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Cell and tissuemovement in development, cancer invasion, and immune response relies
on chemical or mechanical guidance cues. In many systems, this behavior is locally
directed by self-generated signaling gradients rather than long-range, prepatterned
cues. However, how heterogeneous mixtures of cells interact nonreciprocally and
navigate through self-generated gradients remains largely unexplored. Here, we
introduce a theoretical framework for the self-organized chemotaxis of heterogeneous
cell populations. We find that the relative chemotactic sensitivities of different
cell populations control their long-time coupling and comigration dynamics, with
boundary conditions such as external cell and attractant reservoirs substantially
influencing the migration patterns. Our model predicts an optimal parameter regime
that enables robust and colocalized migration. We test our theoretical predictions
with in vitro experiments demonstrating the comigration of distinct immune cell
populations, and quantitatively reproduce observed migration patterns under wild-
type and perturbed conditions. Interestingly, immune cell comigration occurs close
to the predicted optimal regime. Finally, we incorporate mechanical interactions into
our framework, revealing a nontrivial interplay between chemotactic and mechanical
nonreciprocity in driving collective migration. Together, our findings suggest that self-
generated chemotaxis is a robust strategy for the navigation of mixed cell populations.

cell migration | chemotaxis | Keller–Segel model | traveling waves | nonreciprocity

Directional cell and tissue movement controls many key processes in development
and disease such as morphogenesis, immune response, and cancer invasion. While it
is commonly assumed that this collective motion is steered by prepatterned chemical or
mechanical cues, only limited evidence has been gathered to support such long-range
guidance in vivo (1). In contrast, recent findings are unveiling the prominence of local,
self-generated cues across a wide array of in vitro and in vivo settings (2–8), prompting a
shift toward exploring controlled vs. self-organized guidance as alternative mechanisms
of collective cellular dynamics (9).

Although recent experimental and computational studies have established self-
generated chemotactic gradients as a robust mechanism for long-range guidance (10),
most work has focused either on homogeneous cell populations or on phenotypic
heterogeneity within single-species systems, such as bacterial migration (11–14).
However, directional cell migration often involves coordination among distinct cell
types, such as during processes like cell sorting (15), morphogenesis (16–20), wound
healing (21), cancer invasion and growth (22, 23), and immune cell migration (8).
In the latter context, we recently showed that dendritic cells (DCs) can both generate
and follow a self-generated chemoattractant gradient, whereas T cells appear to only
respond to it (8), raising the question of how such distinct immune cell types coordinate
their migration. Overall, the ubiquity of multicomponent cell communication raises the
fundamental question on the role of self-organized guidance cues in navigating mixed
cell populations toward specific targets.

From a theoretical standpoint, recent research has focused on the dynamics of
chemotactic invasion with cell growth (24–26), and on clarifying the existence or stability
of traveling concentration fronts of single populations (12, 25–29). Some recent studies
have also started to explore variability in cells’ chemotactic responses (11, 12, 14).
However, for a comprehensive understanding of multicomponent navigation strategies
via self-generated chemotaxis, it is essential to consider mixed cell types with distinct
roles, such as chemotactic cell populations acting as sinks or sources in patterning (30).

Here, we propose a theoretical framework to explore the self-generated chemotaxis of
mixed cell populations, concentrating on a sink-sensor system where two cell types are
(asymmetrically) coupled through a diffusible chemoattractant. We find a rich spectrum
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of qualitatively distinct comigration patterns, governed by a
few key dimensionless parameters, such as relative chemotactic
strength of different populations.

In particular, our phase diagram predicts that robust and
efficient comigration (defined as both cell populations migrating
at the same speed and being spatially colocalized) occurs in a
specific region of the parameter space, characterized by their
relative chemotactic strength being larger than, but close to,
unity. We also explore the role of interactions with external
cell and attractant “reservoirs” in the system, taking two limits
of initially fixed and renewing attractant levels, and find that
these give rise to qualitatively different collective dynamics.
Interestingly, we find that cell populations migrate as traveling
waves only in the absence of an external attractant reservoir,
where self-generated gradients remain sharp enough to facilitate
robust front propagation. We furthermore theoretically predict
the propagation velocity and density profiles of coupled cell pop-
ulations, and quantitatively test these predictions using different
controlled in vitro assays with mixtures of distinct immune cell
types consisting of DCs and T cells. Our framework offers a
simple mechanism by which self-generated gradients can drive
sustained interactions and optimal migration of heterogeneous
cell populations.

Results

ContinuumModel of Chemotactic Cell Mixtures. To explore the
migration dynamics of heterogeneous cell populations, we turn
to a continuum modeling approach adequate to describe cell
and chemoattractant dynamics in a coarse-grained framework,
extending the seminal work of Keller and Segel (31). We focus
on a minimal model for two distinct populations of chemotactic
cells types: i) Consumer-sensor cells that can actively modulate as
well as sense gradients of the chemoattractant, which we will call
consumer cells in short, and ii) sensor cells that only sense and
respond to it, with densities denoted by �c and �s, respectively;
see Fig. 1A for an illustration. Effectively, this means that the
first cell population is able to perform self-generated chemotaxis
on its own, while the second population needs to “surf” on the
gradient generated by the first one. The density evolutions of
the cells are determined by an advection–diffusion equation (see
SI Appendix for details):

∂t�i = Di∇2�i − ∇ · (�ivi) , [1]

with the chemotactic drift velocity

vi ≡ �i
∇a

a
, [2]

where Di and �i denote the diffusion and the chemotactic
coefficients of the cell type i = s, c, and a denotes the chemoat-
tractant concentration. This logarithmic sensing represents the
simplest form of a Weber–Fechner type response, in the absence
of more detailed information on the receptor kinetics of cells
(14, 29, 32). However, we also directly infer the specific form
of chemotactic response from experimental cell density profiles,
providing empirical support for this choice (see below). This type
of relative sensing could also align with dimensional estimates
from the Berg–Purcell limit (33), which suggest that large
immune cells like DCs can reliably detect shallow gradients of
fast-diffusing chemoattractants even at low concentrations. We
provide a brief discussion and model predictions for alternative
response models, including absolute and bounded logarithmic
forms, in SI Appendix, sections S1 and S2.

The time evolution of the attractant a is determined by its
diffusion and internalization by the consumer cell population.
In the absence of an external reservoir, attractant density then
follows:

∂ta = Da∇2a − m�ca , [3]

where Da represents the diffusion coefficient of the chemoat-
tractant, and m is the uptake rate of chemoattractant molecules
by the consumer cells. The consumer cell population actively
shapes the attractant profile, thereby controlling the chemotactic
migration of the sensor cells. This effective interaction through
an attractant field provides an asymmetric coupling between the
two cell populations, reminiscent of chemically active matter
mixtures with nonreciprocal interactions (34).
After rescaling time and space by t → �t ′, x →

√
�Dax

′

in Eqs. 1–3, where � = (m�̄c)
−1 with a reference consumer

density �̄c , and dropping the primes for clarity, we obtain the
nondimensional system of equations

∂t�i = D̃i∇2�i − �̃i∇ ·
(

�i
∇a

a

)

, [4]

and
∂ta = ∇2a − �ca , [5]

where D̃i ≡ Di/Da and �̃i ≡ �i/Da are the rescaled diffusion
and chemotactic coefficients. To fully specify the model, we solve
the nondimensional system Eqs. 4 and 5 numerically on a 1D
domain x ∈ [0, L] using finite difference methods with forward
time stepping. We impose von Neumann boundary conditions
with zero flux for both cell densities �i and the chemoattractant
a. Initial conditions consist of a uniform attractant concentration
and sharply localized cell density profiles at x = 0 to focus on
their patterning dynamics driven by self-generated gradients (see
SI Appendix, section S1 for further details).

Comigration of Cell Populations Is Regulated by Their Relative

Chemotactic Response. An immediate question arises when we
consider the coupled migration dynamics of the chemotactic cell
populations: Can the self-generated guidance field provide a ro-
bust mechanism for coordinated, long-range comigration beyond
diffusive spreading? For a single population of consumer cells, a
sufficiently large chemotactic coefficient �̃c can drive directed
migration, as observed in various systems (2, 3, 5, 8). In line with
these observations, we found that in the chemotactic regime with

�̃c > D̃c , consumer cells propagated with a pronounced, though
gradually broadening density peak (SI Appendix, Fig. S1A). This
propagation is superdiffusive, with the mean position scaling as
〈xc〉 ∝ t�c with an exponent �c > 0.5 (SI Appendix, Fig. S1B),
although the profiles do not form true traveling waves.

To explore the impact of the second, sensor cell population,
we varied two key parameters: their i) rescaled diffusion constant

D̃s and ii) rescaled chemotactic coefficient �̃s. Changes in D̃s

had little effect on the exact shape and position of the front

(SI Appendix, Fig. S1C ), so we fixed D̃s/D̃c ≃ 3, reflecting
experimental values for immune cells (see below), and focused on
the role of �̃s. Varying the relative strength of chemotaxis revealed
the requirements for robust comigration: When �̃s < �̃c , sensor
cells cannot maintain pace with the advancing consumer cell
population and gradually lag behind, showing smaller mean
positions 〈xs〉 < 〈xc〉 and diminishing peak densities; see Fig. 1B.

In the chemotactic regime of consumer cells (i.e. for �̃c > D̃c), we
found a tightly coupled propagation pattern only when �̃s > �̃c ,
i.e. when the sensor cells have a stronger chemotactic sensitivity

2 of 10 https://doi.org/10.1073/pnas.2504064122 pnas.org

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 1

4
6
.9

0
.2

1
.3

 o
n
 A

u
g
u
st

 2
7
, 
2
0
2
5
 f

ro
m

 I
P

 a
d
d
re

ss
 1

4
6
.9

0
.2

1
.3

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2504064122#supplementary-materials


A B

C

Fig. 1. Coupled chemotaxis of mixed cell populations interacting through a locally modified attractant concentration. (A) Schematics of the theoretical model.
Chemoattractant concentration (illustrated at the Bottom) is dynamically shaped by consumer-sensor cells (blue) that can locally internalize the ligand, and
preferentially migrate toward higher chemoattractant concentration. Sensor cells (red) only read off and respond to the local attractant gradient, but cannot
modulate it. (B) If the rescaled chemotactic coefficient �̃s of the sensor cells is smaller than the coefficient �̃c of the consumers, the sensor cells cannot follow
themigratory front of the consumer cells, leading to the breakdown of their effective coupling through the attractant. Front positions (crosses and star symbols)
are based on the half-maximum of the cell density profiles. (Left) Kymographs show that the sensor-cell front (star symbols) falls behind the consumer-cell
front (crosses) for large times. (Middle) Density profile of the sensor cells (red) does not exhibit a well-defined peak and is confined to the back of the consumer
cells (blue). (Right) The long-time behavior of the mean position as given by the relation 〈x〉 ∝ t� shows that the asymptotic exponent of sensor cells attains a
smaller value than that of the consumer cells, i.e. �s < �c . (C) If the rescaled chemotactic coefficient of the sensor cells is larger than that of the consumers,
i.e. for �̃s > �̃c , sensor cells migrate robustly ahead of the consumer cell front over long distances. (Left) Kymographs show that the sensor front is coupled
to the consumer-cell front over large times. (Middle) Spatial profiles of cell populations exhibit coupled propagation of well-defined density peaks. (Right)
Long-time scaling of the mean positions shows that the scaling exponents � of consumer and sensor cells are superdiffusive (i.e. � > 0.5) attaining similar
values �s ≃ �c ≃ 0.7, which indicates their asymptotic coupling.

than the consumer cells. In this case, the sensor cells initially
move faster but do not overtake the consumers indefinitely, as
they reach regions with flat attractant gradients. This dynamic
interplay leads to sustained sensor peaks localized ahead of the
consumers; see Fig. 1C. For �̃s ≳ �̃c , the coupled comigration
of the two cell populations was also reflected in their scaling
exponents �c ≃ �s. This is in contrast with the uncoupled regime
(�̃s < �̃c), where the scaling exponents generically fulfill �s < �c .
Importantly, we also checked that these features were conserved

for the case D̃s < D̃c (SI Appendix, Fig. S1D).

Consumer-Sensor Separation Is Controlled by Chemotactic

Sensitivity.Next, we wanted to understand more quantitatively
how the separation between the two cell populations is regulated
as a function of control parameters. Can for instance sensor
cells that exhibit fast motility spread arbitrarily ahead of the
consumer population? To explore this, we first systematically

varied the chemotactic ability of the consumer cells �̃c/D̃c and
the relative chemotactic sensitivity �̃s/�̃c of the two populations.
Examining the long-time ratio of the mean position of cell
densities x̄ ≡ 〈xs〉/〈xc〉 displays several distinct regimes for the
comigration dynamics: i) For sufficiently chemotactic consumer

cells with �̃c/D̃c > 1, weak sensors (�̃s < �̃c) lead to uncoupled
migration as discussed above, where the mean position ratio
fulfills x̄ < 1 (see Region 1 in Fig. 2A). Increasing the relative
chemotactic strength �̃s/�̃c leads to larger ratios, with a crossover
of x̄ = 1 at �̃s/�̃c ≃ 1. However, in the coupled regime, the
position ratio saturates for arbitrarily large �̃s/�̃c , highlighting

that the sensor cell propagation is controlled by the consumers
(see Region 2 in Fig. 2A). Interestingly, increasing the diffusion

coefficient ratio D̃s/D̃c , i.e. the random motility of the sensor
cells, is only beneficial for the sensor cell population in the
uncoupled regime with �̃s/�̃c < 1, while for �̃s/�̃c > 1, it
has a negligible effect; see Fig. 2B. ii) For weakly chemotactic

consumer cells with �̃c < D̃c , the phase diagram displays two
additional regimes: In the region �̃s/�̃c < 1, the mean position
ratio exhibits x̄ > 1 while not exceeding the upper bound
√

D̃s/D̃c ≃ 1.7 dictated by pure diffusion (see Region 3 in

Fig. 2A). Indeed, for identical sensor and consumer diffusion
coefficients, position ratio in this region remained within
x̄ < 1 (SI Appendix, Fig. S2A). For larger relative chemotactic
sensitivities, i.e. for �̃s/�̃c > 1, the position ratio can attain values

exceeding

√

D̃s/D̃c , unlike the saturation behavior we found in

the chemotactic regime �̃c/D̃c > 1 (see Region 4 in Fig. 2A).
A closer look at the density profiles in the four regions allowed

for more insight into the propagation dynamics: For sufficiently
chemotactic consumer cells, the chemotactic response of the
sensor cells is a key parameter to tune their density profile and
relative position with respect to the consumer cell population,
with a sharp transition from uncoupled to coupled comigration
around �̃s ≃ �̃c . For large �̃s/�̃c (e.g. Region 2) this coupling
can then lead to the formation of a well-defined “sensor-cell
pulse” ahead of the consumer cell front; see Fig. 2C. When
the consumer cell population is in the weakly chemotactic

regime (�̃c/D̃c < 1), the sensor cells can exhibit transient,
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A

C

B

Fig. 2. Relative positions and migration patterns of cell populations are controlled by their chemotactic sensitivity. (A) Long-time mean position ratio x̄ ≡
〈xs〉/〈xc〉 (color-coded) as a function of the rescaled chemotactic coefficient ratios �̃s/�̃c and relative chemotactic prowess of consumer cells, as controlled by
the ratio �̃c/D̃c . Dashed line (orange) corresponds to �̃c/D̃c = 10 as plotted in (B). White contour lines outline the parameter regimes with x̄ = 1 and x̄ = 2.

For consumer cells with a small �̃c/D̃c ratio, the sensor cell position can exceed the bound
√

D̃s/D̃c ≃ 1.7 dictated by diffusion as �̃s/�̃c increases. (B) For

sufficiently chemotactic consumer cells, e.g. with a chemotaxis-to-diffusion ratio �̃c/D̃c = 10, the mean position ratio x̄ of consumer and sensor cell population
densities exhibits a bounded increase as a function of chemotactic coefficient ratio �̃s/�̃c , indicating that the sensor-cell position is controlled by consumer
cells. Increasing the rescaled diffusion coefficient D̃s of the sensor cells (different colored lines) changes the ratio predominantly in the uncoupled regime for
�̃s/�̃c < 1. (C) Exemplary cell density profiles from different parameter regions plotted in (A) show the emergence of front- and pulse-like propagation patterns.
Solid and dashed lines depict the profiles of consumer and sensor cells, respectively, at different time points (shaded lines).

pulse-like migration at the diffusive front of the consumers for
large �̃s/�̃c (Region 4). However, this peak rapidly decays as
the chemoattractant gradient flattens along with the dispersing
consumer population over time.
Time evolution of the density patterns further reveals that,

across the entire phase space, including in the strong chemotaxis
regime (Regions 1 and 2), the profiles decay slowly over
time (see shaded lines in Fig. 2C ), although their shapes are
approximately scale-invariant (SI Appendix, Fig. S2B). In fact,
the minimal system described by Eqs. 4 and 5 cannot exhibit
traveling wave profiles in a strict sense (35) and the solutions
will generically be “wave-like” profiles with slowly decaying
amplitudes and velocities (36). The coupling behavior shown
in Fig. 2 nevertheless persists over sufficiently large times because
of the slow decay dynamics (see SI Appendix, Fig. S2C for a
comparison across time points.). The absence of true traveling
waves can be intuitively understood as follows: In the rear of
the migrating front (i.e. for small x), the uptake term −�ca is
dominated by a small attractant concentration a, which leads
to a shallow gradient. For a conserved cell population, the
chemotactic drift�∇log(a) is then insufficient to counterbalance
the diffusive leakage of cells in the back (37). Therefore,
boundary conditions such as cell conservation in the system
and attractant kinetics should directly influence the migration
dynamics, as they modulate the cellular responses behind the
front.

Influence of Cell Influx on the Migration Dynamics. To explore
the effect of external interactions on the migration dynamics in
greater detail, we turned to a simple modification of our finite-
difference numerical scheme by introducing a cell inflow into
the system at the left boundary x = 0, as illustrated in Fig. 3A
(see SI Appendix, section S1 for numerical details). Strikingly,
a small nonzero influx led to the formation of traveling waves
with a constant velocity: The consumer cell density showed an
initial density peak, which decayed into a wave front profile with
a constant density at the back; see Fig. 3 C, Left panel. In the
coupled regime with �̃s > �̃c , the sensor cell profiles attained
a density peak ahead of the consumer cells, with a conserved
separation between the two cell fronts; see Fig. 3 D, Left panel.
Kymographs of cell densities showed that the velocities of the
cell fronts (as quantified by the half-maximum of peak densities)
were strictly matched with Vs = Vc for �̃s ≥ �̃c ; see Fig. 3
E, Top panel. When the sensor cell chemotactic coefficient was
smaller than that of the consumer cells, however, sensor cells
again “fell behind” the consumer cell population with a decaying
speed and density profile (SI Appendix, Fig. S3 A and B). We
also tested alternative scenarios in which only one cell type was
introduced via boundary influx. Interestingly, we found traveling
waves for both cell populations even when the boundary influx
was applied solely to the consumer cell population. This suggests
that consumer influx is sufficient for the efficient cotransport of
sensor cells with a constant speed; see SI Appendix, Fig. S3 E–H .
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H I

Fig. 3. Comparisonwith in vitro experiments on collectivemigration of dendritic cells (DCs) and T cells. (A) Illustration of a closed system, where chemoattractant
kinetics are described by its diffusion (with coefficient Da) and interaction with the migrating cells that locally consume the attractant and experience a
chemotactic drift. Cells enter the channel from the left boundary. (B) Microscopy images from the microfluidic channel experiments with labeled DCs (blue) and
comigrating T cells (red) at t = 4min (Left) and t = 68min (Right). (Scale bar, 100 μm.) (C) Spatiotemporal cell density profiles predicted by the analytical model
(Left) agree well with the coupled propagation of front- and pulse-like densities as inferred from DC- and T cell intensities in experiments, respectively (Right).
Color code indicates different time points. (D) Rescaled densities at different time points (shaded lines) overlaid in the reference frame comoving with the
consumer- (Left) or DC (Right) front. Density profiles are qualitatively conserved over time with a well-defined separation between the fronts. (E) Kymographs
showing the theoretical predictions on consumermigration (Top) and experimental data on DCmigration (Bottom) over time. Cell density fronts are represented
for both the consumer/DC (crosses) and the sensor/T cell (stars) population. Front positions over time indicate a constant speed of V ≃ 5 − 6 μm/min with
which both cell populations migrate. (F ) Illustration of an open system, where a chemoattractant reservoir (delineated by the dotted line) enables in- and efflux
of attractant molecules, leading to an effective turnover kinetics. (G) Analytical model (Left) predicts spatiotemporal profiles without clear density peaks for
both populations (Left), as observed in experiments (Right). (H) Cell densities in the comoving frame of the consumer (DC) front position display a nonconserved
profile over time (shaded lines). (I) Kymographs showing the theoretical predictions on consumer migration (Top) and experimental data on DC migration
(Bottom) over time. Density fronts are represented for both the consumer/DC (crosses) and the sensor/T cell (stars) population. Front positions over time
indicate a slowly decaying speed both for theory and experiment. Experimental data in (C–E) represent averages from 5 independent experiments, and data in
(G–I) from 4 experiments.

Comparison with Experimental Data on the Self-Organized

Comigrationof ImmuneCell Populations. To test our theoretical
prediction on coupledmigration patterns, we turned to aminimal
experimental setup with heterogeneous immune cell populations.
We focused on the collective migration of mature DCs and
activated T cells that are terminally differentiated (see Materials
and Methods for details), having recently observed qualitatively
their comigration patterns mediated by the chemoattractant
CCL19 (8). Biologically, DCs and T cells engage in close and
repeated interactions in lymph nodes to trigger adaptive immune
response. DCs both sense and deplete the chemoattractant
CCL19, while T cells can sense but not significantly alter it,
aligningwith their roles as consumer and sensor cells, respectively.
To closelymatch the coarse-grained description of the cell density
and chemoattractant evolutions governed by Eqs. 4 and 5, we

designed a microfluidic channel system with two holes to control
both the cell and attractant influx. Because there is no external
chemoattractant reservoir in this setup, it represents a “closed”
system in terms of attractant kinetics. After an equilibration
period to allow for a uniform distribution of CCL19 in the
channel, we introduced mixtures of DCs and T cells through
one end. Both cell populations continued to enter the channel
for over 2 to 3 h; see Fig. 3B and Movie S1.
Strikingly, we observed that the DC population formed a

stable migrating front, while T cells accumulated ahead of this
front, forming a distinct density peak as predicted theoretically;
see Fig. 3C. To quantify this behavior, we located front positions
based on the half-maximum of the smoothed cell density profiles
(SI Appendix, Fig. S6A). When overlaying the profiles at different
time points in a comoving frame centered on the DC front,
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both density profiles maintained their shape over time, with
the two fronts consistently separated by a characteristic length
scale of approx. 150 to 200 μm; see Fig. 3D. Furthermore,
the kymographs obtained from the experiments confirmed the
theoretical prediction on velocity matching between the two
populations; see Fig. 3E and SI Appendix, Fig. S6B.
To test our prediction on the breakdown of velocity matching

in the uncoupled regime (i.e. for the case �̃s < �̃c), we then
looked at the comigration of DCs with CCR7-knockout (KO) T
cells (which do not have the capacity to sense the ligand CCL19)
in microfluidic channel experiments. We found that CCR7-KO
T cells i) did not show any density peaks, ii) were not able
to migrate ahead of the DC population, and iii) their speed
was notably smaller than that of the DC front (SI Appendix,
Fig. S7 B–E and Movie S2), as predicted theoretically for
the uncoupled regime (SI Appendix, Figs. S3 A and B and
S7A). Interestingly, even wild-type T cells exhibited a notable
reduction in propagation speed when migrating alone, without
DCs, either in a pre-established gradient or in a uniform CCL19
field (SI Appendix, Fig. S7F and Movie S3). This observation
is fully consistent with our model, which predicts that sensor-
only populations cannot sustain wave-like migration as they
lack the ability to actively modulate the local steepness of
the gradient.

Prediction of the Front Velocity and Parameter Inference.We
then sought to constrain model parameters using two inde-
pendent experimental setups. First, we analyzed DC migration
trajectories from under-agarose assays without a chemoattractant
(8). From this, we estimated the diffusion coefficient of DCs
via both velocity autocorrelation analysis and Bayesian inference
(SI Appendix, section S3), obtaining converging values around
Dc ≃ 360 μm2/min. Using our measured chemoattractant
diffusion coefficient for CCL19 (Da ≃ 86 μm2/s) (8), this

yielded a rescaled diffusion coefficient of D̃c = Dc/Da ≃ 0.07
(SI Appendix, Fig. S5 A–D). Second, we used trajectories from
the under-agarose assay for mixed populations of DCs and T cells
with CCL19 and calculated the variance of velocity distributions
for both populations, as the velocity fluctuations are proportional
to their random motility coefficient. The comparison of this
variance allowed us to approximate the ratio of their diffusion
coefficients to be aroundDs/Dc ≃ 3.5 (see SI Appendix, Fig. S5E
and section S3 for details).
Interestingly, the observation of a traveling cell front allowed us

to theoretically predict the spatial shapes of the density profiles, as
well as the propagation velocity V using simple arguments in the
comoving frame of coordinates z ≡ x − Vt. Indeed, we predict
that both the consumer and sensor cell populations should display
exponentially decaying density profiles at the propagating edge
with �i ∝ exp(−�iz), with a decay length �−1 related to the
front velocity by V ∝ Di�i. This relation means that the ratio
of decay lengths is simply proportional to the ratio of diffusion
coefficients between the consumer and sensor cell populations,
i.e. Ds/Dc = �c/�s, which we confirmed numerically (SI
Appendix, Fig. S3C ). Importantly, we then used this relation
to compare the experimental density profiles of DC (consumer)
and T cell (sensor) populations in the comoving frame, and from
their decay lengths obtained a value ofDs/Dc ≃ 2.7 (SI Appendix,
Fig. S5F ), closely aligning with independent estimates described
above.
Furthermore, we numerically observed that the consumer cells

exhibit a spatially flat profile behind the front with a constant

density �†c , with the chemoattractant concentration showing an
exponential decay approximated by a ∝ exp(�z) in the rear of
the propagating front. Using this information, we integrated the
system of equations in the comoving frame and found that the
decay length scale of the chemoattractant and the front velocity
are linked by the relation V = �c�. In dimensional units, we
could then obtain a simple expression for the front velocity (see
SI Appendix, section S1 for the derivation):

V = �c

√

m�†c

Da + �c
. [6]

This relation suggests that the front velocity scales as V ∝ �0.5
c ,

and depends on an effective time scale of chemoattractant
internalization � ∼ (m�†c )

−1 fixed by the rate m and bulk

consumer density �†c , while similar expressions have been found
under different assumptions (25, 28). We then tested this
prediction for the front velocity numerically by varying the
chemotactic coefficient �c and found good agreement with Eq. 6
(SI Appendix, Fig. S3D).

We next aimed to infer the chemotactic response functions
directly from experimental cell density profiles. By leveraging
the total flux balance in the comoving frame, we decomposed
mass transport into diffusive and chemotactic components. This
allowed us to reconstruct the response function directly from
the cell density profiles and their gradients, without requiring
knowledge of the attractant field. The inferred chemotactic
responses were consistent with a relative sensing form, exhibiting
a nearly constant chemotactic drive in the back of the wave
(SI Appendix, Fig. S6 D and E). By taking the ratio of inferred
responses for sensor and consumer populations, we further
obtained a quantitative estimate for the relative chemotactic
strength �s/�c ≃ 1.26 ± 0.2, a regime predicted by the model
to enable robust comigration (see SI Appendix, Fig. S6F and
section S3 for full methodological details).

We then used a sufficiently large chemotaxis-to-diffusion ratio

of �̃c/D̃c ≃ 3 for consumer cells to obtain a well-defined
wave front, and fitted the timescale � = (m�̄c)

−1 ≃ 0.1min
which provided a good quantitative agreement between theory
and experiment for several distinct features (as displayed in
Fig. 3): i) the scaling of the density profiles at both front and
back agreed closely with the experimental data, ii) the predicted
separation between the two populations was∼250 μm, compared
to ∼170 μm in experiments, and iii) the predicted front velocity
V ≃ 5 − 7 μm/min quantitatively matched the experimental
front speeds. Finally, we used the aforementioned values for �c ,
Da, and only by fitting the time scale (m�†c )

−1 ≃ 5min in
Eq. 6, we obtained an analytical estimate of V ≃ 5.8 μm/min, in
close agreement with both experiment and the numerical results.
Parameter scans furthermore confirmed that the density patterns
were robust to variations in diffusion and chemotactic coefficients
within their error ranges, identifying the relative chemotactic
strength �s/�c as the key parameter controlling comigration
behavior (SI Appendix, Fig. S7A).

Influence of Chemoattractant Turnover on the Migration

Dynamics.Next, we asked whether modifying the chemoattrac-
tant kinetics might influence the migration patterns in addition
to the boundary influx of cells. Indeed, Eq. 5 suggests that
a turnover of attractant density, e.g. arising from an external
reservoir, should directly influence the dynamics of the gradient.
We thus implemented aminimalmodel for the attractant kinetics
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to describe additional decay and influx terms; see Fig. 3F for an
illustration and SI Appendix, section S1 for details.We found that
numerically solving this “open system” led to strikingly different
migration patterns: First, density profiles exhibited monotoni-
cally decaying shapes without well-defined peaks in a large region
of the parameter space. In fact, sensor cell “pulses” only existed
for relatively large chemotactic coefficients and consumer cells
never exhibited pulse-like density peaks (SI Appendix, Fig. S8).
Second, we could not find any parameter regime that led to
the formation of traveling waves. Density profiles generically
evolved with slowly decaying velocities. Third, even for very
large chemotactic coefficients, the long-time front propagation
dynamics showed diffusive scaling exponents around � ≃ 0.5,
unlike the traveling waves of the closed system. The absence of
traveling waves with attractant turnover presumably arises from
the restoring effect of turnover, which drives the attractant profile
toward uniformity and flattens self-generated gradients.

To test these theoretical signatures, we turned to experimental
data on the collective migration of DCs and T cells in the under-
agarose assay, as we had qualitatively explored before (8). In
this system, a large reservoir of the chemoattractant CCL19 is
in constant contact with the confined quasi-2D space where the
cells migrate. Plotting the cell density profiles over time, we found
that the densities exhibited monotonically decaying profiles as
predicted by the theory; see Fig. 3G for a comparison. Overlaying
the profiles at different times, we also found that T cells migrated
ahead of the DC population at all times with a length scale of
the same order of magnitude as in the microfluidic channel, see
Fig. 3H, but with an increasing separation of cell fronts over
time, see Fig. 3I. This behavior matches with the theoretical
prediction using a chemotactic strength ratio of �̃s/�̃c ≃ 1.2
that we had previously estimated for the closed system, although
their absolute values in the open system are larger. Finally, the
long-time propagation dynamics of density fronts showed that
both populations migrated with decaying velocities over time, as
represented in the kymographs in Fig. 3I. Overall, the analysis
of this minimal open system indicates that attractant kinetics
can indeed lead to radically different migration dynamics for
chemotactic cell populations.

Relative Chemotactic Sensitivity Controls Colocalized Migra-

tion of Cell Populations.Having explored the coupled migration
regimes in different setups, we then wished to go back to
the minimal system described by Eqs. 4 and 5 and ask
whether we could quantitatively measure the degree of overlap
or colocalization between distinct populations. In addition to
comigration, the question of colocalization of heterogeneous
cell populations is important particularly to explore conditions
for possible physical interactions between different immune cell
types, as they need to communicate in close proximity during an
immune response (38). To quantify this, we first introduced a
colocalization index using the Jensen–Shannon divergence (JS)
of spatial density profiles interpreted as probability densities
(see SI Appendix, section S5 for details). We defined a simple
metric for similarity or overlap of cell densities as � ≡ 1 − DJS ,
where DJS denotes the Jensen–Shannon divergence. With this
definition, � = 1 corresponds to complete colocalization while
� = 0 indicates zero overlap of densities. Interestingly, this
simple metric already outlined two distinct regions in the
phase space where efficient consumer migration occurs (for

sufficiently large �̃c/D̃c ≳ 1), but with impaired colocalization;
see Fig. 4. Intuitively, in the uncoupled regime (�̃s/�̃c < 1),
colocalization is small as the sensor cells in this case fall behind the

Fig. 4. Phase diagram of colocalization of different cell populations indi-
cates an optimal regime for coupled migration. Colocalization index (color-
coded) defined as � ≡ 1 − DJS , using the Jensen–Shannon divergence
(DJS ) of density distributions for sensor and consumer cells. Regions with
� > 0.5 indicate sensor cells being transported by consumers with enhanced
colocalization.White contour lines depict� = 0.5. For sufficiently chemotactic
consumer cells, i.e. for �̃c/D̃c > 1, the colocalization index displays a
nonmonotonic behavior with increasing �̃s/�̃c , with an optimal region for 1 ≤
�̃s/�̃c ≤ 2. Parameter values used for the comparison with the experiments
are �̃c/D̃c ≃ 3 and �̃s/�̃c ≃ 1.2 (star symbol). Distinct regions of density
patterns are highlighted with markers for i) only pulse-like consumer cells
(blue triangles), ii) pulse-like consumer and sensor cells (orange dots), iii)
no peaks (no markers), and iv) only pulse-like sensor cells (black crosses).
Rescaled diffusion coefficients used here are D̃c = D̃s = 0.1.

propagating consumer front. However, in the strongly coupled
regime (�̃s/�̃c > 2), the sensor density peak is too far ahead of
the consumers, which also results in minimal density overlap.
Furthermore, while random cellular diffusion (controlled by

D̃i) is detrimental for robust chemotactic front propagation, it
is in fact beneficial for colocalization, as very small diffusion
coefficients result in very sharp density peaks, and thus small
density overlaps. This analysis thus predicted that each parameter
of the system exhibited trade-offs, while acting to optimize for
both comigration and colocalization. Notably, the values which
fitted best our experimental data were located in the “optimal”
region in the coupled regime of the phase diagram, where

1 ≤ �̃s/�̃c ≤ 2 and �̃c/D̃c > 1; see Fig. 4 (star symbol).
Finally, while we used identical diffusion coefficients for sensors
and consumers in Fig. 4, changing to experimentally inferred
parameter estimates for the diffusion coefficients only modified
the colocalization in the diffusively uncoupled regime, leaving
the remaining phase diagram unchanged (SI Appendix, Fig. S9).

Influence of Nonreciprocal Mechanical Interactions.We next
examined howmechanical interactions between cell populations,
especially nonreciprocal ones where, for instance, population A
repels B but not vice versa, affect chemotactic comigration (39,
40). We extended our Keller–Segel model by including linear
advective coupling terms between the two populations:

∂t�i = Di∇2�i − �i∇ · (�i∇a/a) + �i∇ ·
(

�i∇�j
)

, [7]

with i 6= j, and �i represents the mechanical advection parameter
for the i-th cell population (i = c for consumers, i = s for
sensors). Positive values (� > 0) indicate repulsion (cells being
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“pushed”), while negative values (� < 0) represent attraction
(cells being “pulled”); see SI Appendix, section S6 for details.
Numerical solutions showed that the front offset between

populations, quantified by the mean position ratio x̄ = 〈xs〉/〈xc〉,
was strongly modulated by mechanical interaction asymmetry
Δ� = �s − �c , especially when consumer chemotaxis was weak
(�c/Dc < 1). Here, large �s and small �c enhanced x̄, while
stronger chemotaxis suppressed this effect (SI Appendix, Figs.
S10 A and B and S11).
Furthermore, we found that mechanical interactions could

either enhance or disrupt coordinated migration depending
on whether they are attractive or repulsive. When diffusively
migrating sensors strongly repelled consumers (�c > 0), they
effectively “pushed” consumers forward, which increased their
separation from sensor densities. This repulsion reduces the
consumers’ ability to sense the attractant gradient efficiently.
Conversely, for strong sensor chemotaxis, consumers can be
“pulled from ahead” for �c < 0, resulting in a broader density
profile that locally flattens the attractant gradient (SI Appendix,
Fig. S10 C–E). These findings thus highlight the system’s
inherent nonreciprocity and the role of mechanical interactions
modulating the comigration patterns in regimes of weak or
intermediate consumer chemotaxis.

Discussion

Self-generated chemoattractant gradients have recently emerged
as a robust, self-organized mechanism for long-range guidance
of cellular collectives (10). Here, we propose a theoretical
framework showing how this mechanism can also coordinate
heterogeneous cell mixtures without direct cell–cell interactions.
We tested several key predictions of the model experimentally
using comigrating dendritic cells (DCs) and T cells. Our model
quantitatively reproduces essential features of their self-generated
guidance, including the spatial density profiles, relative speeds,
and the influence of external chemoattractant reservoirs on the
dynamics. It also reveals qualitatively distinct modes of comigra-
tion and highlights trade-offs in key parameters. For example,
sensor cells must exhibit stronger chemotaxis than consumer
cells to stay with the propagating front, typically resulting in a
density peak of sensors ahead of consumers. However, excessive
chemotactic strength of sensors leads to poor colocalization with
consumers. Similarly, while randommotility reduces chemotactic
efficiency, it increases the chance of colocalized migration.
Notably, direct (nonreciprocal) mechanical interactions between
cell types become relevant only when chemotaxis is weak.

Biologically, DC and T cell interactions are central to adaptive
immunity and occur within the lymph nodes, where both cell
types are guided using the chemokine receptor CCR7 to sense
chemoattractants like CCL19 produced by stromal cells (41).
These encounters are not singular events but involve a dynamic
crosstalk, where cells repeatedly meet and scan each other to
integrate signals on the population level (42). Similar multicel-
lular streams have also been observed, for example, in CCR7-
dependent trafficking of T cells in zebrafish (43) and their direc-
tional crawling between two compartments in the mouse spleen.
In both scenarios, it seems unlikely that a fixed spatial gradient
could guide the cells over distances of many millimeters. Our
model proposes a simple mechanism by which a self-generated
chemoattractant field facilitates sustained interactions and coor-
dinated migration of these mixed cell populations, consistent
with observations of self-generated signaling gradients in the
developing lateral line during zebrafish development (2, 44).

Collective long-range guidance of cell populations can arise
from various local interactions, including cell–cell repulsion,
contact inhibition of locomotion, polarity alignment (45),
and mechanochemical coupling (46). A range of modeling
approaches, such as vertex and Voronoi models (47, 48),
phase-field models (49), continuum models based on nonlocal
sensing (50), and hybrid models incorporating cell-intrinsic
states (51), have been developed to study the emergence
of collective directionality. However, how heterogeneous cell
populations with distinct attractant-shaping capabilities organize
and coordinate their comigration remains an open question
(30). In this context, our multi-component Keller–Segel model
could be extended to include interconversion between sensor
and attractant-modulator types, in line with recent work on
phenotypic plasticity (30, 52, 53).
While some previous models rely on a leader–follower mech-

anism for directional migration (17, 54), recent experimental
evidence suggests thatmany cell types, including neural crest (55),
immune (8) and cancer cells (5), migrate efficiently without fixed
leaders. Moreover, in epithelial cell clusters, local mechanical
pulling by leader cells appears insufficient to drive collective
migration (56). Interestingly, in a leader-follower paradigm, T
cells could be seen as followers as they receive guidance cues from
DCs, yet they are migrating ahead of the DC front, emphasizing
the effect of indirect, gradient-mediated guidance. Our model
supports a simple paradigm in which distinct cell types remain
fully motile and responsive without direct contact, achieving
efficient comigration through adaptive gradient sensing alone.
Beyond chemoattractants, other types of self-generated gradi-

ents based on substrate rigidity or extracellular matrix remodeling
have emerged in recent years (57–59). Like chemotactic systems,
these involve cells modifying their environment to encode a
memory of past trajectories, leading to emergent directionality.
Although mechanical cues are typically more localized than dif-
fusible signals, the core features of our model are expected to ex-
tend to such contexts. Crucially, interactions between sensors and
consumers are intrinsically nonreciprocal due to their asymmetric
coupling via the attractant, directly linking our work to recent
advances in synthetic active matter, including chemically active
mixtures (34, 60) and cross-diffusive systems with nonreciprocal
interactions (61). Our results may thus inform both synthetic
systems and experimental studies, such as in vitro motility assays
(13) and live imaging of heterogeneous cell migration (62).

Materials and Methods

Cell Culture. All cells used in this study were grown and maintained at+37C
with 5% CO2 in a humidified incubator.

Dendritic Cell Differentiation and Maturation. DCs were generated from
previously described LifeAct-GFP expressing conditionally HoxB8 immortal-
ized hematopoietic progenitor cells (63, 64). LifeAct-GFP Hoxb8 cells were
maintained in R10 medium [RPMI 1640 medium (Gibco, 21875-034) with
10% heat-inactivated fetal bovine serum (Gibco, 10270-106), penicillin
(100 U/ml)/streptomycin (100 μg/ml) (Gibco, 15140-122), and 50 μM
�-mercaptoethanol (Gibco, 31350-010)] supplemented with 5% supernatant
of an Flt3L-producing cell line and 1 μM estrogen (Sigma-Aldrich, E2758). For
DC differentiation, 3 × 105 Hoxb8 precursor cells were cultured in 10 ml R10
supplemented with 20% of house-generated Granulocyte-macrophage colony
stimulating factor (GM-CSF) hybridoma supernatant. On day 3 of differentiation,
additional 10 ml R10 medium supplemented with 20% GM-SCF were added
to the dish, on day 6 followed by replacement of half of the R10 medium with
20% GM-SCF. On day 9 DCs were harvested for maturation. DC maturation was
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induced by overnight incubation with lipopolysaccharide (LPS, 200 ng/ml) from
Escherichia coli 0127:B8 (Sigma-Aldrich, L4516).

T Cells. T cells were isolated from spleens ofmalemTmG reporter (65) andCCR7
deficient mice (66) using the EasySep™ Mouse T Cell Isolation Kit (STEMCELL
Technologies, 19851) following manufacturers’ instructions and activated with
anti-mouse CD28 (Invitrogen, 16-0281-85) and CD3e (Invitrogen, 16-0031-
85) 1 μg/ml coated to cell culture dishes. Activated T cells were cultured in
R10 medium substituted with 10 ng/ml IL-2 (PeproTech, 212-12) for up to
14 d. Before migration assays CCR7 deficient T cells were stained with TAMRA
(Invitrogen) 1:1,000 in PBS for 10min at room temperature, washed 2× with
PBS right before the assay.

Migration Assays in Microfabricated Channels. Microfabricated poly-
dimethylsiloxane (PDMS) devices were prepared as described previously (8).
Fabricated PDMS devices with straight channels (300 × 100 × 4,5 μm) were
flushedwithR10medium. For uniform chemokine assay, oneof the reservoirs in
the PDMS device was refilled with 1,25 ng/μl of CCL19 (R&D Systems, 440-M3-
025) supplementedR10mediumand allowed to equilibrate for 2 to 3 h at 37 ◦C
and 5% CO2. After the incubation, 2 μl of pelleted DC and T cell mixture was
added to the opposite side reservoir in the PDMS device. For T cell migration in
chemokine gradient, 2μl of pelleted T cells were added at one side of the device
and 1,25 ng/μl CCL19 in R10 medium to the opposite side at the same time.
The time-lapse imaging ofmigrating cells was performed by imaging every 30 s

with an inverted Nikon Ti2E wide-field fluorescent microscope at 37 ◦C with 5%
CO2 for the duration of 4 to 6 h, usingNikon 10× objective (Plan Fluor 10×/0.3
DIC 1 N1 air PFS).

Data, Materials, and Software Availability. Custom-made scripts have
beendeposited inGitHub (https://github.com/mehmetcanucar/Self-generated-
chemotaxis) (67).
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