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A B S T R A C T 

We study standing non-linear sausage waves in coronal loops with the plasma temperature varying with time. In our analysis we 

use the simplest model of a coronal loop in the form of a straight magnetic tube with a circular cross-section. We also assume that 

the plasma-beta is low. This enables us to neglect the magnetic field variation and consider standing waves occurring in a tube 

with rigid boundaries. Then the plasma motion is described by pure gas-dynamic equations. The background plasma temperature 

can vary with time, however we assume that its density remains constant. We consider perturbations with small amplitudes and 

use the Reductive Perturbation Method to derive the governing equations for standing waves. We show that a standing non-linear 

wave is a superposition of two identical non-linear waves propagating in the opposite directions in a complete analogy with 

the linear theory. Each of the two propagating non-linear waves are described by a modified Burgers equation that reduces to 

the standard Burgers equation when the plasma temperature does not change. The modified Burgers equation contains only one 

dimensionless parameter R determining the relative strength of non-linearity and dissipation related to viscosity and thermal 

conduction. It also contains one arbitrary function related to the background plasma temperature variation. We then assume 

that the temperature either increases or decreases exponentially. We study the standing waves in three cases: When dissipation 

strongly dominates non-linearity, when non-linearity strongly dominates dissipation, and when they are of the same order. The 

main conclusion that we make on basis of our analysis is that plasma cooling weakens the wave damping. 

Key words: MHD – plasmas – waves – Sun: corona – Sun: oscillations. 

1  I N T RO D U C T I O N  

The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) 

spectrometer on board of SOHO spacecraft observed standing waves 

in hot ( T � 6 MK) coronal loops (Kliem et al. 2002 ; Wang et al. 2002 , 

2003a , b ). The oscillation periods of the observed waves ranged from 

11 to 31 min, and the decay time from 5.5 to 29 min. These waves 

were interpreted by Ofman & Wang ( 2002 ) as slow standing waves. 

The velocity amplitude in these waves was up to one quarter of the 

phase speed implying that non-linearity can play an important role in 

their evolution. Ofman & Wang ( 2002 ) modelled the slow standing 

waves numerically. They found that the main damping mechanism is 

thermal conduction. For reviews of standing slow waves in coronal 

loops see Wang ( 2011 ) and Wang et al. ( 2021 ). 

Ofman & Wang ( 2002 ) used the direct numerical solution of the 

1D non-stationary non-linear equations for compressible fluids with 

the account of viscosity and thermal conduction. They considered 

only a restricted range of parameters. Later a similar modelling has 

been performed by Mendoza-Brice˜ no, Erdélyi & Sigalotti ( 2004 ), 

Sigalotti, Mendoza-Brice˜ no & Luna-Cardozo ( 2007 ), and Verwichte 

⋆ E-mail: M.S.Ruderman@sheffield.ac.uk 

et al. ( 2008 ) for a wider range of coronal loop parameters and the 

initial perturbation amplitude. 

It is often observed that oscillating coronal loops are cooling with 

the characteristic time on the order of a few oscillation periods (e.g. 

Aschwanden & Terradas 2008 ). Morton & Erdélyi ( 2008 , 2010 ) and 

Ruderman ( 2011a , b ) studied the effect of cooling on kink oscillations 

of coronal loops. Later Al-Ghafri et al. ( 2014 ) and Al-Ghafri ( 2015 ) 

extended this study to slow waves. These authors used the linear 

approximation. 

Recently Ruderman, Petrukhin & Kataeva ( 2025 ) (Paper I below) 

studied non-linear propagating slow waves in cooling coronal loops. 

Ruderman ( 2013 ) (Paper II below) analytically studied non-linear 

standing slow waves in magnetic flux tubes. He assumed that all 

equilibrium quantities are constant. We aim to extend the analysis 

in Paper I and Paper II and study non-linear standing slow waves in 

cooling magnetic flux tubes. The paper is organized as follows: In 

the next section we describe the equilibrium state and present the 

governing equations. In Section 3 we derive the equations governing 

the evolution of non-linear standing waves. In Section 4 we consider 

the case where dissipation strongly dominates non-linearity and the 

waves are described by linear equations. In Section 5 we study the 

opposite case where non-linearity strongly dominates dissipation and 

the latter can be neglected. In Section 6 we investigate the generic 

© The Author(s) 2025.
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case and study the competition between non-linearity and dissipation. 

Section 7 contains the summary of the results and our conclusions. 

2  EQUILIBRIUM  STATE  A N D  G OV E R N I N G  

E QUAT I O N S  

We study slow standing waves in hot coronal loops with the 

temperature T � 6 MK. In these hot loops the atmospheric scale 

height exceeds 300 Mm. Hence, we can safely neglect the density 

variation along a loop if the height of the loop apex point is smaller 

than or of the order of 100 Mm. The plasma number density in hot 

loops is usually not higher than 1015 m−3 . Then, for T ≤ 10 MK, the 

plasma pressure does not exceed 0.23 Nm−2 . Then we easily find that 

the plasma beta is smaller than 0.6 when B � 10−3 Tesla = 10 G. 

Although this value of plasma beta is not small it is still less than 

unity. If B = 20 G then we obtain plasma beta equal to 0.15, which is 

much smaller than unity. In accordance with these estimates we use 

the low-beta plasma approximation and neglect the magnetic field 

perturbation when studying the slow waves in hot coronal loops. This 

approximation greatly simplifies the analysis because this enables us 

to neglect the variation of the loop cross-section and the equilibrium 

quantities in the directions perpendicular to the loop axis. Neglecting 

in addition the loop curvature we can describe the slow waves by 1D 

hydrodynamic equations (Priest 1982 ; Goedbloed & Poedts 2004 ) 

∂ρ

∂t 
+

∂( ρu ) 

∂x 
= 0 , (1) 

∂u 

∂t 
+ u

∂u 

∂x 
= −

1 

ρ

∂p 

∂x 
+

1 

ρ

∂ 

∂x 
ρν

∂u 

∂x 
, (2) 

∂T 

∂t 
+ u

∂T 

∂x 
+ ( γ − 1) T

∂u 

∂x 
=

∂ 

∂x 
κ

∂T 

∂x 
+ Q ( ρ, T ) , (3) 

p =
kB 

m 
ρT . (4) 

Here u is the velocity, ρ density, p pressure, T temperature, γ

the ratio of specific heats, kB the Boltzmann constant, m the mean 

mass for particle ( m ≈ 0 . 6 mp in the solar corona, where mp is the 

proton mass), and Q ( ρ, T ) the generalized heat-loss function. The 

coefficients ν and κ are defined by 

ν =
4 η0 

3 ρ
, κ =

( γ − 1) mk‖ 

ρkB 
, (5) 

where η0 is the first viscosity coefficient in the Braginskii’s ex- 

pression for the viscosity tensor, and k‖ is the thermal conductivity 

parallel to the magnetic field. These latter two quantities are given 

by (Braginskii 1965 ) 

η0 ≈ nkB T τp , (6) 

and (Spitzer 1962 ; Priest 1982 ) 

k‖ ≈ 10−11 T 5 / 2 W m 
−1 K 

−1 , (7) 

where n = ρ/mp is the electron number density and τp is the proton 

collision time. It is given by the approximate expression 

τp ≈ 1 . 66 × 107 T 3 / 2 

n ln 
 
s , (8) 

where 
 is the Coulomb logarithm and the electron number density 

n is measured in m−3 . For typical conditions in hot loops ln 
 ≈ 20, 

and τp is approximately between 10 and 25 s. 

The system of equations ( 1 )–( 4 ) is the same as was used in Papers I 

and II, and almost the same as was used by Ofman & Wang ( 2002 ). 

The only difference from the latter is that we neglected the term 

describing the viscous heating in the energy equation ( 3 ). The reason 

for this is the following. The term describing the viscous heating is 

quadratic with respect to perturbations (Priest 1982 ; Goedbloed & 

Poedts 2004 ). Below we derive the equation governing the evolution 

of non-linear perturbations using the expansion with respect to the 

characteristic dimensionless amplitude ǫ. When doing so we assume 

that dissipation is weak, so that only the linear dissipative terms 

contribute in the second-order perturbation with respect to ǫ. The 

contribution of non-linear dissipative terms only appear in the third- 

order approximation with respect to ǫ which is not used in our 

analysis. 

We also do not include the term describing dissipation due to 

optically thin radiation. In the first studies of damping of standing 

slow waves in hot coronal loops this effect was not taking into account 

(Ofman & Wang 2002 ; De Moortel & Hood 2003 ). In the following 

studies the effect of optically thin radiation was included (De 

Moortel & Hood 2004 ; Pandey & Dwivedi 2006 ). Pandey & Dwivedi 

( 2006 ) presented especially detailed investigation of the efficiency 

of various damping mechanisms. In particular, they showed that the 

relative importance of optically thin radiation for the wave damping 

increases with the increase of the plasma density in the loop. It also 

increases with the increase of the loop length, but decreases with the 

increase of the plasma temperature. 

In the first studies of the effect of plasma cooling on slow standing 

waves in hot coronal loops the effect of optically thin radiation was 

neglected (Al-Ghafri et al. 2014 ; Al-Ghafri 2015 ). Hence, the linear 

theory of slow wave damping in hot coronal loops with account of 

optically thin radiation is an outstanding problem. Only when such 

a study is carried out it would be possible to include this effect in the 

non-linear theory. This is why we do not included it in the present 

analysis. 

The system of equations ( 1 )–( 4 ) has to be supplemented with the 

boundary conditions. We assume that the magnetic loop is frozen in 

the dense photosphere, so that 

u = 0 at x = 0 , L, (9) 

where L is the loop length. Similar to Al-Ghafri et al. ( 2014 ) and 

Paper I we assume that the unperturbed density is constant, while the 

unperturbed plasma pressure depends on time and it is proportional 

to the unperturbed temperature. Hence, the unperturbed quantities 

are related by 

p0 ( t) =
kB 

m 
ρ0 T0 ( t) . (10) 

We also assume that the unperturbed velocity is zero. The variation 

of the unperturbed temperature is described by 

d T0 

d t 
= Q ( ρ0 , T0 ) . (11) 

3  D E R I VAT I O N  O F  T H E  G OV E R N I N G  

EQUATI ON  F O R  T H E  OSCI LLATI ON  

VELOCI TY  

Following Papers I and II we assume that the dissipation is weak 

and introduce the scaled coefficients ν̄ = ǫ−1 ν and κ̄ = ǫ−1 κ , where 

ǫ ≪ 1, and then use the Reductive Perturbation Method (Kakutani 

et al. 1968 ; Taniuti & Wei 1968 ). Here, it is quite imperative to 

emphasize that Pandey & Dwivedi ( 2006 ) separated all slow standing 

waves in hot coronal loops in strongly and weakly damped. The 

damping time of the former waves is of the order of the wave 

period, while the damping time of the latter waves is much greater 

than the wave period. This separation is perfectly accepted from the 

observational point of view. However, as it is explained in Paper II 
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the characteristic time of oscillations is the oscillation period divided 

by 2 π . Hence, from the theoretical point of view even oscillations 

with the damping time of the order of the wave period are weakly 

damped because the damping time is about six times greater than 

the characteristic time of oscillations. In accordance with this we 

introduce the scaled dissipation coefficients. By the way, it follows 

from this scaling that the effect of dissipation is only appeared in 

the second-order approximation. This implies that the propagation 

velocity of waves is the adiabatic sound speed. In the opposite limit 

of very large thermal conduction coefficient the propagation speed is 

isothermal sound speed. To describe this situation we need the scaling 

completely different from that used in our analysis. We assume 

that the characteristic time of variation of the plasma temperature 

and pressure is the characteristic time of oscillations times ǫ−1 . In 

accordance with this we introduce the ‘slow’ time t1 = ǫt . Hence, 

p0 and T0 are the functions of t1 . We also assume that the oscillation 

amplitude is relatively small and neglect the effect of oscillations on 

ν and κ . Then it follows from equations ( 5 )–( 8 ) that 

ν = ν0 

(
T0 ( t1 ) 

T00 

)5 / 2 

, η = η0 

(
T0 ( t1 ) 

T00 

)5 / 2 

, (12) 

where ν0 , η0 , and T00 are the values of ν, η, and T0 at t = 0. While 

the variation of the perturbation shape occurs on the slow time, there 

is also fast oscillations described by the ‘normal’ time t , so there 

are two times, normal and slow. To describe this two-time evolution 

of the system in geometrical optics all perturbations are taken in 

the form w( t1 ) exp ( iǫ−1 
 ( t1 )), where 
 ( t1 ) = ( π/L )
∫ t1 

0 c( t ′ ) d t ′ is 

eikonal. By analogy with the geometrical optics we introduce 

X = ǫ−1 

∫ t1 

0 

c( t ′ ) d t ′ , c2 ( t ) =
γp0 ( t ) 

ρ0 
, (13) 

where c( t) is the unperturbed sound speed. Using the new variables 

we transform equations ( 1 )–( 4 ) to 

c
∂ρ

∂X 
+

∂( ρu ) 

∂x 
= −ǫ

∂ρ

∂t1 
, (14) 

c
∂u 

∂X 
+ u

∂u 

∂x 
+

1 

ρ

∂p 

∂x 
= −ǫ

∂u 

∂t1 
+ ǫν̄

∂2 u 

∂x2 
, (15) 

c
∂T 

∂X 
+ u

∂T 

∂x 
+ ( γ − 1) T

∂u 

∂x 
= −ǫ

∂T 

∂t1 
+ ǫκ̄

∂2 T 

∂x2 
. (16) 

Equation ( 4 ) remains unchanged. When deriving equation ( 16 ) 

we took Q ( ρ, T ) ≈ Q ( ρ0 , T0 ), that is we neglected the variation 

of the generalised heat-loss function related to the density and 

temperature perturbation. If we take this variation into account then 

we arrive at the thermal misbalance problem in a cooling plasma. This 

problem was studied by many authors in a plasma with the constant 

unperturbed temperature (e.g. Kolotkov, Duckenfield & Nakariakov 

2020 ; Kolotkov, Zavershinskii & Nakariakov 2021 ; Kolotkov & 

Nakariakov 2022 ; see also review by Nakariakov et al. 2024 ). We 

postpone studying the thermal misbalance problem in a cooling 

plasma till future research. 

We look for the solution to the system of equations ( 4 ) and ( 14 )–

( 16 ) with the boundary condition ( 9 ) in the form of expansions 

f = f0 + ǫf1 + ǫ2 f2 + . . . , (17) 

where f represents any of quantities u , ρ, p, and T . The first term, 

f0 , corresponds to the unperturbed state. We note that u0 = 0, ρ0 = 

const , while p0 and T0 are functions of t1 . 

3.1 First-order approximation 

Substituting equation ( 17 ) in equations ( 4 ) and ( 14 )–( 16 ), and the 

boundary conditions equation ( 9 ), and collecting the terms of the 

order of ǫ yields 

c
∂ρ1 

∂X 
+ ρ0 

∂u1 

∂x 
= 0 , (18) 

c
∂u1 

∂X 
+

1 

ρ0 

∂p1 

∂x 
= 0 , (19) 

c
∂T1 

∂X 
+ ( γ − 1) T0 

∂u1 

∂x 
= 0 , (20) 

p1 =
kB 

m 
( ρ0 T1 + T0 ρ1 ) . (21) 

The function u1 must satisfy the boundary conditions 

u1 = 0 at x = 0 , L. (22) 

Eliminating all variables in favour of u1 from these equations and 

using the relation c2 = γ kB T0 /m we obtain 

∂2 u1 

∂X2 
−

∂2 u1 

∂x2 
= 0 . (23) 

The general solution to this equation can be written as 

u1 = c[ f ( ξ ) + g ( η)] , ξ = k ( X − x) , η = k ( X + x) , (24) 

where k is an arbitrary constant with the dimension m−1 . We note that 

the functions f and g also depend on t1 , but at present we do not write 

this argument explicitly. Substituting equation ( 24 ) in equation ( 22 ) 

yields 

f ( kX) + g( kX) = 0 , f ( kX − kL ) + g( kX + kL ) = 0 . (25) 

It follows from these equations that g( y) = −f ( y) and f ( y) is a 

periodic function with the period 2 kL . It is convenient to have this 

period equal to 2 π . Hence, we take k = π/L . Using equations ( 18 )–

( 21 ) and ( 24 ) we obtain 

u1 = c[ f ( ξ ) − f ( η)] , ρ1 = ρ0 [ f ( ξ ) + f ( η)] , (26) 

p1 = ρ0 c
2 [ f ( ξ ) + f ( η)] , T1 = ( γ − 1) T0 [ f ( ξ ) + f ( η)] . (27) 

3.2 Second-order approximation 

In the second-order approximation we collect the terms of the order 

of ǫ2 in equations ( 4 ) and ( 14 )–( 16 ), and the boundary conditions 

equation ( 9 ). Then using equations ( 24 ), ( 10 ), and ( 14 )–( 17 ) we 

obtain 

c
∂ρ2 

∂X 
+ ρ0 

∂u2 

∂x 
= 2 cρ0 k( f−f ′ 

− + f+ f
′ 
+ ) − ρ0 

(
∂f−

∂t1 
+

∂f+ 

∂t1 

)
, (28) 

c
∂u2 

∂X 
+ 

1 

ρ0 

∂p2 

∂x 
= 2 kc2 ( f−f ′ 

+ − f+ f
′ 
−) 

−
∂( cf−) 

∂t1 
+

∂( cf+ ) 

∂t1 
+ cν̄k2 ( f ′′ 

− − f ′′ 
+ ) , (29) 

c
∂T2 

∂X 
+ ( γ − 1) T0 

∂u2 

∂x 
= ( γ − 1)

(
kcT0 [ γ ( f−f ′ 

− + f+ f
′ 
+ ) 

− (2 − γ )( f−f ′ 
+ + f+ f

′ 
−)] −

∂( T0 f−) 

∂t1 

−
∂( T0 f+ ) 

∂t1 
+ κ̄k2 T0 ( f

′′ 
− + f ′′ 

+ )

)
, (30) 

p2 −
kB 

m 
( ρ0 T2 + T0 ρ2 ) = p0 ( γ − 1)( f− + f+ )

2 , (31) 
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u2 = 0 at x = 0 , L. (32) 

Here f− = f ( ξ, t1 ), f+ = f ( η, t1 ), and the prime indicates the 

derivatives with respect to ξ and η, respectively. Eliminating ρ2 , 

p2 , and T2 from equations ( 28 )–( 31 ) we obtain the equation for u2 : 

∂2 u2 

∂X2 
−

∂2 u2 

∂x2 
= k2 c

[
( γ + 1)

(
f ′ 2 

− + f−f ′′ 
−

− f ′ 2 
+ − f+ f

′′ 
+ 

)
+ (3 − γ )( f−f ′′ 

+ − f+ f
′′ 
−)
]

− 2 k

(
∂f ′ 

−

∂t1 
−

∂f ′ 
+ 

∂t1 

)
− k

3 γ − 2 

γ c 

d c 

d t1 
( f ′ 

− − f ′ 
+ ) 

+ k3 

(
ν̄ +

( γ − 1)κ̄

γ

)
( f ′′′ 

− − f ′′′ 
+ ) . (33) 

Since u2 satisfies the boundary conditions ( 32 ) we can expand it in 

the Fourier series 

u2 =

∞ ∑ 

n = 1 

Un ( X, t1 ) sin ( knx) . (34) 

It follows from equation ( 34 ) that the left-hand side of equation ( 33 ) 

has the form of the Fourier series expansion with respect to sin ( knx). 

It is shown in Appendix A that the right-hand side of equation ( 33 ) 

can be also expanded in the Fourier series similar to equation ( 34 ). 

The Fourier expansions of various terms on the right-hand side of 

equation ( 33 ) are calculated in Appendix A . The coefficients at 

sin ( knx) on the left and right-hand side must be equal. Then using 

equations ( A5 ), ( A6 ), ( A8 ), ( A10 ), and ( A14 ) we obtain 

∂2 Un 

∂X2 
+ k2 n2 Un = 2 k neiknX 

[
ik c( γ + 1)

∞ ∑ 

m =−∞ 

mfm fn −m 

− 2
∂fn 

∂t1 
−

3 γ − 2 

γ c 

dc 

dt1 
fn − k2 

(
ν̄ +

( γ − 1)κ̄

γ

)
n2 fn 

]

−
ick2 n 

4 
(3 − γ )

∞ ∑ 

m =−∞ 

( n + 2 m ) fm fn + m e
ikX( n + 2 m ) + c. c. , (35) 

where c. c. stays for complex conjugate. The general solution to this 

equation is the sum of a particular solution of the inhomogeneous 

equation and the complementary function. If the right-hand side of 

equation ( 35 ) contains terms proportional to eiknX and e−iknX then 

a particular solution would contain terms proportional XeiknX and 

Xe−iknX . Hence, the general solution to equation ( 35 ) is bounded 

only if the coefficients at terms proportional to eiknX and e−iknX 

on the right-hand side of this equation are zeros. We obtain the 

term proportional to eiknX in the second term on the right-hand 

side of equation ( 35 ) taking m = 0, and the term proportional to 

e−iknX taking m = −n . It follows from the condition fn ( t1 ) = 0 for 

n = 0 that the coefficients at both terms are zero. Hence the only 

term proportional to eiknX is the first term on the right-hand side of 

equation ( 35 ), and the only term proportional to e−iknX is its complex 

conjugate. Therefore the solution to equation ( 35 ) is bounded only if 

the expression in the square brackets is zero: 

ikc( γ + 1)

∞ ∑ 

m =−∞ 

mfm fn −m −2
∂fn 

∂t1 
−

3 γ − 2 

γ c 

d c 

d t1 
fn 

− k2 

(
ν̄+ 

( γ − 1)κ̄

γ

)
n2 fn = 0 . (36) 

This equation for f written in terms of Fourier coefficients corre- 

sponds to the equation 

∂f 

∂t1 

kc 

2 
( γ + 1) f

∂f 

∂y 

−
k2 

2 

(
ν̄ +

( γ − 1)κ̄

γ

)
∂2 f 

∂y2 
+

3 γ − 2 

2 γ c 

d c 

d t1 
f = 0 . (37) 

The quantity t0 = 1 /kc0 can be considered as the characteristic time 

for the oscillations, where c0 is the value of c at t = 0. We introduce 

the dimensionless time τ = t1 /t0 = ǫt/t0 . Then using equation ( 12 ) 

and the relation T0 /T00 = c2 /c2 
0 we transform equation ( 37 ) to 

∂F 

∂τ
−

γ + 1 

2 
F

∂F 

∂y 
−

C5 

R 

∂2 F 

∂y2 
−

2 − γ

2 γC 

d C 

d τ
F = 0 , (38) 

where C = c/c0 , F = Cf , and R can be considered as the geometric 

mean of the Reynolds and Peclet numbers at the initial time. It is 

defined by 

1 

R 
=

π

2 ǫc0 L 

(
ν0 +

( γ − 1) κ0 

γ

)
. (39) 

When the equilibrium does not depend on time we have c = c0 

and the last term on the right-hand side of equation ( 38 ) is 

zero. Although equation ( 38 ) is written in variables different from 

those used in Paper II, it is easy to show that it coincides with 

equation (38) in Paper II when c = c0 . The substitution F = −U 

reduces equation ( 38 ) to equation (33) in Paper I. Taking u ≈ ǫu1 , 

˜ ρ = ρ − ρ0 ≈ ǫρ1 , ˜ p = p − p0 ≈ ǫp1 , and ˜ T = T − T0 ≈ ǫT1 we 

obtain from equations ( 24 )–( 26 ) 

u = ǫc0 [ F ( ξ, τ ) − F ( η, τ )] , 

˜ ρ = 
ǫρ0 

C 
[ F ( ξ, τ ) + F ( η, τ )] , 

˜ p = 
ǫρ0 c

2 
0 

C 
[ F ( ξ, τ ) + F ( η, τ )] , 

˜ T = 
ǫ( γ − 1) T0 

C 
[ F ( ξ, τ ) + F ( η, τ )] . (40) 

To solve equation ( 38 ) we must impose the initial condition for 

function F . It is natural to impose the initial conditions not directly 

on F but on the original variables u , ˜ ρ, ˜ p , and ˜ T . The system of 

equations ( 1 )–( 4 ) is of the third order with respect to time. Hence, 

we must define three variables, for example, u , ˜ ρ, and ˜ T at t = 0. 

However, when deriving equation ( 23 ) we neglected an arbitrary 

function of t1 to obtain the expressions for ρ1 , p1 , and T1 in terms of 

u1 . This is equivalent to imposing the relation ˜ T = ( γ − 1)( T0 /ρ0 ) ˜ ρ

at t = 0. Hence, we consider not solutions to the most general initial 

value problem for the system of equations ( 1 )–( 4 ), but only solutions 

to the initial problem with ˜ ρ and ˜ T satisfying this relation at t = 0. 

In accordance with this it is enough to define u and ˜ ρ at the initial 

time: 

u = ϕ( x) , ˜ ρ = ψ( x) at t = 0 , (41) 

where ϕ( x) and ψ( x) are the 2 L -periodic functions and ϕ(0) = 

ϕ( L ) = 0. Using equation ( 40 ) and the expressions for ξ and η we 

obtain from this equation 

cF ( −kx, 0) − F ( kx, 0) = c−1 
0 ϕ( x) , 

F ( −kx, 0) + F ( kx, 0) = ρ−1 
0 ψ( x) . (42) 

It follows from these equations that 

F ( kx , 0) =
ψ( x ) 

2 ρ0 
−

ϕ( x ) 

2 c0 
≡ � ( kx ) , (43) 

where � ( y) is a 2 π -periodic function. 
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4  SOLUTION  F O R  R ≪ 1 

In this section we consider the case where R ≪ 1. This implies that 

the effect of dissipation strongly dominates the effect of non-linearity 

and we can use the linear approximation. Then equation ( 38 ) reduces 

to 

∂F 

∂τ
−

C5 

R 

∂2 F 

∂y2 
−

2 − γ

2 γC 

d C 

d τ
F = 0 . (44) 

Here it is worth making a comment. When deriving equation ( 38 ) 

we, in particular, assumed that dissipation is weak. The condition 

R ≪ 1 does not mean that dissipation is strong. Rather it means that 

dissipation dominates non-linearity. The condition that dissipation is 

weak means that the characteristic damping time of oscillations is 

much higher than the inverse oscillation frequency. We will discuss 

what restrictions must be imposed on the values of various quantities 

to satisfy this condition later. 

We make the variable substitution 

F = C
2 −γ
2 γ ˜ F . (45) 

As a result equation ( 44 ) reduces to 

∂ ˜ F 

∂τ
=

C5 

R 

∂2 ̃  F 

∂y2 
. (46) 

We look for the solution to this equation in the form ˜ F ( y, τ ) = 

Y ( y) 
 ( τ ). Substituting this expression in equation ( 46 ) and separat- 

ing the variables yields 

R 

C5 
 

d 
 ( τ ) 

d τ
=

1 

Y 

d2 Y 

d y2 
= λ, (47) 

where λ is a constant. Since Y ( y) must be a 2 π -periodic function it 

follows that λ = −n2 , where n = 1 , 2 , . . . Below we only consider 

the fundamental harmonic and take n = 1. Then imposing the initial 

condition F = − sin y at τ = 0 we obtain 

Y = − sin y, 
 = exp 

(
−

1 

R 

∫ τ

0 

C5 ( τ ′ ) d τ ′ 

)
. (48) 

Using these expressions we obtain from equation ( 45 ) 

F = −C
2 −γ
2 γ exp 

(
−

1 

R 

∫ τ

0 

C5 ( τ ′ ) d τ ′ 

)
sin y. (49) 

Taking C( τ ) = e−ατ we reduce this expression to 

F = − exp 

(
−

1 − e−5 ατ

5 αR 
−

2 − γ

2 γ
ατ

)
sin y. (50) 

Since � ( y) = − sin y we obtain from equation ( 40 ) that u/c0 = 

2 ǫ sin ( kx) at the initial time. Hence, the initial amplitude of the 

velocity is 2 ǫ. Using equation ( 13 ) we obtain 

X =
1 − e−ατ

ǫαk 
. (51) 

Then we obtain from equation ( 24 ) 

ξ =
1 − e−ατ

ǫα
− kx, η =

1 − e−ατ

ǫα
+ kx. (52) 

Using equations ( 40 ) and ( 52 ) we obtain 

u = 2 ǫc0 exp 

(
−

1 − e−5 ατ

5 αR 
−

2 − γ

2 γ
ατ

)

× cos 
1 − e−ατ

ǫα
sin ( kx) . (53) 

When α → 0, that is there is no heating or cooling, the damping time 

in the dimensionless variables is τ = 1 and the oscillation frequency 

is ǫ−1 . Hence, in this case the damping time is much higher that 

the inverse oscillation frequency. When | α| � 1 the damping time is 

close to unity. The instantaneous oscillation period �τ at τ = τ0 is 

defined by 

1 − e−α( τ0 + �τ ) 

ǫα
−

1 − e−ατ0 

ǫα
= 2 π. 

It follows from this equation that �τ ≈ 2 πǫeατ0 and the instan- 

taneous wave frequency is 2 π/�τ = ǫ−1 e−ατ0 . We only consider 

| α| τ0 ≤ 1, so the condition that the damping time is much higher 

than the inverse wave frequency is hold. 

Summarizing, in the approximation R ≪ 1 the evolution of the 

initial sinusoidal perturbation is simple: The spatial dependence 

remains sinusoidal, the solution oscillates with the slowly decreasing 

frequency, and the oscillation amplitude exponentially decays. 

We note that we do not apply the results obtained in this section to 

interpreting observations and do not compare them with the results 

obtained in the previous linear studies of wave damping. Our only 

aim is to present a qualitative description of the wave evolution in 

the linear approximation. 

5  SOLUTI ON  F O R  R ≫ 1 

In this section we consider the case of very small dissipative 

coefficients implying that R ≫ 1. In this case we can neglect the 

third term in equation ( 38 ). Then this equation reduces to 

∂F 

∂τ
−

γ + 1 

2 
F

∂F 

∂y 
−

2 − γ

2 γC 

d C 

d τ
F = 0 . (54) 

The equation of characteristics of this equation is 

d y 

d τ
= −

γ + 1 

2 
F . (55) 

Let y = y( τ ) be the equation of a characteristic. On this characteristic 

F = F ( τ, y( τ )). Then the variation of F along this characteristic is 

described by 

d F 

d τ
=

2 − γ

2 γ c 

d c 

d τ
F . (56) 

The solution to this equation is 

F = F0 C
2 −γ
2 γ , (57) 

where F0 is the value of F at τ = 0. It follows from equation ( 43 ) 

that F0 = � ( y0 ). Using this result and equation ( 57 ) we obtain from 

equation ( 55 ) that the equation of a characteristic is 

y( τ ) = y0 −
γ + 1 

2 
� ( y0 )

∫ τ

0 

[
C( τ ′ )

] 2 −γ
2 γ d τ ′ . (58) 

To obtain the solution to equation ( 54 ) we need to express y0 in terms 

of τ and y using equation ( 58 ) and substitute y0 ( τ, y) in equation ( 57 ) 

with F0 = � ( y0 ). 

We consider an example taking � ( y) = − sin y and T ( t) = 

T0 e
−2 ατ , where α is a constant; α < 0 corresponds to heating and 

α > 0 to cooling of a coronal loop. Then it follows that C( τ ) = e−ατ

and equations ( 57 ) and ( 58 ) reduces to 

F = − sin y0 e
−

2 −γ
2 γ ατ

, (59) 

y = y0 +
γ ( γ + 1) sin y0 

α(2 − γ ) 

(
1 − e

−
2 −γ
2 γ ατ

)
≡ �( τ, y0 ) . (60) 

To obtain F as a function of τ and y we need to solve equation ( 60 ) 

with respect to y0 thus expressing y0 in terms of τ and y, and then 

substitute the result in equation ( 59 ). It is only possible to obtain y0 
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as a single-valued function of τ and y when �( τ, y0 ) is a monotonic 

function of y0 . We obtain 

∂� 

∂y0 
= 1 +

γ ( γ + 1) cos y0 

α(2 − γ ) 

(
1 − e

−
2 −γ
2 γ ατ

)
. (61) 

Since ∂ �/∂ y0 > 0 at τ = 0 the condition that �( τ, y0 ) is a mono- 

tonic function of y0 is 

γ ( γ + 1) 

α(2 − γ ) 

(
1 − e

−
2 −γ
2 γ ατ

)
< 1 . (62) 

When 

α > αc =
γ ( γ − 1) 

2 − γ
(63) 

the condition given by equation ( 62 ) is satisfied for any value of τ

and consequently the solution to equation ( 54 ) exists for any τ . We 

obtain αc = 40 / 3 for γ = 5 / 3. When α < αc the condition given by 

equation ( 62 ) is only satisfied when 

τ < τc = −
2 γ

α(2 − γ ) 
ln 

(
1 −

α(2 − γ ) 

γ ( γ + 1) 

)
. (64) 

It is proved in Paper I that τc is a monotonically increasing function 

of α. When α → αc we obtain τc → ∞ . 

It follows from equation ( 60 ) that 

∂y0 

∂y 
=

(
∂� 

∂y0 

)−1 

. (65) 

Differentiating equation ( 57 ) with F0 = � ( y0 ) yields 

∂F 

∂y 
=

∂� 

∂y0 

(
∂� 

∂y0 

)−1 

C
2 −γ
2 γ . (66) 

When τ is fixed ∂ �/∂ y0 takes minimum at y0 = π . Then ∂ �/∂ y0 → 

0 as τ → τc at y0 = π . Since in accordance with equation ( 60 ) y = π

when y0 = π it follows from equation ( 66 ) that 

∂F 

∂y 

∣∣∣∣
y= π

→ ∞ as τ → τc . (67) 

This phenomenon is called a gradient catastrophe that is previously 

studied, for example, in non-linear acoustics (e.g. Rudenko & 

Soluyan 2001 ), hydrodynamics (e.g. Landau & Lifshitz 1987 ; Ru- 

derman 2019 ), and in the general theory of waves (e.g. Whitham 

1974 ). We now discuss what happens with u given by equation ( 40 ). 

It follows from this equation that 

∂u 

∂x 
= −ǫkc0 

(
∂F 

∂ξ
+

∂F 

∂η

)
. (68) 

Then we obtain from equations ( 67 ) and ( 68 ) that 

∂u 

∂x 

∣∣∣∣
x= xc 

→ −∞ as τ → τc (69) 

if xc satisfies one of the two equations, 

kX( τc ) − kxc = π (mod 2 π ) , 

kX( τc ) + kxc = π (mod 2 π ) , 
(70) 

and the restriction kxc ∈ [0 , π ], where X( τ ) is defined by equa- 

tion ( 51 ). If both equations in ( 70 ) are satisfied then we obtain 

2 kxc = 0 (mod 2 π ), which implies that either xc = 0 or kxc = π . 

There is χ ∈ [0 , 2 π ) and a positive integer n such that kX( τc ) = 

2 πn + χ . Let us assume that there is no xc satisfying the first 

equation in ( 70 ). Since kxc can vary from 0 to π this is only 

possible when χ < π . However, in this case we can find xc satisfying 

the second equation in ( 70 ). Hence, there is always xc such that 

kxc ∈ [0 , π ] and u has an infinite derivative with respect to x at 

x = xc and τ = τc . A shock starts to form at x = xc and τ = τc . 

We introduce the dimensionless velocity U = u (2 ǫc0 )
−1 . This 

quantity can be expanded in the Fourier series 

U =

∞ ∑ 

n = 1 

An ( τ ) sin ( nkx) , (71) 

An ( τ ) =
2 

L 

∫ L 

0 

U ( x, τ ) sin ( nkx ) d x . (72) 

It is shown in Appendix B that the expression for An ( τ ) is given by 

An ( τ ) = ( −1)n + 1 e
−

2 −γ
2 γ ατ

cos ( nkX)
{ 

Jn −1 ( ns( τ )) 

− Jn + 1 ( ns ( τ )) −
s ( τ ) 

2 
[ Jn −2 ( ns ( τ )) − Jn + 2 ( ns( τ ))]

} 

, (73) 

where 

s( τ ) =
γ ( γ + 1) 

α(2 − γ ) 

(
1 − e

−
2 −γ
2 γ ατ

)
. (74) 

The dependence of U on τ for various values of α is shown in 

Fig. 1 for ǫ = 0 . 094 / | α| when α �= 0, and ǫ = 0 . 094 when α = 

0. The reason for choosing these values of ǫ are explained below. 

In this figure the evolution of the perturbation is shown up to the 

instance of gradient catastrophe for the cases when the temperature 

increases ( α = −1), the temperature does not change ( α = 0), and 

the temperature decreases ( α = 1). Since αc < 14 the lower right 

panel in Fig. 1 corresponds to the case where the gradient catastrophe 

does not occur. Since τc ≈ 0 . 73 for α = −1 and τc ≈ 0 . 78 for α = 1 

the loop temperature increases approximately four times in the first 

case and decreases approximately five times in the second case when 

τ varies from 0 to τc . In accordance with this estimate we chose to 

show the evolution of U for τ varying from 0 to 0.057 because the 

loop temperature decreases approximately five times for α = 14 and 

τ = 0 . 057. 

We also show the dependences of An on τ for n = 1 , 2 , 3 in Fig. 2 . 

An important property of the evolution of initial oscillation is that 

sometimes the perturbation looks not as a fundamental mode but as 

the first overtone. It is especially clear in the upper right panel in the 

perturbation shown by the solid line. This property is also confirmed 

in Fig. 2 where there are some values of τ such that A1 ( τ ) ≈ 0, while 

| A2 ( τ ) | take a local maximum. This phenomenon only occurs when 

the initial perturbation amplitude is relatively large, that is for α = 0 

and α = ±1. As for the case with small amplitude corresponding to 

α = 14, the amplitude of the fundamental harmonic is much higher 

than those of the overtones. Hence, it is obvious that the phenomenon 

described above is caused by non-linearity. 

Now we discuss the results obtained in this section using the 

dimensional variables. The temperature in a cooling coronal loop is 

given by 

T0 ( t) = T00 e
−t/tcool , tcool =

L 

2 πǫ| α| c0 
. (75) 

We take T00 = 6 MK . This yields c0 ≈ 370 km s −1 . Then taking 

L = 218 Mm = 2 . 18 × 108 m we obtain 

tcool ≈
94 

ǫ| α| 
s . (76) 

Now we discuss when the approximation R ≫ 1 can be used. We 

take n0 = 1015 m 
−3 as a typical value of the electron concentration 

in coronal loops. It is shown in Paper I that ν0 ≈ 8 × 1011 m 
2 s −1 and 

κ0 ≈ 2 . 55 × 1013 m 
2 s −1 for this value of n0 and T00 = 6 MK . Then 

taking γ = 5 / 3 we obtain from equation ( 39 ) 

R ≈ 4 . 67 ǫ. (77) 
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Figure 1. Dependence of U on x/L for R ≫ 1 and various values of α. In the upper panels and left lower panel the dotted, dashed, dash-dotted, and solid lines 

correspond to τ = 0, τc / 3, 2 τc / 3, and τc . In the lower right panel the dotted, dashed, dash-dotted, and solid lines correspond to τ = 0, 0.019, 0.038, and 0.057. 

Figure 2. Dependence of Fourier coefficients An in equation ( 71 ) on τ for R ≫ 1 and various values of α. The solid, dashed, and dash-dotted lines correspond 

to n = 1, 2, and 3, respectively. 

Since by assumption ǫ is substantially less than 1 it follows that for 

chosen values of L , T00 , and n0 the condition R ≫ 1 cannot be satis- 

fied. Hence, we considered this limiting case just for completeness. 

We can obtain R ≫ 1 by increasing n0 by two orders of magnitude 

since it is quite possible to have n0 = 1017 m 
−3 in flaring coronal 

loops. In that case 

R ≈ 467 ǫ, (78) 

and we obtain R � 40 for ǫ � 0 . 1. 

It follows from equation ( 76 ) that for given α we can either 

choose ǫ and calculate tcool , or choose tcool and calculate ǫ. We 

made the second option and took tcool = 1000 s . Then we obtained 

ǫ = 0 . 094 for | α| = 1 and ǫ = 0 . 0067 for | α| = 14. Since the initial 

amplitude of perturbation is 2 ǫc0 , the relative amplitude of the initial 

perturbation, u0 /cs , is 0.188 in the first case and 0.0134 in the second 

case. 
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Figure 3. Dependence of U on x/L for various values of α and τ , and R given by equation ( 77 ). In the upper and left lower panels the dotted, dashed, 

dash-dotted, and solid lines correspond to τ = 0 , τc / 3 , 2 τc / 3, and τc . In the right lower panel the dotted, dashed, dash-dotted, and solid lines correspond to 

τ = 0 , 0 . 019 , 0 . 038, and 0.057. 

6  G E N E R I C  CASE  

In this section we consider the generic case and study the simulta- 

neous effect of non-linearity and dissipation. To do this we solve 

equation ( 38 ) and then use the expression of U in terms of F . 

The results of this calculation are presented in Fig. 3 where the 

dependence of U on x/L is shown for four different values of τ . We 

use the same parameters as in the previous section. In particular, we 

take ǫ = 0 . 094 for α = −1 , 0, and 1, and ǫ = 0 . 0067 for | α| = 14. 

Then it follows from equation ( 77 ) that R ≈ 0 . 44 for α = −1 , 0, 

and 1, and R ≈ 0 . 031 for | α| = 14. We do not see any effect of 

non-linearity in the upper panels and the right lower panel in Fig. 3 . 

It is not surprising because R < 0 . 5 and consequently dissipation 

dominates non-linearity. We also see in the left upper panel in Fig. 3 

that the two curves in this panel corresponding to higher values of τ

coincide with the horizontal axis. This implies that at these value of 

τ the perturbation is close to zero. This effect is due to exponential 

increase of dissipative coefficients for α = −1. 

The effect of non-linearity is only manifested in the left lower panel 

in Fig. 3 corresponding to α = 1. For this value of α the dissipation 

coefficients exponentially decrease so the coefficient at the last but 

one term in equation ( 38 ) becomes more than 30 times less than its 

initial value at the end of perturbation evolution corresponding to the 

solid curve in Fig. 3 . However the evolution of perturbation shown 

in the left lower panel in Fig. 3 is still very much different from that 

shown in the left lower panel in Fig. 1 obtained for R ≫ 1. The strong 

reduction in the coefficient at the last but one term in equation ( 38 ) for 

the values of τ corresponding to the perturbation amplitude strongly 

reduced in comparison with its initial value. As a result for these 

values of τ the effect of dissipation is comparable with that of non- 

linearity however it does not dominate. In Fig. 4 the continuous evo- 

lution of U is shown. The results shown in this figure confirm the con- 

clusion about the properties of the perturbation evolution made using 

Fig. 3 . 

We also studied standing slow waves in a coronal loop with the 

same parameters as before however with the plasma density increased 

by two orders of magnitude. As was explained in the previous 

section in this case R also increases by two orders of magnitude 

and it is given by equation ( 78 ). As a result we obtain R ≈ 44 for 

α = −1 , 0, and 1, and R ≈ 3 . 1 for | α| = 14. The results of this 

calculation are presented in Fig. 5 . We compare the curves shown 

in this figure with those shown in Fig. 1 . We start from the left 

upper panels. In Fig. 5 the effect of non-linearity is pronounced, 

but does not dominate. The reason is that although the coefficient 

at the last but one term in equation ( 38 ) is initially small ( R = 40), 

it exponentially increases with time and becomes of the order of 

unity for τ � 2 τc / 3. As a result, the solid curve in the left upper 

panel in Fig. 5 is very much different from that in the left upper 

panel in Fig. 1 . On the other hand, the right panel in Fig. 5 is very 

similar to that in Fig. 1 . Finally, the curves in the lower panel in Fig. 5 

practically coincide with the corresponding curves in the lower panel 

in Fig. 1 . It is an expected result because not only the coefficient at 

the last but one term in equation ( 38 ) is small at τ = 0, but it also 

exponentially decreases with time. In Fig. 6 the continuous evolution 

of U is shown. The results shown in this figure confirm the conclusion 

about the properties of the perturbation evolution made using 

Fig. 5 . 

An important conclusion that follows from the inspection of Figs 4 

and 6 is that cooling decelerates the wave damping. It is an expected 

result because plasma cooling causes an exponential reduction of the 

dissipative coefficients. 

7  SUMMARY  A N D  C O N C L U S I O N S  

We studied non-linear standing sausage waves in a coronal magnetic 

loop with a variable temperature. We used the simplest model of 

a coronal loop which is a straight magnetic tube with a circular 
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Figure 4. Continuous evolution of the dependence of U on x/L for various values of α and R given by equation ( 77 ). 

Figure 5. Dependence of U on x/L for various values of α and τ , and R given by equation ( 78 ). In the upper and left lower panels the dotted, dashed, 

dash-dotted, and solid lines correspond to τ = 0 , τc / 3 , 2 τc / 3, and τc . In the right lower panel the dotted, dashed, dash-dotted, and solid lines correspond to 

τ = 0 , 0 . 019 , 0 . 038, and 0.057. 

cross-section of constant radius and constant plasma densities inside 

and outside the tube. We assumed that the plasma-beta is low. This 

enables us to neglect the magnetic field perturbation and consider the 

sausage oscillations as occurring in a tube with a rigid boundary. Then 

these oscillations are described by pure 1D gas-dynamic equations. 

It is assumed that while the temperature of plasma in the tube can 

vary, its density remains constant. 

We also assumed that the perturbation amplitude is small and 

used the reductive perturbation method to derive the governing 

equations for non-linear standing sausage waves. We showed that 
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Figure 6. Continuous evolution of the dependence of U on x/L for various values of α and R given by equation ( 78 ). 

the solution describing a standing non-linear wave is the sum of two 

identical non-linear waves propagating in the opposite directions 

similar to a standing linear wave. Each of the two propagating waves 

is described by a modified Burgers equation that reduces to the 

classical Burgers equation (Burgers 1948 ) when the temperature of 

plasma inside the magnetic tube does not change. 

After that we considered three different cases. In the first case 

we assumed that dissipation strongly dominates non-linearity. In this 

case each of the two waves propagating in the opposite directions 

is described by the linearized modified Burgers equation. Then 

the solution to the problem is straightforward. In particular the 

solution describing the fundamental harmonic is a sin function of the 

spatial variable times a function describing the variation of the wave 

amplitude due to dissipation and variation of the plasma temperature 

inside the tube. This solution is given by equation ( 53 ). 

In the second case we assumed that non-linearity strongly dom- 

inates dissipation so the latter can be neglected. In this case the 

ideal counterpart of the modified Burgers equation was solved using 

the method of characteristics. An important property is that in 

general the evolution of an initial perturbation results in a gradient 

catastrophe where an infinite gradient appears in the perturbation 

profile. However, strong cooling can prevent the gradient catastrophe. 

In the third case we studied the competition between non-linearity 

and dissipation. In this case the modified Burges equation describing 

the two counterpropagating non-linear waves was solved numeri- 

cally. We considered two cases: A relatively rarified coronal loop 

with the plasma density equal to 1015 kg m 
−3 , and a dense loop 

with the plasma density equal to 1017 kg m 
−3 . In the case of rarified 

loop dissipation dominates and the effect of non-linearity is only 

weakly pronounced. In contrast, in the case of dense loop non- 

linearity dominates and the evolution of the initial perturbation is very 

similar to that in the case without dissipation. The only difference 

is that the gradient catastrophe does not occur being prevented by 

dissipation. The most important conclusion that follows from our 

results is that the plasma cooling decelerates the wave damping. 

This is an expected effect because cooling results in the decrease 

of coefficients of viscosity and thermal conduction. This leads to 

weakening of dissipation. 

DATA  AVAI LABI LI TY  

There are no new data associated with this article. 
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APPENDIX  A :  D E R I VAT I O N  O F  EXPRESSION  

F O R  T H E  FOURIER  T R A N S F O R M  O F  T H E  

R I G H T- H A N D  SIDE  O F  EQUATION  ( 3 2 )  

Since f ( y, t1 ) is a periodic function of y with the period 2 π it can 

be expanded in the Fourier series 

f ( y, t1 ) =

∞ ∑ 

n =−∞ 

fn ( t1 ) e
iny , (A1) 

where f0 ( t1 ) = 0 and f−n ( t1 ) = f ∗
n ( t1 ) with the asterisk indicating 

complex conjugate. Using the identity (Korn & Korn 1961 ) 

∞ ∑ 

n =−∞ 

an 

∞ ∑ 

m =−∞ 

bm =

∞ ∑ 

n =−∞ 

∞ ∑ 

m =−∞ 

am bn −m , (A2) 

we obtain 

g( y ) h ( y ) =

∞ ∑ 

n =−∞ 

einy 
∞ ∑ 

m =−∞ 

gm hn −m , (A3) 

where g( y) and h ( y) are 2 π -periodic real functions. 

Now we obtain the Fourier expansions for various terms on the 

right-hand side of equation ( 33 ). Using equation ( A1 ) we obtain 

f ′ 
± =

∞ ∑ 

n =−∞ 

infn e
i kn ( X±x ) . (A4) 

Using this result yields 

f ′ 
− − f ′ 

+ = 

∞ ∑ 

n =−∞ 

2 nfn e
iknX sin ( nkx) 

= 2

∞ ∑ 

n = 1 

n
(
fn e

iknX + f ∗
n e

−iknX 
)

sin ( nkx) , (A5) 

f ′′′ 
− − f ′′′ 

+ = −2

∞ ∑ 

n = 1 

n3 
(
fn e

iknX + f ∗
n e

−iknX 
)

sin ( nkx) . (A6) 

Next using equation ( A3 ) yields 

f ′ 2 
± = −

∞ ∑ 

n =−∞ 

ei kn ( X±x ) 
∞ ∑ 

m =−∞ 

m ( n − m ) fm fn −m . (A7) 

With the aid of this result we obtain 

f ′ 2 
− − f ′ 2 

+ = 2 i

∞ ∑ 

n =−∞ 

eiknX sin ( nkx)

∞ ∑ 

m =−∞ 

m ( n − m ) fm fn −m 

= 2 i

∞ ∑ 

n = 1 

sin ( nkx)

∞ ∑ 

m =−∞ 

m ( n − m )
(
fm fn −m e

iknX 

− f ∗
m f

∗
n −m e

−iknX 
)
, (A8) 

Again using equation ( A3 ) we obtain 

f±f ′′ 
± = −

∞ ∑ 

n =−∞ 

ei kn ( X±x ) 
∞ ∑ 

m =−∞ 

m2 fm fn −m . (A9) 

Using this result yields 

f−f ′′ 
− − f+ f

′′ 
+ = 2 i

∞ ∑ 

n =−∞ 

eiknX sin ( nkx)

∞ ∑ 

m =−∞ 

m2 fm fn −m 

= 2 i

∞ ∑ 

n = 1 

sin ( nkx)

∞ ∑ 

m =−∞ 

m2 
(
fm fn −m e

iknX 

− f ∗
m f

∗
n −m e

−iknX 
)
. (A10) 

Using equation ( A1 ) we obtain 

f−f ′′ 
+ = −

∞ ∑ 

m =−∞ 

fm e
i km ( X−x ) 

∞ ∑ 

l=−∞ 

l2 fl e
i kl( X+ x ) 

= −

∞ ∑ 

m =−∞ 

∞ ∑ 

l=−∞ 

l2 fl fm e
ik( l−m ) x eik( m + l) X . (A11) 

Making the variable substitution l = n + m and then changing the 

order of summation we transform this expression to 

f−f ′′ 
+ = −

∞ ∑ 

n =−∞ 

eiknx 
∞ ∑ 

m =−∞ 

( m + 2 n )2 fm fn + m e
ikX( n + 2 m ) . (A12) 

To obtain the expression for f+ f
′′ 
− we only need to substitute −x for 

x in this equation. Then we arrive at 

f−f ′′ 
+ − f+ f

′′ 
− = −2 i

∞ ∑ 

n =−∞ 

sin ( knx) 

×

∞ ∑ 

m =−∞ 

( m + 2 n )2 fm fn + m e
ikX( n + 2 m ) . (A13) 

Finally we transform this expression to 

f−f ′′ 
+ − f+ f

′′ 
− = −2 i

∞ ∑ 

n = 1 

sin ( knx)

∞ ∑ 

m =−∞ 

( m + 2 n )2 

×
(
fm fn + m e

ikX( n + 2 m ) − f ∗
m f

∗
n + m e

−ikX( n + 2 m ) 
)
. (A14) 
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APPENDIX  B:  C A L C U L AT I O N  O F  FOURIER  

COEFFICIENTS  

Using equation ( 40 ) we obtain from equation ( 72 ) 

An ( τ ) =
1 

L 

∫ L 

0 

[ F ( ξ ) − F ( η)] sin ( nkx ) d x . (B1) 

Using the variable substitution we transform this expression to 

An ( τ ) = −
1 

π

∫ kX−π

kX 

F ( ξ ) sin [ n ( kX − ξ )] d ξ

−
1 

π

∫ kX+ π

kX 

F ( ξ ) sin [ n ( η − kX)] d η

−
1 

π

∫ kX+ π

kX−π

F ( y) sin [ n ( y − kX)] d y 

=
1 

π

∫ π

π

F ( y )[cos ( ny ) sin ( nkX) − sin ( ny ) cos ( nkX)] d y . 

(B2) 

When deriving this expression we used the fact that F ( y) is a 2 π - 

periodic function. Now we make the variable substitution y = y( y0 ), 

where the function y( y0 ) is given by equation ( 60 ). Then using 

equation ( 59 ) we transform the expression for An ( τ ) to 

An ( τ ) = 
1 

π
e

−
2 −γ
2 γ ατ

∫ π

−π

{cos ( nkX)] sin [ n ( y0 + s( τ ) sin y0 )] 

− sin ( nkX) cos [ n ( y0 + s( τ ) sin y0 )] } 

× [1 + s( τ ) cos y0 )] sin y0 d y0 , (B3) 

where 

s( τ ) =
γ ( γ + 1) 

α(2 − γ ) 

(
1 − e

−
2 −γ
2 γ ατ

)
. (B4) 

The product of the second term in the curly brackets with the other 

terms in equation ( B3 ) is odd with respect to y0 . This implies that 

the integral of this product is zero. The product of the first term in 

the curly brackets with the other terms in equation ( B3 ) is even with 

respect to y0 . This implies that the integral of this product can be 

reduced to the integral over the interval [0 , π ]. Hence the expression 

for An ( τ ) can be reduced to 

An ( τ ) = 
2 

π
e

−
2 −γ
2 γ ατ

cos ( nkX) 

×

∫ π

0 

sin [ n ( y + s ( τ ) sin y )][1 + s ( τ ) cos y )] sin y d y , (B5) 

where we dropped the subscript 0 at y. Using the relation 

(Abramowitz & Stegun 1964 ) 

Jn ( z) =

∫ π

0 

cos ( z sin θ − nθ ) d θ, (B6) 

where Jn ( z) is the Bessel function, we obtain 

2 

π

∫ π

0 

sin [ n ( y + s ( τ ) sin y )][1 + s ( τ ) cos y )] sin y d y 

=
1 

π

∫ π

0 

F ( ξ ) cos [( n − 1) y + ns ( τ ) sin y ] d y 

−
1 

π

∫ π

0 

F ( ξ ) cos [( n + 1) y + ns ( τ ) sin y ] d y 

+
s( τ ) 

2 π

∫ π

0 

F ( ξ ) cos [( n − 1) y + ns ( τ ) sin y ] d y 

−
s( τ ) 

2 π

∫ π

0 

F ( ξ ) cos [( n + 1) y + ns ( τ ) sin y ] d y 

= ( −1)n + 1 

{
Jn −1 ( ns( τ )) − Jn + 1 ( ns( τ )) 

−
s( τ ) 

2 
[ Jn −2 ( ns( τ )) − Jn + 2 ( ns( τ ))]

}
. (B7) 

When deriving this expression we used the relation j−n ( −z) = 

( −1)n Jn ( z). Substituting equation ( B7 ) in equation ( B5 ) we arrive at 

equation ( 73 ). 
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