
This is a repository copy of Combining sequential test cases into an equivalent set of
adaptive test cases.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/230794/

Version: Published Version

Article:

Hierons, R. orcid.org/0000-0002-4771-1446, Merayo, M.G. and Nunez, M. (2026)
Combining sequential test cases into an equivalent set of adaptive test cases. Journal of
Logical and Algebraic Methods in Programming, 148. 101092. ISSN: 2352-2208

https://doi.org/10.1016/j.jlamp.2025.101092

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.jlamp.2025.101092
https://eprints.whiterose.ac.uk/id/eprint/230794/
https://eprints.whiterose.ac.uk/

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

Combining sequential test cases into an equivalent set of adaptive

test cases✩

Robert M. Hierons a, Mercedes G. Merayo b, Manuel Núñez b, ,∗

a School of Computer Science, University of Sheffield, S1 4DP, Sheffield, United Kingdom
b Design and Testing of Reliable Systems, Universidad Complutense de Madrid, 28040, Madrid, Spain

A B S T R A C T

When testing a state-based system one might use a set of (negative) test cases in which each test case is a sequence of events that should not occur.
Testing then involves executing the system under test (SUT) in order to check whether any of these disallowed sequences can occur. While testing
using such sequences can be effective, they introduce a source of inefficiency: if a test case expects the SUT to produce output 𝑎 after observing
a sequence 𝜎 and the SUT instead produces a different output 𝑎′ after 𝜎 then testing with that test case did not show an error, because the SUT
can autonomously produce outputs, and terminates because the test case only makes sense if the exact sequence is observed. This is a source of
inefficiency if there is another test case that starts with 𝜎 followed by 𝑎′: we could have continued evaluating whether the application of this second
test case leads to an error. This paper considers scenarios in which events represent inputs, outputs, or the passing of discrete time. We show how a
set of sequential test cases can be converted into an equivalent set of adaptive test cases, with adaptivity addressing the above source of inefficiency.
The proposed approach has the potential to improve efficiency when using any test generation technique that returns negative sequential test cases.

1. Introduction

Testing is the process of evaluating a system according to how it reacts to certain external stimuli. The most common approach to
testing consists of applying inputs to the system under test (SUT), observing the outputs that the SUT produces, and deciding whether
the observation is the expected one or not. There are several difficulties involved in this apparently simple process. For example, we
have to decide which inputs to apply, implement the observation of outputs and decide whether the observed outputs correspond to
a faulty behaviour of the system.

The work reported in this paper is motivated by the problem of testing a state-based system and so systems behaviours are
sequences of events. Most testing approaches execute the SUT with test cases in order to check whether the SUT has disallowed
behaviours and the choice of approach used can depend on the types of events that can be observed. For example, we might check
whether the SUT shows faulty behaviours with respect to the time that it takes to produce outputs (see [1–3] for recent work within
the scope of this paper). This paper considers testing approaches in which observations (events) represent inputs, outputs, or the
passing of discrete time. If there is a formal model that specifies the allowed behaviours then this model might be used as the basis
for deriving test cases [4–6]. However, often there is no such formal model and so there is a need for alternative approaches.

In this paper we assume that we have a set of sequential test cases (STCs), where each of them is a sequence (trace) 𝜎 of events such
that the SUT should not be able to perform 𝜎. Such STCs might have been derived from the system requirements or from a (possibly

✩ Research partially supported by EPSRC project RoboTest: Systematic Model-Based Testing and Simulation of Mobile Autonomous Robots, EP/R025134/1, the
State Research Agency (AEI) of the Spanish Ministry of Science and Innovation under grant PID2021-122215NB-C31 (AwESOMe) and the Comunidad de Madrid
under grant TEC-2024/COM-235 (DESAFíO-CM).
* Corresponding author.
E-mail addresses: R.Hierons@sheffield.ac.uk (R.M. Hierons), mgmerayo@fdi.ucm.es (M.G. Merayo), mn@sip.ucm.es (M. Núñez).

https://doi.org/10.1016/j.jlamp.2025.101092
Received 28 February 2025; Received in revised form 28 May 2025; Accepted 23 August 2025

J. Log. Algebraic Methods Program. 148 (2026) 101092

Available online 2 September 2025
2352-2208/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://orcid.org/0000-0001-9808-6401
mailto:R.Hierons@sheffield.ac.uk
mailto:mgmerayo@fdi.ucm.es
mailto:mn@sip.ucm.es
https://doi.org/10.1016/j.jlamp.2025.101092
https://doi.org/10.1016/j.jlamp.2025.101092
http://creativecommons.org/licenses/by/4.0/

R.M. Hierons, M.G. Merayo and M. Núñez

formal) model. We also assume that these test cases are minimal failures: if 𝜎.𝑎 is an STC then 𝜎.𝑎 is not an allowed behaviour (it is
disallowed) but 𝜎 is an allowed behaviour. We have two main reasons for considering STCs of this form. First, the set of allowed traces
of a system is prefix closed and so if 𝜎 is a disallowed trace then so are all extensions of 𝜎: there is no point in testing further if we
observe 𝜎. Second, there are several types of automated test generation techniques that return such minimal failures. For example,
it is possible to derive such sequences directly from the semantics of a specification [1,7,8]. There are also mutation-based [9] test
generation approaches in which a system or model 𝑃 is mutated to create a mutant 𝑀 and then a model-checker is used to check
whether 𝑀 conforms to 𝑃 . If 𝑀 does not conform to 𝑃 then the model-checker returns a behaviour 𝜌, such as a trace [10], that
demonstrates this. Assuming a minimal such behaviour is produced, 𝜌 is of the form described above; otherwise, one can use a prefix
of 𝜌. Finally, there are approaches that execute the SUT until a failure is observed, such as a vehicle that is being controlled getting
too close to another vehicle, and then stop test execution (see, for example, [11]). This results in failing traces being observed and
these might be used again in, for example, regression testing.

The use of disallowed behaviours of the form 𝜎.𝑎 can form the basis of systematic testing. The tester will attempt to ‘apply’ 𝜎
and then check whether 𝑎 can occur after this. The process of attempting to apply 𝜎 is iterative: if 𝜎 = 𝑎1…𝑎𝑛, for events 𝑎1,… , 𝑎𝑛,
then the tester will first try to apply 𝑎1 , if this succeeds then the tester next tries to apply 𝑎2 , etc. When some 𝑎𝑖 is an input ?𝑥, the
tester simply provides this input to the SUT. However, if 𝑎𝑖 is an output !𝑜1 or represents the passing of time then the situation is
more complex: typically the tester cannot block an output and so an output !𝑜2 ≠ 𝑎𝑖 might occur rather than 𝑎𝑖 . If !𝑜2 is an allowed
behaviour at this point then, normally, test execution stops. The tester then resets the SUT and again tests with 𝜎.𝑎, repeating this
process a sufficient number of times to either observe a failure or apply a fairness assumption to deduce that 𝜎.𝑎 is not a behaviour
of the SUT (i.e. make the assumption that all possible outcomes have been observed).

The above process, for testing based on some 𝜎.𝑎, is effective if a fairness assumption can be made but it need not be efficient.
To see why, consider the case where 𝜎 = 𝜎1.!𝑜1.𝜎2 for two traces 𝜎1, 𝜎2 and output !𝑜1. As previously mentioned, normally the tester
cannot block an output and so a different output !𝑜2 might occur after 𝜎1: the tester then stops the application of the test case, resets
the SUT, and starts test execution again. However, it is possible that there is another test case to be used that is of the form 𝜎1 .!𝑜2.𝜎3.𝑏:
after observing 𝜎1.!𝑜2 the tester might have followed this second test case rather than stopping test execution. If the tester were to
choose to follow the second test case at this point, then the tester is essentially combining these two test cases to form a tree rather
than a sequence: a tree (an adaptive test case) that has two edges (branches) after 𝜎1. The above shows that the use of such trees has
the potential to improve test efficiency.

In this paper we explore the problem of constructing a set 𝐴 of adaptive test cases (ATCs) that is equivalent, in terms of fault
finding ability, to a set 𝑆 of STCs. We consider test cases that are to be applied to systems in which traces can contain inputs, outputs
and also the passing of discrete time (represented by a symbol ⊝). The proposed approach is iterative: it maintains a set 𝐴 of ATCs and
in each iteration it takes an STC 𝜎 and attempts to merge 𝜎 with an ATC 𝑝 ∈𝐴 to form a new ATC 𝑝′. We formalise the requirements
of a step by defining what it means for one ATC 𝑝′ to be the union of 𝑝 and 𝜎. We base the approach on two types of results: results
regarding conditions under which, given an ATC 𝑝 and an STC 𝜎, there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎; and results that
show how such an ATC 𝑝′ can be constructed. The correctness of the algorithm follows from these results.

We formulate the problem in terms of allowed and disallowed traces, rather than assuming that there is a specification that defines
these, because we aimed for generality. An alternative would be, for example, to have used a Labelled Transition System (LTS) that
defines the sets of allowed and disallowed traces. We initially considered this approach and it would have fitted with one motivation
for our research: test derivation from a model written in RoboChart [12], a domain specific language for robotics whose semantics
is defined by a mapping to a timed version of CSP. However, we wanted to have a more general setting because the problem is
more general. As an example, there is research in the area of testing cyber-physical systems [13] where we do not have a formal
specification in the form of an LTS and instead there is a set of properties that behaviours should satisfy (e.g. the volume of liquid
should not exceed a bound, the temperature should remain within a range, a vehicle should not collide with other vehicles). One
might be able to phrase such problems in terms of an implicit LTS but this seems rather artificial.

In terms of related work, as far as we know, this is the first paper to explore the problem of converting a set of sequential test cases
into a set of adaptive test cases. Sequential test cases are returned by many test generation algorithms designed for testing state-based
systems. For example, most work on testing from a finite state machine produces sequential test cases [14] and tools/techniques that
use model-checkers in test generation typically produce sequential test cases. In particular, our interest in this problem arose from
us using sequential test cases in robotics [2,3]. There is plenty of work on adaptive testing, that is, using test cases that do not only
apply an input and receive an output, but where the behaviour of a test case depends on the outputs that have been received. In
particular, we have recent work on the topic [15]. The adaptive test cases used in this paper are similar to those used with ioco and
its variants [16]. However, they are fundamentally different in the way they are constructed: sound test cases are constructed in ioco
from a specification, with test generation typically being random. In contrast, we construct adaptive test cases from a set of sequential
test cases (sequences that should not be observed) that can be seen as “requirements”.

Given that there are test generation approaches that produce adaptive test suites, a legitimate question is why do we start from
a non-adaptive test suite. The problem is that many test generation techniques directly return sequences rather than trees. In par-
ticular, as previously mentioned, we were motivated by the following two types of test generation techniques: mutation-based test
generation [17,18] and test generation techniques used with cyber-physical systems that test until a failure is observed [11,13,19].

The paper is structured as follows. We start, in Section 2, by defining STCs, ATCs, and the notation and terminology used throughout
the paper. Section 3 then describes the observations that can be made when using an STC or ATC and use this to formalise the problem
considered. In Section 4 we then explore the problem of determining whether an ATC and an STC can be combined and define the

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

2

R.M. Hierons, M.G. Merayo and M. Núñez

notion of an ATC 𝑝′ being the union of an ATC 𝑝 and an STC 𝜎. This is used in Section 5 to define an algorithm for converting a set
of STCs into an equivalent set of ATCs. Finally, we draw conclusions and describe possible lines of future work in Section 6.

2. Preliminaries

Throughout this paper we will let Σ denote the (finite) set of basic events that can be observed. Then Σ can be partitioned into
two disjoint sets: a set 𝐼 of system inputs and a set 𝑂 of system outputs. Often we will precede the name of an input with ‘?’ (e.g.
?𝑖) and the name of an output with ‘!’ (e.g. !𝑜). We will allow the observation of discrete time and so we include a special event ⊝,
called “tock”, that corresponds to the passing of one unit of time. We use Σ⊝ to denote the set 𝐼 ∪𝑂 ∪ {⊝} of inputs, outputs and ⊝
events. The observations made during testing will be sequences of events, which we call traces. Σ∗

⊝
denotes the set of finite, possibly

empty, traces, while Σ+
⊝
denotes the set of non-empty traces. Given two traces 𝜎1, 𝜎2 ∈ Σ∗

⊝
, we denote by 𝜎1.𝜎2 the concatenation of

these traces. We use 𝜖 to denote the empty trace.
We assume that some traces are known to be allowed (they are behaviours deemed to be correct) and some traces are known to be

disallowed (they are behaviours deemed to be incorrect). By a trace 𝜎 being allowed we typically mean that 𝜎 is a trace of a (possibly
implicit) specification. Such a specification could be a formal model but it might also be a set of properties that the SUT should satisfy.
Note, however, that the proposed technique for mapping a set of STCs to a set of ATCs will not require the specification. Indeed, the
sets of allowed traces and disallowed traces could be derived from the STCs provided as input to the technique since these STCs are
disallowed traces of the form 𝜎.𝑎 such that 𝜎 is allowed.

We also make the following assumptions regarding the SUT that are standard in many testing scenarios, such as testing based on
ioco [16].

• The SUT is input-enabled: the SUT must be ready to accept any input provided by the environment.
• The SUT has urgent outputs: if the SUT is in a state where it can produce an output then it does not allow time to pass (i.e. the
SUT produces an output or receives an input before time passes).

• The set of allowed traces is prefix closed.

In testing, the tester (or the corresponding test case) supplies inputs and the SUT produces outputs. Since the SUT is input-
enabled, if the tester applies an input then the SUT must be ready to receive it. In addition, system outputs cannot be blocked by the
environment/tester. As previously noted, these are standard assumptions in ioco-like [16] frameworks.

In this paper we consider two types of test cases: sequential and adaptive test cases (these are formally defined below in Definitions 1
and 4).

1. Sequential test case (STC). These are in the form of a trace 𝜎.𝑎 such that 𝜎 is an allowed trace and 𝑎 is an output or tock that is
not allowed after 𝜎. At each point the tester either supplies an input or observes an output or the passage of time. If the trace 𝜎.𝑎
is observed then testing stops with verdict fail. If the tester has observed trace 𝜎1 , is waiting for 𝑎 and the SUT instead produces
an output !𝑜 ≠ 𝑎 then testing stops with verdict ok, the system is reset, and (if necessary) the test runs again.

2. Adaptive test case (ATC). In this case, the action of the tester (apply an input or observe an output or the passing of time) depends
on the sequence of observations that has been made in the current test execution. Adaptive test cases can be represented as trees.

As previously mentioned, ATCs have benefits in terms of efficiency of test execution. The main problem that we consider in this
paper is to take a set of fixed STCs and generate from this a set of ATCs with the same effectiveness. Next, we present the formal
definitions of our types of test cases.

We start by defining STCs, which are the input to the approach described in this paper. As previously mentioned, STCs will have
a particular form: they are disallowed traces of the form 𝜎.𝑎 such that 𝜎 is an allowed trace.

Definition 1 (Sequential Test Cases). A sequential test case (STC) is a trace 𝜎.𝑎 ∈ (𝐼 ∪𝑂 ∪ {⊝})∗ such that 𝜎 is an allowed trace, 𝜎.𝑎 is
a disallowed trace, and 𝑎 ∈𝑂 ∪ {⊝}.

We require that 𝜎.𝑎 is disallowed since otherwise there would be no point in using such a test case. We require that 𝜎 is allowed
since if 𝜎 is disallowed then, since the set of allowed behaviours is prefix-closed, there is no point in testing further after observing
𝜎 (all extensions of 𝜎 must be disallowed). We require that 𝑎 ∈ 𝑂 ∪ {⊝} since we assume that the SUT will not block input: if 𝜎 is
allowed and ?𝑖 ∈ 𝐼 then 𝜎.?𝑖 must also be allowed.

Next we introduce a timed version of input output labelled transition systems that will be used to represent ATCs.

Definition 2. An Input Output Labelled Transition System with tock (IO⊝LTS) is defined by a tuple 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇) where

• 𝑄 is a countable, non-empty set of states;
• 𝑞0 ∈𝑄 is the initial state;
• 𝐼 is the finite set of inputs and 𝑂 is the finite set of outputs;
• 𝑇 ⊆ 𝑄 × Σ⊝ ×𝑄 is the transition relation.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

3

R.M. Hierons, M.G. Merayo and M. Núñez

The IO⊝LTS 𝑝 is initially in state 𝑞0 . If 𝑝 is in state 𝑞 ∈𝑄 and performs an event 𝑎 such that (𝑞, 𝑎, 𝑞′) ∈ 𝑇 , for some state 𝑞′ ∈𝑄,
then the system can move to state 𝑞′ through this event 𝑎. We say that 𝑎 is the label of 𝑡 and that 𝑎 is enabled in 𝑞. During the rest of
the paper we will use 𝑝, 𝑝′,… to denote IO⊝LTSs and 𝑞, 𝑞′, 𝑞0,… to denote states of IO⊝LTSs.

Next we introduce notation used during the rest of the paper.

Definition 3. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇) be an IO⊝LTS, 𝑞, 𝑞′ ∈𝑄 be states of 𝑝, 𝐴⊆ Σ⊝ be a set of events, 𝑎, 𝑎1,… , 𝑎𝑛 ∈ Σ⊝, with 𝑛 ≥ 1,
be events and 𝜎,𝜎′ ∈ Σ∗

⊝
be sequences of events.

𝑞
𝑎
←←←←←←←→ 𝑞′ ⇔def (𝑞, 𝑎, 𝑞

′) ∈ 𝑇

𝑞
𝑎
←←←←←←←→ ⇔def∃𝑞

′ ∈𝑄 ∶ (𝑞, 𝑎, 𝑞′) ∈ 𝑇

𝑞
𝜖
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′ ⇔def𝑞 = 𝑞′

𝑞
𝑎1…𝑎𝑛
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′ ⇔def∃𝑞1,… , 𝑞𝑛−1 ∈𝑄 ∶ 𝑞

𝑎1
←←←←←←←←←←←←←←←←→ 𝑞1… 𝑞𝑛−1

𝑎𝑛
←←←←←←←←←←←←←←←←→ 𝑞′

𝑞
𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ ⇔def∃𝑞

′ ∈𝑄 ∶ 𝑞
𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′

𝑞 = after𝑝(𝜎)⇔def𝑞0

𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞

𝑎 = next𝜎(𝜎
′)⇔def∃𝜎

′′ ∈ Σ∗
⊝
∶ 𝜎 = 𝜎′.𝑎.𝜎′′

𝐴 = enabled(𝑞)⇔def∀𝑎 ∈ Σ⊝ ∶ 𝑞
𝑎
←←←←←←←→ ⟺ 𝑎 ∈𝐴

We will use after𝑝(𝜎) only in the context of ATCs. Since they will be, by construction, deterministic we have that after𝑝(𝜎) is well
defined.

An ATC is an IO⊝LTS, with some restrictions, where states are labelled with verdicts: ok and fail. The application of an ATC to an
SUT will be ok or fail depending on the verdict of the last reached state of the ATC.

The verdict ok captures two types of verdict that are sometimes used: pass, which states that the SUT has passed the test case,
and inconclusive, which states that no failure has been observed but the test objective has not been achieved (e.g. trying to trigger
event 𝑎 after trace 𝜎). We use the single verdict ok in order to avoid a complication that can occur when combining STCs to form
an ATC. Specifically, this is the situation in which there is a state of the ATC that corresponds to verdict pass in one test case and
verdict inconclusive in the other test case. Under future work we discuss alternative approaches to allocating verdicts; it would be
straightforward to adapt the approach given to such alternative verdicts.

The following defines the notion of an ATC.

Definition 4 (Adaptive Test Cases). An Adaptive Test Case (ATC) is a tuple (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉), where (𝑄,𝑞0, 𝐼,𝑂,𝑇) is an IO⊝LTS and
𝑉 ∶𝑄⟶ {ok, fail} is a verdict function. In addition, the following conditions hold:

1. The state set 𝑄 is finite and the graph induced by 𝑝′ is acyclic.

2. The ATC is deterministic: given states 𝑞, 𝑞′ ∈𝑄 and 𝑎 ∈ Σ⊝, if 𝑞
𝑎
←←←←←←←→ 𝑞′ then there is no state 𝑞′′ ≠ 𝑞′ such that 𝑞

𝑎
←←←←←←←→ 𝑞′′.

3. Outputs are always available, except for in leaves (which represent testing having finished): for all 𝑞 ∈𝑄, if enabled(𝑞) ≠ ∅ then
𝑂 ⊆ enabled(𝑞).

4. At each state, at most one input can be applied: for all 𝑞 ∈𝑄 and inputs ?𝑖1, ?𝑖2 ∈ 𝐼 , if {?𝑖1, ?𝑖2} ⊆ enabled(𝑞) then ?𝑖1 =?𝑖2.
5. There is no state 𝑞 ∈𝑄 and input ?𝑖 ∈ 𝐼 such that {?𝑖,⊝} ⊆ enabled(𝑞).

Since an ATC is an IO⊝LTS, we will use the notation introduced in Definition 3. Now consider the conditions given above. The
first condition ensures that testing terminates since the test case has no infinite paths. The second condition simplifies definitions and
is included since a test case should not be non-deterministic. In particular, it would make no sense to have the potential to apply a
test case twice to a deterministic SUT, observe the same sequence of events in both applications, and have one of them returns an ok

verdict while the other one returns a fail verdict. The last three conditions are also standard properties of test cases. First, unless a
test case has terminated, it must always be able to observe any output that can be produced by the SUT since the environment cannot
block output. Second, at any point a test case may decide to apply an input but this input must be unique; this again avoids a form
of non-determinism (where the test case can non-deterministically choose to send either input ?𝑖1 or input ?𝑖2 to the SUT). Third, if
the test case can apply an input then there is no ⊝ transition. This final condition is included because the SUT cannot block input (if
an input is supplied then the SUT receives this input immediately). Let us remark that, again, these conditions are compatible with
standard approaches such as the one used in ioco [16].

Note that a non-leaf state 𝑞 of an ATC might have no inputs enabled and also not have ⊝ enabled. If 𝑞 is reached in testing and
the SUT is not able to produce an output then testing terminates. The returned verdict is thus 𝑉 (𝑞). Termination (deadlock) occurs
when the SUT cannot engage in any of the events belonging to enabled(𝑞) and so 𝑉 (𝑞) might not be fail.

Example 1. Consider 𝐼 = {?𝑖1, ?𝑖2} and 𝑂 = {!𝑜1, !𝑜2}. Fig. 1 presents three ATCs. A start label indicates initial states. For simplicity,
we simply write 𝑓 instead of fail.

In the first ATC (the left-most), the tester first attempts to supply input ?𝑖1 but can also observe output. If output is initially
observed then testing terminates with verdict ok. Otherwise, if ?𝑖1 is sent to the SUT then either an output is produced next (and

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

4

R.M. Hierons, M.G. Merayo and M. Núñez

okstart

okok ok

ok okok

𝑓ok

?𝑖1!𝑜1 !𝑜2

⊝ !𝑜1!𝑜2

!𝑜1!𝑜2

okstart

ok ok

ok ok

𝑓 okok

!𝑜1 !𝑜2

!𝑜1 !𝑜2

⊝ !𝑜2!𝑜1

okstart

ok ok

ok ok

𝑓 okok

ok 𝑓ok

!𝑜1 !𝑜2

!𝑜1 !𝑜2

⊝ !𝑜2!𝑜1

!𝑜1 ⊝!𝑜2

Fig. 1. Three ATCs.

testing terminates with verdict ok) or time passes. Finally, if ?𝑖1.⊝ has been observed, testing terminates with verdict ok if output !𝑜2
is produced and terminates with verdict fail if output !𝑜1 is produced. In addition, if testing terminates after ?𝑖1.⊝ has been observed
then the verdict is ok. Thus, we can see that the SUT fails this test case if and only if test execution leads to the trace ?𝑖1 . ⊝ .!𝑜1. The
other two ATCs operate in a similar way. The SUT fails the second ATC if and only if test execution leads to the trace !𝑜1 .!𝑜1.⊝. In
contrast, in the third ATC there are two traces that lead to verdict fail: !𝑜1.!𝑜1.⊝ and !𝑜1.!𝑜1.!𝑜1.⊝.

3. Possible observations: sequential and adaptive test cases

In this section we start by defining the set of possible observations that can be made when testing using an ATC and also when
using an STC. This then allows us to define the set of possible observations that can be made when using a given test suite and makes
it possible to formally define the problem that we consider in Section 4: that of converting a set of STCs into an ‘equivalent’ set of
ATCs.

3.1. Possible observations of adaptive test cases

The set of possible observations of an ATC is the set of traces of that ATC.

Definition 5 (Evolutions of an ATC). Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) be an ATC. We define the set of evolutions of 𝑝, denoted by 𝐸𝑣(𝑝), as
the following set of traces:

𝐸𝑣(𝑝) = {𝜎 ∈ Σ∗
⊝
∣ 𝑞0

𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒}

The set of evolutions of an ATC 𝑝 defines exactly the traces that can be observed when testing with 𝑝.
The definition of an evolution does not take into account the verdicts of the states of the ATC. In particular, an evolution 𝜎 of an

ATC can only find a fault if 𝜎 reaches a state of the ATC that has verdict fail.

Definition 6 (Failing Evolutions of an ATC). Let 𝑝= (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) be an ATC. We define the set of failing evolutions of 𝑝, denoted
by 𝐸𝑣𝐹 (𝑝), as the following set of traces:

𝐸𝑣𝐹 (𝑝) = {𝜎 ∈ Σ∗
⊝
∣ ∃𝑞 ∈𝑄 ∶ 𝑞0

𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞 ∧ 𝑉 (𝑞) = fail}

Recall that, by Definition 1, only particular traces can be used as STCs. Specifically, if 𝜎.𝑎 is an STC then 𝜎 is an allowed trace and
𝜎.𝑎 is a disallowed trace. We will also want to place restriction on ATCs, which we do through two concepts: an ATC being sound
and an ATC being non-redundant. We start by saying what we mean by an ATC being sound.

Definition 7. An ATC 𝑝 is sound if for every failing evolution 𝜎 ∈𝐸𝑣𝐹 (𝑝) we have that 𝜎 is a disallowed trace.

Later we will prove that the way in which we construct ATCs (from STCs) ensures that these ATCs are sound (Proposition 5 in
Section 4) and so there is no need to have access to the specification.

We also say what it means for an ATC to be non-redundant. Similar to above, we will prove that the ATCs we construct are
non-redundant (Proposition 6 in Section 4).

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

5

R.M. Hierons, M.G. Merayo and M. Núñez

Definition 8. An ATC 𝑝 is non-redundant if it satisfies the following conditions.

1. If 𝜎 ∈𝐸𝑣(𝑝) is a disallowed trace then the state after𝑝(𝜎) is a leaf.
2. If 𝜎 ∈𝐸𝑣(𝑝) is such that 𝑞1 = after𝑝(𝜎) is not a leaf and all states of 𝑝 reached by transitions from 𝑞1 are leaves then the following
conditions hold.
(a) There exists 𝑞2 ∈𝑄 and 𝑎∈ Σ⊝ such that 𝑞1

𝑎
←←←←←←←←←→ 𝑞2 and 𝑉 (𝑞2) = fail.

(b) enabled(𝑞1) ∩ 𝐼 = ∅; and

(c) If 𝑞1
⊝
←←←←←←←←←←←←→ 𝑞2 then 𝑉 (𝑞2) = fail.

The first condition simply says that if a disallowed trace 𝜎 is observed then testing stops. It does not, however, say what the verdict
should be. The first part of the second condition ensures that if 𝜎 is a trace that reaches node 𝑞1 of 𝑝 that is not a leaf then further
execution of 𝑝 could potentially lead to verdict fail (Proposition 1 below); if this was not the case then there is no value in testing
further and so 𝑞1 should be a leaf.

The second part of the second condition is included since there is no value in a test case applying an input that takes 𝑝 to a leaf
since inputs are always enabled and so such an input cannot lead to verdict fail (i.e. applying such an input would be a waste). For
the third part of the second condition, consider what happens if ⊝ ∈ enabled(𝑞1). We know, from the definition of an ATC, that no
inputs are enabled at 𝑞1 and all outputs are enabled at 𝑞1. Further, if testing an SUT reaches state 𝑞1 of 𝑝 and the SUT can produce
an output then such an output occurs and the transition from 𝑞1 with label ⊝ is not taken (outputs are urgent). Thus, the transition
𝑡 from 𝑞1 with label ⊝ can only be followed if testing reaches 𝑞1 and the SUT cannot produce an output at this point. However, if 𝑡
takes 𝑝 to a state with verdict ok then, since the verdict of 𝑞1 is also ok, following the transition 𝑡 does not change the verdict and so
we can remove 𝑡 without changing the effectiveness of the test case.

Proposition 1 below helps explain why Definition 8 is used. The result says that if a non-redundant ATC specifies that the tester
should take some action in a state 𝑞1 of an ATC then it is possible to reach a state with fail verdict from 𝑞1. We want this property
since otherwise testing should stop if the ATC reaches state 𝑞1 . We first prove a lemma.

Lemma 1. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) be a non-redundant ATC. If 𝑞1 ∈𝑄 is not a leaf then there is a trace 𝜎 and a state 𝑞2 ∈𝑄 such that

𝑞1

𝜎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 and 𝑉 (𝑞2) = fail.

Proof. We use proof by induction on the length 𝓁 of the longest path from 𝑞1 to a leaf.
First consider the base case 𝓁 = 1. In this case 𝑞1 is not a leaf but all states of 𝑝 reached from 𝑞1 are leaves. Thus, by Definition 8

(second rule, first part) there must be at least one transition 𝑡 from 𝑞1 that takes 𝑝 to a state 𝑞2 such that 𝑉 (𝑞2) = fail. Let us suppose
that 𝑡 has event 𝑏. The base case then follows with 𝜎 = 𝑏.

We now consider the inductive case. The inductive hypothesis is that the result holds if the length of the longest path from 𝑞1 to
a leaf is at most 𝓁 ≥ 1. We assume that the length of the longest path from 𝑞1 to a leaf is 𝓁 + 1. Choose some event 𝑎 ∈ enabled(𝑞1)

that does not take 𝑝 from 𝑞1 to a leaf. Let 𝑞3 be the state of 𝑝 reached from 𝑞1 by 𝑎 (i.e. 𝑞1
𝑎
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞3). By the definition of 𝑞3, we have

that 𝑞3 is not a leaf. In addition, since the length of the longest path from 𝑞1 to a leaf is 𝓁 + 1, the length of the longest path from 𝑞3
to a leaf is at most 𝓁. By the inductive hypothesis, we therefore have that there is a trace 𝜎1 and a node 𝑞2 of 𝑝 such that 𝑞3

𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2

and 𝑉 (𝑞2) = fail. The result now follows by setting 𝜎 = 𝑎.𝜎1. □

Proposition 1. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) be a non-redundant ATC and 𝜎1.𝑎 ∈𝐸𝑣(𝑝). Then, there exists a trace 𝜎2 such that 𝜎1.𝜎2 ∈𝐸𝑣𝐹 (𝑝).

Proof. Let 𝑞1 = after𝑝(𝜎1). (i.e. 𝑞0
𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞1). Since 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝), we have that 𝑞1 is not a leaf. Thus, by Lemma 1, there is a trace 𝜎2

and a state 𝑞2 of 𝑝 such that 𝑞1
𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 and 𝑉 (𝑞2) = fail. Since 𝑞0

𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞1 and 𝑞1

𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 we have that 𝑞0

𝜎1 .𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2. Since 𝑉 (𝑞2) = fail

we therefore have that 𝜎1.𝜎2 ∈𝐸𝑣𝐹 (𝑝) as required. □

3.2. Possible observations of sequential test cases

We want to compare ATCs and STCs and so also need to say what can be observed when using an STC 𝜎. There are two reasons
why this is not just the trace 𝜎. First, in order to be consistent with ATCs we should include prefixes. Second, if 𝜎 = 𝜎1.𝑎.𝜎2 for some
𝜎1, 𝜎2 ∈ Σ∗

⊝
and 𝑎 ∈ Σ⊝ then, since a tester cannot block output, for all 𝑏 ∈𝑂 ⧵ {𝑎} we have that testing with 𝜎 can also lead to the

observation of 𝜎1.𝑏. Given a trace 𝜎, we use pref (𝜎) to denote the set of prefixes of 𝜎.

Definition 9 (Evolutions of an STC). Let 𝜎 ∈ Σ+
⊝
be an STC. We define the set of evolutions of 𝜎, denoted by 𝐸𝑣(𝜎), as the following

set of traces:

𝐸𝑣(𝜎) = pref (𝜎) ∪ {𝜎1.𝑏 ∣ ∃𝜎2 ∈ Σ∗
⊝
, 𝑎 ∈ Σ⊝ ∶ 𝜎 = 𝜎1.𝑎.𝜎2 ∧ 𝑏 ∈𝑂 ⧵ {𝑎}}

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

6

R.M. Hierons, M.G. Merayo and M. Núñez

Note that in the above definition, 𝑎 might be an input. This would reflect the situation where the tester aims to apply an input
but the SUT (autonomously) performs an output before the input is supplied.

It is straightforward to define the set of failing evolutions of an STC 𝜎: it is just 𝜎.

Definition 10 (Failing evolutions of an STC). Let 𝜎 ∈ Σ+
⊝
be an STC. We define the set of failing evolutions of 𝜎 by

𝐸𝑣𝐹 (𝜎) = {𝜎}

An alternative way of defining the evolutions of an STC 𝜎 would be to form an ATC from 𝜎 that essentially ‘completes’ 𝜎. We now
define such a completion. This is used in the algorithm given in Section 5.3 to allow us to add an ATC when we have an STC that
cannot be merged with any of the current ATCs. In the following we assume that some arbitrary numbering of the outputs has been
given and so 𝑂 = {!𝑜1,… , !𝑜𝓁} for some 𝓁 > 0.

Definition 11. Given an STC 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
, its completion (𝜎) is the ATC 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) in which we have the following.

1. 𝑄 = {𝑞0,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

2. 𝑇 = {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 0 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. The verdict function is defined as follows

𝑉 (𝑞) =

{
fail if 𝑞 = 𝑞𝑘
ok otherwise

In the above definition, states in the set {𝑞𝑗
𝑖+1

∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}} allow the observation of unanticipated output (!𝑜𝑗 ≠
𝑎𝑖+1) after a prefix 𝑎1…𝑎𝑖 of 𝜎.

A fail verdict is assigned to the state of the ATC reached at the end of the sequence defining the corresponding STC and this is
because, by the definition of an STC 𝜎, we must have that 𝜎 is disallowed. The rest of the states are assigned verdict ok because either
the application of the corresponding sequence was not complete (the test case application stopped with a prefix of 𝜎) or the last event
observed 𝑎 was an output !𝑜 produced by the SUT at a point where !𝑜 is not the corresponding event in 𝜎.

Example 2. Consider 𝐼 = {?𝑖1, ?𝑖2} and 𝑂 = {!𝑜1, !𝑜2}. Fig. 1 (left) provides a graphical representation of the ATC (?𝑖1 . ⊝ .!𝑜1) and
Fig. 1 (centre) provides a graphical representation of the ATC (!𝑜1.!𝑜1.⊝). If we consider the ATC in Fig. 1 (left), we see that the
path to the state with verdict fail has the expected label (?𝑖1. ⊝ .!𝑜1). Transitions have been added in order to ensure that all outputs
are enabled on all (non-leaf) states on this path and all other verdicts are ok.

By construction, it is trivial to prove that the evolutions of an STC coincide with the evolutions of its completion.

Proposition 2. Given 𝜎 ∈ Σ+
⊝
, we have that

• 𝐸𝑣(𝜎) =𝐸𝑣((𝜎)); and
• 𝐸𝑣𝐹 (𝜎) =𝐸𝑣𝐹 ((𝜎)).

If addition, if 𝜎 is a trace of an ATC 𝑝 then all traces of (𝜎) are also traces of 𝑝. The following is immediate from the definitions
of an ATC and of (𝜎).

Proposition 3. Given ATC 𝑝 and trace 𝜎, if 𝜎 ∈𝐸𝑣(𝑝) then 𝐸𝑣((𝜎)) ⊆ 𝐸𝑣(𝑝).

3.3. Comparing test cases and test suites

Now that we have formally defined the set of observations that can be made when using a (sequential or adaptive) test case, we
can formally compare test cases in terms of the faults that they can find. Recall that if 𝜎 is an STC then the set of possible responses
of the SUT is the set of evolutions of the completion of 𝜎: 𝐸𝑣((𝜎)). From this we can see that if 𝑆 is a set of STCs then 𝑆 might
contain redundancy. The simplest form of redundancy is that which occurs when there are two STCs 𝜎1 and 𝜎2 such that 𝜎1 = 𝜎.𝑎1
and 𝜎2 = 𝜎.𝑎2 for some trace 𝜎 and 𝑎1 ≠ 𝑎2. Here, the STCs 𝜎1 and 𝜎2 lead to the same possible observations even though neither is
a prefix of the other.

Definition 12 (Trace equivalence of Sequential Test Cases). Let 𝜎1 and 𝜎2 be two STCs. We say that 𝜎1 and 𝜎2 are trace equivalent if
𝐸𝑣(𝜎1) =𝐸𝑣(𝜎2).

However, this says nothing about the verdicts. We can therefore define the following.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

7

R.M. Hierons, M.G. Merayo and M. Núñez

okstart

okok ok

ok okok

𝑓ok 𝑓 ok ok

?𝑖1!𝑜1 !𝑜2

⊝ !𝑜1!𝑜2

!𝑜1!𝑜2 !𝑜1!𝑜2⊝

okstart

okok ok

ok okok ok ok

𝑓ok 𝑓 ok ok

?𝑖1!𝑜1 !𝑜2

⊝ !𝑜1!𝑜2 !𝑜1 !𝑜2

!𝑜1!𝑜2 !𝑜1!𝑜2⊝

Fig. 2. An ATC that is the union of the ATC in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝ and a similar ATC (right) that does not represent such a union.

Definition 13 (Equivalence of Sequential Test Cases). Let 𝜎1 and 𝜎2 be two STCs. We say that 𝜎1 and 𝜎2 are equivalent if 𝐸𝑣𝐹 (𝜎1) =

𝐸𝑣𝐹 (𝜎2).

Note that, from the above, we have that two STCs 𝜎1 and 𝜎2 are equivalent if and only if 𝜎1 = 𝜎2.

Proposition 4. Given two STCs 𝜎1 and 𝜎2, 𝜎1 is equivalent to 𝜎2 if and only if 𝜎1 = 𝜎2.

Finally, we can say what it means for a set 𝐴 of ATCs to be equivalent, in terms of failures that can be observed, to a set 𝑆 of
STCs.

Definition 14 (Equivalence). A set 𝐴 of ATCs is said to be equivalent to a set 𝑆 ⊆ Σ+
⊝
of STCs if the following condition holds.

⋃
𝜎∈𝑆

𝐸𝑣𝐹 ((𝜎)) =
⋃
𝑝∈𝐴

𝐸𝑣𝐹 (𝑝)

4. Conditions under which we can combine STCs

In the previous section we provided a framework for reasoning about sequential and adaptive test cases. In Section 4.1 we formalise
what we wish to achieve when we merge an STC 𝜎 and a sound and non-redundant ATC 𝑝. We then consider the conditions under
which an STC 𝜎 can be removed without changing 𝑝 (Section 4.2). Finally, we give conditions under which 𝜎 can be merged with an
ATC 𝑝 to form a new ATC 𝑝′ (Section 4.3). The next section uses these when defining the proposed algorithm.

4.1. Objective

The proposed approach will be iterative, with each iteration aiming to combine an ATC 𝑝 and an STC 𝜎. In combining these, we
want to construct an ATC 𝑝′ such that 𝑝′ finds exactly the same set of faulty behaviours found by separately testing with 𝑝 and 𝜎. We
also want to produce an ATC 𝑝′ that is non-redundant. The following formalises these requirements.

Definition 15. Given an STC 𝜎 and a sound and non-redundant ATC 𝑝, an ATC 𝑝′ is said to be the union of 𝑝 and 𝜎 if 𝐸𝑣𝐹 (𝑝
′) =

𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) and 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎).

The first part of this definition (𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎)) ensures that 𝑝

′ finds the same faults as separately using 𝑝 and 𝜎. The
second part (𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎)) is included in order to avoid introducing additional traces that could lead to redundancy. The
following example demonstrates this point.

Example 3. Consider the ATC 𝑝 represented in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝. Fig. 2 (left) depicts the ATC 𝑝′ corresponding to
the union of both of them.

Now consider what could happen if we removed from the definition of union (Definition 15) the requirement that 𝐸𝑣(𝑝′) =

𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎). We can then, for example, change the ATC 𝑝′ shown in Fig. 2 (left) to form a new ATC 𝑝′′ by adding new states with

verdict ok and transitions to these states from the state 𝑞1 of 𝑝
′ such that 𝑞′

0

!𝑜2
←←←←←←←←←←←←←←←←←←→ 𝑞1, where 𝑞

′
0
is the initial state of 𝑝′. A possible such

𝑝′′ is shown in Fig. 2 (right). Such a change preserves the set of failing evolutions and so we have that 𝐸𝑣𝐹 (𝑝
′′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎).

However, 𝐸𝑣(𝑝′′) ≠ 𝐸𝑣(𝑝) ∪ 𝐸𝑣(𝜎) and so 𝑝′′ is not the union of 𝑝 and 𝜎. We do not want to allow 𝑝′′ to be the union of 𝑝 and 𝜎
since 𝑝′′ contains redundancy (failing the conditions of Definition 8). In practical terms, the states and transitions added to 𝑝′ when

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

8

R.M. Hierons, M.G. Merayo and M. Núñez

forming 𝑝′′ could lead to an increase in testing effort, since testing no longer terminates if !𝑜2 is initially produced, but does not
increase the ability of testing to find faults (since 𝐸𝑣𝐹 (𝑝

′′) =𝐸𝑣𝐹 (𝑝
′)).

The proposed algorithm will combine/merge STCs with available ATCs one at a time. When we introduce the rules for merging
an ATC and an STC, we will prove that each possible step (the application of a rule) involves replacing some 𝑝 and 𝜎 with an ATC 𝑝′

such that 𝑝′ is the union of 𝑝 and 𝜎. We now prove that taking the union preserves both soundness and non-redundancy. We start by
considering soundness.

Proposition 5. Given an STC 𝜎 and a sound ATC 𝑝, if 𝑝′ is the union of 𝑝 and 𝜎 then 𝑝′ is sound.

Proof. By Definition 7, we are required to prove that all traces in 𝐸𝑣𝐹 (𝑝
′) are disallowed. Since 𝑝′ is the union of 𝑝 and 𝜎, by

Definition 15 we have that 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). We will separately consider the traces in 𝐸𝑣𝐹 (𝑝) and 𝐸𝑣𝐹 (𝜎).

First consider the traces in 𝐸𝑣𝐹 (𝜎). By Definition 10 we have that 𝐸𝑣𝐹 (𝜎) = 𝜎 and by the definition of an STC (Definition 1) we
know that 𝜎 is a disallowed trace. As a result, all traces in 𝐸𝑣𝐹 (𝜎) are disallowed.

Now consider the set 𝐸𝑣𝐹 (𝑝) of traces. Observe that 𝑝 is sound. Thus, by Definition 7, all traces in 𝐸𝑣𝐹 (𝑝) are disallowed.
We now know that all traces in 𝐸𝑣𝐹 (𝜎) are disallowed and all traces in 𝐸𝑣𝐹 (𝑝) are disallowed. Thus, all traces in 𝐸𝑣𝐹 (𝑝

′) =

𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) are disallowed. By Definition 7, we therefore have that 𝑝
′ is sound as required. □

As previously mentioned, we wish to restrict attention to non-redundant ATCs and the following shows that taking the union with
an STC preserves this property.

Proposition 6. If 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) is a non-redundant ATC, 𝜎 is an STC, and 𝑝′ = (𝑄′, 𝑞′
0
, 𝐼,𝑂,𝑇 ′, 𝑉 ′) is the union of 𝑝 and 𝜎 then

𝑝′ is non-redundant.

Proof. We will separately consider the conditions required for an ATC to be non-redundant.
Condition 1: We require that if 𝜎1 ∈𝐸𝑣(𝑝′) is a disallowed trace then the state after𝑝′ (𝜎1) is a leaf. We will use proof by contradiction

and assume that this state is not a leaf. There is therefore some 𝑎 ∈ Σ⊝ such that 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝′). Since 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝′) and 𝑝′ is the
union of 𝑝 and 𝜎 we have that either 𝜎1.𝑎 ∈𝐸𝑣(𝑝) or 𝜎1.𝑎 ∈𝐸𝑣(𝜎). Since 𝜎1 is a disallowed behaviour, the case where 𝜎1.𝑎 ∈𝐸𝑣(𝑝)

contradicts 𝑝 being non-redundant. Further, since 𝜎1 is a disallowed behaviour, the case where 𝜎1.𝑎 ∈𝐸𝑣(𝜎) contradicts the definition
of an STC. Since both cases lead to a contradiction, the result follows.

Condition 2(a): We are required to prove that if 𝜎1 ∈ 𝐸𝑣(𝑝′) is such that 𝑞0
𝑝′
= after𝑝′ (𝜎1) is not a leaf and all states of 𝑝

′ reached

by transitions from this state are leaves then at least one of them has verdict fail. We have that since 𝑞0
𝑝′
is not a leaf of 𝑝′ there is

some 𝑎 ∈ Σ⊝ such that 𝜎1.𝑎 ∈𝐸𝑣(𝑝′) and so either 𝜎1.𝑎 ∈𝐸𝑣(𝑝) or 𝜎1.𝑎 ∈𝐸𝑣(𝜎).
First, consider the case where 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝) and so the state 𝑞0

𝑝
= after𝑝(𝜎1) is not a leaf. Since ATCs are deterministic, 𝐸𝑣(𝑝) ⊆

𝐸𝑣(𝑝′), and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′
are leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0

𝑝

are also leaves. But, since 𝑝 is non-redundant, this means that some state of 𝑝 reached by a transition from 𝑞0
𝑝
has verdict fail. Since

𝐸𝑣𝐹 (𝑝) ⊆ 𝐸𝑣𝐹 (𝑝
′) and 𝑝′ is deterministic, we must therefore have that a state of 𝑝′ reached by a transition from 𝑞0

𝑝′
has verdict fail

as required.
Now consider the case where 𝜎1.𝑎 ∉ 𝐸𝑣(𝑝) and so 𝜎1.𝑎 ∈ 𝐸𝑣(𝜎). Since all states of 𝑝′ reached by transitions from 𝑞0

𝑝′
are leaves,

we must have that 𝜎 = 𝜎1.𝑎. But, this means that 𝜎1.𝑎 ∈𝐸𝑣𝐹 (𝜎) and so, since 𝑝
′ is the union of 𝑝 and 𝜎, 𝜎1.𝑎 ∈𝐸𝑣𝐹 (𝑝

′) as required.
Condition 2(b): We are required to prove that if 𝑞0

𝑝′
= after𝑝′ (𝜎1) is a non-leaf and all states of 𝑝

′ reached by transitions from 𝑞0
𝑝′

are leaves then we have 𝐼 ∩ enabled(𝑞0
𝑝′
) = ∅. Therefore, it is sufficient to prove that 𝑎 ∈ enabled(𝑞0

𝑝′
) implies 𝑎 ∈ 𝑂 ∪ {⊝}. We will

consider two cases.
First, let us suppose that 𝜎1.𝑎 is a prefix of 𝜎. Since 𝑝

′ is the union of 𝑝 and 𝜎 and 𝜎1.𝑎 reaches a leaf of 𝑝
′, we must have that

𝜎 = 𝜎1.𝑎. By the definition of an STC, 𝑎 is not an input as required.
Now consider the (second) case where 𝜎1.𝑎 is not a prefix of 𝜎. Since 𝑝

′ is the union of 𝑝 and 𝜎, we must have that 𝜎1.𝑎 is a trace
of 𝑝 and so the state 𝑞0

𝑝
= after𝑝(𝜎1) is a non-leaf. Since 𝑝

′ is the union of 𝑝 and 𝜎 and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′

are leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0
𝑝
are also leaves. Since 𝑝 is non-redundant, we therefore

have that 𝑎 is not an input, as required. The result therefore follows.
Condition 2(c): Let us suppose that 𝜎1 ∈𝐸𝑣(𝑝′) is such that 𝑞0

𝑝′
= after𝑝′ (𝜎1) is a non-leaf and all states of 𝑝

′ reached by transitions

from 𝑞0
𝑝′
are leaves. We are required to prove that if ⊝ ∈ enabled(𝑞0

𝑝′
) then 𝑉 (after𝑝′ (𝜎1.⊝)) = fail. We therefore assume that ⊝ is

enabled at 𝑞0
𝑝′
and we consider two cases.

First, let us suppose that 𝜎1.⊝ is a prefix of 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎 and 𝜎1.⊝ reaches a leaf of 𝑝′, we must have that
𝜎 = 𝜎1.⊝. By the definition of an STC, the state of 𝑝

′ reached by 𝜎1.⊝ must have verdict fail as required.
Now consider the (second) case where 𝜎1.⊝ is not a prefix of 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎, we must have that 𝜎1.⊝ is a

trace of 𝑝 and so 𝑞0
𝑝
= after𝑝(𝜎1) is a non-leaf. Since 𝑝

′ is the union of 𝑝 and 𝜎 and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′
are

leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0
𝑝
are leaves. Since 𝑝 is non-redundant, we must have that the

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

9

R.M. Hierons, M.G. Merayo and M. Núñez

transition from 𝑞0
𝑝
with label ⊝ reaches a state with verdict fail. Thus, since 𝑝′ is the union of 𝑝 and 𝜎 we have that the transition

from 𝑞0
𝑝′
with label ⊝ reaches a state with verdict fail. The result therefore follows. □

4.2. Conditions under which we can remove 𝜎

We start by giving a condition under which we can simply remove 𝜎 and we do not have to change 𝑝 (i.e. 𝑝 is the union of 𝑝 and
𝜎).

Proposition 7. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝).
If 𝑉 (after𝑝(𝜎

′)) = fail, then 𝑝 is the union of 𝑝 and 𝜎.

Proof. First note that since 𝑝 is sound, by Definition 7 we have that 𝜎′ is a disallowed behaviour because it reaches a fail state.
Further, by the definition of an STC, 𝜎 is a disallowed behaviour and all proper prefixes of 𝜎 are allowed behaviours. Since 𝜎′ is a
prefix of 𝜎 and 𝜎′ is a disallowed behaviour, we must have that 𝜎′ = 𝜎. We therefore know that 𝜎 is a failing evolution of 𝑝 and so
𝐸𝑣𝐹 (𝑝) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎).

It remains to prove that 𝐸𝑣(𝑝) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎). However, this follows from Proposition 3 which tells use that 𝐸𝑣((𝜎)) ⊆ 𝐸𝑣(𝑝).
The result thus follows. □

Example 4. Consider the ATC 𝑝 presented in Fig. 1 (right) and the STC 𝜎 =!𝑜1!𝑜1!𝑜1⊝. We have that 𝑝 is the union of 𝑝 and 𝜎.

Note that the previous property is equivalent to the case where 𝜎 reaches a fail state when starting at the initial state of 𝑝.

4.3. Conditions under which we can combine test cases

We now consider the case where we cannot simply remove 𝜎, leaving 𝑝 unchanged, and consider when we can merge 𝑝 and 𝜎
to form some 𝑝′. We will use 𝜎′ to denote the longest prefix of 𝜎 that is an evolution of 𝑝 and 𝑞0

𝑝
to denote after𝑝(𝜎

′). We will focus

on the case where 𝑞0
𝑝
is not a leaf of 𝑝 (in the next section we will see that if 𝑞0

𝑝
is a leaf of 𝑝 then we can merge 𝑝 and 𝜎). We will

consider three scenarios regarding the event in 𝜎 that follows 𝜎′:

• The next event in 𝜎 is an output (Proposition 8).
• The next event in 𝜎 is ⊝ (Proposition 9).
• The next event in 𝜎 is an input (Proposition 10).

We start by consider the case where the next event in 𝜎 is an output, with the following showing that this case cannot occur and
so the proposed algorithm does not have to include rules for this case.

Proposition 8. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC, and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝).
If the state after𝑝(𝜎

′) is not a leaf and 𝜎′ ≠ 𝜎 then next𝜎(𝜎
′) ∉𝑂.

Proof. We use proof by contradiction: we assume that 𝑞0
𝑝
= after𝑝(𝜎

′) is not a leaf and next𝜎(𝜎
′) ∈ 𝑂. By the definition of ATCs,

𝑂 ⊆ enabled(𝑞0
𝑝
). This contradicts 𝜎′ being the longest common prefix as required. □

The next two results give necessary conditions for there to be an ATC 𝑝′ that is the union of 𝑝 and 𝜎. The next section gives rules for
merging an ATC and an STC and provides a result (Proposition 13) that shows that the conditions below are also sufficient conditions.

We now consider the case where the next event in 𝜎 is ⊝.

Proposition 9. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝).
Let us suppose that after𝑝(𝜎

′) is not a leaf and next𝜎(𝜎
′) =⊝. If there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎 then enabled(after𝑝(𝜎

′)) =𝑂.

Proof. Let 𝑞0
𝑝
= after𝑝(𝜎

′). First, since 𝜎′ is a maximal prefix of 𝜎 that is a trace of 𝑝, we have that ⊝ ∉ enabled(𝑞0
𝑝
). By the definition

of an ATC, since 𝑞0
𝑝
is not a leaf we have that 𝑂 ⊆ enabled(𝑞0

𝑝
). It is therefore sufficient to prove that no inputs are enabled at 𝑞0

𝑝
.

We use proof by contradiction and assume that 𝑝′ is the union of 𝑝 and 𝜎 and some input ?𝑖 belongs to enabled(𝑞0
𝑝
). Since 𝜎′.⊝ is

a prefix of the trace 𝜎, it is an evolution of the STC 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎, we therefore have that 𝜎′.⊝ is a trace of 𝑝′.
In addition, every event enabled at the state 𝑞0

𝑝
of 𝑝 is also enabled at the state 𝑞0

𝑝′
= after𝑝′ (𝜎

′). Thus, since ?𝑖 ∈ enabled(𝑞0
𝑝
), we also

have that ?𝑖 ∈ enabled(𝑞0
𝑝′
). We therefore have that both ?𝑖 and ⊝ are enabled at state 𝑞0

𝑝′
. This contradicts the definition of an ATC

and so completes the proof by contradiction. □

Finally we have the case where the next event in 𝜎 is an input.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

10

R.M. Hierons, M.G. Merayo and M. Núñez

Algorithm 1 Checking whether an STC and an ATC can be merged.
function PossibleMerging
Input: 𝜎,𝜎′ ∈ Σ∗

⊝
, 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉), 𝑞0

𝑝
∈𝑄

if 𝜎 = 𝜎′ ∨ 𝑞0
𝑝
is a leaf then

𝑚𝑒𝑟𝑔𝑒= 𝑡𝑟𝑢𝑒

else
if (𝐼 ∪ {⊝}) ∩ enabled(𝑞0

𝑝
) = ∅ then

𝑚𝑒𝑟𝑔𝑒= 𝑡𝑟𝑢𝑒

else
𝑚𝑒𝑟𝑔𝑒= 𝑓𝑎𝑙𝑠𝑒

end if
end if
return 𝑚𝑒𝑟𝑔𝑒

Proposition 10. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC, and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝).
Let us suppose that after𝑝(𝜎

′) is not a leaf of 𝑝 and next𝜎(𝜎
′) =?𝑖. If there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎 then enabled(after𝑝(𝜎

′)) =𝑂.

Proof. Let 𝑞0
𝑝
be after𝑝(𝜎

′). Let us suppose that there is some ATC 𝑝′ that is the union of 𝑝 and 𝜎. Let 𝑞0
𝑝′
be after𝑝′ (𝜎

′). Consider the

set of events enabled(𝑞0
𝑝′
).

• ?𝑖 ∈ enabled(𝑞0
𝑝′
) since next𝜎(𝜎

′) =?𝑖.

• All outputs must be enabled.
• If an event 𝑎 ∈ 𝐼 ∪ {⊝} belongs to enabled(𝑞0

𝑝
) then 𝑎 must also belong to enabled(𝑞0

𝑝′
). This is because all evolutions of 𝑝 are also

evolutions of 𝑝′.

The result now follows by observing that, since 𝑝′ is an ATC, if input ?𝑖 ∈ enabled(𝑞0
𝑝′
), then we must have that ⊝ ∉ enabled(𝑞0

𝑝′
)

and also no other input is enabled at state 𝑞0
𝑝′
. □

5. Merging STCs

This section develops the algorithm for converting a set 𝑆 of STCs into an equivalent set 𝐴 of ATCs. We start with an algorithm
that checks whether an ATC 𝑝 and an STC can be merged (Section 5.1). Section 5.2 then gives the rules for merging and proves that
they are correct. Finally, the algorithm is given in Section 5.3.

5.1. Checking whether merging can happen

Algorithm 1 checks whether an STC 𝜎 can be merged with a sound and non-redundant ATC 𝑝. In this algorithm, as usual, 𝜎′ is
the longest prefix of 𝜎 that is an evolution of 𝑝 and 𝑞0

𝑝
= after𝑝(𝜎

′). As noted above (Proposition 7), we only consider the case where

𝑉 (𝑞0
𝑝
) = ok; if 𝑉 (𝑞0

𝑝
) = fail then we can simply remove 𝜎 without changing 𝑝. The algorithm allows merging to happen if one of four

situations occurs:

1. 𝜎′ = 𝜎 and 𝑉 (𝑞0
𝑝
) = ok. In Section 5.2, Proposition 11 shows how we can form a suitable 𝑝′.

2. State 𝑞0
𝑝
of 𝑝 is a leaf. In Section 5.2, Proposition 12 shows how we can form a suitable 𝑝′.

3. By Proposition 9, we know that if 𝑞0
𝑝
is not a leaf, 𝜎′ ≠ 𝜎, and next𝜎(𝜎

′) =⊝ then we can only merge 𝑝 and 𝜎′ if enabled(𝑞0
𝑝
) =𝑂.

4. By Proposition 10, we know that if 𝑞0
𝑝
is not a leaf, 𝜎′ ≠ 𝜎, and next𝜎(𝜎

′) ∈ 𝐼 then we can only merge 𝑝 and 𝜎′ if enabled(𝑞0
𝑝
) =𝑂.

5.2. Rules for merging

We now consider the separate cases, giving results showing how an STC and an ATC can be combined. We use 𝜎, 𝜎′ and 𝑞0
𝑝
as

before. We consider three cases.

• We have that 𝜎′ = 𝜎 and 𝑉 (𝑞0
𝑝
) = ok (Proposition 11).

• We have that 𝜎′ ≠ 𝜎, 𝑞0
𝑝
is a leaf and 𝑉 (𝑞0

𝑝
) = ok (Proposition 12).

• We have that 𝜎′ ≠ 𝜎, 𝑞0
𝑝
is not a leaf and 𝑉 (𝑞0

𝑝
) = ok (Proposition 13).

We start with the case where 𝜎′ = 𝜎.

Proposition 11. Let us suppose that 𝜎 is an STC and 𝑝 is a sound and non-redundant ATC. Let us suppose that 𝜎 ∈ 𝐸𝑣(𝑝) and that
𝑉 (after𝑝(𝜎)) = ok. Then, after𝑝(𝜎) is a leaf and if we form a new ATC 𝑝′ by changing the verdict of after𝑝(𝜎) to fail then 𝑝′ is the union of 𝑝
and 𝜎.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

11

R.M. Hierons, M.G. Merayo and M. Núñez

Proof. First, since 𝜎 is an STC, by Definition 1, 𝜎 must be a disallowed trace. Since 𝜎 is a disallowed trace and 𝑝 is non-redundant,
we must have that after𝑝(𝜎) is a leaf of 𝑝. This has established the first part of the result. In addition, it immediately follows that
𝐸𝑣(𝑝′) =𝐸𝑣(𝑝).

We are now required to prove that 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) and we do so by proving that if 𝜎1 is a trace then 𝜎1 ∈𝐸𝑣𝐹 (𝑝

′) if
and only if 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). By the definition of 𝐸𝑣𝐹 (𝑝

′), 𝜎1 ∈𝐸𝑣𝐹 (𝑝
′) if and only if 𝑉 (after𝑝′ (𝜎1)) = fail. By the definition of

𝑝′, this is the case if either 𝑉 (after𝑝(𝜎)) = fail or 𝜎1 = 𝜎. Thus, 𝜎1 ∈𝐸𝑣𝐹 (𝑝
′) if and only if 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪ {𝜎}. The result now follows

by observing that 𝐸𝑣𝐹 (𝜎) = {𝜎}. □

Example 5. Consider the ATC 𝑝 presented in Fig. 1 (right) and the STC 𝜎 =!𝑜1!𝑜2. Let 𝑝
′ be equal to 𝑝 but changing the verdict of

the state reached after the sequence !𝑜1!𝑜2 from ok to fail. Then, 𝑝′ is the union of 𝑝 and 𝜎.

We now consider the case where 𝜎′ ≠ 𝜎 and 𝑞0
𝑝
is a leaf of 𝑝. We start by showing how we can extend 𝑝 with 𝜎 in this case. Note

that since 𝑞0
𝑝
is a leaf of 𝑝, 𝑝 does not have any transitions from 𝑞0

𝑝
.

Definition 16. Let us suppose that 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) is a sound and non-redundant ATC, 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
is an STC, 𝜎′ = 𝑎1…𝑎𝓁

is the longest prefix of 𝜎 such that 𝜎′ ∈ 𝐸𝑣(𝑝), 𝑙 < 𝑘, and 𝑞0
𝑝
= after𝑝(𝜎

′). Further, suppose that 𝑞0
𝑝
is a leaf of 𝑝. The extension of 𝑝

with 𝜎, 𝑥𝑡𝐿(𝑝, 𝜎), is the ATC 𝑝′ = (𝑄′, 𝑞0, 𝐼,𝑂,𝑇 ′, 𝑉 ′) in which we have the following.

1. 𝑞𝓁 denotes 𝑞
0
𝑝
.

2. 𝑄′ =𝑄 ∪ {𝑞𝓁+1,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 𝓁 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. 𝑇 ′ = 𝑇 ∪ {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 𝓁 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 𝓁 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

4. The verdict function is defined as follows

𝑉 ′(𝑞) =

⎧⎪⎨⎪⎩

𝑉 (𝑞) if 𝑞 ∈𝑄

fail if 𝑞 = 𝑞𝑘
ok otherwise

Example 6. Consider the ATC 𝑝 in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝. Fig. 2 (left) gives the ATC 𝑥𝑡𝐿(𝑝, 𝜎).

Proposition 12. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝).
Let 𝑞0

𝑝
be after𝑝(𝜎

′). Let us suppose that 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is a leaf of 𝑝. Then 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎) is the union of 𝑝 and 𝜎.

Proof. First, by construction it is clear that 𝑝′ satisfies the requirements of an ATC and 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎).
We now prove that 𝐸𝑣𝐹 (𝑝

′) = 𝐸𝑣𝐹 (𝑝) ∪ 𝐸𝑣𝐹 (𝜎). Let 𝜎1 be a trace and it is sufficient to prove that 𝜎1 ∈ 𝐸𝑣𝐹 (𝑝
′) if and only if

𝜎1 ∈ 𝐸𝑣𝐹 (𝑝) ∪ 𝐸𝑣𝐹 (𝜎). Observe that 𝜎1 ∈ 𝐸𝑣𝐹 (𝑝
′) if and only if 𝑉 (after𝑝′ (𝜎1)) = fail. By the definition of 𝑝′, this is the case if and

only if either 𝑉 (after𝑝(𝜎1)) = fail or 𝜎1 = 𝜎. The first case holds if and only if we have that 𝜎1 ∈𝐸𝑣𝐹 (𝑝). The second case holds if and
only if we have that 𝜎1 ∈𝐸𝑣𝐹 (𝜎). Thus, 𝜎1 ∈𝐸𝑣𝐹 (𝑝) if and only if either 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) as required. □

Finally, we now consider the case where 𝜎′ ≠ 𝜎 and 𝑞0
𝑝
is not a leaf of 𝑝. We again extend 𝑝 with 𝜎 but we require a slightly

different extension function because 𝑝 has transitions leaving 𝑞0
𝑝
. The only difference between this definition and Definition 16 is

that, because 𝑞0
𝑝
is not a leaf, we no longer need to add transitions from 𝑞0

𝑝
for alternative outputs. This is reflected in the second sets,

used in defining 𝑄′ and 𝑇 ′, having the condition 𝓁 + 1 ≤ 𝑖 < 𝑘 rather than 𝓁 ≤ 𝑖 < 𝑘.

Definition 17. Let us suppose that 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) is an ATC, 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
is an STC, 𝜎′ = 𝑎1…𝑎𝓁 is the longest prefix of

𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝), 𝑙 < 𝑘, and 𝑞0
𝑝
is after𝑝(𝜎

′). Further, suppose that 𝑞0
𝑝
is not a leaf of 𝑝. The extension of 𝑝 with 𝜎, 𝑥𝑡𝑁 (𝑝, 𝜎), is

the ATC 𝑝′ = (𝑄′, 𝑞0, 𝐼,𝑂,𝑇 ′, 𝑉 ′) in which we have the following.

1. 𝑞𝓁 denotes 𝑞
0
𝑝
.

2. 𝑄′ =𝑄 ∪ {𝑞𝓁+1,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 𝓁 + 1 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. 𝑇 ′ = 𝑇 ∪ {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 𝓁 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 𝓁 + 1 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

4. The verdict function is defined as follows

𝑉 ′(𝑞) =

⎧⎪⎨⎪⎩

𝑉 (𝑞) if 𝑞 ∈𝑄

fail if 𝑞 = 𝑞𝑘
ok otherwise

Example 7. Consider the ATC 𝑝 presented in Fig. 1 (left) and the STC 𝜎 =?𝑖1⊝?𝑖1!𝑜1. Fig. 3 presents the ATC 𝑥𝑡𝑁 (𝑝, 𝜎).

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

12

R.M. Hierons, M.G. Merayo and M. Núñez

okstart

okok ok

okok ok

𝑓ok ok

𝑓ok

?𝑖1!𝑜1 !𝑜2

⊝!𝑜2 !𝑜1

!𝑜1!𝑜2 ?𝑖1

!𝑜1!𝑜2

Fig. 3. The ATC 𝑥𝑡𝑁 (𝑝, ?𝑖1⊝?𝑖1!𝑜1) for the ATC 𝑝 in Fig. 1 (left).

The proof of the following is almost identical to that of Proposition 12.

Proposition 13. Let us suppose that 𝜎 is an STCs, 𝑝 is an ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). Let 𝑞0
𝑝
be after𝑝(𝜎

′).

Let us suppose that 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is not a leaf of 𝑝. Further, suppose that enabled(𝑞0

𝑝
) = 𝑂. Then the ATC 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎) is

the union of 𝑝 and 𝜎.

5.3. Algorithm

We now give an algorithm for combining a set of STCs. This algorithm maintains a set of ATCs, which is initially empty, and
then goes through a number of iterations, adding one STC in each iteration. When an STC 𝜎 is considered, the algorithm determines
whether 𝜎 can be merged with any of the current ATCs: if 𝜎 can be merged with one or more of the ATCs then it is merged with one
of these and otherwise the ATC (𝜎) is added to the current set of ATCs.

Let 𝑝 be an ATC, 𝜎 be an STC and 𝜎′ be the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). Further, let 𝑞0
𝑝
be after𝑝(𝜎

′). Note that, since 𝑝
is deterministic, the sequence reaches a single state. Several cases are considered in the algorithm and these are now briefly reviewed.

1. If 𝑉 (𝑞0
𝑝
) = fail, then Proposition 7 tells us that we can discard 𝜎. Note that, as a result of the definition of STCs, this scenario can

only occur if 𝜎 = 𝜎′.
2. If 𝑉 (𝑞0

𝑝
) = ok and 𝜎 = 𝜎′, then Proposition 11 tells us that 𝑞0

𝑝
is a leaf of 𝑝 and we simply change the verdict of 𝑞0

𝑝
to fail. The idea

is that if we observe 𝜎 then we must indicate that this behaviour is not allowed and so the verdict must be fail.
3. If 𝑉 (𝑞0

𝑝
) = ok and 𝜎 ≠ 𝜎′ then there are the following cases:

a. 𝑞0
𝑝
is a leaf of 𝑝. By Proposition 12, we can just extend 𝑝 with the rest of 𝜎. Thus, one can merge 𝜎 and 𝑝 to form 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎).

b. 𝑞0
𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) ∈𝑂. By Proposition 8 we know that this case cannot occur since, by the definition of ATCs,

𝑂 ⊆ enabled(𝑞0
𝑝
), contradicting 𝜎′ being the longest common prefix.

c. 𝑞0
𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) = ⊝. Proposition 9 tells us that we can only merge 𝑝 and 𝜎 if enabled(𝑞0
𝑝
) = 𝑂. If we can

merge 𝑝 and 𝜎 then Proposition 13 tells us that we can extend 𝑝 with the rest of 𝜎 to form 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎).
d. 𝑞0

𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) ∈ 𝐼 . By Proposition 10, we can only merge 𝑝 and 𝜎 if enabled(𝑞0
𝑝
) = 𝑂. If we can merge 𝑝

and 𝜎 then Proposition 13 tells us that we just extend 𝑝 with the rest of 𝜎 to form 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎).

We now give the overall algorithm (Algorithm 2) that takes a set of sequential test cases and produces a set of ATCs. The algorithm
is iterative. In each iteration, the algorithm tries to merge an STC 𝜎 with an ATC that includes a non-empty prefix of 𝜎. The algorithm
uses the 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑒𝑟𝑔𝑖𝑛𝑔 function (Algorithm 1) to determine which of the current ATCs can be merged with 𝜎, placing these in
the set 𝐴𝑇𝐶𝑠𝑖𝑔. If 𝐴𝑇𝐶𝑠𝑖𝑔 is non-empty then the algorithm chooses an ATC 𝑝 from 𝐴𝑇𝐶𝑠𝑖𝑔 and replaces 𝑝 with the ATC 𝑝′ formed
by merging 𝑝 and 𝜎. If 𝐴𝑇𝐶𝑠𝑖𝑔 is empty, and so the STC cannot be merged with any ATC, then a new ATC corresponding to (𝜎)
will be created. Naturally, this last case applies on the first iteration since at this point there are no ATCs.

In an iteration, it is possible that 𝐴𝑇𝐶𝑠𝑖𝑔 contains more than one ATC that can be merged with 𝜎. The algorithm chooses an
ATC 𝑝 from 𝐴𝑇𝐶𝑠𝑖𝑔 such that this maximises the length of the longest prefix of 𝜎 that is in the set of evolutions of 𝑝 (i.e. the length
of the corresponding 𝜎′). The motivation is that this minimises the increase in the total number of nodes in the ATCs (and maximises
how much the traces of 𝑝 and 𝜎 overlap).

The algorithm uses a separate function 𝑀𝑒𝑟𝑔𝑒 (see Algorithm 3) that takes an ATC 𝑝 and a sequential test 𝜎 and combines these.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

13

R.M. Hierons, M.G. Merayo and M. Núñez

Algorithm 2 Creating ATCs from STCs.

Input: Σ = 𝐼 ∪𝑂, 𝑆𝑇𝐶𝑠 ⊆ Σ+
⊝

Let 𝐴𝑇𝐶𝑠 = ∅

for all 𝜎 = 𝑎1 …𝑎𝑛 ∈ 𝑆𝑇𝐶𝑠 do
𝐴𝑇𝐶𝑠𝑖𝑔 = {𝑝 ∣ 𝑝 ∈𝐴𝑇𝐶𝑠 ∧ ∃𝜎′ ∈ (pref (𝜎) ⧵ {𝜖}) ∩𝐸𝑣(𝑝)}

𝑚𝑒𝑟𝑔𝑒= 𝑓𝑎𝑙𝑠𝑒

while (¬𝑚𝑒𝑟𝑔𝑒 ∧ 𝐴𝑇𝐶𝑠𝑖𝑔 ≠ ∅) do
Choose a tree 𝑝= (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉) ∈𝐴𝑇𝐶𝑠𝑖𝑔 including
the longest non-empty prefix of 𝜎. Let 𝜎′ = 𝑎1 …𝑎𝑘 be this prefix.
𝑞0
𝑝
= after𝑝(𝜎

′)

𝐴𝑇𝐶𝑠𝑖𝑔 =𝐴𝑇𝐶𝑠𝑖𝑔 ⧵ {𝑝}

if 𝑉 (𝑞0
𝑝
) = fail then

𝑚𝑒𝑟𝑔𝑒 = 𝑡𝑟𝑢𝑒

else if 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑒𝑟𝑔𝑖𝑛𝑔(𝜎,𝜎′, 𝑝, 𝑞0
𝑝
) then

𝑝′ =𝑀𝑒𝑟𝑔𝑒(𝜎,𝜎′, 𝑝, 𝑞0
𝑝
)

𝐴𝑇𝐶𝑠 =𝐴𝑇𝐶𝑠 ⧵ {𝑝} ∪ {𝑝′}

𝑚𝑒𝑟𝑔𝑒 = 𝑡𝑟𝑢𝑒

end if
end while
if ¬𝑚𝑒𝑟𝑔𝑒 then

𝐴𝑇𝐶𝑠 =𝐴𝑇𝐶𝑠 ∪ {(𝜎)}

end if
end for

Algorithm 3 Merging an STC and an ATC.
function Merge
Input: 𝜎 = 𝑎1 …𝑎𝑛 , 𝜎

′ = 𝑎1 …𝑎𝑘 ∈ Σ∗
⊝
, 𝑝 = (𝑄,𝑞0 , 𝐼,𝑂,𝑇 ,𝑉), 𝑞0

𝑝
∈𝑄

if 𝜎′ = 𝜎 then
Update 𝑉 with 𝑉 (𝑞0

𝑝
) = fail

else
if 𝑞0

𝑝
is a leaf of 𝑝 then

𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎)

else
𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎)

end if
end if
return 𝑝′

Example 8. Consider 𝐼 = {?𝑖1, ?𝑖2}, 𝑂 = {!𝑜1, !𝑜2}. Fig. 4 provides a graphical representation of how the algorithm produces a set
of ATCs when it receives as input the set 𝑆 = {!𝑜1?𝑖1!𝑜2⊝, !𝑜1?𝑖1!𝑜1, ?𝑖2!𝑜1, !𝑜1?𝑖1⊝, ?𝑖2⊝, ?𝑖2!𝑜2!𝑜1}. The algorithm goes through the
following iterations.

1. In the first iteration the set of ATCs is empty, therefore a new ATC 𝑝1 corresponding to (!𝑜1?𝑖1!𝑜2⊝) is created (Fig. 4a).
2. Next, considering the STC 𝜎 =!𝑜1?𝑖1!𝑜1, the algorithm searches for the longest prefix of 𝜎 that is an evolution of 𝑝1. In this case,
this prefix coincides with 𝜎, and the verdict of the state of 𝑝1 reached by 𝜎 is changed to fail (Fig. 4b).

3. The algorithm now considers the STC ?𝑖2!𝑜1, none of its prefixes are evolutions of 𝑝1 and the ATC 𝑝2 = (?𝑖2!𝑜1) is created (Fig. 4c).
4. The longest prefix of !𝑜1?𝑖1⊝ in 𝑝1 and 𝑝2 are !𝑜1?𝑖1 and !𝑜1, respectively. In the first case, the outgoing transitions from the
state reached by the prefix are not labelled with an input or ⊝ and the state reached by the second in 𝑝2 is a leaf. Therefore, the
STC can be merged with either of them. Since !𝑜1?𝑖1 is longer than !𝑜1, 𝑝1 is selected to be merged with the STC and is extended
with the rest of the sequence, that is, ⊝ (Fig. 4d).

5. The STC ?𝑖2⊝ can be merged only with 𝑝2 by extending 𝑝2 with ⊝ to form 𝑥𝑡𝑁 (𝑝2, ?𝑖2⊝) (Fig. 4e).
6. Finally, the STC ?𝑖2!𝑜2!𝑜1 is also merged with 𝑝2. In this case, the state reached by the prefix ?𝑖2!𝑜2 is a leaf and the merge of 𝑝2
and the STC corresponds to 𝑥𝑡𝐿(𝑝2, ?𝑖2!𝑜2!𝑜1) (Fig. 4f).

In conclusion, the set 𝑆 is represented by the ATCs given in Figs. 4d and 4f.

Finally, the correctness of Algorithm 2 is based on the merging rules being correct.

Theorem 1. If Algorithm 2 is given set 𝑆 of STCs as input then it returns a set 𝐴 of sound and non-redundant ATCs such that 𝐴 is equivalent
to 𝑆 .

Proof. First, note that each iteration of the algorithm reduces the number of STCs in 𝑆𝑇𝐶𝑠 by 1 and 𝑆𝑇𝐶𝑠 starts with 𝑆 . Since 𝑆
is finite, we know that the algorithm terminates with 𝑆 = ∅.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

14

R.M. Hierons, M.G. Merayo and M. Núñez

okstart

ok ok

ok okok

okok

𝑓 okok

!𝑜1 !𝑜2

?𝑖1 !𝑜1!𝑜2

!𝑜2!𝑜1

!𝑜2⊝!𝑜1

(a) ATC 𝑝1.

okstart

ok ok

ok okok

ok𝑓

𝑓 okok

!𝑜1 !𝑜2

?𝑖1 !𝑜1!𝑜2

!𝑜2!𝑜1

!𝑜2⊝!𝑜1

(b) 𝑝1 after merging with 𝜎 =!𝑜1?𝑖1!𝑜1.

okstart

okok ok

𝑓 ok

?𝑖2!𝑜1 !𝑜2

!𝑜1 !𝑜2

(c) ATC 𝑝2.

okstart

ok ok

ok okok

ok 𝑓𝑓

𝑓 okok

!𝑜1 !𝑜2

?𝑖1 !𝑜1!𝑜2

!𝑜2!𝑜1 ⊝

!𝑜2⊝!𝑜1

(d) 𝑝1 after merging with !𝑜1?𝑖1⊝.

okstart

okok ok

𝑓 ok𝑓

?𝑖2!𝑜1 !𝑜2

!𝑜1 !𝑜2⊝

(e) 𝑝2 after merging with ?𝑖2⊝.

okstart

okok ok

𝑓 ok𝑓

𝑓ok

?𝑖2!𝑜1 !𝑜2

!𝑜1 !𝑜2⊝

!𝑜1!𝑜2

(f) 𝑝2 after merging with ?𝑖2!𝑜2!𝑜1.

Fig. 4. ATCs obtained from the application of Algorithm 2.

Now consider one iteration of the algorithm: to prove correctness of the algorithm as a whole it is sufficient to prove that if an
iteration replaces non-redundant ATC 𝑝 ∈𝐴𝑇𝐶𝑠 and STC 𝜎 with ATC 𝑝′ then 𝑝′ is the union of 𝑝 and 𝜎. We separately consider the
cases where merging happens in Algorithm 2 and what has been established about these.

Case 1: 𝑉 (𝑞0
𝑝
) = ok and 𝜎 = 𝜎′. Algorithm 2 forms 𝑝′ by changing the verdict of 𝑞0

𝑝
to fail. Proposition 11 tells us that 𝑝′ is the

union of 𝑝 and 𝜎.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

15

R.M. Hierons, M.G. Merayo and M. Núñez

Case 2: 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is a leaf of 𝑝. Algorithm 2 merges 𝜎 and 𝑝 to form 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎). By Proposition 12, 𝑝

′ is the
union of 𝑝 and 𝜎.

Case 3: 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, 𝑞0

𝑝
is not a leaf of 𝑝, and enabled(𝑞0

𝑝
) =𝑂. In this case, Algorithm 2 extends 𝑝 with the rest of 𝜎 to form

𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎). Proposition 10, tells us that 𝑝′ is the union of 𝑝 and 𝜎.
Thus, whenever Algorithm 2 merges an ATC 𝑝 and STC 𝜎 to form an ATC 𝑝′ we have that 𝑝′ is the union of 𝑝 and 𝜎. By the

definition of union, we have that 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎) and 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). Thus, each step of the algorithm preserves

the set of evolutions and the set of failing evolutions and so 𝐴 is equivalent to 𝑆 . Finally, Propositions 5 and 6 tell us that the ATCs
formed are sound and non-redundant. The result thus follows. □

This tells us that if 𝑆 is capable of showing that a given SUT is faulty then 𝐴 can also achieve this and, in addition, the ATCs in
𝐴 are sound and non-redundant.

6. Conclusions and future work

In this paper we considered a testing framework where test requirements are given by a set of negative test cases: a sequence
𝜎.𝑎 represents the situation in which, if the SUT executes the sequence 𝜎 then 𝑎 should not be observed next. The goal of the work
described in this paper was to provide an algorithm that transforms such a set of test cases (that we called sequential test cases) into
a set of adaptive test cases that encode the same information in a more compact way. The motivation for this work was that the
use of ATCs improves the efficiency of the testing process because there are situations where testing with ATCs will continue while
testing with an STC would require the testing process to be reset. We formally proved the correctness of the algorithm and presented
a complete example to show some of its intricacies.

There are several possible lines of future work. In this work we considered two verdicts: ok and fail. In contrast, a test case could
have states that have verdict 𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒, denoting the test objective not having been achieved. We potentially lose some information
if we replace 𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 verdicts. An alternative approach would have been for a state of an ATC 𝑝 to be associated with a tuple
of verdicts, one for each STC used in forming 𝑝. Such a verdict would provide information about which test objectives have been
achieved and also which original STCs failed when a fail verdict is given; such information could help with traceability. We would
only require small changes to our approach to introduce such tuples of verdicts.

The proposed algorithm is iterative and, in an iteration, an STC under consideration is merged with at most one ATC. This makes
sense if we are interested in limiting the (sum of) the sizes of the ATCs. Consider, however, the case where we have ATCs 𝑝1 , where
all traces start with !𝑜1.!𝑜2.?𝑖1, and 𝑝2, where all traces start with !𝑜1.!𝑜2.?𝑖2. Further, let us suppose that we are considering the STC
𝜎 =!𝑜1.!𝑜2.!𝑜3.!𝑜4. There is potential to merge 𝜎 with both of the ATCs, to form two new ATCs that we call 𝑝′

1
and 𝑝′

2
. If we do this

then the test objective (STC) 𝜎 can be achieved when using either 𝑝′
1
or 𝑝′

2
and so we might require fewer test executions in order to

achieve all test objectives. It would be straightforward to update the algorithm to allow such an approach.
A final observation is that if we have access to the specification then we might revisit the decision to give an ok verdict if the

tester is waiting for output !𝑜1 after some prefix 𝜎1 of 𝜎 and the SUT instead produces output !𝑜2. For example, when completing an
STC to form an ATC, we could check each such 𝜎1.!𝑜2 against the specification and set the verdict to be fail if 𝜎1.!𝑜 is a disallowed
trace.

CRediT authorship contribution statement

Robert M. Hierons: Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Funding acquisition,
Conceptualization. Mercedes G. Merayo: Writing – review & editing, Methodology, Writing – original draft, Funding acquisition,
Conceptualization, Formal analysis. Manuel Núñez: Writing – review & editing, Funding acquisition, Formal analysis, Writing –
original draft, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: None.

Data availability

No data was used for the research described in the article.

References

[1] J. Baxter, A. Cavalcanti, M. Gazda, R.M. Hierons, Testing using CSP models: time, inputs, and outputs, ACM Trans. Comput. Log. 24 (2) (2023) 17:1–17:40.
[2] R. Lefticaru, R.M. Hierons, M. Núñez, Implementation relations and testing for cyclic systems with refusals and discrete time, J. Syst. Softw. 170 (110738) (2020)

1–20.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

16

http://refhub.elsevier.com/S2352-2208(25)00058-6/bibCB4B308903C3F113BE41F7606116DB3Ds1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib3014CB44F851CB87BB9BD6A4A069B954s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib3014CB44F851CB87BB9BD6A4A069B954s1

R.M. Hierons, M.G. Merayo and M. Núñez

[3] M. Núñez, R.M. Hierons, R. Lefticaru, Implementation relations and testing for cyclic systems: adding probabilities, Robot. Auton. Syst. 165 (2023) 104426.
[4] A.R. Cavalli, T. Higashino, M. Núñez, A survey on formal active and passive testing with applications to the cloud, Ann. Télécommun. 70 (3–4) (2015) 85–93.
[5] M.-C. Gaudel, “Testing can be formal too”: 30 years later, in: B. Meyer (Ed.), The French School of Programming, Springer, 2024, pp. 17–45.
[6] R.M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A.J.H. Simons, S.

Vilkomir, M.R. Woodward, H. Zedan, Using formal specifications to support testing, ACM Comput. Surv. 41 (2) (2009) 9:1–9:76.
[7] A. Cavalcanti, M. Gaudel, Testing for refinement in CSP, in: 9th Int. Conf. on Formal Methods and Software Engineering, ICFEM’07, in: LNCS, vol. 4789, Springer,

2007, pp. 151–170.
[8] A. Cavalcanti, R.M. Hierons, S.C. Nogueira, Inputs and outputs in CSP: a model and a testing theory, ACM Trans. Comput. Log. 21 (3) (2020) 24:1–24:53.
[9] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y.L. Traon, M. Harman, Mutation Testing Advances: An Analysis and Survey, Advances in Computers, vol. 112, Elsevier,

2019, pp. 275–378.
[10] A. Cavalcanti, J. Baxter, R.M. Hierons, R. Lefticaru, Testing robots using CSP, in: 13th Int. Conf. on Tests and Proofs, TAP’19, in: LNCS, vol. 11823, Springer,

2019, pp. 21–38.
[11] C.M. Poskitt, Y. Chen, J. Sun, Y. Jiang, Finding causally different tests for an industrial control system, in: 45th IEEE/ACM Int. Conf. on Software Engineering,

ICSE’23, IEEE, 2023, pp. 2578–2590.
[12] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, J. Woodcock, RoboChart: modelling and verification of the functional behaviour of robotic applications,

Softw. Syst. Model. 18 (5) (2019) 3097–3149.
[13] R.J. Somers, J.A. Douthwaite, D.J. Wagg, N. Walkinshaw, R.M. Hierons, Digital-twin-based testing for cyber-physical systems: a systematic literature review, Inf.

Softw. Technol. 156 (2023) 107145.
[14] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines: a survey, Proc. IEEE 84 (8) (1996) 1090–1123.
[15] U.C. Türker, R.M. Hierons, G.D. Barlas, K. El-Fakih, Incomplete adaptive distinguishing sequences for non-deterministic FSMs, IEEE Trans. Softw. Eng. 49 (9)

(2023) 4371–4389.
[16] J. Tretmans, Model based testing with labelled transition systems, in: Formal Methods and Testing, in: LNCS, vol. 4949, Springer, 2008, pp. 1–38.
[17] A. Fellner, M. Tabaei Befrouei, G. Weissenbacher, Mutation testing with hyperproperties, Softw. Syst. Model. 20 (2021) 405–427.
[18] D. Basile, M.H.t. Beek, S. Lazreg, M. Cordy, A. Legay, Static detection of equivalent mutants in real-time model-based mutation testing, Empir. Softw. Eng. 27

(2022) 160.
[19] C. Mandrioli, S. Yeob Shin, M. Maggio, D. Bianculli, L.C. Briand, Stress testing control loops in cyber-physical systems, ACM Trans. Softw. Eng. Methodol. 33 (2)

(2024) 35.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092

17

http://refhub.elsevier.com/S2352-2208(25)00058-6/bib2DF6D9C87AD709D8AB9DD61A253FC677s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibEE2E7FF5B8BCFCC24F18F9183F668612s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib7ED78BBF97D764156636172387890D63s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibA2254462BBD1FCD5716654037301E4EEs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibA2254462BBD1FCD5716654037301E4EEs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib8B7201C73E14A95AC9A555346C263C74s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib8B7201C73E14A95AC9A555346C263C74s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibB7905F6FACF29BF173A6D6F45C31E89Ds1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib98D679385E31F516C0572E9C8F48C66Fs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib98D679385E31F516C0572E9C8F48C66Fs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib348D18792B2B54C865CCB674CA919FA7s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib348D18792B2B54C865CCB674CA919FA7s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib1B999168B1377B0B50FA5AC1EB0ED36Bs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib1B999168B1377B0B50FA5AC1EB0ED36Bs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibFBB2A66C9642A79B2BD0F6C93A1999E9s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibFBB2A66C9642A79B2BD0F6C93A1999E9s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib6F786428E4CCF9EEC9CA2DC5ED49E88Cs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib6F786428E4CCF9EEC9CA2DC5ED49E88Cs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibA572E9FE7F8FB46DC651C125D4D2DF64s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib28B81B18347A43327BCC127B5DFBA771s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib28B81B18347A43327BCC127B5DFBA771s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib7D007506ADA58DE2EBA4BF2497B916BCs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibCFAD8CC6779F5C4C0638C1672483DD37s1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib3D4E5C251AE4DFEF5B742B922BFF417Bs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bib3D4E5C251AE4DFEF5B742B922BFF417Bs1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibE9D18F61CBE8AC13EDC64FD3B35DA09As1
http://refhub.elsevier.com/S2352-2208(25)00058-6/bibE9D18F61CBE8AC13EDC64FD3B35DA09As1

	Combining sequential test cases into an equivalent set of adaptive test cases
	1 Introduction
	2 Preliminaries
	3 Possible observations: sequential and adaptive test cases
	3.1 Possible observations of adaptive test cases
	3.2 Possible observations of sequential test cases
	3.3 Comparing test cases and test suites

	4 Conditions under which we can combine STCs
	4.1 Objective
	4.2 Conditions under which we can remove σ
	4.3 Conditions under which we can combine test cases

	5 Merging STCs
	5.1 Checking whether merging can happen
	5.2 Rules for merging
	5.3 Algorithm

	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

