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Current practices in the study of biomolecular
condensates: a community comment

Simon Alberti, Paolo Arosio, Robert B. Best, Steven Boeynaems, Danfeng Cai,

Rosana Collepardo-Guevara, Gregory L. Dignon, Rumiana Dimova, Shana Elbaum-

Garfinkle, Nicolas L. Fawzi, Monika Fuxreiter, Amy S. Gladfelter, Alf Honigmann,
Ankur Jain, Jerelle A. Joseph, Tuomas P. J. Knowles, Keren Lasker, Edward A. Lemke,

Kresten Lindorff-Larsen, Reinhard Lipowsky, Jeetain Mittal, Samrat Mukhopadhyay,

Sua Myong, Rohit V. Pappu, Karsten Rippe, Tatyana A. Shelkovnikova,

Anthony G. Vecchiarelli, Susanne Wegmann, Huaiying Zhang, Mingjie Zhang,

Chloe Zubieta, Markus Zweckstetter, Dorothee Dormann & Tanja Mittag Check for updates

The realization that the cell is abundantly com-
partmentalized into biomolecular condensates

has opened new opportunities for under-
standing the physics and chemistry underlying

many cellular processes1, fundamentally chan-

ging the study of biology2. The term biomole-
cular condensate refers to non-stoichiometric

assemblies that are composed of multiple types
ofmacromolecules in cells, occur through phase

transitions, and can be investigated by using

concepts from soft matter physics3. As such,
they are intimately related to aqueous two-

phase systems4 and water-in-water emulsions5.
Condensates possess tunable emergent proper-

ties such as interfaces, interfacial tension, vis-

coelasticity, network structure, dielectric
permittivity, and sometimes interphase pH gra-

dients and electric potentials6–14. They can form
spontaneously in response to specific cellular

conditions or to active processes, and cells

appear to have mechanisms to control their size
and location15–17. Importantly, in contrast to

membrane-enclosed organelles such as mito-
chondria or peroxisomes, condensates do not

require the presence of a surrounding
membrane.

Condensates have been linked to many cellular functions. They can

accelerate or suppress biochemical reactions18–20, aid in the storage or

sequestration of molecules21, and even patch damaged membranes22

and generate mechanical capillary forces23–28. The cell can use phase

separation to sense and respond to changes in the environment29–31 or

to buffer against concentration fluctuations in the cytosol or

nucleoplasm32. Condensation plays a role in genomic activities such as

DNA replication, recombination, and repair, as well as in transcription,

translation, signaling and stress responses33. It has also been linked to

various diseases such as neurodegeneration and cancer34,35. Con-

densation may, for instance, lead to a gain of function that drives the

specific disease process.

Liquid-liquid phase separation (LLPS) has received attention as a

process of condensate assembly, and the analogy to the demixing of

oil and water is often used. While useful as a first introduction to the

conceptual framework, the term and analogy can be misleading

because they imply thatbothphases arepurely viscous liquids and that

components segregate nearly completely. In fact, as we will see, con-

densates enrich molecules to a wide variety of degrees, can possess a

wide-range of material states36,37, and can form through a variety of

physical processes3,38,39. Many of their constituents are multivalent

biopolymers (e.g., proteins and nucleic acids) that form a multiplicity

of attractive and repulsive, solvent-mediated, reversible

interactions40–42. These interactions create internal spatial and

dynamic inhomogeneities that generate local or condensate-spanning

networks11,43–47. Furthermore, macromolecule conformations are

environmentally sensitive and heterogeneous, and can display orien-

tational ordering. This means that condensates are viscoelastic, with

gel-like or liquid-crystalline or even semi-crystalline organization on

different length scales48,49. Such systems are referred to in the soft

matter literature as complex fluids, because they feature dominantly

viscous, a combination of viscous and elastic, or dominantly elastic

properties depending on the length- and timescales that are probed50.

Given these complexities, which have come to light even for

simple systems composed of a single macromolecule plus solvent, we

will use the inclusive terms “biomolecular condensate” and “phase

separation” in this text, as the most detail-agnostic descriptors of the

phenomenon. We encourage researchers to do the same, and to use

precise terms that correctly identify the types of phase transitions and

material states that apply to their system. These aspects of con-

densates have been reviewed and discussed extensively, but we pro-

vide here a practical summary that aims to be accessible to readers

across disciplines.

One way to think about the network of interactions among mac-

romolecules that phase separate is in terms of coupled associative and
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segregative phase transitions (COAST)50. For example, phase separa-

tion is a segregative phase transition, giving rise to different coexisting

phases. Percolation, on the other hand, is an associative phase transi-

tion, akin to self-assembly3. Other COAST-like processes exist, and

these are “coupled” in the sense that they influence each other. The

resulting condensates can be catalogued asmacrophases (which grow

in size with increasing total concentration of their biomolecular con-

stituents) or microphases (which have defined sizes encoded in the

molecular architectures of their constituents via block-copolymeric

architectures). Another important concept is that of scaffolds and

clients, where scaffold molecules drive condensate formation and

recruit and concentrate client molecules, which can in turn influence

the phase behavior40,51–53.

To add further complexity, constituent molecules can often form

assemblies even below the saturation concentration or phase bound-

ary (i.e., below the threshold concentration for condensate formation),

simply because they aremultivalent species54–57. These assemblies have

been called pre-percolation clusters or higher-order oligomers54,58.

Lacking a delineating phase boundary due to their small size, they are

not easily defined by clear differences in internal microenvironments

or network structure, unlike coexisting phases. However, probes that

are sensitive to solvent polarity show that these clusters are incipient

facsimiles of condensates58.

The fact that condensates have material properties that go

beyond those of simple liquids is now very apparent, and these

properties are an area of active research10,12,59. Material states are

emergent and determined by the network structure of the condensate,

the transport properties within it (including diffusion and perme-

ability), and the timescales of making and breaking of molecular

contacts37,60–64. Of note, classical material properties are only defined

for macroscopic systems. Biological systems are frequently small, not

exceeding submicron size, and formed from a comparatively small

number of molecules. Precise language and physics-based measures

that are comparable between different types of condensates are

therefore particularly important.

The physical characteristics of condensates can strongly influence

biochemical functions. For example, condensates generate a distinct

solvation environment, including differences in water concentration,

structure and dynamics, pH, biomolecule and ion concentrations,

dielectric constant, and partitioning of metabolites and

biomacromolecules6–8,13,65–71. Solvation properties influence partition-

ing, reaction rates, and other biochemical processes31,72–74. Moreover,

in many biological condensates the concentration of components can

easily reach what is referred to in polymer science as the semi-dilute

regime, in which the macromolecule forming the condensate can

become a solvent for itself, dramatically changing the environment

that the biomolecule experiences75,76.

Further, biomolecules at condensate boundaries, or interfaces,

exhibit distinct properties compared to those in the bulk dilute or

dense phases, primarily because being positioned at the interface is

less energetically favorable than in the bulk dense phase. These dif-

ferences can encompass aspects such as conformation, orientation,

extent of networking, and mobility11,47,77,78. These specific properties

may drive biochemical reactions or aggregation processes79–81. Inter-

faces can also coincidewith gradients ofpH, ions,metabolites, or other

biomolecules66,68,69,77.

Finally, condensates can have multi-phase architecture, in which

multiple mutually immiscible dense phases form layers or sub-

compartments around each other82–85. Such structures result in

multiple interfaces and may therefore be particularly suitable for

mediating complex biochemical processes.

Many studies begin by abrogating a particular condensate in live

cells, which then spurs biochemical or theoretical advances. Other

studies start with biophysical characterization or theoretical and

computational modeling of a condensate, which then guides mole-

cular biological and cell biological investigations. We believe that only

by collaborating across disciplines, working together as a community,

will we achieve our ultimate goal: the physics-based understanding of

biological phase separation processes and their role in physiological

and pathological states.

In an attempt to provide the field with a research framework to

fostermoreof these fruitful exchanges, andwhile fully aware that each

research project is unique, we will attempt to outline here some

recommendations for the study of biomolecular condensates and

phase separation.

Studying phase separation inside cells
A biologist studying a condensate in a cell may be interested in

revealing its function. This may involve a set of experiments to inter-

rogate the properties and behaviors of the condensate followed by

genetic, chemical, and physical manipulations to alter these proper-

ties, linking suchalterations to phenotypes.However, it is important to

point out that it is often difficult (if not impossible) to find perturba-

tions that only affect the condensate-forming behavior while sparing

all other functions of the macromolecules involved.

While many condensates have clear functions, it is possible that

some condensates have no function and are epiphenomena resulting

from the complex behavior of many interacting components at high

concentration in one location86. However, as with any instance of

proving a negative, the possibility remains that a condition-specific

function has been missed.

There are several ways to characterize the biophysical properties

of condensates in cells. These include the mapping of phase

diagrams87; the measurement of material and transport properties

such as molecular transport by fluorescence recovery after photo-

bleaching (FRAP) or single-molecule tracking88,89, viscosity, and capil-

lary velocity9,83; and single-molecule Förster resonance energy transfer

(FRET)-based measurements of scaling exponents of disordered pro-

tein regions75, which inform on the apparent solvent quality of the

condensates and, if possible, should be compared to different in vitro

states. Ideally these physical properties can be experimentally

manipulated: if changes to the biophysical state alters functional out-

put, it is a strong indicator that there is biological relevance to the

condensate state.

Characterizing condensate assembly in cells. When studying a new

type of condensate, it will be useful to determine the conditions under

which it forms and disassembles because this could provide first

insights into its potential functional role in cells. Many condensates

assemble in response to changes in cell cycle, cellular conditions and/

or stress90,91. Hypotheses regarding driving forces for condensation

that emerge from these initial cellular assays can then be tested in

more controlled conditions.

If the question is whether a macromolecule of interest forms

biomolecular condensates inside the cell, it is important to study the

macromolecule at its endogenous expression level, in the cellular or

tissue environment where it is relevant. Knocking down/out the

endogenous copy and then exogenously expressing the protein at
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different levels can be used to dissect concentration-dependence of

condensate formation via phase diagrammapping43,92. To investigate if

a protein is localized in cellular condensates, live–cell imaging

approaches avoid potential artifacts from fixing93 and are recom-

mended whenever possible. To visualize large condensates ( > 300

nanometers), wide-field or confocal microscopy can be used. For

visualizing smaller condensates or clusters (20–300 nanometers),

super-resolution imaging (e.g. Airyscan, structured illumination

microscopy, photo-activated localization microscopy or stimulated

emission depletion microscopy) can be used54,94. Single-particle

tracking is a powerful technique for the study of protein localization

and diffusion within condensates, large or small88,89,95.

Another goal may be to map the composition of condensates in

cells. This could involve crosslinking experiments, immunoprecipita-

tion, or proximity labeling approaches followed bymass spectrometry

and/or RNA sequencing with the relevant controls to capture only

condensate interactors96–101. If the condensate changes composition or

physical properties over time, these experiments would ideally be

performed at different timepoints to characterize potential changes in

composition. Understanding the drivers of cellular phase separation

processes is particularly important, and this can be achieved by

genetic screens of all components combined with imaging43.

Given that nucleic acids are often components and/or drivers of

condensate formation102, it is important to study their contributions. In

fixed cells or tissue, target RNA can be probed using in situ hybridi-

zation. In live cells, one common scheme for labeling RNA is using the

MS2- and PP7-tag systems103. Here, the RNA of interest is appended

with multiple copies of phage-derived hairpin sequences. RNA is ren-

dered fluorescent by co-expression of the cognate hairpin binding

protein labeled with an appropriate fluorophore. These tags require

genetic engineering of the target RNA. Another approach is using

catalytically inactive RNA-targeting CRISPR systems, such as Cas13,

which allow probing endogenous RNA using an appropriate guide104.

Additionally, hybridization-based approaches with probes, such as

peptide nucleic acids that have high affinity for RNA, hold promises for

live imaging as well.

To understand the phase behavior of a protein that has been

identified as a driver of condensate formation, the characterization of

in vivo phase diagrams is informative. This could involve observing a

protein over a wide range of concentrations, combined with quanti-

tative imaging105. Phase transitions are generally sensitive to environ-

mental cues and physicochemical parameters such as pH73,74, salt72,

temperature106–108, and pressure109, and these parameters can be

altered in cells31. However, in vivo characterization of the phase

behavior of a macromolecule remains a challenge. Many such mole-

cules are not expected to have a fixed saturation concentration in cells

because they are part of multicomponent condensates that form

through an interplay of homo- and heterotypic interactions. The dilute

phase concentrations of the driver components are thus not fixed but

dependon the ratio of their total concentrations110. A clear cut example

of how to proceed with identifying the core scaffolds, the modulators,

the ligands, and methods to map phase boundaries emerged in 2020

with three decisive contributions focused on stress granules43,92,111.

In the early 2000s, hexanediol was used as a chemical that can

perturb hydrophobic interactions and thus destroy the permeability

barrier of nuclear pore complexes112. Later, attempts weremade to use

hexanediol treatment as a general method to determine whether a

given structure is a condensate with liquid-like properties, which it

does not reporton113. Furthermore, hexanediol has been shown tohave

various detrimental effects in cells114–116. In our view, it should thus be

avoided and not be used as evidence for the formation of an assembly

via phase separation or the fluid-like nature of a condensate in vitro or

in vivo.

Inducible condensation allows the study of phase separation

processes in live cells, with control of nucleation, growth, and size117. In

addition, it enables the assessment of which functions are specifically

gained by inducing phase separation and thus decouples the con-

tributions of condensation from other protein functions. Optogenetic

tools have been widely used to study the phase behavior of proteins in

cells38,118–120. They can be immensely useful for facile manipulation of

the state of matter and for mapping phase diagrams. Due diligence is

then required to discern the contributions of intrinsic phase behaviors

versus the contributions of valence-augmenting domains or cores, and

this requires detailed titrations of valence and laser power. If these

methods are used, different domain combinations should be carefully

considered along with loss-of-function mutants of the protein of

interest. While optogenetic induction provides high spatiotemporal

resolution and reversibility, chemical induction is ideal for evaluating

long-term effects because phototoxicity is reduced43,117,121. Chemopto-

genetic tools that are based on photosensitive chemical probes can

combine the benefits of both approaches122,123. For conclusions on

function, it is important to ensure that the induced condensatesmimic

endogenous condensates in terms of location, size, composition, and

material properties. This can be achieved by controlling protein

expression level, nucleation site, and induction degree (by varying the

light intensity/duration or the amount of chemical used). Inducible

condensation tools are useful to assess the consequences of con-

densation processes, particularly in combination with other methods

that assess properties of endogenous biomolecules.

Characterizingphysical properties of condensates in cells. To study

the dynamics of condensate components, they are typically tagged/

labeled with a fluorescent dye and then visualized using live-cell ima-

ging. Dyes include fluorescent proteins, self-labeling protein tags, and

genetically encoded handles for labeling75. Ideally these observations

would be performed on the endogenous protein because altered

protein levels will very likely influence the dynamics. It is also impor-

tant that labeling does not interfere with protein function, or with

oligomerization properties. A comparison of several labeling strate-

gies is therefore useful124,125.

Fluorescent components enable the measurement of molecular

diffusion and dynamics. Important approaches to investigate these

properties are single-particle tracking, FRAP and fluorescence corre-

lation spectroscopy (FCS), which can give insight into the mobility of

individual condensate components9,88,89,126,127. This can prove valuable

for quantifying the strengths of associative interactions within con-

densates.However, it isworth emphasizing that FRAP readouts need to

be interpreted cautiously because they alone are not directly infor-

mative regardingmaterial states of condensates and instead report on

the mobility of the labeled species128.

Additional approaches are available to determine the molecular

density and organization of condensates, including fluorescence-

lifetime imaging microscopy (FLIM), homoFRET, immuno-

transmission electron microscopy (TEM), correlative light and elec-

tron microscopy (CLEM), optical diffraction tomography (ODT), and

hyperspectral imaging combined with phasor plot analysis13,71,129–134. To

investigate the viscoelasticity of condensates, time-lapse imaging

approaches have provided important insight75, as have new, physics-
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based methods of image analysis to extract bending rigidity135. These

approaches allow capturing condensate fusion events, shape relaxa-

tion, or coarsening. Other optical approaches such as Brillouin

microscopy can also help determine viscoelastic properties136. For

condensates thatwet surfaces suchasmembranes or the cytoskeleton,

the contact angle can provide important insights into the material

properties and underlying forces13,16,83,134,137,138,139,140.

In recent years, super-resolution microscopy and single-molecule

tracking measurements of the diffusive properties of the molecular

components of a condensate have become a critical benchmark89,141,142.

Methods such as photoactivated localization microscopy (PALM) or

stochastic optical reconstruction microscopy (STORM) are powerful

because they enable the determination of howproteins behave in time

and space by localizing single emitters with 10–30 nanometer locali-

zation precision and 10–100 microsecond time resolution143,144. Cryo-

genic electron tomography (cryo-ET) is also emerging as a technique

to describe the architecture and morphological properties of

condensates14,145,146.

A common property of condensates is that they have a selective

interface. The properties of an interface can be probed by comparing

the trajectories of molecules diffusing in the cytoplasm, in the con-

densate, and those traversing (or being reflected by) the interface

using single-molecule tracking approaches147. It is worth mentioning

that not all trackable molecular species must experience resistance at

the interface3,148.

It should be noted that studying condensates in bacterial cells is

particularly difficult because they are typically an order of magnitude

smaller than eukaryotic cells. Observations of condensates in bacterial

cells are thus almost always diffraction limited. As a result, many cri-

teria listed above are not easily applicable in bacterial cells and distinct

approaches with even higher resolutions are actively being developed

for these systems149–153.

Perturbing condensates in cells to assess function. A powerful way

to assess the function of a condensate is a perturbation experiment in

which the condensate properties are specifically altered, and the cel-

lular phenotype is assessed. This typically requires the identification of

component domains and/or residues that are required for phase

separation and their subsequent perturbation. The solubility or net-

working ability of the component, and therefore its saturation con-

centration, could be altered by introducing specific mutations.

Important preconditions include that the molecule retains its biolo-

gical functions, stability, and biochemical features that are not tied to

its condensation activity.

If such a loss-of-function mutant shows a phenotypic defect, it is

useful to test whether the wildtype phenotype can be restored by

adding back a fusion protein that endows an orthogonally-encoded

phase separation activity (e.g., via the PopZ-Tag152, an intrinsically

disordered region such as the FUS N-terminus154, or via addition of

orthogonal oligomerization domains43). Restoration of function in

such a condensate complementation experiment would be strong

evidence for a functional role of condensation, but a negative result is

not informative as the lack of complementation could be due to loss of

other interactions in the deleted domain.

Importantly, functional defects upon disruption of a condensate

are not necessarily sufficient to infer a specific function if interaction

patterns with partners in the dilute phase are also disrupted3. Identi-

fying variants or mutations that exaggerate the condensation prop-

erties can be useful. Sometimes it will also be necessary to change

residues or domains involved in client recruitment without affecting

condensation itself or substitute residues to drive alternate localiza-

tion. Such separation-of-function variants may be difficult to achieve

but are highly informative3. Importantly, in addition to testing the

hypothesis that a condensate carries a specific function, alternative

hypotheses should be considered, such as that function arises from

soluble complexes155,156.

As already discussed, labeling/tagging of endogenous biomole-

cules should be attempted whenever possible (e.g., by CRISPR-

mediated tagging, inducible titratable promoters, or introducing arti-

ficial amino acids and click chemistry). Stable cell lines with low

expression of tagged proteins, preferentially with knock-out of the

endogenous protein, are the next best solution. Notably, tagging a

protein with a fluorescent protein can alter its ability to condense157,

and comparisons of several different fluorescent proteins and/or with

immunofluorescence are thus useful93,124.

While there is an increasing repertoire of in vivo approaches,

many questions will require complementary in vitro and in silico

approaches to obtain clear answers.

Studying phase separation outside cells
Probing the properties of condensates in vitro provides synergistic

information to that obtained from experiments focusing on con-

densates in living cells, tissues, or animals. For example, studying

assembly intermediates on the pathway to condensation is difficult in

cells due to limits of optical microscopy and can benefit from con-

trolled in vitro conditions in which concentration, ionic strength, and

other parameters can be carefully controlled. Indeed, in vitro systems

allow systematic variation of the composition of condensates aswell as

the chemical and physical conditions under which phase separation

takes place. This enables the elucidation of the fundamental interac-

tions that drive biomolecular condensation and of the physicochem-

ical factors that modulate them. Using a simple system of only a few

components under controlled and known conditions allows for

detailed biophysical, biochemical, biomechanical, and structural

interrogation of dilute and condensed phases and their dynamics. The

extent to which additional components change the emergent prop-

erties of condensates can be systematically addressed in vitro. Char-

acterizing simple condensates in vitro, even those of clients or

individual domains, offers important conceptual insights that are not

easily inferable from complex intracellular condensates.

The quantitative characterization of in vitro biophysical proper-

ties is essential for several reasons. (1) Characterizing driving forces for

biomolecular phase separation enables an understanding ofmolecular

grammars underlying the formation of different types of condensates.

(2) Understanding interactions driving phase separation or the

encoding of emergent properties can generate hypotheses that can be

tested in cells or whole organisms. (3) Characterizing the network

structure, dynamics of biomolecules within condensates and other

emergent properties is critical to understanding the biological activ-

ities and pathological properties arising from condensates. (4) Bio-

chemical and biophysical readouts provide information for generating

improved theories, computational models and biological hypotheses.

In turn,models generate hypotheses that can be tested experimentally

and quantified through biophysical measurements.

Methods to characterize condensate properties in vitro. One can

take bottom-up or top-down approaches to reconstitute condensates

in vitro, i.e., start with simple systems and increase their complexity in
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steps, or start investigating the full system and over time isolate the

most relevant parts. The existence of two-phase regimes can be qua-

litatively inferredmicroscopically158–160, or bymeasuring turbidity over

a concentration range127,159–161. As a cautionary note, turbidity is not a

direct measure of the driving force for phase separation, and it is best

to progressively reduce the concentration of constituents until back-

ground turbidity is reached for inferring saturation concentrations.

New microfluidics approaches enable rapid scanning of a large con-

centration space with minimal sample requirements and may even

allow inferring tie lines that provide information about the interplay of

homo- and heterotypic interactions mediating phase separation162–167.

Densities of condensates can be determined by quantitative phase

microscopy129 or FCS168. Coexistence lines and tie lines can be char-

acterized explicitly by determining coexisting dilute and dense phase

concentrations by separating the coexisting phases and determining

the concentrations of the constituents127,169–171. In simple systems, this

may be accomplished through ultraviolet–visible spectroscopy172.

More complex systems may require approaches such as analytical

high-performance liquid chromatography (HPLC)169.

To characterize the interactions that mediate associative phase

separation, typical biophysical techniques are useful. These include

nuclear magnetic resonance (NMR) spectroscopy, which enables

mapping of interaction sites with amino acid resolution173–176. Mapping

by deletion, mutagenesis or through structural approaches are other

possibilities177. Once the motifs or domains mediating interactions are

known, the strengths of these interactions can be determined using

biophysical approaches such as isothermal titration calorimetry, sur-

face plasmon resonance, fluorescence anisotropy, NMR and electro-

phoretic mobility shift assays. NMR has been used to determine the

identity of adhesive motifs in intrinsically disordered regions174,176,178,

and pairwise interaction strengths have been extracted by generating

mutants with varying valence of these motifs and determining their

single-chain dimensions by small-angle X-ray scattering (SAXS)168,179.

The importance of these interactions for phase separation can then be

tested by determining the phase behavior of proteins in which these

sites are mutated, which should result in weakening of the driving

forces for phase separation57,87,180. Once variants with interesting phase

behavior have been identified in vitro, their behavior in cells and

effects on function can be characterized.

Single-molecule studies enable access to molecular information

that is normally averaged in conventional ensemble experiments. For

instance, single-molecule FRET has been used to track intermolecular

and intramolecular interactions in dilute and dense phases and has

shown how intramolecular interactions are exchanged for inter-

molecular interactions64,181,182. It can also directly report on single-chain

dimensions in condensates. Nanosecond FCS provides information on

segmental and domain motions within single molecules in con-

densates and how these differ from those in the dilute phase64. As with

any fluorescence measurement, one should be cautious about the

potential artifacts thatmay arise from the source of fluorescence, such

as organic dyes or fluorescent proteins183. Types of dyes, size of dyes

and dye positions should be varied to test for such effects. In addition,

the local environment in the condensate may also affect dye photo-

physics, such as its quantum yield and brightness, and one must be

cautious when interpreting the fluorescence intensities168. Fluores-

cence lifetime measurements can be used to examine the effects of

condensate environment on dye properties134,184. NMR has also pro-

vided complementary information on diffusion and internal motions

of disordered domains within condensates with atomic detail174,175.

Hyperspectral imaging of water-soluble environment-sensitive probes

can resolve the dielectric permittivity of both the condensate and

the dilute phase and, when combined with contact angle measure-

ments, allowsone to correlate permittivity differences withmembrane

affinity13.

Biomolecule mobility in biomolecular condensates affects bio-

chemical activities and disease processes. Although FRAP can be

applied in many different ways to make various measurements of

transport properties, there are two main use-cases: (i) the entire con-

densate can be photobleached, in which case the recovery of the

fluorescence signal depends mostly on the exchange between the

inside and outside of the condensate; (ii) a small fraction of a large

condensate can be photobleached, in which case the fluorescence

recoverymostly reflects the diffusionalmotion of the phase-separated

molecules within the condensate46,71. The latter parameter can be

directly compared to values obtained from single-particle tracking and

FCS10,64,170,181,185–190.

Uniform diffusion within a condensate may indicate that a con-

densate is composed of a homogeneous phase at the resolution of the

method. Single-fluorophore tracking has revealed that even con-

densates formed by a single protein species have inhomogeneities

which affect their viscoelastic properties71. To further enhance reso-

lution and provide additional structural information, single-particle

reconstruction algorithms, traditionally used in cryo-EM, can also be

implemented intomulticolor single-molecule localizationmicroscopy.

Internal structure of condensates can be revealed with polarization

microscopy191, solution or solid-state NMR spectroscopy173–175,192,193,

cryo-EM and cryo-ET approaches14,146,194, or single-fluorophore tracking

with environmentally sensitive dyes71.

As a complement to the resulting static view, a network view of

condensates, in which interactions rather than locations are high-

lighted, is useful for understanding their properties11,45. The fusion rate

between two neighboring condensates is related to two inherent

parameters, interfacial tension and viscosity. The relaxation time of

similarly-sized condensates can be plotted as a function of the corre-

sponding condensate diameter, and the positive linear slope reveals

the “inverse capillary velocity” (i.e., the ratio of viscosity to surface

tension)87,127. Using the Stokes-Einstein formula and a measured diffu-

sion constant, one can calculate the viscosity, which in turn reveals

interfacial tension. These interpretations assume that the condensates

are Newtonian liquids on the relevant timescales, which may not

always hold true10,195.

Particle tracking microrheology of probes embedded in con-

densates can also be used to infer transport properties, including

sub- and super-diffusive processes and dominantly viscous versus

elastic regimes62,170,187,190,196, as well as viscous and elastic moduli188,190.

Optical tweezers can be used to probe the viscoelasticity of con-

densates via active10 or passivemeasurements12 or can be repurposed

for condensate fusion assays159. Users of optical tweezers have to be

careful tominimize the exposure of condensates to the focused laser

beam, which can locally increase the temperature and thereby

change the properties of the condensates, but non-perturbative low

power seems to be sufficient for many measurements. The inter-

pretation of the measurements should take into consideration the

spatial and time scales of the experiment and the relation between

probe and network sizes. Other methods to determine surface ten-

sion or viscoelastic material properties include micropipette

aspiration191,197, atomic force microscopy (AFM)198 and flicker

spectroscopy135.
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As many condensates in vitro undergo liquid-to-solid phase

transitions on the order of minutes or hours190, timing is critical when

examining their properties. When comparing different samples to

each other, it is crucial to pay attention to the age of the sample (i.e.,

the time from first assembly), and to measure time-dependent

properties190,196. To establish a transition to a solid material, creep

tests with optical tweezers can be deployed190. Fourier transform

infrared spectroscopy and Raman spectroscopy can be used to test

whether loss of dynamics is accompanied by solidification134,190,199.

Typical associative biomolecules that phase separate may form

heterogeneous sub-micron sized pre-percolation clusters in sub-

saturated solutions, which may be a source of biochemical

function58. They can be detected and characterized by dynamic light

scattering (DLS), FCS, or microfluidic confocal spectroscopy. Notably,

pre-percolation clusters can also coexist with condensates.

Cell lysates and reconstitution of condensates with purified com-

ponents. Reconstitution of condensates in vitro from purified bio-

molecules is a powerful approach that can answer questions about the

driving forces for phase separation, and about the formation, func-

tions, and physical properties of condensates. However, it is important

to point out that many molecules will form condensates in vitro if

extreme solution conditions are chosen, such as high concentrations

of crowding agents. Such crowders may not be inert depletants but

instead interact with biomolecules. Crowders that are pure depletants

can nevertheless be used successfully to determine the intrinsic driv-

ing forces for phase separation of biomolecules200. In vitro formation

of condensates does not imply that the biomolecules in question

actually function through condensates. Good judgement should be

used regarding the questions that a given in vitro reconstitution can

answer.

As a compromise between in vitro and in vivo studies, the use of

cell lysates for the reconstitution of more complex condensates with

many cellular components represents an attractive intermediate

solution201. The power of such assays lies in enabling the addition of

defined protein/nucleic acid concentrations, the delivery of post-

translationally modified proteins or peptides and, more generally, the

incorporation of components that cannot be easily produced inside

living cells202,203. Lysates are also powerful for determining compo-

nents of specific condensates201,204.

Studying phase separation using modeling and simulations
Theory and simulation are contributing in meaningful ways to our

understanding of the forces driving the formation of biomolecular

condensates in single- and multicomponent systems50,205–209. Theore-

tical approaches, including mean-field and more sophisticated field-

theoretic approaches210,211, have yielded key insights, e.g., for charge-

rich systems.Meanwhile, computer simulations nowplay a central role

not only in designing and interpreting experiments but also in pre-

dicting complex phase behaviors that help guide experimental inves-

tigations. The computational studies rely on a range of modeling

strategies, each with distinct strengths; understanding the features

and limitations of thesemodels is essential for interpreting simulation

outcomes effectively.

Even in the simplest systems comprising a single macromolecule,

reversible phase transitions involve interactions acrossmultiple length

and time scales. To address these distinct scales, researchers use

models with varying levels of resolution, guided by a general principle:

coarse-grained, lower-resolution models enable access to longer

spatiotemporal regimes, while atomistic simulations are constrained

to shorter scales. Multi-resolution modeling thus offers the potential

to explore phenomena across a broader spectrum of scales. Such

multi-resolution approaches deploy models of differing resolutions

strategically. Currently,most simulations fix the resolution a priori and

aim to predict or interpret experimental outcomes through sequence-

specific simulations212–215. In parallel phenomenological models pro-

vide a valuable complement by seeking to explain observed behaviors

or predict experimentally testable outcomes through targeted “what

if” scenarios216,217.

Molecular modeling methods and their resolutions. Given the

diversity of models, we adopt a parsimonious classification based on

the resolution chosen for the interacting entities. In descending order

of molecular detail, the models include: (1) Classical all-atom force

fields with explicit representation of solvent and ions68,69,195,218–222;

(2) Coarse-grained models that preserve sequence-dependent char-

acteristics of biomolecules, including proteins212–215,223, RNA224–226,

DNA227–229, and chromatin229, but omit explicit atomic details of mac-

romolecules or solvent; and (3) Minimal models that represent bio-

molecules with just a few particles41,44,53,81,229–231, or use continuum or

field-theoretic frameworks, which retain only selected physicochem-

ical details. Multi-resolution models combining two or more levels of

representationhave also started to emerge in the literature44,68,69,72,81,229.

With computational resources typically available to the broader

community, it is possible to compute (i) bulk thermodynamic prop-

erties such as saturation concentrations, critical solution tempera-

tures, inter-residue interactions at the amino acid level, network

topology, density of connections42,44, and material properties37,42,61

using sequence-dependent coarse-grained models; (ii) atomic-level

interaction modes, including protein-solvent interactions and ion

partitioning within condensates, using all-atom models178,232; and (iii)

general physical mechanisms in complex multicomponent systems

using minimal on-lattice or off-lattice models and theoretical

approaches45,233,234. Importantly, results from all-atom and sequence-

dependent coarse-grained models can be directly related to experi-

mental observables (e.g., from NMR spectroscopy, SAXS, FRET,

absorbance), offering valuable insight into model accuracy and

applicability. These computational models are further complemented

by physical theories that assist in model development and guide the

interpretation of experiments.

Physics-based transferable coarse-grained models. There is a long

and rich history of using coarse-grainedmodels to study biomolecular

interactions235–237. These models often rely on bioinformatically

derived interaction scales and incorporate experimental observables

to constrain phase space sampling in a manner consistent with

experimental results. Efforts have been made to make such approa-

ches transferable, meaning that direct experimental input is not

embedded in the model Hamiltonian, as exemplified by the Kim-

Hummer model238, which has been applied to weakly binding multi-

protein complexes.

Building upon the successes of these earlier approaches,

transferable212–215 or learned11,239–243 sequence-dependent coarse-

grainedmodeling have become a popular strategy for probing the role

of chemical specificity in biomolecular condensates. The appeal of

such models lies in their ability to balance computational efficiency

with the retention of essential physicochemical properties (e.g., che-

mical composition, structure, flexibility), which are critical for
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explaining the driving forces underlying phase separation. These

approaches share features of simplicity and pairwise interaction

potentials. Simplicity is achieved by reducing the number of interac-

tion sites, while specificity is introduced through the nature of the

pairwise interactions among coarse-grained interaction units.

Although there is often a debate about the relative merits of different

modeling approaches, the choice ultimately depends on the questions

being addressed and the extent to which a given model enables tes-

table predictions or advances phenomenological understanding.

In transferable models, the resolution defines the nature and

types of interaction entities; a potential function is then chosen, and its

parameters are chosen to be transferable across systems. These

models vary primarily in their treatment of non-bonded interactions

between amino acid pairs, which are typically represented by a single

interaction site per residue (usually a Cα-based representation),

although some models use more or fewer sites244,245. Beyond proteins,

sequence-dependent transferable models have also been developed

for RNA224,225, DNA228,229, and chromatin229. These systems face the

additional challenge of accurately capturing local conformational

properties (e.g., torsional and bending rigidity), which affect their

phase behavior. A central guiding principle in many transferable,

sequence-dependent coarse-grained models is to preserve the sim-

plicity of the energy function while extending applicability to

increasingly complex systems, including multidomain proteins with

both folded and disordered regions246, post-translational modifica-

tions, and multicomponent mixtures involving proteins, nucleic acids,

and chromatin247.

Important considerations for coarse-grained model selection.

Coarse-grained models, and modeling approaches more broadly, are

inherently approximate. Rather than being universally applicable, each

model’s approximations must be evaluated in the context of its

intended use. Somemodels are developed for specific systems and are

used to interpret experimental data. Others are designed for broader

applicability but may introduce inaccuracies due to their generality.

Practitioners are advised to carefully review the range of applicability

of the model, particularly how far it can be extended beyond the sys-

tems used during parameterization. Ideally, a model should have a

demonstrated track recordof success in identifying relevantmolecular

features across diverse systems and matching experimental observa-

tions, or at least for the specific class of systems under investigation.

Otherwise, their applicability should be carefully evaluated through

additional validation studies, preferably in combination with biophy-

sical experiments. When comparing coarse-grained simulation results

with experimental data, it is often helpful to consider behavior relative

to a well-defined reference, using normalized quantities248. This

approach is especially valuable for dynamic properties such as diffu-

sion and viscosity, where coarse-grained models typically exhibit

accelerated dynamics due to reduced solvent friction and a smoother

energy landscape37. If needed, mapping schemes can be applied to

translate coarse-grained results into experimentally relevant time-

scales, provided the assumptions underlying the mapping are clearly

stated and subjected to further validation37. Because multiple

approximations are introduced during model development and para-

meterization, one should not expect absolute agreement between

simulation and experiment. Nevertheless, there is growing interest in

developing coarse-grainedmodels that achieve quantitative alignment

with experimental data on absolute scales across different

systems212–214,249. The availability of high-quality experimental datasets

to refine these models will enhance their predictive capabilities and

may yield generalizable insights that extend beyond findings from

individual systems.

Choiceof amolecular simulation approach. In addition to selecting a

transferable model, simulations involve two key decisions: the choice

of sampling method (molecular dynamics or Monte Carlo), and whe-

ther molecules are represented on or off a lattice. These choices are

influenced by factors such as computational efficiency, the complexity

of the sampling required, the need to mitigate finite-size artifacts250,

and the nature of the scientific questions that are addressed.

Molecular dynamics sampling has been advanced through the use

of slab geometries that reduce system-size effects, particularly those

introduced by periodic boundary conditions, compared to droplet

geometries containing the same number of protein chains215,250. Some

practitioners, however, may prefer droplet geometries when system-

size effects are negligible, because they offer a more intuitive visual

representation. Regardless of geometry, it is important to account for

potential finite-size effects246,250. Monte Carlo sampling has been

advanced through the use of lattice-based simulations251, which also

employ periodic boundary conditions. A key challenge in these

approaches lies in constructing a set ofMonte Carlomoves that ensure

ergodic sampling. The bond-fluctuation model and its generalizations

have proven to be quite effective for lattice-based simulations. Both

lattice and off-lattice simulations can incorporate more complex

representations, either by assigning multiple interaction sites per

residue or by grouping multiple residues into larger interaction units.

As model resolution changes, careful development and validation

become increasingly important.

Many of the approaches mentioned above have been imple-

mented in open-source simulation packages such as LAMMPS252,

GROMACS253, HOOMD-blue254, and OpenMM255. Depending on the

platform, users can take advantage of diverse computational resour-

ces, including multi-core CPUs and GPU acceleration, to significantly

extend the accessible time and length scales.

Emerging role of all-atommodels in dissecting atomic interactions

within condensates. Practitioners of atomistic simulations have

recently started to push the boundaries of what is feasible, building

on the successes of off-lattice coarse-grained models that provide

reasonable starting points for condensed phase simulations at

atomic resolution64,68,69. The development of back-mapping schemes

from coarse-grained to atomistic representation has been facilitated

by tools such as Modeler256, Pulchra257, CAMPARI258, and Martini244.

However, the extensive computational resources required for these

simulations limit their application primarily to phenomena occurring

on shorter timescales. Atomistic simulations are particularly power-

ful for elucidating the driving forces behind biomolecular phase

separation, especially as they relate to solvation thermodynamics,

and for characterizing the chemical environment within con-

densates, including water, ion, and small molecule

partitioning67,259–261. They are also essential for systems where coarse-

grained models fail to capture critical conformational preferences,

such as residual secondary structures and their modulation upon

condensation (e.g., modulation of helical structures through inter-

molecular interactions)57. Nevertheless, the significant computa-

tional overhead associated with fully atomistic simulations has thus

far constrained their use for estimating key properties such as phase

diagrams and condensate viscosities.
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In many cases, valuable insights into the molecular driving forces

of biomolecular phase transitions can be obtained by simulating one

or two protein molecules, relying on an expected correspondence

between molecular interactions in dilute and dense phases250. Such

studies can be further enhanced by employing advanced sampling

techniques to achieve better convergence of thermodynamic

averages180. Given the inherent limitations of atomisticmodels, intense

activity over the last 15 years has produced modern force fields262–265

that are sufficiently accurate for simulating biomolecular systems

relevant to condensates research69,180.

Suggestions for the selection of minimal models. Minimal models

play a distinct and valuable role in uncovering essential mechanistic

details of biomolecular phase behavior and in guiding experimental

design53,216,266. However, selecting an appropriate low-resolutionmodel

can be challenging, as thesemodels are typically developed to address

specific questions and are therefore non-transferable in the traditional

sense. In some cases, it may be sufficient to represent eachprotein as a

single particle with interaction patches, while in other cases, a poly-

meric representation may be more appropriate51,53,230,231,267. The key to

developing effective minimal models lies in clearly defining the sci-

entific questions to be addressed. Although it is not advisable to

directly transfer a minimal model from one study to another, prior

studies can offer useful guidance and inspiration for creating tailored

models suited to new questions53,231. Minimal models differ sig-

nificantly from sequence-dependent coarse-grained and atomistic

models in one important respect: predictive capability.While the latter

models can often make direct, testable predictions without additional

mapping to experimental systems, minimal models typically require

additional information to translate their reduced representations into

experimentally meaningful variables such as protein sequence.

Nevertheless, minimal models remain highly useful for guiding

hypotheses and interpreting experimental results.

Need for models to study non-equilibrium phenomena. Finally, it is

important to consider phenomena of interest in three broad cate-

gories: equilibrium processes, relaxation toward equilibrium, and

steady states under non-equilibrium conditions. Most of the models

discussed above are well-suited for studying equilibrium or near-

equilibrium behavior.Molecular dynamics simulations have been used

together withMetropolis Monte Carlo steps tomodel non-equilibrium

dynamics resulting fromphosphorylation268. However,many emerging

properties of biomolecular condensates, particularly in cellular envir-

onments, depend critically on non-equilibrium phenomena. A key

focus in the field has been the maturation of initially dom-

inantly viscous condensates into elastic solids and, in some cases,

further into amyloid fibrils or other aggregated states42,81,184,269,270. As

the structural transitions underlying these maturation processes are

not captured by most currently available models (coarse-grained

models generally lack the necessary structural detail, but some of this

can be reintroduced while maintaining a significant level of coarse-

graining)271,272, and atomistic simulations are limited by accessible

timescales, one possible path forward is to introduce time-dependent

dissipation into the potential energy via specialized algorithms42,81,184.

Such modifications must be applied carefully, with clearly defined

scope and assumptions, as themolecular changes introducedmay not

faithfully represent the processes occurring in experimental systems.

Establishing the equilibrium behavior of a system in silico can

nevertheless serve as an important foundation. Comparisons between

simulated behavior and in vitro or in vivo experiments can help clarify

the contributions of factors not accounted for in computational

models, such as cellular context and associated non-equilibrium

dynamics.

Future challenges in the field of phase separation
Fundamentally, the field is and has been aiming to go beyond phe-

nomenology and generate a transferable, physics-based under-

standing of condensate properties and functions across length and

time scales. As we have seen, the barriers separating us from this goal

are being tackled on multiple fronts. As a conclusion, we mention

some emerging concepts that represent opportunities for future

research.

Non-equilibrium phase separation refers to phase separation

processes that are linked to active processes, such as biochemical

reactions273. Enzymes such as ATP-driven chaperones, kinases, and

helicases can alter the conformation and concentrationofmolecules in

the dilute and dense phase over time274. Non-equilibrium processes

can strongly modulate the emergent properties of condensates. For

instance, biochemical reactions can modulate material properties and

prevent or slow down their time-dependent changes275. Furthermore,

active processes can maintain spatial concentration gradients over

time, as observed in the accumulation of P-granules at the posterior

end of C. elegans embryos276,277. Biochemical reactions can also mod-

ulate the size distribution of condensates, and chemically-driven

condensates can undergo cycles of growth and division reminiscent of

the proliferation of living cells278.

Time-dependent changes of condensate structure are related

to non-equilibrium processes but important enough to be mentioned

separately. Many condensates age or mature: they undergo time-

dependent changes in material and structural properties. This aspect

of phase separation is intricately connected with pathology and

disease1,2,34. Recent work describes condensates as metastable states

that can be precursors or suppressors of different forms of aggregates,

including misfolded proteins and amyloid fibers10,18,61,81,190,269.

Surface-mediated phase separationhas been recognized to play

an important role in cells. The concentration of components that can

be achieved on a surface through adsorption can be orders of mag-

nitude higher than in bulk. Such surfaces include membranes, DNA,

and the cytoskeleton, to name just a few17,138,279–282. How adsorption on

these surfaces alters the rules of phase separationwith respect to both

kinetics and thermodynamics is an important question17.

While important insights have been revealed by studying con-

densates in vitro and inside single cells, the role of condensates when

cells go on to build tissues, organs, and ultimately organisms, is less

well understood283. Whether their components, biophysical proper-

ties, and functions remain the same in a multicellular system con-

stitutes an important question. The complex signals that cells

experience within tissues (mechanical, hormonal, and metabolic, to

name a few) may affect intracellular condensates in interesting ways.

While pioneering efforts have been made to visualize condensates in

nematode, fly, mouse skin, and in model plants such as Arabidopsis

thaliana, othermodels suchasorganoids andmouse tumor xenografts

are actively being developed to study condensates in a three-

dimensional tissue environment284,285.

Finally, we want to mention that phase separation principles have

also become powerful tools for bioengineering to control, study and

develop new functions in cells117,286. Applications range from drug

release to generating cells that simultaneously operate multiple
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genetic codes287–290. All of these efforts will be important aswe strive to

fully reveal the roles of condensates in biology.
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