C) are independent of the choice of

smooth D and intersecting smooth fiber f . This local system determines the perverse sheaf
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IC(Lβ), which restricts to Lβ [dim Mβ,1] on M◦
β,1. Then the jR content of the row above the

bottom is given by the Lefschetz representation on the hypercohomology H∗(Mβ,1, IC(Lβ)).

Since H1(J(D) × f,C) = H1(D,C) ⊕ H1(f,C) we see that the rank 4 local system Lβ

is the direct sum of the two rank 2 local systems LD and Lf , so that

IC(Lβ) = IC(LD) ⊕ IC(Lf ). (5.36)

We compute the Lefschetz representations on H∗(Mβ,1, IC(LD)) and H∗(Mβ,1, IC(Lf )) and

then combine the results to get the desired SU(2)R representation.

We begin with Lf . Since H1(f,C) is independent of D, we see that via the projection

map Mβ,1 → B sending the curve D ∪ f to D ∩ f ∈ S ≃ B, the local system Lf is pulled

back from a local system Bβ on (a dense open subset of) B. However, Bβ coincides with

the local system R1π∗CX with π : X → B the elliptic fibration after restriction to the

locus with smooth elliptic fibers.

The cohomology of IC(Bβ) was worked out in [19, section 7] and we summarize the

calculation here. The decomposition theorem gives

Rπ∗CX [3] = CB[3] ⊕ IC(Bβ) ⊕ CB[1]. (5.37)

Taking hypercohomologies, we get for B = P2 that the Lefschetz of H∗(B, IC(Bβ)) is 546[0].

Returning to the class (dB, 1), since Mβ,1 → B is a P(d2
B

+3dB−2)/2 bundle, we conclude

after pullback that the Lefschetz representation of H∗(Mβ,1, IC(Lf )) is

546

[
d2

B + 3dB − 2

4

]
, (5.38)

in agreement with the corresponding entry in table 1. As we will see presently, all of the other

nonzero entries in the row corresponding to 2jL = g(dB) − 1 exactly match the Lefschetz

representation of H∗(Mβ,1, IC(LD)).

Similarly, for the elliptic fibrations over the bases B = F0 or B = F1, we can again

deduce from (5.37) that Lefschetz of H∗(B, IC(Bβ)) is 488[0]. If Mβ,1 → B is a PN bundle,

we conclude after pullback that the Lefschetz representation of H∗(Mβ,1, IC(Lf )) is

488

[
N

2

]
(5.39)

and the placement of the 488’s in tables 8 and 12 has been completely verified geometrically

in all cases.

We next compute the Lefschetz representations of H∗(Mβ,1, IC(LD)), beginning with

B = P2. Consider the moduli space

M ′
dB ,1 = {D ∪ f ∈ MdB ,1, r ∈ D} . (5.40)

Repeating the argument leading to the description of M̂3,1, we see that M ′
dB ,1 is a P(d2

B
+3dB−4)/2-

bundle over a space which fibers over P2 with fiber P̃2. There is a map

π′
β : M ′

dB ,1 → MdB ,1, (D ∪ f, r) 7→ D ∪ f (5.41)
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whose fiber over D ∪ f is isomorphic to D. It follows that the local system LD is identical to

the local system associated with R1π′
β∗
C. The advantage of this description of LD is that

M ′
dB ,1 is much simpler than M̂dB ,1 for dB > 3.

Finally, we combine the method of [19, section 7] with (5.12). Putting D = dim M ′
dB ,1 =

(d2
B + 3dB + 4)/2, the decomposition theorem gives

Rπ′
β∗
CM ′

dB,1
[D] = CMdB,1

[D] ⊕ IC(LD) ⊕ CMdB,1
[D − 2] (5.42)

Computed from the left hand side, the total hypercohomology of (5.42) has Lefschetz

representation [
d2

B + 3dB − 4

4

]
⊗
([

1
]

⊕
[
0
])

⊗
[
1
]

(5.43)

For dB ≥ 3 this expands to
[

d2
B + 3dB + 4

4

]
⊕3

[
d2

B + 3dB

4

]
⊕4

[
d2

B + 3dB − 4

4

]
⊕3

[
d2

B + 3dB − 8

4

]
⊕
[

d2
B + 3dB − 12

4

]

(5.44)

From this, we have to subtract the cohomology of CMdB,1
[D] ⊕ CMdB,1

[D − 2] which is,

using (5.12)

[
1

2

]
⊗
([

d2
B + 3dB + 2

4

]
⊕
[

d2
B + 3dB − 2

4

]
⊕
[

d2
B + 3dB − 6

4

])
, (5.45)

which expands to
[

d2
B + 3dB + 4

4

]
⊕ 2

[
d2

B + 3dB

4

]
⊕ 2

[
d2

B + 3dB − 4

4

]
⊕
[

d2
B + 3dB − 8

4

]
. (5.46)

Subtracting (5.46) from (5.44), we are left with
[

d2
B + 3dB

4

]
⊕ 2

[
d2

B + 3dB − 4

4

]
⊕ 2

[
d2

B + 3dB − 8

4

]
⊕
[

d2
B + 3dB − 12

4

]
. (5.47)

Combining this summand with (5.38), we find complete agreement with the 2jR = g(dB) − 1

rows of table 1 for dB = 3, 4. These cases dB = 1, 2 are handled similarly and also agree.

The same method works just as well for B = F0 and B = F1. We find complete agreement

with tables 8 and 12. We leave the details for the interested reader to check.

5.1.6 dE = 2

In this section we perform a few simple checks for dE = 2 in the case of the P2 base. A curve

with dE = 2 is necessarily the union of plane curve D of degree dB and two elliptic fibers f1

and f2. The fibers f1 and f2 may coincide with a multiplicity 2 structure on a single fiber f .

We have a map MdB ,2 → Hilb2(P2) taking D ∪ f1 ∪ f2 to the two points of the section where

the fibers are attached. This map is a P(d2
B

+3dB−4)/2-bundle, a fiber being the P(d2
B

+3dB−4)/2

of plane curves of degree dB containing two fixed points. Since the Lefschetz of Hilb2(P2) is

[2] ⊕ [1] ⊕ [0] by Göttsche’s formula, we conclude that the Lefschetz of MdB ,2 is
[

d2
B + 3dB − 4

4

]
⊗
([

2
]

⊕
[
1
]

⊕
[
0
])

, (5.48)
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which expands to

[2] ⊕ [1] ⊕ [0] dB = 1
[

7
2

]
⊕ 2

[
5
2

]
⊕ 3

[
3
2

]
⊕ 2

[
1
2

]
dB = 2

[
d2

B
+3dB+4

4

]
⊕ 2

[
d2

B
+3dB

4

]
⊕ 3

[
d2

B
+3dB−4

4

]
⊕ 2

[
d2

B
+3dB−8

4

]
⊕
[

d2
B

+3dB−12
4

]
dB ≥ 3,

(5.49)

in complete agreement with the bottom rows of table 2.

The above calculation is readily adapted to the F0 base, using the Lefschetz [2]⊕2[1]⊕3[0]

of Hilb2(F0). A modification is needed for curves in the base which cannot be made to pass

through two general points (degrees (1, 0), (0, 1), (2, 0) and (0, 2)), but these cases can be

analyzed directly. We find complete agreement with the bottom rows of table 9, as well as

consistency with (3.27). The F1 base can be handled similarly.

5.1.7 dE = 3

In this brief section, we consider (dB, dE) = (1, 3). If C more generally is a connected curve

of class ℓ + dEf for a line ℓ ⊂ S, we have S · C = dE − 3. In the cases dE = 1, 2 considered

above, this intersection is negative, implying that C is necessarily the union of a line in S and

dE fibers. However, for (dB, dE) = (1, 3) we have S · C = 0, and we have additional curves C

which are disjoint from S instead of being the union of a line and three fibers.

In the partition function Z3, the curves consisting of a line together with three fibers

are accounted for by the term P3

〈
W[3]

〉
, as can be verified by the same methods which

we used above for dB = 1 and dE = 1, 2. So we see that an additional term is needed to

account for the curves which are disjoint from S, corresponding to the term involving P̃3,1

in the application of section 3.58 to Z3.

5.2 Rank 2 examples

In this section, we provide geometric computations for the rank 2 models (Model 2A in

section 4.2.1 and Model 2B in section 4.2.2). We begin by describing these geometries in some

detail before computing refined BPS numbers geometrically and comparing to the results of

computations using the physical methods of sections 3 and 4 and catalogued in [26].

In each of the examples, we assign homogeneous coordinates (x1, . . . , x8) to the last 8

columns of the respective charge matrices, giving a toric description of a fourfold P containing

X as a Calabi-Yau hypersurface. The Mori cone of X is generated by curve classes l(1), . . . , l(4)

associated to the rows of the charge matrices in sections 4.2.1 and 4.2.213 while the columns

are associated to divisors Gj := X ∩ {xj = 0} in X. The charges forming the last 8 columns

of the charge matrix are the intersection numbers Gj · ℓ(i). The first columns consist of

the intersection numbers KP ∩ l(i).

We let J1, . . . J4 be the basis of the Kähler cone dual to the {l(i)}. The divisors Gj can

be expressed as a linear combination of the Ji with coefficients given by the charges in the

corresponding column. Thus in both models, we have G7 (which has been relabeled as D1

13Our computational algorithms for BPS invariants begin with the Mori cone of P. Via the map H2(X,Z) →

H2(P,Z), the Mori cone of X is included the Mori cone of P. As we will see below, the Mori cone of P is

strictly larger than the Mori cone of X in the rank 2 models, necessitating a change of basis for integral H2.
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in the charge matrices; also G8 has been relabled as D2) is given by D1 = −2J1 + J2 + J4.

We consider each example separately in the following sections.

5.2.1 Geometry of Model 2A

The triple intersection numbers of the Jj can be determined algorithmically. The intersection

ring is given by

R = 8J3
1 + 2J2

1 J2 + 2J2
1 J3 + J1J2J3 + 16J2

1 J4 + 4J1J2J4 + 4J1J3J4 + 2J2J3J4+

28J1J2
4 + 8J2J2

4 + 6J3J2
4 + 48J3

4 .
(5.50)

This convention indicates that a triple intersection evaluates to its coefficient in the

above expression, and is zero if the corresponding monomial doesn’t occur. For example

J2
1 J3 = 2. Then any triple intersection of divisors can be computed by expressing each divisor

in terms of the Jj . In the rest of this section, we will simply evaluate triple intersections

without giving the details of the calculations.

We also see that J2
3 = 0, since J2

3 Jj = 0 for j = 1, . . . , 4. Similarly J2
2 = 0. More

generally, the (multi)degree of any curve C is given by the 4-tuple (J1 · C, . . . , J4 · C). In

the rest of the paper, we will simply indicate the degree of curves without giving the details

of the calculations.

The projection (x1, . . . , x8) 7→ (x2, x3, x5, x6) defines a map from P to a toric surface B,

producing an elliptic fibration π : X → B of the Calabi-Yau hypersurface X ⊂ P.

Note that x2, x5 have class J3 with J2
3 = 0 and define homogeneous coordinates on P1.

Similarly x3, x6 have class J2 with J2
2 = 0 and define homogeneous coordinates on another

P1. It follows that B = F0 = P1 × P1. The elliptic fiber class is given by the curve class

f = J2 · J3, which has degree (1, 0, 0, 2). Since D2 · f = 1, we see that D2 is the section of

X → F0. When identified with curves in D2, the two fiber classes of F0 are D2 · J3 = l(2)

and D2 · J2 = l(3), respectively.

In passing, we explain why the Mori cone of X is strictly smaller than the Mori cone of

P. To see this, our initial calculations showed that the Mori cone of P contains a generator

−l(1) + l(4), whose intersection number with D2 is −1. If this class were represented by

a curve C ⊂ X, it follows that a component of C of negative self-intersection must be

contained in D2. But D2 = F0 has no curves of negative self-intersection, and we conclude

that −l(1) + l(4) is not in the Mori cone of X.14

We claim that the divisor D1 is a Hirzebruch surface F2 over a P1 in the base, with

fibers of class (1, 0, 0, 0).

To see this, observe that X ⊂ P is a hypersurface of degree (0, 1, 0, 3) in the indicated

basis. The only monomials of degree (0, 1, 0, 3) which do not contain x7 (whose vanishing

locus is D1), are x3
1x3 and x3

1x6. After setting x7 = 0, the equation of X simplifies to

x3
1(ax3 + bx6) = 0. Here, the variable x3

1 is an inconsequential factor which can be scaled

away by the torus action. We conclude that D1 projects via π to a curve L ⊂ B = F0 defined

14In Model 2B with B = F1, a similar analysis initially leaves open the possibility that the class −l(1) + l(4)

in the Mori cone of P might be in the Mori cone of X, being represented by the −1 curve of the section.

However, as we will see below, the −1 curve has class l(3), so this is not possible and again the Mori cone of X

is strictly smaller than the Mori cone of P.
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by ax3 + bx6 = 0. This is one of the fibers of F0, with L ≃ P1. The fiber of π : D1 → L

is given as the intersection J3 ∩ D1. Computing intersections, the fiber has class (1, 0, 0, 0)

and has genus 0 by adjunction: D1 · J1 · (D1 + J1) = −2. Thus D1 is either a Hirzebruch

surface or the blowup of a Hirzebruch surface. A blowup S of a Hirzebruch surface at n

points which is contained in a Calabi-Yau threefold satisfies S3 = K2
S = 8 − n [92]. Since

D3
1 = 8, we see that D1 is a Hirzebruch surface. Since L = D1 ∩ D2 has self-intersection 0

in D2, it has self-intersection −2 in D1 by adjunction and therefore D1 ≃ F2.

Now, π−1(L) ⊂ X is a surface containing D1, so π−1(L) = D1 ∪ D′
1 for some surface D′

1.

We claim that D′
1 is a ruled surface with 16 degenerate fibers consisting of two P1s. To see this,

the description of D′
1 shows that D′

1 ∼ J2 − D1. The fiber of D′
1 → L has class J3 · D′

1, which

we compute has class (0, 0, 0, 2) and genus zero by adjunction. Thus D′
1 is a Hirzebruch surface

or the blowup of a Hirzebruch surface. Next, we compute (D′
1)3 = (J2 − D1)3 = −8 = 8 − 16,

so 16 points in a Hirzebruch surface have been blown up. Suppose that p is a point of a

Hirzebruch surface and let Fp be the fiber containing p. After blowing up p, the inverse image

of Fp contains two P1s meeting at a point: the proper transform of Fp and the exceptional

divisor, and these are degenerate fibers of the blown-up Hirzebruch surface. We conclude

that 16 of the fibers of D′
1 are degenerate, consisting of two P1s, each of class (0, 0, 0, 1).

From D1 · 2l(4) = 2, we see that D1 ∪ D′
1 → L forms on I2 configuration.

We can now list some refined BPS numbers.

Classes Refined BPS

(0, 0, 0, 1); (1, 0, 0, 1); (1, 1, 0, 1); (1, 0, 1, 1) N0,0 = 32

(1, 0, 0, 0); (1, 0, 1, 0); (1, 1, 0, 0); (0, 0, 0, 2); N0,1/2 = 1

(5.51)

all in agreement with [26] (see also [93]).

We have seen that the class (0, 0, 0, 1) is represented by either P1 in any of the 16

degenerate fibers of D′
1, explaining N0,0 = 32. Letting C denote any of these curves, we

can use C to produce a unique (reducible) rational curve in any of the classes listed in the

first row of (5.51) as follows.

The class (1, 0, 0, 1) is realized by the union of C with the unique fiber of D1 which

meets it. This configuration meets a unique fiber of D2 with class J2, which can then be

attached to produce a curve in the class (1, 1, 0, 1). Similarly, the union of C with a fiber

of D1 meets a unique fiber of D2 which class J3 (the fiber denoted by L above) resulting in

a curve of degree (1, 0, 1, 1). In each of the indicated degrees, we have exactly one rational

curve for each of the 32 curves C.

The second row of (5.51) corresponds to families of rational curves parametrized by

P1: the fiber class of D1 ((1, 0, 0, 0)), the fiber class of D1 glued to L ((1, 0, 1, 0)), the fiber

class of D1 glued to the unique fiber of D2 with class J2 that meets it ((1, 1, 0, 0)), and

the fiber class of D′
1 ((0, 0, 0, 2)).

The refined BPS numbers for classes of the form (d1, d2, d3, 2d1) are computed by our

methods for elliptic F0 with dE = d1, as these are the classes of curves of degree (d2, d3)

in F0 with d1 fiber classes (1, 0, 0, 2) added. The only difference is that the refined BPS

spectrum for the fiber class changes to
[

1

2
, 1

]
⊕
[

1

2
, 0

]
⊕ 430

[
0, 0
]

⊕
[
0,

1

2

]
(5.52)
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according to (5.23) and χ(X) = −420.

The methods of section 5.1.4 for genus 0 base curves apply in our situation. For genus

0 base curves (d2, d3) = (1, d3), M(1,d2,d3,2) is the same as Md2,d3,1 was in the rank 1 case,

with the same Lefschetz [d3 + 1] ⊕ 2[d3] ⊕ [d3 − 1], and the diagonal Lefschetz calculation

becomes [d3](
[

3
2

]
⊕ 3

[
1
2

]
⊕ 430 [0]). Putting these facts together, we conclude that for d3 ≥ 1

the BPS representation is

[
1

2
, d3 + 1

]
⊕ 2

[
1

2
, d3

]
⊕
[

1

2
, d3 − 1

]
⊕
[
0, d3 +

1

2

]
⊕
[
0, d3 − 1

2

]
⊕ 430

[
0, d3

]
(5.53)

while for d3 = 0 we get the same representation as for the fiber class. The calculation

has been done by our physical methods described in section 4.2.1 for d3 ≤ 6 and we find

complete agreement with [26].

Similarly, the methods of section 5.1.5 for genus 1 base curves apply to curves of degree

(1, 2, 2, 2), corresponding to a degree (2, 2) base curve plus a fiber class, and we find complete

agreement with [26].15

We can also repeat the method of section 5.1.6 to check the maximum jL content for

the classes (2, d2, d3, 4), the union of a base curve and two fiber classes, i.e. the analogue

of dE = 2 in the rank 1 cases. Except for the base degrees (d2, d3) = (1, 0) or (0, 1), given

any two points of the base B, there exist curves of degree (d2, d3) containing both points,

so the method applies.

Since the moduli space of these curves is a PD with D = (d2 + 1)(d3 + 1) − 3, the

Lefschetz of the moduli space of curves of class (2, d2, d3, 4) is the tensor product of [D/2]

and [2] ⊕ 2[1] ⊕ 3[0], the Lefschetz of Hilb2(F0), which expands to

[
D + 4

2

]
⊕ 3

[
D + 2

2

]
⊕ 6

[
D

2

]
⊕ 3

[
D − 2

2

]
⊕
[

D − 4

2

]
(5.54)

if D ≥ 4. If D is 2 or 3, (5.54) is still valid after dropping the last term, and is still valid

after dropping the last two terms if D = 1.

Since the genus of a base curve of degree (d2, d3) is (d2 − 1)(d3 − 1) and we are adding

two elliptic fibers, we get (2jL)max = (d2 − 1)(d3 − 1) + 2, with the associated SU(2)R

representation given by (5.54), modified as described above for D < 4. These computations

are all in agreement with the results of our physical methods as far as we have computed [26].

5.2.2 Geometry of Model 2B

The geometric analysis is similar to the analysis of Model 2A.

The intersection ring is now given by

R = 8J3
1 + 3J2

1 J2 + J1J2
2 + 2J2

1 J3 + J1J2J3 + 16J2
1 J4 + 6J1J2J4 + 2J2

2 J4 + 4J1J3J4+

2J2J3J4 + 26J1J2
4 + 10J2J2

4 + 6J3J2
4 + 42J3

4

(5.55)

15There is an inconsequential extra step needed beyond our calculation in the rank 1 case. The decomposition

theorem for π includes an extra summand supported on the curve L [90]. However, this same summand also

appears in the local system for πβ = π2,2, so the calculation can be completed exactly as before.

– 61 –



J
H
E
P
0
8
(
2
0
2
5
)
1
7
8

In this model, x2, x5 again have class J3 with J2
3 = 0, giving a further projection B → P1

identifying B as a Hirzebruch surface. Since x3 has class J2 while x6 has class J2 − J3, we

see that B ≃ F1, with x6 = 0 being the −1 curve and x3 = 0 a section of self-intersection

+1. Again, D2 is the section. When identified with curves in D2, the fiber class of F1 is

D2 · J3 = l(2), and the exceptional curve is D2 · (J2 − J3) = l(3). The fiber class is again

J2 · J3, which has class (1, 0, 0, 2).

The monomials of degree (0, 1, 0, 3) not involving x7 are x3
1x3, x3

1x2x6, and x3
1x5x6, so

D1 projects onto a curve L ⊂ B = F1 with equation of the form ax3 + bx2x6 + cx5x6 = 0, a

section of F1 of class J2. Identifying L with a curve J2 · D2 in the section D2, we see that

L has degree (0, 1, 1, 0). The inverse image of L is the union of D1 and another surface D′
1,

with D′
1 = J2 − D1 as in the last example, forming an I2 configuration over L. The fiber

class J3 · D1 of D1 is again l(1) and the fiber class J3 · D′
1 of D′

1 is again (0, 0, 0, 2).

Once again we compute (D1)3 = 8 and D1 is a Hirzebruch surface (which can be shown

to be F3), but now (D′
1)3 = −14, so D′

1 is a Hirzebruch blown up at 22 points, and so D′
1

has 22 degenerate fibers, each fiber consisting of two curves of degree (0, 0, 0, 1). We get

Classes Refined BPS

(0, 0, 0, 1); (1, 0, 0, 1); (1, 1, 0, 1) N0,0 = 44

(1, 1, 1, 1) N0,1/2 = 44

(1, 0, 0, 0); (1, 1, 0, 0); (0, 0, 0, 2); N0,1/2 = 1

(5.56)

all in agreement with our physical calculations using the methods of section 4.2.2 [26]. We

only explain the geometry of the class (1, 1, 1, 1), as the other cases are similar to what was

done before. Let C be any of the 44 curves of degree (0, 0, 0, 1), which glues to a unique

fiber of D1 as before to produce a rational curve of class (1, 0, 0, 1) as before. The fiber

of D1 meets L as before. Denoting the intersection point of D1 and L by p and recalling

that D2 = F1, we see there is a P1 moduli space of curves of degree (0, 1, 1, 0) (necessarily

contained in D2) which contain p. Gluing these curves to the curves of degree (1, 0, 0, 1),

we get a moduli space of rational curves of degree (1, 1, 1, 1) consisting of a disjoint union

of 44 copies of P1. The middle row of (5.56) follows.

Similarly, the methods of section 5.1.4 for genus 0 base curves and of section 5.1.5 for

genus 1 base curves apply. We can also repeat the method of section 5.1.6 to check the

maximum jL content for the classes (2, d2, d3, 4), the analogue of dE = 2 in the rank 1 cases.

5.3 Rank 3 examples

We begin by describing the rank 3 geometries from section 4.3 in some detail before computing

their refined BPS numbers geometrically and comparing to the results of computations using

the physical methods of sections 3 and 4 and catalogued in [26].

5.3.1 Geometry of Model 3A

We start by summarizing the geometry of Model 3A with explanation to follow. As we will

see, the elliptic fibration has I∗
0 fibers over a −2 curve.

Referring to the divisors which have been identified in section 4.3.1, the base of the

elliptic fibration is the surface D3, which is isomorphic to the Hirzebruch surface F2. The

fibration degenerates to an I∗
0 fibration over the −2 curve of D3. The I∗

0 fibers consist of
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D3
l(3)

D2

l(4)

l(2)

D1

l(1)

l(5)

D4

I∗
0

Figure 3. The geometry of the rank 3A model. The unions of all intersecting D1, D2 and D4 fibers

constitutes an I∗

0
fiber, one of which is indicated.

unions of fibers of the ruled surfaces D1, D2, and D4. D2 is the Hirzebruch surface F0 fibered

over the −2 curve of D3, and its fibers represent the curve class l(2). D1 is the Hirzebruch

surface F2, and its fibers represent the curve class l(1). D4 is a ruled surface over the genus 4

curve C14 = D1 ∩D4, and its fibers represent the curve class l(5). The curve C14 is a trisection

of D1, so any fiber of D1 intersects three fibers of D4. An I∗
0 fiber consists of a fiber of D2,

a fiber of D1 with multiplicity 2, and the three fibers of D4 which intersect the fiber of D1.

Thus the fiber class is visibly 2l(1) + l(2) + 3l(5), as we will also see below by other methods.

We next describe the geometry in more detail, followed by explanations.

Denoting the curves Di ∩ Dj (when nonempty) by Cij , the −2 curve of D3 is identified

with C36. The surfaces D1 and D2 are Hirzebruch surfaces F2 and F0 respectively, D1 being

identified with the central vertex of the D̂4 Dynkin diagram. The curve C23 is identified

with the −2 section of D3 and a section of D2 with self-intersection zero. The curve C12

is identified with the −2 section of D1 and a section of D2 with self-intersection zero. The

local limit with compact divisors D1 and D2 is SU(3).

The surface D4 is ruled over the genus 4 curve C14, which is identified with a section

of D4 and a trisection of D1. The five components of an I∗
0 fiber are as follows: a fiber of

D1, a fiber of D2, and each of the fibers over the three points of C24 which lie on the fiber

of D1. Clearly these fibers undergo monodromy, and the rank 2 local limit with compact

divisors D1 and D4 is G2 with four hypermultiplets.

Turing to explanations, we let Jk be the divisor class satisfying Jk · l(i) = δi
k. Then the

(multi)degree of any curve C can be expanded as

[C] =
5∑

k=1

(Jk · C) l(k). (5.57)
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We apply (5.57) to Cij = DiDj in the table below. The arithmetic genus can be found

from adjunction: 2g − 2 = DiDj(Di + Dj).

curve class genus

C35 l(3) 0

C23 l(4) 0

C25 l(2) 0

C12 l(4) 0

C15 l(1) 0

C14 6l(1) + 3l(4) 4

C56 2l(1) + l(2) + 3l(5) 1

C45 3l(5) −2

(5.58)

Since C45 has negative arithmetic genus, it must be reducible. Since it has class 3l(5), each

component has class either l(5) or 2l(45), and C45 has two or three irreducible components.

For generic hypersurfaces, each component is a smooth curve. If the gi denote the genera

of the respective components, then the arithmetic genus of the configuration of curves is∑k
i=1 gi − k + 1, where k is the number of components. The only possibility is k = 3 and

each gi = 0. We conclude that C45 is the disjoint union of three curves of class l(5), each

of genus 0. Each of these curves will be identified with fibers of D4 presently. The curve

C56 will be identified with the elliptic fiber class.

We next explain why the surfaces D1, D2, D3, and D4 are ruled surfaces. First, they are

all smooth for generic hypersurfaces. We claim that the fiber classes are l(1), l(2), l(3) and l(5),

respectively. The argument for each of l(1), l(2), l(3) is identical and we do those cases first.

From (5.58) we see that these l(i) are represented by the curve Ci5, which has genus 0. From

Di · Ci5 = −2 and adjunction, we see that Ci5 has self-intersection zero in Di, so it must be a

fiber class and Di is a ruled surface for i = 1, 2, 3. For D4, we have seen above that l(5) has

genus 0. Since D4 · l(5) = −2, we conclude as before the l(5) is the fiber class of D4.

If a surface S is a P1 bundle over a curve of genus g, then K2
S = 8(1 − g) [92]. Blowing

up S to introduce degenerate fibers only lowers K2
S . Finally, we compute K2

Di
= D3

i = 8,

so the genus of the base curve is zero and there are no degenerate fibers. So each Di is a

Hirzebruch surface. The identification of D1, D2, D3 with F2,F0,F2 respectively, as well as

the identification of the intersection curves C12 and C23, follow from the intersection numbers

D2
1D2 = 0, D1D2

2 = −2, D2
2D3 = −2, and D2D2

3 = 0.

From the intersection numbers of the Di with each of the P1 fiber classes, we see that

the surfaces are glued in a chain in the order D3 − D2 − D1 − D4. From D3 · l(1) = D3 · l(5) =

D4 · l(2) = 0 we see that D3 does not intersect D1 or D4, and D4 does not intersect D2.

The intersection curve C14 of D1 and D4 is embedded in D4 as a section and in D1 as

trisection. To see this, we count intersections of C14 with the respective fibers. From (5.58)

we see that the fiber class of D1 is obtained by intersecting D1 and G5, so the intersection

number is G5 ·C14 = 3. Similarly, as G5 ∩D4 consists of three fibers of D4, each fiber intersects

C14 once. Here, we are using the same notation as in section 5.2: Gj = X ∩ {xj = 0}.
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It will be useful for geometric verification of the refined BPS numbers to relate the

geometries of D1, D2, D3 to standard notation for Hirzebruch surfaces Fn. The group of

divisors of Fn is generated by two classes, E and F , where E2 = −n and F is the fiber class.

It is sometimes convenient to also define H = E + nF , the class of a section with H2 = n.

We distinguish between divisors on D1, D2, D3 by subscripts.

For D3 we have E3 = C23, F3 = C35, and H3 = C36. For D2 we have F2 = C25,

H2 = C23, and E2 = C12 (in this case, E2 and H2 are the same class because n = 0). For

D1 we have F1 = C15 and E1 = C12. In addition, viewed as a divisor on D1, we have

C14 = 3H1 = 3E1 + 6F1.

We can now compute many refined numbers geometrically and find agreement with our

methods. Let’s start with the class of l(5), which we have seen is the fiber class of D4. The

moduli space of these curves is the base of the fibration, the genus 4 base curve C14. Since

these curves have genus 0, the left spin is zero and the right spin coincides with the Lefschetz

representation on C14, resulting in [0, 1/2] ⊕ 8[0, 0].

We hasten to point out that this is not a check on the full power of our methods, as this

class was already realizable in the local G2 limit. However, one can arrive at other curve

classes by gluing fiber classes of D1 to l(5), and then one can continue to glue fiber classes of

D2 and then D3 in succession. All of these curve classes have moduli space C14, so we also

get [0, 1/2] ⊕ 8[0, 0] for the classes l(1) + l(5), l(1) + l(2) + l(5), and l(1) + l(2) + l(3) + l(5). These

all agree with calculations. The last two classes are not realizable in either the G2 local limit

or the SU(4) local limit, so these cases serve as a nontrivial check of our methods.

The methods of section 5.1.4 apply to genus 0 base curves glued to a fiber. For example,

we can consider base curves of degree (d, 1), which after glueing a fiber represent the class

(2, 1, d, 1, 3). We find that for d > 1 we get the representation
[

1

2
, d

]
⊕ 2

[
1

2
, d − 1

]
⊕
[

1

2
, d − 2

]
⊕ 2

[
0,

2d − 1

2

]
⊕ 2

[
0,

2d − 3

2

]
⊕ 468

[
0, d − 1

]
, (5.59)

in agreement with our physical calculations described in section 4.3.1 as far as we have

computed [26].

5.3.2 Geometry of Models 3B and 3C

The geometric analyses for models 3B and 3C, the elliptic fibrations introduced in sections 4.3.2

and 4.3.3 are largely similar to the analysis for model 3A done in section 5.3.1 for the elliptic

fibration introduced in section 4.3.1, so we begin by quickly pointing out the similarities and

differences without giving the detailed calculations. We let −n be the self-intersection of

the curve in the base over which we have an I∗
0 fibration, so that we have n = 2 in Model

3A, n = 3 in Model 3B, and n = 1 in Model 3C.

In each case, the base of the elliptic fibration is D3, a Hirzebruch surface Fn. The surface

D2 is the Hirzebruch surface F|n−2|, which is attached to D3 along the curve C23, which is

identified with the −n section of D3 and a section of D2 of self-intersection n − 2. The surface

D1 is also a Hirzebruch surface, and D4 is ruled over the curve C14, which is a section of D4

and a trisection of D1 representing the class 3H1. The adjunction formula tells us that the

genus of a curve of class 3H on a Hirzebruch surface Fk is 3k − 2. In each case, the classes

l(1), l(2), l(3), and l(5) are the fiber classes of D1, D2, D3, and D4, respectively.
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In the case n = 1, D1 is a copy of F3, and so C14 has genus 7. The surfaces D1 and D2

are attached along C12, which is identified with the −3 curve of D1 and a section of D2 with

self-intersection 1. The class l(4) is represented by C23 (which is the unique curve in that class).

In the case n = 3, D1 is a copy of F1, and so C14 has genus 1. The surfaces D1 and D2

are attached along C12, which is identified with the −1 curve of each of D1 and D2. The

class l(4) is represented by C12 (which is the unique curve in that class).

In either case, the moduli space of l(5) is the base C14 of the ruled surface D4. We conclude

from the Lefschetz representation of C14 that the SU(2)×SU(2) representation for this class is

[
0, 1

2

]
⊕ 14 [0, 0] n = 1[

0, 1
2

]
⊕ 2 [0, 0] n = 3

(5.60)

in agreement. As in the preceding section, in each case n = 1 and n = 3 we get the same

representations for the classes l(1) + l(5), l(1) + l(2) + l(5), and l(1) + l(2) + l(3) + l(5).

The methods of section 5.1.4 again apply to genus 0 base curves glued to a fiber. We

again consider base curves of degree (d, 1), which after gluing a fiber represent the class

(2, 1, d, 1, 3). We find that for d > n we get the representation

[
1

2
,
2d − n + 2

2

]
⊕ 2

[
1

2
,
2d − n

2

]
⊕
[

1

2
,
2d − n − 2

2

]
⊕

2

[
0,

2d − n + 1

2

]
⊕ 2

[
0,

2d − n − 1

2

]
⊕ (396 + 36n)

[
0,

2d − n

2

]
,

(5.61)

in agreement with our physical calculations described in sections 4.3.2 and 4.3.3 as far as

we have computed [26].

5.3.3 Dependence of refined BPS numbers on complex moduli

Suppose that a Calabi-Yau threefold X contains a smooth surface S, and that S is a P1

bundle ρ : S → C over a smooth curve C of genus g. Letting β ∈ H2(X,Z) be the class of any

fiber of ρ, we see that C is a connected component of Mβ. It follows that the contribution

of this family of curves to the BPS spectrum is [1/2, 0] ⊕ 2g[0, 0]. This is a general result

which does not require X to be elliptically fibered.

We let σ ∈ H1(X, TX) be a first-order deformation of the complex structure of X,16

and let F ≃ P1 be any fiber of ρ. The space of first order deformations of F is given by

H0(F, NF/X) and the obstructions lie in H1(F, NF/X) (this is the case for submanifolds F of

any dimension). Then F deforms holomorphically along with the deformation σ precisely

when r(σ) = 0, where r is the restriction map

H1(X, TX)
r→ H1(F, NF/X). (5.62)

From the short exact sequence

0 → NF/S → NF/X → NS/X |F → 0, (5.63)

16It is easy to see by the unobstructedness of Calabi-Yau moduli that a first-order analysis suffices for

our purposes.
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the triviality of NF/S deduced from NF/S ≃ OF ⊗ TC,ρ(F ), and the Calabi-Yau condition

Λ2NF/X ≃ KF ≃ OF (−2), we conclude that

NF/X ≃ OF ⊕ OF (−2), (5.64)

so that H1(NF/X) ≃ C is nonzero and there is potentially an obstruction to deforming F .

Now we consider all fibers simultaneously. Let F ⊂ S × C be the graph of ρ. The

projection πC : F → C identifies F with the family parametrized by C of fibers of ρ, so

that for p ∈ C, π−1
C (p) is identified with the fiber Fp of ρ over p. Then the obstruction

map (5.62) globalizes to a map

R : H1(X, TX) → H0(C, R1πC∗NF/S×C). (5.65)

In (5.65), the obstruction bundle R1πC∗NF/S×C is a line bundle on C whose fiber at p ∈ C

is canonically identified with the 1-dimensional vector space H1(Fp, NFp/X). So the fibers

which deform along with the deformation σ are precisely those parametrized by the zeros of

the global section R(σ) of the obstruction bundle. Our next task is to identify the obstruction

bundle with the canonical bundle KC of C.

Returning to the study of a single fiber F , we have H0(F, NF/X) ≃ H0(F, OF ⊕OF (−2)) ≃
C. By Serre duality we have

H1(F, NF/X)∗ ≃ H0(F, KF ⊗ N∗
F/X) ≃ H0(F, NF/X)∗, (5.66)

the last isomorphism arising from the Calabi-Yau condition.

The key point is that these duality isomorphisms are canonical, so extend to the duality

of line bundles

R1πC∗NF/S×C ≃
(
R0πC∗NF/S×C

)∗
, (5.67)

a special case of Grothendieck duality.

Taking global sections of the canonical isomorphisms NF/S ≃ OF ⊗ TC,ρ(F ), we get

canonical isomorphisms H0(F, NF/S) ≃ TC,ρ(F ), which globalizes to the isomorphism

R0πC∗NF/S×C ≃ TC

of line bundles on C. Then (5.67) implies that the obstuction bundle is the canonical bundle

of C, as claimed.

Since KC has no global sections if g = 0, it follows that the obstruction section R(σ) is

identically zero in that case, so all fibers deform. Rephrasing:

If a Calabi-Yau threefold X contains a Hirzebruch surface S, then S deforms

holomorphically along with any complex structure deformation of X.

If g > 0, we assume in addition that the fiber class β is an edge of the Mori cone of X.

Recalling that KC has degree 2g−2, we will show below that for the generic complex structure

deformation σ, the global section R(σ) has 2g − 2 isolated zeroes. Then the deformed Mβ
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consists of 2g − 2 isolated points, each parametrizing a P1. So the BPS spectrum changes to

(2g − 2)[0, 0]. As a check, Tr(−1)FR is unchanged before and after the deformation.

Using a holomorphic 3 form to identify TX ≃ Ω2
X , the obstruction map (5.65) can be

rewritten as a map R : H2,1(X) → H1,0(C). It suffices show that this map is surjective, as

a generic holomorphic differential on C has 2g − 2 isolated zeros. The surjectivity of R is

equivalent to the surjectivity of R + R : H2,1(X) ⊕ H1,2(X) → H1(C), which is equivalent

to the surjectivity of the map H3(X) → H1(C) obtained by precomposing R + R with a

projection. We show surjectivity by showing injectivity of its dual A : H1(C) → H3(X).

The map A : H1(C) → H3(X) takes a 1-cycle γ in C to the 3-cycle ρ−1(γ) in X. Since

β is assumed to be an edge of the Mori cone, the ruled surface S can be contracted to a

singular Calabi-Yau X containing a curve C of transverse A1 singularities, and then X can

be recovered as the blowup of X along its singular curve C. A Mayer-Vietoris calculation

of H3(X) then shows that A is injective.

We can also give physical explanation of our assertion about the behavior of the curves in

the fiber class under a generic deformation of complex structure. The contraction to X gives

rise to an SU(2) gauge theory with g adjoints. Partially Higgsing to U(1), we are left with g

neutral hypermultiplets and 2g − 2 charged hypermultiplets. The g neutral hypermultiplets

correspond to complex structure deformations Xt of X, and the charged hypermultiplets

indicate that Xt contains 2g − 2 conifolds for a generic deformation instead of a curve of

A1 singularities. Performing small resolutions, we deduce a complex structure deformation

of X with 2g − 2 P1’s in the class β.

In the rank 3 cases, the elliptically fibered CY X has complex structure deformations

of the above type which are not embeddable in the toric variety P. These deformations

provide the first explicit example of a compact elliptically fibered Calabi-Yau for which the

refined BPS numbers change under complex structure deformations, yet satisfy the same

holomorphic anomaly equations with different boundary conditions.

The intersection curve C = D1 ∩ D4 has genus g = 10 − 3n in each of the cases n = 1, 2, 3,

and parametrizes the P1 fibers of D4. So D4 does not survive a generic complex structure

deformation but we are left with 2g − 2 = 18 − 6n P1’s in the original fiber class, and the

spins of the class l(5) change from [0, 1/2] ⊕ (20 − 6n)[0, 0] to (18 − 6n)[0, 0].

We can solve the refined holomorphic anomaly equation with these new boundary

conditions and find that some other refined numbers necessarily change. We next compute

new refined BPS numbers after the deformation, and find agreement.

The key point is that the reducible surface D1 ∪ D4 does not survive a generic complex

structure deformation, but deforms to an irreducible surface D′
1. This is because the I∗

0 divisor

before the deformation was 2D1 + D2 + D4, remembering that the central component of an I∗
0

configuration has multiplicity 2. Since D1 and D2 are ruled over curves of genus 0, they both

survive the complex structure deformation, and the total divisor over the gauge curve is of the

form D1 + D2 + D′
1 for some surface D′

1. Comparing the divisors over the gauge curve before

and after the deformation, we see that D′
1 is in the same class as D1 + D4. Since D4 does not

survive the deformation, we conclude that D′
1 is irreducible and is a deformation of D1 ∪ D4.

The divisor class J2 restricted to D′
1 defines a projection to P1, with generic fiber P1

by adjunction or deformation invariance of the arithmetic genus. These fibers have degree
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(1, 0, 0, 0, 3), the sum of the degrees of the fibers of D1 and three fibers of the original D4.

Computing intersections, we see that D1 ∩ D′
1 is a section of D1 and D′

1 ∩ D2 is a section

of D2. Thus D1 ∪ D2 ∪ D′
1 is an I3 configuration.

We have already seen that there are 2g − 2 points of C over which we have a curve

M of degree (0, 0, 0, 0, 1). Since D′
1 · l(5) = (D1 + D4) · l(4) = −1 in all cases, these curves

are contained in D′
1. In other words, we have 2g − 2 fibers of D′

1 which split into a pair

M ∪ M ′ of intersecting P1s, with M of degree (0, 0, 0, 0, 1), and M ′ of degree (1, 0, 0, 0, 2).

Each of the curves M intersect D1 in one point and is disjoint from D2. Each of the curves

M ′ intersect D2 in one point and is disjoint from D1.

From the above considerations, we deduce that each of the curve classes in the following

table have BPS representation (18 − 6n)[0, 0], in agreement with our solution of the refined

holomorphic anomaly equations with the new boundary conditions, recorded in [26].

Classes Spins

(0, 0, 0, 0, 1); (1, 0, 0, 0, 2); (1, 0, 0, 0, 1); (1, 1, 0, 0, 1) (18 − 6n)[0, 0]

(1, 1, 1, 0, 1); (1, 1, 0, 0, 2); (2, 1, 0, 0, 2); (1, 1, 1, 0, 2); (2, 1, 1, 0, 2)

(5.68)

The classes (0, 0, 0, 0, 1) and (1, 0, 0, 0, 2) have already been identified as being associated

with the 18 − 6n curves M and M ′ respectively. Any of the curves M can be glued to a fiber

of D1, and then to a fiber of D2, and finally to a fiber of D3, producing 18 − 6n rational

curves in each of the classes (1, 0, 0, 0, 1), (1, 1, 0, 0, 1), and (1, 1, 1, 0, 1). Similarly, any of the

curves M ′ can be glued to a fiber of D2, and then to a fiber of D1 and/or D3, producing

18 − 6n rational curves in each of the classes (1, 1, 0, 0, 2), (2, 1, 0, 0, 2), (1, 1, 1, 0, 2), and

(2, 1, 1, 0, 2). All of these spin representations have changed from the [0, 1/2] ⊕ (20 − 6n)[0, 0]

which we had in each case for the same curve class in the toric hypersurface.

6 Holomorphic anomaly equation: genus zero case

We can hope to use the BCOV holomorphic anomaly equation in the compact elliptic

Calabi-Yau geometries to derive the holomorphic anomaly equation for the fiber parameter,

similar to the case of base parameters in [19, 70]. The refinement for the fiber case may

also help to improve the refined BCOV equation for the compact case, which was only

partially successful in [19].

As a first step, we study the genus zero anomaly equation from the Picard-Fuchs

differential equations of the compact elliptic P2 model. The Picard-Fuchs equations are

L1 = θ1(θ1 − 3θ2) − 12z1(6θ1 + 1)(6θ1 + 5),

L2 = θ3
2 + z2

2∏

i=0

(3θ2 − θ1 + i),
(6.1)

where θi := zi
∂

∂zi
and z1, z2 are the fiber and base complex structure parameters. Suppose

the power series and logarithmic solutions are ω0 ∼ 1, ω1 ∼ log(z1), ω2 ∼ log(z2). Then

the fiber and base Kahler parameters are identified via the mirror map as t1 = ω1
ω0

and

t2 = ω2
ω0

, respectively.
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The instanton part of the free energy of the compact model is expanded as

F(Q, q; ϵ1, ϵ2) =
∞∑

dE=0

FdE
(Q; ϵ1, ϵ2)(qQ

1
3 )dE , (6.2)

where q = et1 , Q = et2 are the exponentiated fiber and Kahler parameters, and F0(Q; ϵ1, ϵ2)

is simply the free energy of the local P2 model. The free energy has a further genus expansion

FdE
(Q; ϵ1, ϵ2) =

∞∑

n,g=0

(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F (n,g)
dE

(Q). (6.3)

It is proposed that F (n,g)
dE

can be written as a polynomial in S with rational functions of z̃
1
3

as coefficients, where S and z̃ are the propagator and complex structure parameters of the

local P2 model, and can be expanded in terms of the exponentiated Kahler parameter Q.

We should note that z̃ differs from the base complex structure parameter z2 of the compact

model, though they agree in the large fiber limit z1 ∼ 0. Then the following holomorphic

anomaly equation is satisfied

∂

∂S
F (0,0)

dE
=

1

2

dE−1∑

d′
E

=1

∂z̃F (0,0)
d′

E

· ∂z̃F (0,0)
dE−d′

E

, (6.4)

with the initial condition F (0,0)
1 = 540z̃− 1

3 .

We should derive some low order formulas for F (0,0)
dE

from the compact Picard-Fuchs

equations. Up to the first few orders in z1, we denote the solutions

ω0 = 1 + 60z1 + 13860z2
1 + 4084080(1 + 6z2)z3

1 + O(z4
1),

ω1 = w0[log(z1) +
∞∑

n=0

bn(z2)zn
1 ],

ω2 = w0[log(z2) +
∞∑

n=0

cn(z2)zn
1 ].

(6.5)

The coefficient of zn
1 in ω0 is a polynomial in z2 of degree [n

3 ], but for the logarithmic solutions,

bn(z), cn(z)’s are power series with b0(z) ∼ z, c0(z) ∼ z. Putting the ansatz for ω1, ω2 into

the Picard-Fuchs equations, we can derive differential equations for bn(z)’s, cn(z)’s. For

example, the first equation in (6.1) gives a linear relation between c0(z), c1(z), c′
1(z). The

second equation in (6.1) gives a third order linear differential equation for c0(z), as well

as a linear relation between c0(z), c1(z) and their derivatives up to the third order. The

differential equation for c0(z) is

z2(1 + 27z)c′′′
0 (z) + 3z(1 + 36z)c′′

0(z) + (1 + 60z)c′
0(z) + 6 = 0. (6.6)

Using the above equation, we can eliminate the derivatives of c1(z) and find the relation

c1(z) = 180(1 + 27z)[1 + 4zc′
0(z) + 3z2c′′

0(z)]. (6.7)
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Similarly, working up to the order z3
1 we find the equations for c2(z), c3(z) as

c2(z) = 135(1 + 27z)[382 + 1759zc′
0(z) + 1377z2c′′

0(z)],

c3(z) = 120(1 + 27z)[140612 + 708517zc′
0(z) + 567905z2c′′

0(z)].
(6.8)

The differential relations for bi(z)’s can be similarly derived. By comparing the difference

we can check that

b0(z) = −c0(z)

3
, b1(z) = 372 − c1(z)

3
, b2(z) = 76122 − c2(z)

3
,

b3(z) = 21249376 + 161331216z − c3(z)

3
.

(6.9)

This can also be confirmed by checking that the following combination is a solution of the

Picard-Fuchs equation

ω1 +
1

3
ω2 = ω0[log(z1) +

1

3
log(z2) + 372z1 + 76122z2

1

+ (21249376 + 161331216z2)z3
1 + O(z4

1)].
(6.10)

This combination of logarithmic solutions is similar to the power series solution ω0 in that

the coefficient of zn
1 is a polynomial of z2 of degree [n

3 ].

The genus zero free energy is determined by the fact that including the classical cubic

term, ω0∂ti
F (0,0)(t1, t2) is a double logarithmic solution of the Picard-Fuchs equations. For

the compact elliptic P2 model we have

F (0,0)
classical =

3

2
t3
1 +

3

2
t2
1t2 +

1

2
t1t2

2. (6.11)

We can compute the partial derivative

∂t1F (0,0)
classical =

1

2
(3t1 + t2)2, (6.12)

where the combination (6.10) appears. So we can compute ∂t1F (0,0)
classical exactly in z2 at

each perturbative order of z1, without dependence on the bn(z2), cn(z2) functions. It is

then also straightforward to compute the actions of Picard-Fuchs operators on the classical

contribution. We find

L1[ω0∂t1F (0,0)
classical] = −540z1 − 309420z2

1 − 152832960z3
1 + O(z4

1),

L2[ω0∂t1F (0,0)
classical] = −227826432z2z3

1 + O(z4
1).

(6.13)

We then consider the instanton contributions. The dE = 0 contribution is eliminated by the

partial derivative ∂t1 . Some low order formulas for dE ≥ 1 are

F (0,0)
1 = 540z̃− 1

3 , F (0,0)
2 =

405(80S − 37z̃2)

2z̃
8
3

,

F (0,0)
3 =

1

z̃7(1 + 27z̃)
[324000S3 + 486000S2z̃2 − 656100Sz̃4(1 + 37z̃)

+ 2z̃6(83305 + 107785707z̃ + 2864246994z̃2)].

(6.14)
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These are regarded as functions of the compact Kahler base parameter t2 when taking the

partial derivatives ∂ti
.

In order to prove these formulas, we shall rewrite them in terms of the compact complex

structure parameters z1,2. More specifically, we shall expand perturbatively in the fiber

parameter z1 but keep the exact expressions in the base parameter z2. The local z̃ parameter

is related to the Kahler parameter by the

t2 = log(z2) + c0(z2) + c1(z2)z1 + c2(z2)z2
1 + O(z3

1),

= log(z̃) + c0(z̃).
(6.15)

We can use an expansion ansatz z̃ = z2 +
∑∞

i=1 an(z2)zn
1 , and systematically solve for the

coefficients an’s in terms of cn’s. For example, up to the second order we find

z̃ = z2+
z2c1(z2)

1+z2c′
0(z2)

z1+
2c2(z2)(1+z2c′

0(z2))2+c1(z2)2(1−z2
2c′′

0(z2))

2(1+z2c′
0(z2))3

z2z2
1 +O(z3

1). (6.16)

We use the local propagator S as in the convention of [27] defined by

Γz̃
z̃z̃ = −Cz̃z̃z̃S − 7 + 216z̃

6z̃(1 + 27z̃)
, (6.17)

where the local three point function and the Christoffel symbol are

Cz̃z̃z̃ = − 1

3z̃3(1 + 27z̃)
, Γz̃

z̃z̃ =
∂2t2

∂z̃2

(
∂t2

∂z̃

)−1

=
−z̃−2 + c′′

0(z̃)

z̃−1 + c′
0(z̃)

. (6.18)

We can solve for S in terms of the local complex structure parameter

S =
z̃2[1 + 54z̃ + z̃(7 + 216z̃)c′

0(z̃) + 6z̃2(1 + 27z̃)c′′
0(z̃)]

2(1 + z̃c′
0(z̃))

. (6.19)

With the above formulas, we can straightforwardly compute

∂t1(
3∑

dE=1

F (0,0)
dE

edE(t1+
t2
3

))

= F (0,0)
1 z

1
3
2 z1e372z1++76122z2

1 + 2F (0,0)
2 z

2
3
2 z2

1e744z1 + 3F (0,0)
3 z2z3

1 + O(z4
1)

= 540z1 + 169695z2
1 + (58866000 + 687019032z2)z3

1 + O(z4
1)

(6.20)

where we need to use the relations (6.7), (6.8) as well as the differential equation (6.6), since

the higher derivatives of c0(z2) appear when we expand the local coordinate z̃ in terms of the

global coordinate z2 in (6.16). Then we find the function c0(z2) and its derivatives cancel

out in the result. Multiplying by the factor ω0 and acting with the Picard-Fuchs operators,

we find that they exactly cancel the classical contributions (6.13). So we confirm that the

formulas (6.14) provide the correct solution of the Picard-Fuchs equation at this order O(z4
1).

A better approach which would be more convenient for a derivation of the holomorphic

anomaly equation is to expand z2 in terms of the local coordinate z̃ by making an ansatz z2 =
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z̃ +
∑∞

i=1 ãn(z̃)zn
1 and solving for the coefficients. This is the inverse of the expansion (6.16).

For example to the first order, one finds

z2 = z̃ − z̃c1(z̃)

1 + z̃c′
0(z̃)

z1 + O(z2
1). (6.21)

Using the formulas (6.6), (6.7), (6.8), we can convert the coefficients into rational functions

of z̃, c′
0(z̃), c′′

0(z̃). Furthermore, we find that the derivative functions c′
0(z̃), c′′

0(z̃) precisely

combine into the local propagator S in (6.19). So the coefficients can be written as polynomials

of S with rational functions of z̃ as their coefficients. For the first few orders we have

z2 = z̃ − 90(2S + z̃2)

z̃
z1 − 135[80S3 − 360S2z̃2(1 + 36z̃) + 2Sz̃4(329 + 8073z̃)

+ z̃6(275 + 2997z̃ − 112266z̃2)]/[2z̃5(1 + 27z̃)]z2
1 + O(z3

1).

(6.22)

So from the power series of the double logarithmic solution, one can work in the reverse

direction of (6.20), and expand z2 in the appropriate form. It is not difficult to see that the

coefficients z̃
dE
3 F (0,0)

dE
are polynomials in S with rational functions of z̃ as their coefficients.

6.1 Some recursion relations

We provide some useful formulas for the coefficients in the solutions of Picard-Fuchs equations

in (6.5). For the power series solution ω0 =
∑∞

m,n=0 am,nzm
1 zn

2 , it is not difficult to derive

the recursion relations from the Picard-Fuchs equations and find a closed formula for the

coefficients

am,n =
12m

m!(m − 3n)!n!3

m∏

k=1

(6k − 1)(6k − 5), (6.23)

which is valid for m ≥ 3n ≥ 0 and understood to vanish otherwise.

We then consider the mirror map t2 = ω2
ω0

. It appears from the low order solu-

tions (6.7), (6.8) that the coefficients for n ≥ 1 have the following structure

cn(z) = (1 + 27z)[αn + βnzc′
0(z) + γnz2c′′

0(z)], (6.24)

where αn, βn, γn are constants. While we are not aware of a simple proof of the structure or a

closed formulas for the constants, we can derive a recursion relation for the constant coefficients

assuming it to be true. Using the first Picard-Fuchs operator and the fact L1(ω0) = 0, we find

L1(ω0t2) = (θ1ω0)(θ1−3θ2)t2+(θ1t2)(θ1−3θ2)ω0+ω0θ1(θ1−3θ2)t2

−432z1[(θ1t2)(2θ1+1)ω0+ω0θ2
1t2]

= −3
∑

m,n

mam,nzm
1 zn

2 [1+z2c′
0(z2)]+

∑

m,n

∞∑

l=1

am,nzm+l
1 zn

2 {−3(m+l)z2c′
l(z2)

+lcl(z2)[2m+l−3n−432(2m+l+1)z1]}.

(6.25)

Using the relation (6.6), this can be reduced to an expression depending only on c′
0(z2), c′′

0(z2).

Setting L1(ω0t2) = 0, and assuming the algebraic independence of z, c′
0(z), c′′

0(z), we can

obtain many relations which would overdetermine the constant coefficients αn, βn, γn’s.
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We can consider some simple choices. The coefficient of zm
1 in the equation (6.25) is

−3mam,0 +
m∑

k=1

kαk[(2m − k)am−k,0 − 432(2m − k − 1)am−k−1,0], (6.26)

whose vanishings can determine all constants αk’s recursively.

The coefficient of zm
1 z2 is

− 3mam,1 +
m∑

k=1

{kαk[(2m − k − 3)am−k,1 + 27(2m − k)am−k,0

− 432(2m − k − 1)(am−k−1,1 + 27am−k−1,0)] − 3mam−k,0(27αk − 6γk)},

(6.27)

whose vanishings can further determine all constants γk’s recursively.

Finally, the coefficient of zm
1 z2c′

0(z2) is

−3mam,0 +
m∑

k=1

{kβk[(2m−k)am−k,0 −432(2m−k−1)am−k−1,0]−3mam−k,0(βk −γk)}, (6.28)

whose vanishings can further determine all constants βk’s recursively.
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A Perturbative terms for six-dimensional N = (1, 0) supergravities

In this appendix, we derive the leading terms of the genus zero and genus one refined free

energies based on the analysis of the anomaly polynomial for 6d N = (1, 0) supergravity

theories. First, we review the basic concepts of 6d N = (1, 0) supergravity theories in

appendix A.1. Then, we derive the leading behavior of the genus-zero and genus-one free

energies in appendix A.2. Finally, in appendix A.3, we provide the analytic continuation for

the refined Gopakumar-Vafa expansion, which is relevant to our calculations.

A.1 A brief review of 6d N = (1, 0) supergravity theory

A six-dimensional N = (1, 0) supergravity theory has an associated unimodular lattice Γ

with pairing Ω of signature (1, T ) corresponding to the charge lattice of one self-dual and T

anti-self-dual 2-form fields Bα = {B0, Bi=1,··· ,T } in the supergravity and tensor multiplets

respectively. The VEV of the scalars in these multiplets are parameterized by a vector

J ∈ Γ ⊗ R which has unit length under Ω

ΩαβJ αJ β = J · J = 1. (A.1)

We consider 6d (1, 0) supergravity theories whose gauge algebras g =
⊕

i gi consist of a

product of simple Lie algebras gi without u(1) factors, with hypermultiplet spectrum

⊕
nR × R =

⊕

i

nRi
× Ri

⊕

i,j

nRi,Rj
× (Ri, Rj) (A.2)

Here nRi
and nRi,Rj

are the numbers of matter fields that transform in the irreducible

representation Ri of gi and (Ri, Rj) of gi × gj respectively.

The massless spectrum of the 6d theory consists of a gravity multiplet, T tensor multiplets,

H hypermultiplets and V vector multiplets. Their values and the matter contents are

constrained by the Green-Schwarz mechanism [94–96], which requires the factorization of the

8-form anomaly polynomial, derived in [97, 98] from gauge anomalies and the gravitation

anomaly, as

IGS =
1

2
ΩαβXα

4 ∧ Xβ
4 , (A.3)

with the notations Ωαβ = Ω−1
αβ , vα = Ωαβvβ and the 4-forms X4,α read

Xα
4 =

aα

4
tr R2 +

∑

i

bα
i tr F 2

i . (A.4)

Here tr = 1
2h∨

g

trAdj
g

is the normalized trace, Fi are the field strengths of the non-Abelian

gauge symmetries, R is the spacetime curvature 2-form and a, bi are anomaly coefficients.

Then the anomaly cancellation condition (A.3) gives [96]

H − V = 273 − 29T, 0 =
∑

Ri

nRi
BRi

− BAdj
gi

, (A.5)

a · a = 9 − T, a · bi =
1

6


∑

Ri

nRi
ARi

− AAdj
gi


 , (A.6)
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g R AR BR CR

su(N), Adj 2N 0 N + 6

N = 2, 3 F 1 0 1
2

su(N), Adj 2N 2N 6

N ≥ 4 F 1 1 0

g2
Adj 8 0 10

7 2 0 1

Table 5. Group theory coefficients.

and

bi · bi =
1

3


∑

Ri

nRi
CRi

− CAdj
gi


 , bi · bj =

∑

Ri,Rj

nRi,Rj
ARi

ARj
, (i ̸= j), (A.7)

where AR = index(R), BR, CR are group theory coefficients defined through

trR F 2 = ARtr F 2, (A.8)

trR F 4 = BRtr F 4 + CR(tr F 2)2, (A.9)

which can be found in [99, table 2]. In particular, AAdj = 2h∨
g is 2 times the dual Coxeter

number for g. For those numbers that are relevant to our paper, we list them in table 5.

When the anomaly cancellation conditions (A.5), (A.6), (A.7) are satisfied, the anomaly is

cancelled by adding to the action a Green-Schwarz term

SGS =

∫

M6

ΩαβBα
2 ∧ Xβ

4 . (A.10)

Now we consider the 6d theory coming from F-theory compactification on a compact Calabi-

Yau threefold, which is an elliptic fibration over a complex surface B. The fiber is a smooth

elliptic cuvre over a generic point on the base B and it degenerates over curves Σi in B.

The anomaly coefficients a, bi have a clear geometric correspondence. For instance, the

coefficients aα are the decomposition coefficients of the anti-canonical class of the base into

a basis {hα} for h1,1(B) as [100]

−KB =
∑

α

aαhα, Σi =
∑

α

bα
i hα. (A.11)

So we can perform the following identifications

a · a = KB · KB = 9 − n, a · bi = −KB · Σi, bi · bj = Σi · Σj . (A.12)

We also have

T = h1,1(B) − 1 . (A.13)

Upon further compactification of the 6d theory on T 2, the information from the 4d Coulomb

branch indicates that the rank of the vector multiplet rank(V ) and the number of neutral

hypermultiplets which are uncharged with respect to the Cartan of V are [101]

rank(V ) = h1,1(X) − h1,1(B) − 1 , Hneutral = h2,1(X) + 1 . (A.14)
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A.2 The leading behaviour of the genus zero and genus one free energies

In this section, we compute the tree-level and 1-loop free energies

E = Etree + E1-loop (A.15)

for 6d N = (1, 0) theories on a circle S1. The tree-level contribution Etree comes from the

6d (1, 0) effective action

S =

∫

M6

1

2
gαβGα ∧ ∗Gβ + ΩαβBα ∧ Xβ

4 , (A.16)

where gαβ is the 6d spacetime metric, Gα is the field strength for Bα and the 4-form Xβ
4

is modified by adding a term c2(R), which is the second Chern class of the background

SU(2)R R-symmetry bundle, to cancel the mixed anomalies with the SU(2)R R-symmetry.

Up to undetermined coefficients yα, we propose

Xα
4 = −aα

4
p1(M6) +

∑

i

bα
i tr F 2

i + yαc2(R), (A.17)

where p1(M6) = −1
2tr R2 is the first Pontryagin class of the tangent bundle of the six

dimensional spacetime M6.

Under circle compactification on S1, using the replacement rules proposed in [43, 78]

p1(M6) 7→ ϵ2
1 + ϵ2

2, trF 2
i 7→

∑

i′,j′

Ki′j′

i ϕi′ϕj′ , c2(R) 7→ −ϵ2
+, (A.18)

the action (A.16) contributes

Etree =
τ

2
Ω−1

αβtbα
tbβ

+ tbα


−1

4
aα(ϵ2

1 + ϵ2
2) +

∑

i

bα
i

∑

i′,j′

Ki′j′

i ϕi′ϕj′ − yαϵ2
+


 , (A.19)

to the refined free energies. Here τ is the inverse for the radius of the compactified circle S1,

tbα
are the tensor parameters which are related to the Kähler parameters tB,α for the base

B via tB,α = tbα
− aα

2 . Ki is the Killing form for the Lie algebra gi satisfying

∑

i′,j′

Ki′j′

i ϕi′ϕj′ =
1

2h∨
gi

∑

α∈∆+

(α · t)2 =
1

2AR

∑

w∈R

(w · t)2. (A.20)

The 1-loop contribution contains regularization from the 6d (1, 0) multiplets

E1-loop = Evec + Ehyper + Etensor + Egrav . (A.21)

To determine (A.21), we first study the 1-loop contributions of these supermultiplets to

the BPS spectrum

Z1-loop = Zvec Zhyper Zhyper,neutral Ztensor Zgrav. (A.22)
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The vector multiplet contribution is

Zvec = PE




−1 − q1q2

(1 − q1)(1 − q2)

∑

i



∑

α∈∆+
i

eα·t +
∞∑

n=1

∑

α∈rooti

eα·t+nτ





 , (A.23)

where ∆+
i and rooti are the positive roots and roots for the gauge algebra gi. The hyper-

multiplet contribution for the charged matter fields is

Zhyper = PE




√
q1q2

(1 − q1)(1 − q2)

∑

R

2nR



∑

w∈R+

ew·t +
∞∑

n=1

∑

w∈R
w ̸=0

ew·t+nτ





 , (A.24)

where we have used R+ and R for the positive weights and weights in the representation

R. For the neutral hypermultiplets

Zhyper,neutral = PE

[ √
q1q2

(1 − q1)(1 − q2)
Hneutral

∞∑

n=1

enτ

]
. (A.25)

For the tensor multiplets and gravity multiplet, the contribution are

Ztensor = PE

[
−

√
q1q2

(1 − q1)(1 − q2)
T

∞∑

n=1

(eϵ− + e−ϵ−)enτ

]
(A.26)

and

Zgrav = PE

[
−

√
q1q2

(1 − q1)(1 − q2)

∞∑

n=1

(eϵ− + e−ϵ−)(1 + eϵ1+ϵ2 + e−ϵ1−ϵ2)enτ

]
(A.27)

respectively. The classical part of the genus zero and genus one free energies from these 1-loop

contributions can be obtained by adding addition terms according to (A.47) and utilize the

Zeta regularization17 to regularize the infinite summation.

Evec =
1

12

∑

i



∑

α∈∆+
i

(α·t±ϵ+)3+
∞∑

n=1

∑

α∈rooti

(α·t+nτ ±ϵ+)3




− ϵ2
1+ϵ2

2

24

∑

i



∑

α∈∆+
i

α·t+
∞∑

n=1

∑

α∈rooti

(α·t+nτ)




17The Zeta regularization regularize the divergent summation, we have

∞∑

n=1

n
s = ζ(−s) = −

Bs+1(1)

s + 1
, s ∈ Z+ ,

where Bs(x) are the Bernoulli numbers defined from the expansion

t ext

et − 1
=

∞∑

s=0

Bs(x)
tn

n!
,

in particular, ζ(−s) = − 1
2
, − 1

12
, 0, 1

120
for s = 0, 1, 2, 3.
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=
∑

i




1

6

∑

α∈∆+
i

(α·t)3− 1

12
τ
∑

α∈∆+
i

(α·t)2+
ϵ2
+

2

∑

α∈∆+
i

α·t− ϵ2
1+ϵ2

2

24

∑

α∈∆+
i

α·t




+
V

720
τ3− V

24
ϵ2
+τ − ϵ2

1+ϵ2
2

24

(
− V

12
τ

)
(A.28)

Ehyper =− 1

12


∑

R

2nR


 ∑

w∈R+

(w·t)3+
∞∑

n=1

∑

w∈R+

(±w·t+nτ)3


+2Hneutral

∞∑

n=1

(nτ)3




+
ϵ2
1+ϵ2

2

48


∑

R

2nR

∑

w∈R+

w·t+2H
∞∑

n=1

nτ




=− 1

12

∑

R

nR


2

∑

w∈R+

(w·t)3−τ
∑

w∈R+

(w·t)2


− H

720
τ3

+
ϵ2
1+ϵ2

2

48


∑

R

2nR

∑

w∈R+

w·t−H

6
τ


 (A.29)

Etensor =
T

12

(
∞∑

n=1

(nτ ±ϵ−)3

)
− T

24
(ϵ2

1+ϵ2
2)

∞∑

n=1

nτ =
T

720
τ3− T

24
ϵ2
−τ +

T

288
(ϵ2

1+ϵ2
2)τ (A.30)

Egrav =
1

12

(
∞∑

n=1

(nτ +ϵ1+ϵ2±ϵ−)3+(nτ −ϵ1−ϵ2±ϵ−)3+(nτ ±ϵ−)3

)
−1

8
(ϵ2

1+ϵ2
2)

∞∑

n=1

nτ

=
1

240
τ3−5τ

48
(ϵ2

1+ϵ2
2+ϵ1ϵ2). (A.31)

By collecting all these contributions, we have

E = Etree + E1-loop = F (0,0) + (ϵ1 + ϵ2)2F (1,0) + ϵ1ϵ2F (0,1) (A.32)

where

F (0,0) = − 1

6



∑

i

∑

α∈∆+
i

(α · t)3 −
∑

R

nR

∑

ω∈R+

(ω · t)3


+

9 − T

24
τ3

+
∑

i

(
tbα

bα
i − a · bi

2
τ

)
1

2h∨
gi

∑

α∈∆+
i

(α · t)2 +
1

2
Ω−1

αβtbα
tbβ

τ , (A.33)

and

F (0,1) = − 1

12

∑

i

∑

α∈∆+
i

α · t +
∑

R

nR

12

∑

ω∈R+

ω · t −
(

2 − T

6

)
τ − 1

2
aαtbα

, (A.34)

F (1,0) = − 1

12

∑

i

∑

α∈∆+
i

α · t −
∑

R

nR

24

∑

ω∈R+

ω · t +
τ

96
(101 + V − 9T ) +

1

4
(aα + yβ)tbα

.

(A.35)
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A.2.1 Elliptic P2

In this section, as an example, we compute the leading contributions to the genus zero and

genus one free energies for elliptic P2. The calculations for the other models studied in this

paper are straightforward and are left to the reader.

The 6d supergravity theory corresponds to elliptic P2 has the number of supermultiplets:

H = 273, V = 0, T = 0. (A.36)

Let h denote the hyperplane class of P2, which has self-intersection h2 = 1. The canonical

class is −KB = 3h. So that Ω = 1 and a = 3. From these data, we obtain the genus

zero and genus one free energies

F (0,0) =
1

2
τt2

b +
3

8
τ3 =

1

2
(3t3

1 + 3t2
1t2 + t1t2

2) (A.37)

F (0,1) = −2τ − 3

2
tb = −1

4
(17t1 + 3t2), (A.38)

F (1,0) =
101

96
τ +

1

4
(3 + y)tb =

1

96
(209 + 36y)t1 +

1

4
(3 + y)t2, (A.39)

where τ, tb are related to the Kähler parameters via

t1 = τ, t2 = tb − 3

2
τ. (A.40)

In the limit to local P2, t1, t2 are mapping to the local threefold Kähler parameter via

t1 = m̂ − 1

3
t, t2 = t. (A.41)

Therefore we have

F (0,0) =
3

2
m̂3 − 1

18
t3 (A.42)

F (0,1) = −17

4
m̂ − 1

12
t, (A.43)

F (1,0) =
1

96
(209 + 36y)m̂ +

1

288
(7 + 36y)t. (A.44)

From the calculation of local P2, the coefficient of t in the genus (1, 0) free energy is − 1
24 ,

from which we fix the value of y = −19
36 .

A.3 Analytic continuation

In the refined Gopakumar-Vafa expansion of the partition function, the most important

ingredient is [102]

S3(t; ϵ1, ϵ2) = exp

(
B3,3(t; ϵ1, ϵ2) +

∞∑

n=1

e−n t

n sinh(nϵ1/2) sinh(nϵ2/2)

)

= exp

(
B3,3(t; ϵ1, ϵ2) +

∫

R+i0

ds

s

e−2s t−2πi(2b+1)s

8 sinh(2πil) sinh(sϵ1) sinh(sϵ2)

)
, (A.45)
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where b ∈ Z and the second line in (A.45) is the integral representation of the function S3(z),

it recovers the expression in the first line by performing the contour integral over the right half-

plane by excluding the origin. Consider the analytic continuation of the function S3(t; ϵ1, ϵ2)

which correspond to change the contour integral to the other side of the plane, it gives

S3(t; ϵ1, ϵ2) = exp

(
B3,3(t; ϵ1, ϵ2) +

∞∑

n=1

en t

n sinh(nϵ1/2) sinh(nϵ2/2)

+
1

ϵ1ϵ2

(
1

6
(t + πi(2b + 1))3 +

1

24
(4π2 − ϵ2

1 − ϵ2
2)(t + πi(2b + 1))

))
. (A.46)

We expect the analytic continuation gives S3(−t; −ϵ1, −ϵ2) = S3(t; ϵ1, ϵ2), with a further

assumption that ϵ1ϵ2B3,3(t; ϵ1, ϵ2) is a degree 3 homogeneous polynomial for t, ϵ1, ϵ2, we find

B3,3(t) := B3,3(t; ϵ1, ϵ2) = − 1

12ϵ1ϵ2
(t̃ 3 + π2t̃) +

ϵ2
1 + ϵ2

2

48ϵ1ϵ2
t̃, t̃ = t + πi(2b + 1). (A.47)
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B Formulas from the gauge theory approach

In this appendix, we compute expectation values of Wilson loops for 5d N = 1 theories on

the Omega-deformed background R4
ϵ1,ϵ2

× S1 that are relevant for our discussion.

B.1 5d SU(N)κ theories

The instanton partition function for the 5d SU(N)κ theory with Chern-Simons level κ is

calculated using the localization method within the ADHM construction of the instanton

moduli space, which has been extensively studied in the literature, e.g. [6, 29, 103–106],

both with and without the Omega-deformation on R4. For the SU(2) theory, the parameter

κ can be understood as the theta angle of the theory, with θ = κ, π. For κ ≤ N , the

resulting partition function is

Z(t, m; ϵ1, ϵ2) = eFpolyZpert Zinst, (B.1)

where Zinst is the instanton contribution

Zinst =
∑

µ

(−1)κ |µ|
q

|µ| Zµ, Zµ =
N∏

i=1

Q
κ|µi|
i q

− κ
2

||µi||
2+ 1

2
1 q

− κ
2

||µt
i
||2+ 1

2
2∏N

j=1 Nµiµj
(Qij ; q1, q2)

(B.2)

where q1,2 = eϵ1,2 , ϵ+ = 1
2(ϵ1 + ϵ2), Qi = eαi , Qij = eαi−αj , q is the instanton counting

parameter and αi are the Coulomb parameters for the SU(N) theory with the constraint∑
i αi = 0. The summation in the instanton contribution Zpert is over all Young tableau

µi, i = 1, · · · , N , for each µi, it is a partition µi = {µi,m} and

Nµiµj
(Q; q1, q2) =

∏

(m,n)∈µi

(
1 − Qq

−µi,m+n
1 q

µt
j,n

−m+1

2

)
·

∏

(m,n)∈µj

(
1 − Qq

µj,m−n+1
1 q

−µt
i,n

+m

2

)
.

(B.3)

We also use the notation |µi| =
∑

(m,n)∈µi
1 =

∑
m µi,m, ||µi|| =

∑
m µ2

i,m,|µ| =
∑N

i=1 |µi| and

µt
i is the transpose partition of µi. Zpert comes from the perturbative or one-loop contribution:

Zpert =
∞∏

m,n=0

∏

i<j

(1 − Qijqm
1 qn

2 )(1 − Qijqm+1
1 qn+1

2 ). (B.4)

Fpoly obtains contributions from the classical and one-loop part, it has the expression

ϵ1ϵ2 Fpoly = −1

6

∑

i<j

(αi − αj)3 − κ

6

∑

i

α3
i − log q

2N

∑

i<j

(αi − αj)2

− 1

12
((ϵ1 + ϵ2)2 + ϵ1ϵ2)

∑

i<j

(αi − αj) (B.5)

The localization method also applies to the calculations for the vacuum expectation

values of operators. For instance, in the KK reduction of the 5d theory to 4d, one can

consider the insertion of Chiral operators [107–109], which are exactly the reduction of

Wilson loop operators in 5d.
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The VEVs for the Wilson loops can be obtained with the insertion of equivariant Chern

characters. Define the equivariant Chern character for the universal bundle of the instanton

moduli space [108]

ChF,µ(Qi; q1, q2) =
N∑

i=1

Qi − I
N∑

i=1

∑

(m,n)∈µi

Qiq
−m+ 1

2
1 q

−n+ 1
2

2 (B.6)

where I = (1 − q1)(1 − q2)q
−1/2
1 q

−1/2
2 is the factor defined in (2.9). Denote Ri the i-th

fundamental representation, the equivariant Chern characters for those representations can

be obtained from the tensor power of ChF,µ, for instance

ChΛ2,µ(Qi; q1, q2) =
1

2

(
ChF,µ(Qi; q1, q2)2 − ChF,µ(Q2

i ; q2
1, q2

2)
)

,

Ch
F,µ(Qi; q1, q2) = ChF,µ(Q−1

i ; q−1
1 , q−1

2 ),
(B.7)

where we have denoted F as the fundamental representation, Λ2 as the anti-symmetric

representation and F as the anti-fundamental representation, their highest weights are

[1, 0, · · · , 0], [0, 1, 0 · · · , 0] and [0, · · · , 0, 1] respectively. The equivariant Chern characters

for R = R⊗k1
1 ⊗ · · · ⊗ R

⊗kN−1

N−1 is

ChR,µ =
N−1∏

i=1

Chki

Ri,µ
(B.8)

whose highest weight is [k1, · · · , kN−1]. Utilize the highest weight to denote the representation,

the Wilson loop expectation value for the representation R is

〈
W

SU(N)κ

[k1,··· ,kN−1]

〉
=

1

Zinst

∑

µ

(−1)κ |µ|
q

|µ| WR,µ Zµ, (B.9)

where we have defined

WR,µ = ChR,µ + · · · (B.10)

The · · · in (B.10) are the correction terms which generally exist if the asymptotic free-

dom condition on the instanton moduli space is not satisfied when we add matters in the

representation R. A physical guess for these corrections leads to the ansatz

∑

k>0

∑

R′

fR′,k(q1, q2)qkChR′,µ, (B.11)

which can be fixed from the requirement of the BPS expansion (3.5) that the curve classes

in the expansions intersect with at least one compact surface.18 The summation over

the representations R′ and k are finite due to the positivity and integrability of the BPS

expansion (3.4). In appendix B.2, we will fix the correction terms for SU(2)0,π theories,

but for SU(N) theories with higher ranks, we will ignore these corrections for simplicity

as they do not affect our calculations.

18This is equivalent to there is no single mass parameter term in the expansion.
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B.2 SU(2) theories with theta angle 0 or π

In this section, we provide the explicit expressions of the (B.10) for 5d SU(2)0 and SU(2)π

theories based on the description of the last section.

SU(2)0.

W[1],µ =Ch1,µ ,

W[2],µ =Ch2,µ+q−1
+ Iq,

W[3],µ =Ch3,µ+q−1
+ I(2+q−1

1 +q−1
2 −q−1

1 q−1
2 )qCh1,µ ,

W[4],µ =Ch4,µ+q−1
+ I (3+q−2

1 +q−2
2 +q−2

1 q−2
2 +2q−1

1 +2q−1
2 −2q−1

1 q−2
2 −2q−2

1 q−1
2 )qCh2,µ

+I3q−1
+ (1−q−1

1 q−1
2 )q+I2q−2

+ (2+q−1
1 +q−1

2 +q−2
1 q−2

2 −q−1
1 q−2

2 −q−2
1 q−1

2 )q2 .

SU(2)π.

W[1],µ =Ch1,µ+q−1
+ q,

W[2],µ =Ch2,µ+(1+q−1
1 +q−1

2 −q−1
1 q−1

2 )qCh2,µ+q−1
+ q

2 ,

W[3],µ =Ch3,µ+q−5
+ ((−1+q2)2+q1(−2+q2+q2

2)+q2
1(1+q2+q2

2))qCh2,µ−I2q−3
+ (1−q1q2)q3

+q−3
+ q+q−8

+ (q2(q2
2+q2+1)q3

1+(q3
2−1)q2

1+(q3
2−3q2+2)q1−(q2−1)2)q2Ch1,µ .

B.3 E8 del Pezzo surface

The local E8 del Pezzo surface dP8 is related to 5d SU(2) theory with 7 fundamental

hypermultiplets. The expectation value of the Wilson loop in the fundamental representation

was computed in [18], which can be obtained from the refined partition function of E-

strings [110].

The geometry for the massless E-string theory is the elliptic fibration over a −1 curve.

Denote ZE-str(Qb, Qf ; q1, q2) the partition function for massless E-strings, where Qb and Qf

are the parameters for the base and fiber respectively. In the limit Qf , Q−1
b → 0 while keeping

Q = QbQf finite. Substitute Qb = Q
Qf

in ZE-str, the expansion of the partition function for

E-strings in terms with Qf gives the Wilson loops for the local E8 theory,19

ZE-str(Qb, Qf ; q1, q2) = ZE8(Q; q1, q2)

(
1 +

∑

k

Qk
f Zk

)
, (B.12)

where

Zk = Pk(q1, q2)
〈
W E8

[−k]

〉
+

k∑

l=1

P̃k,l(q1, q2)
〈
W E8

[−k+l]

〉
. (B.13)

Utilize the BPS expansion (3.4), we can fix P̃k,l. For instance, P̃1,0 = P̃2,1 = 0 and

P̃2,0 =
4125 + 249χ 1

2
(q−)χ 1

2
(q+) + χ1(q−)χ1(q+)

(1 − q2
1)(1 − q2

2)q−1
1 q−1

2

, (B.14)

19Before perform the expansion, one need change the degree of the BPS invariants at Qb = QQ−1
f to

Q−1
b = Q−1Qf , this corresponds to a flop transition in the geometry.
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2jL\2jR 0 1 2 3 4

0 225252 250

1 43500 1

2 250 4623

3 1 250

4 1

d = 3

2jL\2jR 0 1 2 3 4 5 6 7 8

0 16340118 295752 250

1 1477380 6424374 48371 1

2 339002 1587007 4874

3 4623 48620 300375 251

4 251 4874 43998 1

5 1 251 4624

6 1 250

7 1

d = 4

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 554613637 1355489880 102214234 1662376 4624

1 394131111 855496641 37819756 349245 251

2 31317499 144378490 344206235 9607509 49123 1

3 9606263 40543262 111910372 1998750 4876

4 305245 2042248 9687004 31413876 349496 251

5 48873 354368 1999249 7733750 48873 1

6 250 4876 49124 349497 1654380 4875

7 1 251 4876 48873 300874 251

8 1 251 4875 43999 1

9 1 251 4624

10 1 250

11 1

d = 5

Table 6. The refined BPS invariants for the Wilson loop of dP8 in the representation [2] with d ≤ 5.

At d = 1, 2, there is no BPS content.

2jL\2jR 0 1 2 3 4 5 6 7

0 22830619 344374 251

1 8312255 53496 1

2 344374 1936005 5126

3 53496 349248 252

4 251 5126 48873 1

5 1 252 4875

6 1 251

7 1

d = 4

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 2227558639 141697614 2016496 4875

1 437321613 1305731372 49439639 403244 252

2 186660998 494415484 12004630 54251 1

3 9986885 52243140 152981879 2402245 5128

4 2401492 12084625 41151254 403496 252

5 49125 408368 2402745 9737877 54000 1

6 5127 54252 403497 2004128 5127

7 1 252 5128 54000 349748 252

8 1 252 5127 48874 1

9 1 252 4875

10 1 251

11 1

d = 5

Table 7. The refined BPS invariants for the Wilson loop of dP8 in the representation [3] with d ≤ 5.

At d = 1, 2, 3, there is no BPS content.

where

χj(q) =
qj+ 1

2 − q−j− 1
2

q
1
2 − q− 1

2

. (B.15)
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B.4 E-string theory

The partition function of the six-dimensional E-string theory can be calculated from the

elliptic genera of 2d (0, 4) O(k) gauge theories on T 2, where the matter contents of the 2d

theories are obtained from the brane bound states in the IIA description of E-strings [82]. One

can introduce half-BPS codimension 4 defects in the E-string theory, they are constructed

by adding additional n parallel D4′ branes where the brane configuration can be found

in [72, table 1].

The expectation values for the Wilson surface in the E-string theory are generated from

the partition functions of the E-string theory in the presence of codimension 4 defects. It

can be expressed as a sum over k-string elliptic genus contribution

ZE-str,[n] = Q−n
b

(
1 +

∞∑

k=1

Qk
b Z

(k)
E-str,[n]

)
, Qb = eϕ0 , (B.16)

where ϕ0 is the tensor parameter and the k-string elliptic genus is

Z
(k)
E-str,[n] =

∮
[du]Z

O(k)
1-loop ·

n∏

i=1

∏

ρ∈fund

θ1(±ϵ− + ρ(u) + xi)

θ1(±ϵ+ + ρ(u) + xi)
. (B.17)

Here d[u] =
∏rcont.

I=1
duI

2πi is the integral measure, rcont. is the rank for the continuous sector

of the O(k) group, and xi are the positions of D4′ branes. Z
O(k)
1-loop is the 1-loop determinant

of the k-string elliptic genus

Z
O(k)
1-loop = θ1(2ϵ+)rcont.

∏

α∈root,
α ̸=0

θ1(α(u))θ1(2ϵ+ + α(u)) ·
∏

ρ∈fund

∏16
l=1 θ1(ρ(u) ± ml)∏

ρ∈sym θ1(ρ(u) + ϵ1)θ1(ρ(u) + ϵ2)
.

(B.18)

In integral (B.17) can be evaluated from the Jeffrey-Kirwan (JK) residues by summing over

all the JK poles. In the following, we compute the one-, two- and three-string elliptic genera.

One string. The one-string elliptic genus is

Z
(1)
E-str,[n] =

4∑

I=1

∏8
l=1 θI(ml)

2θ1(ϵ1)θ1(ϵ2)

n∏

i=1

θI(xi ± ϵ−)

θI(xi ± ϵ+)
, (B.19)

which is contributed from four discrete sectors of the O(1) gauge group.

Two strings. The two-string elliptic genus of E-strings is calculated from one continuous sec-

tor and six discrete sectors of the O(2) flat connections. The continuous sector contribution is

Z
(2)
0 =

∮
[du]

θ1(2ϵ+)

θ1(ϵ1,2)θ1(ϵ1,2 ± 2u)
·

n∏

i=1

θ1(xi ± u ± ϵ−)

θ1(xi ± u ± ϵ+)
·

8∏

l=1

θ1(ml ± u). (B.20)

The integral is evaluated from the following JK-poles:

• ϵ1,2 + 2u = 0, 1, τ, τ + 1.

Z
(2)
1 =

1

2

(
4∑

I=1

∏8
l=1 θI

(
ml ± ϵ1

2

)

θ1(ϵ1,2)θ1(2ϵ1)θ1(ϵ2 − ϵ1)

n∏

i=1

θI

(
xi ± ϵ1

2 ± ϵ−
)

θI

(
xi ± ϵ1

2 ± ϵ+
) + (ϵ1 ↔ ϵ2)

)
. (B.21)
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• xi + u ± ϵ+ = 0, i = 1, · · · , n.

Z
(2)
2 =

n∑

j=1

(
1

θ1(2xj)θ1(2xj − 2ϵ+)θ1(2xj − 2ϵ+ − ϵ1,2)

·
∏

i̸=j

θ1(xi + xj − ϵ1,2)θ1(−xi + xj + ϵ1,2)

θ1(xi + xj)θ1(−xi + xj)θ1(xi + xj − ϵ+)θ1(−xi + xj + ϵ+)

+ (ϵ1 → −ϵ2, ϵ2 → −ϵ1)

)
. (B.22)

The contributions coming from the discrete sectors are

Z
(2)
I,J =

θσ(I,J)(0)θσ(I,J)(2ϵ+)
∏8

l=1 θI(ml)θJ(ml)

θ1(ϵ1,2)2θσ(I,J)(ϵ1,2)

n∏

l=1

θI(xi ± ϵ−)θJ(xi ± ϵ−)

θI(xi ± ϵ+)θJ(xi ± ϵ+)
, (B.23)

where σ(I, J) = σ(J, I) is a symmetric function with

σ(I, I) = 1 , σ(1, J) = J , σ(2, 3) = 4 , σ(2, 4) = 3 , σ(3, 4) = 2 . (B.24)

In total, the 2-string elliptic genus is

Z
(2)
E-str,[n] =

1

2

2∑

I=1

Z
(2)
I +

1

4

4∑

I<J

Z
(2)
I,J . (B.25)

Three strings. The three-string elliptic genus of E-strings is calculated from 8 sectors,

they are given as follows:

Z
(3)
I =

∮
[du]

θ1(2ϵ+)θI(2ϵ+ ± u)θI(±u)

θ1(ϵ1,2)2θI(ϵ1,2 ± u)θ1(ϵ1,2 ± 2u)
·

8∏

l=1

θI(ml)θ1(ml ± u)

·
n∏

i=1

θI(xi ± ϵ−)θ1(xi ± u ± ϵ−)

θI(xi ± ϵ+)θ1(xi ± u ± ϵ+)
, (B.26)

and

Z
(3)
I

′ =
θ2(0)θ3(0)θ4(0)θ2(2ϵ+)θ3(2ϵ+)θ4(2ϵ+)

θ1(ϵ1,2)3θ2(ϵ1,2)θ3(ϵ1,2)θ4(ϵ1,2)

4∏

J ̸=I

(
n∏

i=1

θJ(xi±ϵ−)

θJ(xi±ϵ+)
·

8∏

l=1

θJ(ml)

)
, (B.27)

for I = 1, 2, 3, 4. The integral (B.26) is evaluated from the JK-poles:

• ϵ1,2 + 2u = 0, 1, τ, τ + 1.

• ϵ1,2 + u = ωI , where ω1 = 0, ω2 = 1
2 , ω3 = 1+τ

2 , ω4 = τ
2 are the half period for Jacobi

theta functions.

• xi ± ϵ+ + u = 0.
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They give

Z
(3)
I =

1

θ1(ϵ1,2)2

[
θ1(ϵ1,2) ·∏8

l=1 θI(ml)θ1(ml ± ϵ1)

θ1(2ϵ1)θ1(ϵ2 − ϵ1)θ1(3ϵ1)θ1(ϵ2 − 2ϵ1)

n∏

i=1

θI(xi ± ϵ−)θI(xi ± ϵ1 ± ϵ−)

θI(xi ± ϵ+)θI(xi ± ϵ1 ± ϵ+)

+
1

2

4∑

J=1

θσ(I,J)

(
3
2ϵ1 + ϵ2

)
θσ(I,J)

(− ϵ1
2

)∏8
l=1 θI(ml)θJ

(
ml ± ϵ1

2

)

θ1(2ϵ1)θ1(ϵ2 − ϵ1)θσ(I,J)

(
3
2ϵ1

)
θσ(I,J)

(
ϵ2 − ϵ1

2

)

·
n∏

i=1

θI(xi ± ϵ−)θJ

(
xi ± ϵ1

2 ± ϵ−
)

θI(xi ± ϵ+)θJ

(
xi ± ϵ1

2 ± ϵ+
) + (ϵ1 ↔ ϵ2)

]

+

[
θI(xi + ϵ+)θI(xi − 3ϵ+)θI(xi − ϵ+)2θ1(2xi − ϵ1,2)

θ1(ϵ1,2)θI(xi − ϵ+ − ϵ1,2)θI(xi ± ϵ−)θ1(2xi − 2ϵ+ ± ϵ1,2)θ1(2xi)θ1(2xi − 2ϵ+)

·
8∏

l=1

θI(ml)θ1(xi − ϵ+ ± ml) ·
n∏

j=1

θI(xj ± ϵ−)

θI(xj ± ϵ+)
·

n∏

j ̸=i

θ1(xi − ϵ+ ± xj ± ϵ−)

θ1(xi − ϵ+ ± xj ± ϵ+)

+ (ϵ1 → −ϵ2, ϵ2 → −ϵ1)

]
. (B.28)

In total, the 3-string elliptic genus is

Z
(3)
E-str,[n] =

1

4

4∑

I=1

Z
(3)
I +

1

8

4∑

I=1

Z
(3)
I

′. (B.29)
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C Refined BPS numbers at higher degree

C.1 The refined BPS numbers for elliptic fibration over F0

2jL\2jR 0 1 2

0 488

1 1 1

(d2, d3) = (0, 1), (1, 0)

2jL\2jR 0 1 2 3 4

0 488

1 1 2 1

(d2, d3) = (1, 1)

2jL\2jR 0 1 2 3 4 5 6

0 488

1 1 2 1

(d2, d3) = (1, 2), (2, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8

0 488

1 1 2 1

(d2, d3) = (1, 3), (3, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9

0 488 1 976 2 1

1 1 4 5 488 2

2 1 2 1

(d2, d3) = (2, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 488

1 1 2 1

(d2, d3) = (1, 4), (4, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 488 1 976 4 1464 5 2

1 1 4 8 488 9 976 5 1

2 1 4 5 488 2

3 1 2 1

(d2, d3) = (2, 3), (3, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 488

1 1 2 1

(d2, d3) = (1, 5), (5, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 488 1 976 4 1464 8 1952 8 3

1 1 4 8 488 13 976 15 1464 9 2

2 1 4 8 488 9 976 5 1

3 1 4 5 488 2

4 1 2 1

(d2, d3) = (2, 4), (4, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 488 1 976 5 2440 13 2928 21 3416 19 488 8 1

1 1 4 10 488 19 1464 29 2928 33 2928 22 488 6

2 1 5 13 488 22 1464 23 2440 13 3

3 1 5 12 488 14 976 7 1

4 1 4 5 488 2

5 1 2 1

(d2, d3) = (3, 3)

Table 8. The refined BPS numbers of elliptic F0 for dE = 1, 0 < d2 + d3 ≤ 6.
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2jL\2jR 0 1 2 3

0 280964 1

1 1 488 1

2 1 1

(d2, d3) = (0, 1), (1, 0)

2jL\2jR 0 1 2

0 488

1 1 1

(d2, d3) = (0, 2), (2, 0)

2jL\2jR 0 1 2 3 4 5

0 488 118832 488 3

1 2 1464 3 488 1

2 5 3 1

(d2, d3) = (1, 1)

2jL\2jR 0 1 2 3 4 5 6 7

0 3 488 118832 488 3

1 1 488 3 1464 3 488 1

2 3 6 3 1

(d2, d3) = (1, 2), (2, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9

0 3 488 118832 488 3

1 1 488 3 1464 3 488 1

2 1 3 6 3 1

(d2, d3) = (1, 3), (3, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 488 4 118840 1952 356988 1952 10 488 2

1 1 488 5 2928 13 4392 118843 1952 7 1

2 5 14 488 18 1464 11 488 3

3 1 3 6 3 1

(d2, d3) = (2, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11

0 3 488 118832 488 3

1 1 488 3 1464 3 488 1

2 1 3 6 3 1

(d2, d3) = (1, 4), (4, 1)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 4 488 118841 1464 357003 4880 594662 5368 24 1464 5 1

1 1 488 5 2928 18 6832 118866 9272 357013 4392 21 488 4

2 5 18 488 33 2928 44 4392 118857 1952 11 1

3 1 5 14 488 18 1464 11 488 3

4 1 3 6 3 1

(d2, d3) = (2, 3), (3, 2)

Table 9. The refined BPS numbers of elliptic F0 for dE = 2, 0 < d2 + d3 ≤ 6.
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2jL\2jR 0 1 2 3 4

0 15928440 2 1

1 2 281452 2

2 2 488 1

3 1 1

(d2, d3) = (0, 1)

2jL\2jR 0 1 2 3 4

0 15928440 2 1

1 2 281452 2

2 2 488 1

3 1 1

(d2, d3) = (0, 2)

2jL\2jR 0 1 2 3 4 5 6

0 51107504 238155 2440 7 1

1 356982 565344 118843 976 5

2 2440 11 2440 7 488 1

3 5 8 4 1

(d2, d3) = (1, 1)

2jL\2jR 0 1 2

0 488

1 1 1

(d2, d3) = (0, 3)

2jL\2jR 0 1 2 3 4 5 6 7 8

0 2440 238159 35181504 238160 2440 7 1

1 118841 284868 475826 284868 118846 976 5

2 1952 15 4880 16 2440 7 488 1

3 7 15 11 4 1

(d2, d3) = (1, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 7 2440 238160 35181504 238160 2440 7 1

1 5 976 118846 284868 475826 284868 118846 976 5

2 488 7 2440 16 4880 16 2440 7 488 1

3 3 11 16 11 4 1

(d2, d3) = (1, 3)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11

0 2928 238174 19260384 833318 109109720 952145 9760 118858 1464 7

1 118853 5856 951677 577056 1784964 19827680 714018 6344 25 488 3

2 2928 33 12200 118895 17568 475871 10736 118867 2440 10 1

3 15 488 45 1952 58 4392 42 1952 17 488 3

4 3 9 14 9 3 1

(d2, d3) = (2, 2)
2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 7 2440 238160 35181504 238160 2440 7 1

1 5 976 118846 284868 475826 284868 118846 976 5

2 1 488 7 2440 16 4880 16 2440 7 488 1

3 1 4 11 16 11 4 1

(d2, d3) = (1, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2928 238178 19261360 833354 93196408 2380620 202578796 2499447 306340 475886 4880 23 488 2

1 118855 5856 951706 301460 2736676 20416936 4165105 94053940 1903885 20496 118906 2928 14 1

2 2928 39 14640 118941 32696 951800 326348 1785071 19560868 714070 9272 39 488 5

3 18 488 65 3416 126 11712 118989 17080 475928 10248 118887 2440 14 1

4 5 19 488 44 1952 56 4392 40 1952 16 488 3

5 1 3 9 14 9 3 1

(d2, d3) = (2, 3)

Table 10. The refined BPS numbers of elliptic F0 for dE = 3, 0 < d2 + d3 ≤ 6.
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2jL\2jR 0 1 2 3 4 5

0 410133618 4 488 1

1 3 16209892 4 1

2 488 4 281452 3

3 1 2 488 1

4 1 1

(d2, d3) = (0, 1)

2jL\2jR 0 1 2 3 4 5 6

0 6749497860 6 281452 3

1 6 426343510 8 488 2

2 281452 7 16210380 5 1

3 2 488 5 281452 3

4 1 2 488 1

5 1 1

(d2, d3) = (0, 2)

2jL\2jR 0 1 2 3 4 5

0 410133618 4 488 1

1 3 16209892 4 1

2 488 4 281452 3

3 1 2 488 1

4 1 1

(d2, d3) = (0, 3)

2jL\2jR 0 1 2

0 488

1 1 1

(d2, d3) = (0, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9

0 895036392 10108466840 485191058 951660 288284 24 488 2

1 138538871 587410946 138895893 51687488 357036 4392 15 1

2 17064496 1665642 17914220 832868 569736 118865 976 7

3 33 293652 62 291212 38 3416 10 488 1

4 31 488 32 488 18 5 1

5 1 2 1

(d2, d3) = (1, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11

0 287796 951659 485191058 10108466860 485191058 951661 288284 24 488 2

1 357021 51687488 138895903 571205446 138895904 51687488 357036 4392 15 1

2 568760 832865 17633744 1784503 17633744 832872 569736 118865 976 7

3 28 290724 69 297068 70 291212 38 3416 10 488 1

4 488 31 488 48 488 36 488 18 5 1

5 1 2 2 2 1

(d2, d3) = (1, 3)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 58816928 2338601017 1105638636 27280967247 1125129844 4403222 19843784 475901 5856 19 1

1 2142498 257889928 281957323 1393908524 2615917012 219392584 2617892 24400 118909 1952 11

2 1151184 4521658 54558128 7497388 131797304 4403360 20414496 832937 8296 37 488 3

3 118933 602920 594898 622440 1546516 605360 594804 15616 118887 2440 11 1

4 2440 119 7320 172 12200 138 7320 69 1952 20 488 3

5 9 25 37 26 12 3 1

(d2, d3) = (2, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 488 24 288284 951661 485191058 10108466860 485191058 951661 288284 24 488 2

1 14 4392 357036 51687488 138895904 571205446 138895904 51687488 357036 4392 15 1

2 976 118865 569736 832872 17633744 1784503 17633744 832872 569736 118865 976 7

3 9 3416 38 291212 70 297068 70 291212 38 3416 10 488 1

4 17 488 36 488 49 488 36 488 18 5 1

5 1 2 2 2 2 1

(d2, d3) = (1, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 · · ·

0 468430462 2338958116 269725512 19515028352 2441328392 59430191270 2065808006 149487274 130127624 2023320 21472

1 2380709 225498448 147108398 1248598098 3041769570 2666356642 20071922561 1044125850 9163710 20175012 951876

2 315612 5354145 38959452 14399806 280442068 158412779 957391518 2484995076 188999084 3688588 37576

3 118984 340012 1070947 1537556 4402862 37886348 7259656 114802592 4165428 19871112 833006

4 3416 213 16592 119250 322932 595175 338548 1546688 321468 594883 14152

5 19 488 68 2440 134 6832 167 11712 130 6832 63

6 4 12 24 35 24

(d2, d3) = (2, 3)

Table 11. The refined BPS numbers of elliptic F0 for dE = 4, 0 < d2 + d3 ≤ 6. Here we exclude the

degree (dE , d2, d3) = (4, 1, 1) as it is not fixed from the boundary conditions we have.
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C.2 The refined BPS numbers for elliptic fibration over F1

2jL\2jR 0 1 2

0 488

1 1 1

(d2, d3) = (0, 1)

2jL\2jR 0 1

0 248

1 1

(d2, d3) = (1, 0)

2jL\2jR 0 1 2 3

0 488

1 2 1

(d2, d3) = (1, 1)

2jL\2jR 0 1 2 3 4 5

0 488

1 1 2 1

(d2, d3) = (1, 2)

2jL\2jR 0 1 2 3 4 5 6 7

0 488

1 1 2 1

(d2, d3) = (1, 3)

2jL\2jR 0 1 2 3 4 5 6

0 488

1 1 2 1

(d2, d3) = (2, 2)

2jL\2jR 0 1 2 3 4 5 6 7 8 9

0 488

1 1 2 1

(d2, d3) = (1, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9

0 488 1 976 2 1

1 1 4 5 488 2

2 1 2 1

(d2, d3) = (2, 3)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11

0 488

1 1 2 1

(d2, d3) = (1, 5)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12

0 488 1 976 4 1464 5 2

1 1 4 8 488 9 976 5 1

2 1 4 5 488 2

3 1 2 1

(d2, d3) = (2, 4)

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 488 1 488 2 1

1 1 3 3 488 1

2 1 2 1

(d2, d3) = (3, 3)

Table 12. The refined BPS numbers of elliptic F1 for dE = 1, 0 < d2 + d3 ≤ 6. The degree

(d2, d3) = (1, 0) is not captured by our calculations. The refined BPS numbers are those for E-strings.
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