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A B S T R A C T 

When testing a state-based system one might use a set of (negative) test cases in which each test case is a sequence of events that should not occur. 
Testing then involves executing the system under test (SUT) in order to check whether any of these disallowed sequences can occur. While testing 
using such sequences can be effective, they introduce a source of inefficiency: if a test case expects the SUT to produce output 𝑎 after observing 
a sequence 𝜎 and the SUT instead produces a different output 𝑎′ after 𝜎 then testing with that test case did not show an error, because the SUT 
can autonomously produce outputs, and terminates because the test case only makes sense if the exact sequence is observed. This is a source of 
inefficiency if there is another test case that starts with 𝜎 followed by 𝑎′: we could have continued evaluating whether the application of this second 
test case leads to an error. This paper considers scenarios in which events represent inputs, outputs, or the passing of discrete time. We show how a 
set of sequential test cases can be converted into an equivalent set of adaptive test cases, with adaptivity addressing the above source of inefficiency. 
The proposed approach has the potential to improve efficiency when using any test generation technique that returns negative sequential test cases.

1. Introduction

Testing is the process of evaluating a system according to how it reacts to certain external stimuli. The most common approach to 
testing consists of applying inputs to the system under test (SUT), observing the outputs that the SUT produces, and deciding whether 
the observation is the expected one or not. There are several difficulties involved in this apparently simple process. For example, we 
have to decide which inputs to apply, implement the observation of outputs and decide whether the observed outputs correspond to 
a faulty behaviour of the system.

The work reported in this paper is motivated by the problem of testing a state-based system and so systems behaviours are 
sequences of events. Most testing approaches execute the SUT with test cases in order to check whether the SUT has disallowed 
behaviours and the choice of approach used can depend on the types of events that can be observed. For example, we might check 
whether the SUT shows faulty behaviours with respect to the time that it takes to produce outputs (see [1–3] for recent work within 
the scope of this paper). This paper considers testing approaches in which observations (events) represent inputs, outputs, or the 
passing of discrete time. If there is a formal model that specifies the allowed behaviours then this model might be used as the basis 
for deriving test cases [4–6]. However, often there is no such formal model and so there is a need for alternative approaches.

In this paper we assume that we have a set of sequential test cases (STCs), where each of them is a sequence (trace) 𝜎 of events such 
that the SUT should not be able to perform 𝜎. Such STCs might have been derived from the system requirements or from a (possibly 
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formal) model. We also assume that these test cases are minimal failures: if 𝜎.𝑎 is an STC then 𝜎.𝑎 is not an allowed behaviour (it is 
disallowed) but 𝜎 is an allowed behaviour. We have two main reasons for considering STCs of this form. First, the set of allowed traces 
of a system is prefix closed and so if 𝜎 is a disallowed trace then so are all extensions of 𝜎: there is no point in testing further if we 
observe 𝜎. Second, there are several types of automated test generation techniques that return such minimal failures. For example, 
it is possible to derive such sequences directly from the semantics of a specification [1,7,8]. There are also mutation-based [9] test 
generation approaches in which a system or model 𝑃 is mutated to create a mutant 𝑀 and then a model-checker is used to check 
whether 𝑀 conforms to 𝑃 . If 𝑀 does not conform to 𝑃 then the model-checker returns a behaviour 𝜌, such as a trace [10], that 
demonstrates this. Assuming a minimal such behaviour is produced, 𝜌 is of the form described above; otherwise, one can use a prefix 
of 𝜌. Finally, there are approaches that execute the SUT until a failure is observed, such as a vehicle that is being controlled getting 
too close to another vehicle, and then stop test execution (see, for example, [11]). This results in failing traces being observed and 
these might be used again in, for example, regression testing.

The use of disallowed behaviours of the form 𝜎.𝑎 can form the basis of systematic testing. The tester will attempt to ‘apply’ 𝜎
and then check whether 𝑎 can occur after this. The process of attempting to apply 𝜎 is iterative: if 𝜎 = 𝑎1…𝑎𝑛, for events 𝑎1,… , 𝑎𝑛, 
then the tester will first try to apply 𝑎1 , if this succeeds then the tester next tries to apply 𝑎2 , etc. When some 𝑎𝑖 is an input ?𝑥, the 
tester simply provides this input to the SUT. However, if 𝑎𝑖 is an output !𝑜1 or represents the passing of time then the situation is 
more complex: typically the tester cannot block an output and so an output !𝑜2 ≠ 𝑎𝑖 might occur rather than 𝑎𝑖 . If !𝑜2 is an allowed 
behaviour at this point then, normally, test execution stops. The tester then resets the SUT and again tests with 𝜎.𝑎, repeating this 
process a sufficient number of times to either observe a failure or apply a fairness assumption to deduce that 𝜎.𝑎 is not a behaviour 
of the SUT (i.e. make the assumption that all possible outcomes have been observed).

The above process, for testing based on some 𝜎.𝑎, is effective if a fairness assumption can be made but it need not be efficient. 
To see why, consider the case where 𝜎 = 𝜎1.!𝑜1.𝜎2 for two traces 𝜎1, 𝜎2 and output !𝑜1. As previously mentioned, normally the tester 
cannot block an output and so a different output !𝑜2 might occur after 𝜎1: the tester then stops the application of the test case, resets 
the SUT, and starts test execution again. However, it is possible that there is another test case to be used that is of the form 𝜎1 .!𝑜2.𝜎3.𝑏: 
after observing 𝜎1.!𝑜2 the tester might have followed this second test case rather than stopping test execution. If the tester were to 
choose to follow the second test case at this point, then the tester is essentially combining these two test cases to form a tree rather 
than a sequence: a tree (an adaptive test case) that has two edges (branches) after 𝜎1. The above shows that the use of such trees has 
the potential to improve test efficiency.

In this paper we explore the problem of constructing a set 𝐴 of adaptive test cases (ATCs) that is equivalent, in terms of fault 
finding ability, to a set 𝑆 of STCs. We consider test cases that are to be applied to systems in which traces can contain inputs, outputs 
and also the passing of discrete time (represented by a symbol ⊝). The proposed approach is iterative: it maintains a set 𝐴 of ATCs and 
in each iteration it takes an STC 𝜎 and attempts to merge 𝜎 with an ATC 𝑝 ∈𝐴 to form a new ATC 𝑝′. We formalise the requirements 
of a step by defining what it means for one ATC 𝑝′ to be the union of 𝑝 and 𝜎. We base the approach on two types of results: results 
regarding conditions under which, given an ATC 𝑝 and an STC 𝜎, there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎; and results that 
show how such an ATC 𝑝′ can be constructed. The correctness of the algorithm follows from these results.

We formulate the problem in terms of allowed and disallowed traces, rather than assuming that there is a specification that defines 
these, because we aimed for generality. An alternative would be, for example, to have used a Labelled Transition System (LTS) that 
defines the sets of allowed and disallowed traces. We initially considered this approach and it would have fitted with one motivation 
for our research: test derivation from a model written in RoboChart [12], a domain specific language for robotics whose semantics 
is defined by a mapping to a timed version of CSP. However, we wanted to have a more general setting because the problem is 
more general. As an example, there is research in the area of testing cyber-physical systems [13] where we do not have a formal 
specification in the form of an LTS and instead there is a set of properties that behaviours should satisfy (e.g. the volume of liquid 
should not exceed a bound, the temperature should remain within a range, a vehicle should not collide with other vehicles). One 
might be able to phrase such problems in terms of an implicit LTS but this seems rather artificial.

In terms of related work, as far as we know, this is the first paper to explore the problem of converting a set of sequential test cases 
into a set of adaptive test cases. Sequential test cases are returned by many test generation algorithms designed for testing state-based 
systems. For example, most work on testing from a finite state machine produces sequential test cases [14] and tools/techniques that 
use model-checkers in test generation typically produce sequential test cases. In particular, our interest in this problem arose from 
us using sequential test cases in robotics [2,3]. There is plenty of work on adaptive testing, that is, using test cases that do not only 
apply an input and receive an output, but where the behaviour of a test case depends on the outputs that have been received. In 
particular, we have recent work on the topic [15]. The adaptive test cases used in this paper are similar to those used with ioco and 
its variants [16]. However, they are fundamentally different in the way they are constructed: sound test cases are constructed in ioco 
from a specification, with test generation typically being random. In contrast, we construct adaptive test cases from a set of sequential 
test cases (sequences that should not be observed) that can be seen as “requirements”.

Given that there are test generation approaches that produce adaptive test suites, a legitimate question is why do we start from 
a non-adaptive test suite. The problem is that many test generation techniques directly return sequences rather than trees. In par-
ticular, as previously mentioned, we were motivated by the following two types of test generation techniques: mutation-based test 
generation [17,18] and test generation techniques used with cyber-physical systems that test until a failure is observed [11,13,19].

The paper is structured as follows. We start, in Section 2, by defining STCs, ATCs, and the notation and terminology used throughout 
the paper. Section 3 then describes the observations that can be made when using an STC or ATC and use this to formalise the problem 
considered. In Section 4 we then explore the problem of determining whether an ATC and an STC can be combined and define the 
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notion of an ATC 𝑝′ being the union of an ATC 𝑝 and an STC 𝜎. This is used in Section 5 to define an algorithm for converting a set 
of STCs into an equivalent set of ATCs. Finally, we draw conclusions and describe possible lines of future work in Section 6.

2. Preliminaries

Throughout this paper we will let Σ denote the (finite) set of basic events that can be observed. Then Σ can be partitioned into 
two disjoint sets: a set 𝐼 of system inputs and a set 𝑂 of system outputs. Often we will precede the name of an input with ‘?’ (e.g. 
?𝑖) and the name of an output with ‘!’ (e.g. !𝑜). We will allow the observation of discrete time and so we include a special event ⊝, 
called “tock”, that corresponds to the passing of one unit of time. We use Σ⊝ to denote the set 𝐼 ∪𝑂 ∪ {⊝} of inputs, outputs and ⊝
events. The observations made during testing will be sequences of events, which we call traces. Σ∗

⊝
denotes the set of finite, possibly 

empty, traces, while Σ+
⊝
denotes the set of non-empty traces. Given two traces 𝜎1, 𝜎2 ∈ Σ∗

⊝
, we denote by 𝜎1.𝜎2 the concatenation of 

these traces. We use 𝜖 to denote the empty trace.
We assume that some traces are known to be allowed (they are behaviours deemed to be correct) and some traces are known to be 

disallowed (they are behaviours deemed to be incorrect). By a trace 𝜎 being allowed we typically mean that 𝜎 is a trace of a (possibly 
implicit) specification. Such a specification could be a formal model but it might also be a set of properties that the SUT should satisfy. 
Note, however, that the proposed technique for mapping a set of STCs to a set of ATCs will not require the specification. Indeed, the 
sets of allowed traces and disallowed traces could be derived from the STCs provided as input to the technique since these STCs are 
disallowed traces of the form 𝜎.𝑎 such that 𝜎 is allowed.

We also make the following assumptions regarding the SUT that are standard in many testing scenarios, such as testing based on 
ioco [16].

• The SUT is input-enabled: the SUT must be ready to accept any input provided by the environment.
• The SUT has urgent outputs: if the SUT is in a state where it can produce an output then it does not allow time to pass (i.e. the 
SUT produces an output or receives an input before time passes).

• The set of allowed traces is prefix closed.

In testing, the tester (or the corresponding test case) supplies inputs and the SUT produces outputs. Since the SUT is input-
enabled, if the tester applies an input then the SUT must be ready to receive it. In addition, system outputs cannot be blocked by the 
environment/tester. As previously noted, these are standard assumptions in ioco-like [16] frameworks.

In this paper we consider two types of test cases: sequential and adaptive test cases (these are formally defined below in Definitions 1
and 4).

1. Sequential test case (STC). These are in the form of a trace 𝜎.𝑎 such that 𝜎 is an allowed trace and 𝑎 is an output or tock that is 
not allowed after 𝜎. At each point the tester either supplies an input or observes an output or the passage of time. If the trace 𝜎.𝑎
is observed then testing stops with verdict fail. If the tester has observed trace 𝜎1 , is waiting for 𝑎 and the SUT instead produces 
an output !𝑜 ≠ 𝑎 then testing stops with verdict ok, the system is reset, and (if necessary) the test runs again.

2. Adaptive test case (ATC). In this case, the action of the tester (apply an input or observe an output or the passing of time) depends 
on the sequence of observations that has been made in the current test execution. Adaptive test cases can be represented as trees.

As previously mentioned, ATCs have benefits in terms of efficiency of test execution. The main problem that we consider in this 
paper is to take a set of fixed STCs and generate from this a set of ATCs with the same effectiveness. Next, we present the formal 
definitions of our types of test cases.

We start by defining STCs, which are the input to the approach described in this paper. As previously mentioned, STCs will have 
a particular form: they are disallowed traces of the form 𝜎.𝑎 such that 𝜎 is an allowed trace.

Definition 1 (Sequential Test Cases). A sequential test case (STC) is a trace 𝜎.𝑎 ∈ (𝐼 ∪𝑂 ∪ {⊝})∗ such that 𝜎 is an allowed trace, 𝜎.𝑎 is 
a disallowed trace, and 𝑎 ∈𝑂 ∪ {⊝}.

We require that 𝜎.𝑎 is disallowed since otherwise there would be no point in using such a test case. We require that 𝜎 is allowed 
since if 𝜎 is disallowed then, since the set of allowed behaviours is prefix-closed, there is no point in testing further after observing 
𝜎 (all extensions of 𝜎 must be disallowed). We require that 𝑎 ∈ 𝑂 ∪ {⊝} since we assume that the SUT will not block input: if 𝜎 is 
allowed and ?𝑖 ∈ 𝐼 then 𝜎.?𝑖 must also be allowed.

Next we introduce a timed version of input output labelled transition systems that will be used to represent ATCs.

Definition 2. An Input Output Labelled Transition System with tock (IO⊝LTS) is defined by a tuple 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ) where

• 𝑄 is a countable, non-empty set of states;
• 𝑞0 ∈𝑄 is the initial state;
• 𝐼 is the finite set of inputs and 𝑂 is the finite set of outputs;
• 𝑇 ⊆ 𝑄 × Σ⊝ ×𝑄 is the transition relation.
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The IO⊝LTS 𝑝 is initially in state 𝑞0 . If 𝑝 is in state 𝑞 ∈𝑄 and performs an event 𝑎 such that (𝑞, 𝑎, 𝑞′) ∈ 𝑇 , for some state 𝑞′ ∈𝑄, 
then the system can move to state 𝑞′ through this event 𝑎. We say that 𝑎 is the label of 𝑡 and that 𝑎 is enabled in 𝑞. During the rest of 
the paper we will use 𝑝, 𝑝′,… to denote IO⊝LTSs and 𝑞, 𝑞′, 𝑞0,… to denote states of IO⊝LTSs.

Next we introduce notation used during the rest of the paper.

Definition 3. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ) be an IO⊝LTS, 𝑞, 𝑞′ ∈𝑄 be states of 𝑝, 𝐴⊆ Σ⊝ be a set of events, 𝑎, 𝑎1,… , 𝑎𝑛 ∈ Σ⊝, with 𝑛 ≥ 1, 
be events and 𝜎,𝜎′ ∈ Σ∗

⊝
be sequences of events.

𝑞
𝑎  
←←←←←←←→ 𝑞′ ⇔def (𝑞, 𝑎, 𝑞

′) ∈ 𝑇

𝑞
𝑎  
←←←←←←←→ ⇔def∃𝑞

′ ∈𝑄 ∶ (𝑞, 𝑎, 𝑞′) ∈ 𝑇

𝑞
𝜖 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′ ⇔def𝑞 = 𝑞′

𝑞
𝑎1…𝑎𝑛
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′ ⇔def∃𝑞1,… , 𝑞𝑛−1 ∈𝑄 ∶ 𝑞

𝑎1  
←←←←←←←←←←←←←←←←→ 𝑞1… 𝑞𝑛−1

𝑎𝑛  
←←←←←←←←←←←←←←←←→ 𝑞′

𝑞
𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ ⇔def∃𝑞

′ ∈𝑄 ∶ 𝑞
𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞′

𝑞 = after𝑝(𝜎)⇔def𝑞0

𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞

𝑎 = next𝜎(𝜎
′)⇔def∃𝜎

′′ ∈ Σ∗
⊝
∶ 𝜎 = 𝜎′.𝑎.𝜎′′

𝐴 = enabled(𝑞)⇔def∀𝑎 ∈ Σ⊝ ∶ 𝑞
𝑎  
←←←←←←←→ ⟺ 𝑎 ∈𝐴

We will use after𝑝(𝜎) only in the context of ATCs. Since they will be, by construction, deterministic we have that after𝑝(𝜎) is well 
defined.

An ATC is an IO⊝LTS, with some restrictions, where states are labelled with verdicts: ok and fail. The application of an ATC to an 
SUT will be ok or fail depending on the verdict of the last reached state of the ATC.

The verdict ok captures two types of verdict that are sometimes used: pass, which states that the SUT has passed the test case, 
and inconclusive, which states that no failure has been observed but the test objective has not been achieved (e.g. trying to trigger 
event 𝑎 after trace 𝜎). We use the single verdict ok in order to avoid a complication that can occur when combining STCs to form 
an ATC. Specifically, this is the situation in which there is a state of the ATC that corresponds to verdict pass in one test case and 
verdict inconclusive in the other test case. Under future work we discuss alternative approaches to allocating verdicts; it would be 
straightforward to adapt the approach given to such alternative verdicts.

The following defines the notion of an ATC.

Definition 4 (Adaptive Test Cases). An Adaptive Test Case (ATC) is a tuple (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ), where (𝑄,𝑞0, 𝐼,𝑂,𝑇 ) is an IO⊝LTS and 
𝑉 ∶𝑄⟶ {ok, fail} is a verdict function. In addition, the following conditions hold:

1. The state set 𝑄 is finite and the graph induced by 𝑝′ is acyclic.

2. The ATC is deterministic: given states 𝑞, 𝑞′ ∈𝑄 and 𝑎 ∈ Σ⊝, if 𝑞
𝑎  
←←←←←←←→ 𝑞′ then there is no state 𝑞′′ ≠ 𝑞′ such that 𝑞

𝑎  
←←←←←←←→ 𝑞′′.

3. Outputs are always available, except for in leaves (which represent testing having finished): for all 𝑞 ∈𝑄, if enabled(𝑞) ≠ ∅ then 
𝑂 ⊆ enabled(𝑞).

4. At each state, at most one input can be applied: for all 𝑞 ∈𝑄 and inputs ?𝑖1, ?𝑖2 ∈ 𝐼 , if {?𝑖1, ?𝑖2} ⊆ enabled(𝑞) then ?𝑖1 =?𝑖2.
5. There is no state 𝑞 ∈𝑄 and input ?𝑖 ∈ 𝐼 such that {?𝑖,⊝} ⊆ enabled(𝑞).

Since an ATC is an IO⊝LTS, we will use the notation introduced in Definition 3. Now consider the conditions given above. The 
first condition ensures that testing terminates since the test case has no infinite paths. The second condition simplifies definitions and 
is included since a test case should not be non-deterministic. In particular, it would make no sense to have the potential to apply a 
test case twice to a deterministic SUT, observe the same sequence of events in both applications, and have one of them returns an ok

verdict while the other one returns a fail verdict. The last three conditions are also standard properties of test cases. First, unless a 
test case has terminated, it must always be able to observe any output that can be produced by the SUT since the environment cannot 
block output. Second, at any point a test case may decide to apply an input but this input must be unique; this again avoids a form 
of non-determinism (where the test case can non-deterministically choose to send either input ?𝑖1 or input ?𝑖2 to the SUT). Third, if 
the test case can apply an input then there is no ⊝ transition. This final condition is included because the SUT cannot block input (if 
an input is supplied then the SUT receives this input immediately). Let us remark that, again, these conditions are compatible with 
standard approaches such as the one used in ioco [16].

Note that a non-leaf state 𝑞 of an ATC might have no inputs enabled and also not have ⊝ enabled. If 𝑞 is reached in testing and 
the SUT is not able to produce an output then testing terminates. The returned verdict is thus 𝑉 (𝑞). Termination (deadlock) occurs 
when the SUT cannot engage in any of the events belonging to enabled(𝑞) and so 𝑉 (𝑞) might not be fail.

Example 1. Consider 𝐼 = {?𝑖1, ?𝑖2} and 𝑂 = {!𝑜1, !𝑜2}. Fig. 1 presents three ATCs. A start label indicates initial states. For simplicity, 
we simply write 𝑓 instead of fail.

In the first ATC (the left-most), the tester first attempts to supply input ?𝑖1 but can also observe output. If output is initially 
observed then testing terminates with verdict ok. Otherwise, if ?𝑖1 is sent to the SUT then either an output is produced next (and 

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092 

4 



R.M. Hierons, M.G. Merayo and M. Núñez 

okstart

okok ok

ok okok

𝑓ok

?𝑖1!𝑜1 !𝑜2

⊝ !𝑜1!𝑜2

!𝑜1!𝑜2

okstart

ok ok

ok ok

𝑓 okok

!𝑜1 !𝑜2

!𝑜1 !𝑜2

⊝ !𝑜2!𝑜1

okstart

ok ok

ok ok

𝑓 okok

ok 𝑓ok

!𝑜1 !𝑜2

!𝑜1 !𝑜2

⊝ !𝑜2!𝑜1
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Fig. 1. Three ATCs. 

testing terminates with verdict ok) or time passes. Finally, if ?𝑖1.⊝ has been observed, testing terminates with verdict ok if output !𝑜2
is produced and terminates with verdict fail if output !𝑜1 is produced. In addition, if testing terminates after ?𝑖1.⊝ has been observed 
then the verdict is ok. Thus, we can see that the SUT fails this test case if and only if test execution leads to the trace ?𝑖1 . ⊝ .!𝑜1. The 
other two ATCs operate in a similar way. The SUT fails the second ATC if and only if test execution leads to the trace !𝑜1 .!𝑜1.⊝. In 
contrast, in the third ATC there are two traces that lead to verdict fail: !𝑜1.!𝑜1.⊝ and !𝑜1.!𝑜1.!𝑜1.⊝.

3. Possible observations: sequential and adaptive test cases

In this section we start by defining the set of possible observations that can be made when testing using an ATC and also when 
using an STC. This then allows us to define the set of possible observations that can be made when using a given test suite and makes 
it possible to formally define the problem that we consider in Section 4: that of converting a set of STCs into an ‘equivalent’ set of 
ATCs.

3.1. Possible observations of adaptive test cases

The set of possible observations of an ATC is the set of traces of that ATC.

Definition 5 (Evolutions of an ATC). Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) be an ATC. We define the set of evolutions of 𝑝, denoted by 𝐸𝑣(𝑝), as 
the following set of traces:

𝐸𝑣(𝑝) = {𝜎 ∈ Σ∗
⊝
∣ 𝑞0

𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒}

The set of evolutions of an ATC 𝑝 defines exactly the traces that can be observed when testing with 𝑝.
The definition of an evolution does not take into account the verdicts of the states of the ATC. In particular, an evolution 𝜎 of an 

ATC can only find a fault if 𝜎 reaches a state of the ATC that has verdict fail.

Definition 6 (Failing Evolutions of an ATC). Let 𝑝= (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) be an ATC. We define the set of failing evolutions of 𝑝, denoted 
by 𝐸𝑣𝐹 (𝑝), as the following set of traces:

𝐸𝑣𝐹 (𝑝) = {𝜎 ∈ Σ∗
⊝
∣ ∃𝑞 ∈𝑄 ∶ 𝑞0

𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞 ∧ 𝑉 (𝑞) = fail}

Recall that, by Definition 1, only particular traces can be used as STCs. Specifically, if 𝜎.𝑎 is an STC then 𝜎 is an allowed trace and 
𝜎.𝑎 is a disallowed trace. We will also want to place restriction on ATCs, which we do through two concepts: an ATC being sound 
and an ATC being non-redundant. We start by saying what we mean by an ATC being sound.

Definition 7. An ATC 𝑝 is sound if for every failing evolution 𝜎 ∈𝐸𝑣𝐹 (𝑝) we have that 𝜎 is a disallowed trace.

Later we will prove that the way in which we construct ATCs (from STCs) ensures that these ATCs are sound (Proposition 5 in 
Section 4) and so there is no need to have access to the specification.

We also say what it means for an ATC to be non-redundant. Similar to above, we will prove that the ATCs we construct are 
non-redundant (Proposition 6 in Section 4).
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Definition 8. An ATC 𝑝 is non-redundant if it satisfies the following conditions.

1. If 𝜎 ∈𝐸𝑣(𝑝) is a disallowed trace then the state after𝑝(𝜎) is a leaf.
2. If 𝜎 ∈𝐸𝑣(𝑝) is such that 𝑞1 = after𝑝(𝜎) is not a leaf and all states of 𝑝 reached by transitions from 𝑞1 are leaves then the following 
conditions hold.
(a) There exists 𝑞2 ∈𝑄 and 𝑎∈ Σ⊝ such that 𝑞1

𝑎  
←←←←←←←←←→ 𝑞2 and 𝑉 (𝑞2) = fail.

(b) enabled(𝑞1) ∩ 𝐼 = ∅; and

(c) If 𝑞1
⊝  
←←←←←←←←←←←←→ 𝑞2 then 𝑉 (𝑞2) = fail.

The first condition simply says that if a disallowed trace 𝜎 is observed then testing stops. It does not, however, say what the verdict 
should be. The first part of the second condition ensures that if 𝜎 is a trace that reaches node 𝑞1 of 𝑝 that is not a leaf then further 
execution of 𝑝 could potentially lead to verdict fail (Proposition 1 below); if this was not the case then there is no value in testing 
further and so 𝑞1 should be a leaf.

The second part of the second condition is included since there is no value in a test case applying an input that takes 𝑝 to a leaf 
since inputs are always enabled and so such an input cannot lead to verdict fail (i.e. applying such an input would be a waste). For 
the third part of the second condition, consider what happens if ⊝ ∈ enabled(𝑞1). We know, from the definition of an ATC, that no 
inputs are enabled at 𝑞1 and all outputs are enabled at 𝑞1. Further, if testing an SUT reaches state 𝑞1 of 𝑝 and the SUT can produce 
an output then such an output occurs and the transition from 𝑞1 with label ⊝ is not taken (outputs are urgent). Thus, the transition 
𝑡 from 𝑞1 with label ⊝ can only be followed if testing reaches 𝑞1 and the SUT cannot produce an output at this point. However, if 𝑡
takes 𝑝 to a state with verdict ok then, since the verdict of 𝑞1 is also ok, following the transition 𝑡 does not change the verdict and so 
we can remove 𝑡 without changing the effectiveness of the test case.

Proposition 1 below helps explain why Definition 8 is used. The result says that if a non-redundant ATC specifies that the tester 
should take some action in a state 𝑞1 of an ATC then it is possible to reach a state with fail verdict from 𝑞1. We want this property 
since otherwise testing should stop if the ATC reaches state 𝑞1 . We first prove a lemma.

Lemma 1. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) be a non-redundant ATC. If 𝑞1 ∈𝑄 is not a leaf then there is a trace 𝜎 and a state 𝑞2 ∈𝑄 such that 

𝑞1

𝜎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 and 𝑉 (𝑞2) = fail.

Proof. We use proof by induction on the length 𝓁 of the longest path from 𝑞1 to a leaf.
First consider the base case 𝓁 = 1. In this case 𝑞1 is not a leaf but all states of 𝑝 reached from 𝑞1 are leaves. Thus, by Definition 8

(second rule, first part) there must be at least one transition 𝑡 from 𝑞1 that takes 𝑝 to a state 𝑞2 such that 𝑉 (𝑞2) = fail. Let us suppose 
that 𝑡 has event 𝑏. The base case then follows with 𝜎 = 𝑏.

We now consider the inductive case. The inductive hypothesis is that the result holds if the length of the longest path from 𝑞1 to 
a leaf is at most 𝓁 ≥ 1. We assume that the length of the longest path from 𝑞1 to a leaf is 𝓁 + 1. Choose some event 𝑎 ∈ enabled(𝑞1)

that does not take 𝑝 from 𝑞1 to a leaf. Let 𝑞3 be the state of 𝑝 reached from 𝑞1 by 𝑎 (i.e. 𝑞1
𝑎 
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞3). By the definition of 𝑞3, we have 

that 𝑞3 is not a leaf. In addition, since the length of the longest path from 𝑞1 to a leaf is 𝓁 + 1, the length of the longest path from 𝑞3
to a leaf is at most 𝓁. By the inductive hypothesis, we therefore have that there is a trace 𝜎1 and a node 𝑞2 of 𝑝 such that 𝑞3

𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2

and 𝑉 (𝑞2) = fail. The result now follows by setting 𝜎 = 𝑎.𝜎1. □

Proposition 1. Let 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) be a non-redundant ATC and 𝜎1.𝑎 ∈𝐸𝑣(𝑝). Then, there exists a trace 𝜎2 such that 𝜎1.𝜎2 ∈𝐸𝑣𝐹 (𝑝).

Proof. Let 𝑞1 = after𝑝(𝜎1). (i.e. 𝑞0
𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞1). Since 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝), we have that 𝑞1 is not a leaf. Thus, by Lemma 1, there is a trace 𝜎2

and a state 𝑞2 of 𝑝 such that 𝑞1
𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 and 𝑉 (𝑞2) = fail. Since 𝑞0

𝜎1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞1 and 𝑞1

𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2 we have that 𝑞0

𝜎1 .𝜎2
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑞2. Since 𝑉 (𝑞2) = fail

we therefore have that 𝜎1.𝜎2 ∈𝐸𝑣𝐹 (𝑝) as required. □

3.2. Possible observations of sequential test cases

We want to compare ATCs and STCs and so also need to say what can be observed when using an STC 𝜎. There are two reasons 
why this is not just the trace 𝜎. First, in order to be consistent with ATCs we should include prefixes. Second, if 𝜎 = 𝜎1.𝑎.𝜎2 for some 
𝜎1, 𝜎2 ∈ Σ∗

⊝
and 𝑎 ∈ Σ⊝ then, since a tester cannot block output, for all 𝑏 ∈𝑂 ⧵ {𝑎} we have that testing with 𝜎 can also lead to the 

observation of 𝜎1.𝑏. Given a trace 𝜎, we use pref (𝜎) to denote the set of prefixes of 𝜎.

Definition 9 (Evolutions of an STC). Let 𝜎 ∈ Σ+
⊝
be an STC. We define the set of evolutions of 𝜎, denoted by 𝐸𝑣(𝜎), as the following 

set of traces:

𝐸𝑣(𝜎) = pref (𝜎) ∪ {𝜎1.𝑏 ∣ ∃𝜎2 ∈ Σ∗
⊝
, 𝑎 ∈ Σ⊝ ∶ 𝜎 = 𝜎1.𝑎.𝜎2 ∧ 𝑏 ∈𝑂 ⧵ {𝑎}} 
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Note that in the above definition, 𝑎 might be an input. This would reflect the situation where the tester aims to apply an input 
but the SUT (autonomously) performs an output before the input is supplied.

It is straightforward to define the set of failing evolutions of an STC 𝜎: it is just 𝜎.

Definition 10 (Failing evolutions of an STC). Let 𝜎 ∈ Σ+
⊝
be an STC. We define the set of failing evolutions of 𝜎 by

𝐸𝑣𝐹 (𝜎) = {𝜎}

An alternative way of defining the evolutions of an STC 𝜎 would be to form an ATC from 𝜎 that essentially ‘completes’ 𝜎. We now 
define such a completion. This is used in the algorithm given in Section 5.3 to allow us to add an ATC when we have an STC that 
cannot be merged with any of the current ATCs. In the following we assume that some arbitrary numbering of the outputs has been 
given and so 𝑂 = {!𝑜1,… , !𝑜𝓁} for some 𝓁 > 0.

Definition 11. Given an STC 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
, its completion (𝜎) is the ATC 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) in which we have the following.

1. 𝑄 = {𝑞0,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

2. 𝑇 = {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 0 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. The verdict function is defined as follows

𝑉 (𝑞) =

{
fail if 𝑞 = 𝑞𝑘
ok otherwise

In the above definition, states in the set {𝑞𝑗
𝑖+1

∣ 0 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}} allow the observation of unanticipated output (!𝑜𝑗 ≠
𝑎𝑖+1) after a prefix 𝑎1…𝑎𝑖 of 𝜎.

A fail verdict is assigned to the state of the ATC reached at the end of the sequence defining the corresponding STC and this is 
because, by the definition of an STC 𝜎, we must have that 𝜎 is disallowed. The rest of the states are assigned verdict ok because either 
the application of the corresponding sequence was not complete (the test case application stopped with a prefix of 𝜎) or the last event 
observed 𝑎 was an output !𝑜 produced by the SUT at a point where !𝑜 is not the corresponding event in 𝜎.

Example 2. Consider 𝐼 = {?𝑖1, ?𝑖2} and 𝑂 = {!𝑜1, !𝑜2}. Fig. 1 (left) provides a graphical representation of the ATC (?𝑖1 . ⊝ .!𝑜1) and 
Fig. 1 (centre) provides a graphical representation of the ATC (!𝑜1.!𝑜1.⊝). If we consider the ATC in Fig. 1 (left), we see that the 
path to the state with verdict fail has the expected label (?𝑖1. ⊝ .!𝑜1). Transitions have been added in order to ensure that all outputs 
are enabled on all (non-leaf) states on this path and all other verdicts are ok.

By construction, it is trivial to prove that the evolutions of an STC coincide with the evolutions of its completion.

Proposition 2. Given 𝜎 ∈ Σ+
⊝
, we have that

• 𝐸𝑣(𝜎) =𝐸𝑣((𝜎)); and
• 𝐸𝑣𝐹 (𝜎) =𝐸𝑣𝐹 ((𝜎)).

If addition, if 𝜎 is a trace of an ATC 𝑝 then all traces of (𝜎) are also traces of 𝑝. The following is immediate from the definitions 
of an ATC and of (𝜎).

Proposition 3. Given ATC 𝑝 and trace 𝜎, if 𝜎 ∈𝐸𝑣(𝑝) then 𝐸𝑣((𝜎)) ⊆ 𝐸𝑣(𝑝).

3.3. Comparing test cases and test suites

Now that we have formally defined the set of observations that can be made when using a (sequential or adaptive) test case, we 
can formally compare test cases in terms of the faults that they can find. Recall that if 𝜎 is an STC then the set of possible responses 
of the SUT is the set of evolutions of the completion of 𝜎: 𝐸𝑣((𝜎)). From this we can see that if 𝑆 is a set of STCs then 𝑆 might 
contain redundancy. The simplest form of redundancy is that which occurs when there are two STCs 𝜎1 and 𝜎2 such that 𝜎1 = 𝜎.𝑎1
and 𝜎2 = 𝜎.𝑎2 for some trace 𝜎 and 𝑎1 ≠ 𝑎2. Here, the STCs 𝜎1 and 𝜎2 lead to the same possible observations even though neither is 
a prefix of the other.

Definition 12 (Trace equivalence of Sequential Test Cases). Let 𝜎1 and 𝜎2 be two STCs. We say that 𝜎1 and 𝜎2 are trace equivalent if 
𝐸𝑣(𝜎1) =𝐸𝑣(𝜎2).

However, this says nothing about the verdicts. We can therefore define the following.
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Fig. 2. An ATC that is the union of the ATC in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝ and a similar ATC (right) that does not represent such a union. 

Definition 13 (Equivalence of Sequential Test Cases). Let 𝜎1 and 𝜎2 be two STCs. We say that 𝜎1 and 𝜎2 are equivalent if 𝐸𝑣𝐹 (𝜎1) =

𝐸𝑣𝐹 (𝜎2).

Note that, from the above, we have that two STCs 𝜎1 and 𝜎2 are equivalent if and only if 𝜎1 = 𝜎2.

Proposition 4. Given two STCs 𝜎1 and 𝜎2, 𝜎1 is equivalent to 𝜎2 if and only if 𝜎1 = 𝜎2.

Finally, we can say what it means for a set 𝐴 of ATCs to be equivalent, in terms of failures that can be observed, to a set 𝑆 of 
STCs.

Definition 14 (Equivalence). A set 𝐴 of ATCs is said to be equivalent to a set 𝑆 ⊆ Σ+
⊝
of STCs if the following condition holds.

⋃
𝜎∈𝑆

𝐸𝑣𝐹 ((𝜎)) =
⋃
𝑝∈𝐴

𝐸𝑣𝐹 (𝑝)

4. Conditions under which we can combine STCs

In the previous section we provided a framework for reasoning about sequential and adaptive test cases. In Section 4.1 we formalise 
what we wish to achieve when we merge an STC 𝜎 and a sound and non-redundant ATC 𝑝. We then consider the conditions under 
which an STC 𝜎 can be removed without changing 𝑝 (Section 4.2). Finally, we give conditions under which 𝜎 can be merged with an 
ATC 𝑝 to form a new ATC 𝑝′ (Section 4.3). The next section uses these when defining the proposed algorithm.

4.1. Objective

The proposed approach will be iterative, with each iteration aiming to combine an ATC 𝑝 and an STC 𝜎. In combining these, we 
want to construct an ATC 𝑝′ such that 𝑝′ finds exactly the same set of faulty behaviours found by separately testing with 𝑝 and 𝜎. We 
also want to produce an ATC 𝑝′ that is non-redundant. The following formalises these requirements.

Definition 15. Given an STC 𝜎 and a sound and non-redundant ATC 𝑝, an ATC 𝑝′ is said to be the union of 𝑝 and 𝜎 if 𝐸𝑣𝐹 (𝑝
′) =

𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) and 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎).

The first part of this definition (𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎)) ensures that 𝑝

′ finds the same faults as separately using 𝑝 and 𝜎. The 
second part (𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎)) is included in order to avoid introducing additional traces that could lead to redundancy. The 
following example demonstrates this point.

Example 3. Consider the ATC 𝑝 represented in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝. Fig. 2 (left) depicts the ATC 𝑝′ corresponding to 
the union of both of them.

Now consider what could happen if we removed from the definition of union (Definition 15) the requirement that 𝐸𝑣(𝑝′) =

𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎). We can then, for example, change the ATC 𝑝′ shown in Fig. 2 (left) to form a new ATC 𝑝′′ by adding new states with 

verdict ok and transitions to these states from the state 𝑞1 of 𝑝
′ such that 𝑞′

0

!𝑜2  
←←←←←←←←←←←←←←←←←←→ 𝑞1, where 𝑞

′
0
is the initial state of 𝑝′. A possible such 

𝑝′′ is shown in Fig. 2 (right). Such a change preserves the set of failing evolutions and so we have that 𝐸𝑣𝐹 (𝑝
′′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). 

However, 𝐸𝑣(𝑝′′) ≠ 𝐸𝑣(𝑝) ∪ 𝐸𝑣(𝜎) and so 𝑝′′ is not the union of 𝑝 and 𝜎. We do not want to allow 𝑝′′ to be the union of 𝑝 and 𝜎
since 𝑝′′ contains redundancy (failing the conditions of Definition 8). In practical terms, the states and transitions added to 𝑝′ when 
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forming 𝑝′′ could lead to an increase in testing effort, since testing no longer terminates if !𝑜2 is initially produced, but does not 
increase the ability of testing to find faults (since 𝐸𝑣𝐹 (𝑝

′′) =𝐸𝑣𝐹 (𝑝
′)).

The proposed algorithm will combine/merge STCs with available ATCs one at a time. When we introduce the rules for merging 
an ATC and an STC, we will prove that each possible step (the application of a rule) involves replacing some 𝑝 and 𝜎 with an ATC 𝑝′

such that 𝑝′ is the union of 𝑝 and 𝜎. We now prove that taking the union preserves both soundness and non-redundancy. We start by 
considering soundness.

Proposition 5. Given an STC 𝜎 and a sound ATC 𝑝, if 𝑝′ is the union of 𝑝 and 𝜎 then 𝑝′ is sound.

Proof. By Definition 7, we are required to prove that all traces in 𝐸𝑣𝐹 (𝑝
′) are disallowed. Since 𝑝′ is the union of 𝑝 and 𝜎, by 

Definition 15 we have that 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). We will separately consider the traces in 𝐸𝑣𝐹 (𝑝) and 𝐸𝑣𝐹 (𝜎).

First consider the traces in 𝐸𝑣𝐹 (𝜎). By Definition 10 we have that 𝐸𝑣𝐹 (𝜎) = 𝜎 and by the definition of an STC (Definition 1) we 
know that 𝜎 is a disallowed trace. As a result, all traces in 𝐸𝑣𝐹 (𝜎) are disallowed.

Now consider the set 𝐸𝑣𝐹 (𝑝) of traces. Observe that 𝑝 is sound. Thus, by Definition 7, all traces in 𝐸𝑣𝐹 (𝑝) are disallowed.
We now know that all traces in 𝐸𝑣𝐹 (𝜎) are disallowed and all traces in 𝐸𝑣𝐹 (𝑝) are disallowed. Thus, all traces in 𝐸𝑣𝐹 (𝑝

′) =

𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) are disallowed. By Definition 7, we therefore have that 𝑝
′ is sound as required. □

As previously mentioned, we wish to restrict attention to non-redundant ATCs and the following shows that taking the union with 
an STC preserves this property.

Proposition 6. If 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) is a non-redundant ATC, 𝜎 is an STC, and 𝑝′ = (𝑄′, 𝑞′
0
, 𝐼,𝑂,𝑇 ′, 𝑉 ′) is the union of 𝑝 and 𝜎 then 

𝑝′ is non-redundant.

Proof. We will separately consider the conditions required for an ATC to be non-redundant.
Condition 1: We require that if 𝜎1 ∈𝐸𝑣(𝑝′) is a disallowed trace then the state after𝑝′ (𝜎1) is a leaf. We will use proof by contradiction 

and assume that this state is not a leaf. There is therefore some 𝑎 ∈ Σ⊝ such that 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝′). Since 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝′) and 𝑝′ is the 
union of 𝑝 and 𝜎 we have that either 𝜎1.𝑎 ∈𝐸𝑣(𝑝) or 𝜎1.𝑎 ∈𝐸𝑣(𝜎). Since 𝜎1 is a disallowed behaviour, the case where 𝜎1.𝑎 ∈𝐸𝑣(𝑝)

contradicts 𝑝 being non-redundant. Further, since 𝜎1 is a disallowed behaviour, the case where 𝜎1.𝑎 ∈𝐸𝑣(𝜎) contradicts the definition 
of an STC. Since both cases lead to a contradiction, the result follows.

Condition 2(a): We are required to prove that if 𝜎1 ∈ 𝐸𝑣(𝑝′) is such that 𝑞0
𝑝′
= after𝑝′ (𝜎1) is not a leaf and all states of 𝑝

′ reached 

by transitions from this state are leaves then at least one of them has verdict fail. We have that since 𝑞0
𝑝′
is not a leaf of 𝑝′ there is 

some 𝑎 ∈ Σ⊝ such that 𝜎1.𝑎 ∈𝐸𝑣(𝑝′) and so either 𝜎1.𝑎 ∈𝐸𝑣(𝑝) or 𝜎1.𝑎 ∈𝐸𝑣(𝜎).
First, consider the case where 𝜎1.𝑎 ∈ 𝐸𝑣(𝑝) and so the state 𝑞0

𝑝
= after𝑝(𝜎1) is not a leaf. Since ATCs are deterministic, 𝐸𝑣(𝑝) ⊆

𝐸𝑣(𝑝′), and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′
are leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0

𝑝

are also leaves. But, since 𝑝 is non-redundant, this means that some state of 𝑝 reached by a transition from 𝑞0
𝑝
has verdict fail. Since 

𝐸𝑣𝐹 (𝑝) ⊆ 𝐸𝑣𝐹 (𝑝
′) and 𝑝′ is deterministic, we must therefore have that a state of 𝑝′ reached by a transition from 𝑞0

𝑝′
has verdict fail

as required.
Now consider the case where 𝜎1.𝑎 ∉ 𝐸𝑣(𝑝) and so 𝜎1.𝑎 ∈ 𝐸𝑣(𝜎). Since all states of 𝑝′ reached by transitions from 𝑞0

𝑝′
are leaves, 

we must have that 𝜎 = 𝜎1.𝑎. But, this means that 𝜎1.𝑎 ∈𝐸𝑣𝐹 (𝜎) and so, since 𝑝
′ is the union of 𝑝 and 𝜎, 𝜎1.𝑎 ∈𝐸𝑣𝐹 (𝑝

′) as required.
Condition 2(b): We are required to prove that if 𝑞0

𝑝′
= after𝑝′ (𝜎1) is a non-leaf and all states of 𝑝

′ reached by transitions from 𝑞0
𝑝′

are leaves then we have 𝐼 ∩ enabled(𝑞0
𝑝′
) = ∅. Therefore, it is sufficient to prove that 𝑎 ∈ enabled(𝑞0

𝑝′
) implies 𝑎 ∈ 𝑂 ∪ {⊝}. We will 

consider two cases.
First, let us suppose that 𝜎1.𝑎 is a prefix of 𝜎. Since 𝑝

′ is the union of 𝑝 and 𝜎 and 𝜎1.𝑎 reaches a leaf of 𝑝
′, we must have that 

𝜎 = 𝜎1.𝑎. By the definition of an STC, 𝑎 is not an input as required.
Now consider the (second) case where 𝜎1.𝑎 is not a prefix of 𝜎. Since 𝑝

′ is the union of 𝑝 and 𝜎, we must have that 𝜎1.𝑎 is a trace 
of 𝑝 and so the state 𝑞0

𝑝
= after𝑝(𝜎1) is a non-leaf. Since 𝑝

′ is the union of 𝑝 and 𝜎 and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′

are leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0
𝑝
are also leaves. Since 𝑝 is non-redundant, we therefore 

have that 𝑎 is not an input, as required. The result therefore follows.
Condition 2(c): Let us suppose that 𝜎1 ∈𝐸𝑣(𝑝′) is such that 𝑞0

𝑝′
= after𝑝′ (𝜎1) is a non-leaf and all states of 𝑝

′ reached by transitions 

from 𝑞0
𝑝′
are leaves. We are required to prove that if ⊝ ∈ enabled(𝑞0

𝑝′
) then 𝑉 (after𝑝′ (𝜎1.⊝)) = fail. We therefore assume that ⊝ is 

enabled at 𝑞0
𝑝′
and we consider two cases.

First, let us suppose that 𝜎1.⊝ is a prefix of 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎 and 𝜎1.⊝ reaches a leaf of 𝑝′, we must have that 
𝜎 = 𝜎1.⊝. By the definition of an STC, the state of 𝑝

′ reached by 𝜎1.⊝ must have verdict fail as required.
Now consider the (second) case where 𝜎1.⊝ is not a prefix of 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎, we must have that 𝜎1.⊝ is a 

trace of 𝑝 and so 𝑞0
𝑝
= after𝑝(𝜎1) is a non-leaf. Since 𝑝

′ is the union of 𝑝 and 𝜎 and all states of 𝑝′ reached by transitions from 𝑞0
𝑝′
are 

leaves, we must have that all states of 𝑝 reached by transitions from 𝑞0
𝑝
are leaves. Since 𝑝 is non-redundant, we must have that the 
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transition from 𝑞0
𝑝
with label ⊝ reaches a state with verdict fail. Thus, since 𝑝′ is the union of 𝑝 and 𝜎 we have that the transition 

from 𝑞0
𝑝′
with label ⊝ reaches a state with verdict fail. The result therefore follows. □

4.2. Conditions under which we can remove 𝜎

We start by giving a condition under which we can simply remove 𝜎 and we do not have to change 𝑝 (i.e. 𝑝 is the union of 𝑝 and 
𝜎).

Proposition 7. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). 
If 𝑉 (after𝑝(𝜎

′)) = fail, then 𝑝 is the union of 𝑝 and 𝜎.

Proof. First note that since 𝑝 is sound, by Definition 7 we have that 𝜎′ is a disallowed behaviour because it reaches a fail state. 
Further, by the definition of an STC, 𝜎 is a disallowed behaviour and all proper prefixes of 𝜎 are allowed behaviours. Since 𝜎′ is a 
prefix of 𝜎 and 𝜎′ is a disallowed behaviour, we must have that 𝜎′ = 𝜎. We therefore know that 𝜎 is a failing evolution of 𝑝 and so 
𝐸𝑣𝐹 (𝑝) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎).

It remains to prove that 𝐸𝑣(𝑝) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎). However, this follows from Proposition 3 which tells use that 𝐸𝑣((𝜎)) ⊆ 𝐸𝑣(𝑝). 
The result thus follows. □

Example 4. Consider the ATC 𝑝 presented in Fig. 1 (right) and the STC 𝜎 =!𝑜1!𝑜1!𝑜1⊝. We have that 𝑝 is the union of 𝑝 and 𝜎.

Note that the previous property is equivalent to the case where 𝜎 reaches a fail state when starting at the initial state of 𝑝.

4.3. Conditions under which we can combine test cases

We now consider the case where we cannot simply remove 𝜎, leaving 𝑝 unchanged, and consider when we can merge 𝑝 and 𝜎
to form some 𝑝′. We will use 𝜎′ to denote the longest prefix of 𝜎 that is an evolution of 𝑝 and 𝑞0

𝑝
to denote after𝑝(𝜎

′). We will focus 

on the case where 𝑞0
𝑝
is not a leaf of 𝑝 (in the next section we will see that if 𝑞0

𝑝
is a leaf of 𝑝 then we can merge 𝑝 and 𝜎). We will 

consider three scenarios regarding the event in 𝜎 that follows 𝜎′:

• The next event in 𝜎 is an output (Proposition 8).
• The next event in 𝜎 is ⊝ (Proposition 9).
• The next event in 𝜎 is an input (Proposition 10).

We start by consider the case where the next event in 𝜎 is an output, with the following showing that this case cannot occur and 
so the proposed algorithm does not have to include rules for this case.

Proposition 8. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC, and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). 
If the state after𝑝(𝜎

′) is not a leaf and 𝜎′ ≠ 𝜎 then next𝜎(𝜎
′) ∉𝑂.

Proof. We use proof by contradiction: we assume that 𝑞0
𝑝
= after𝑝(𝜎

′) is not a leaf and next𝜎(𝜎
′) ∈ 𝑂. By the definition of ATCs, 

𝑂 ⊆ enabled(𝑞0
𝑝
). This contradicts 𝜎′ being the longest common prefix as required. □

The next two results give necessary conditions for there to be an ATC 𝑝′ that is the union of 𝑝 and 𝜎. The next section gives rules for 
merging an ATC and an STC and provides a result (Proposition 13) that shows that the conditions below are also sufficient conditions.

We now consider the case where the next event in 𝜎 is ⊝.

Proposition 9. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). 
Let us suppose that after𝑝(𝜎

′) is not a leaf and next𝜎(𝜎
′) =⊝. If there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎 then enabled(after𝑝(𝜎

′)) =𝑂.

Proof. Let 𝑞0
𝑝
= after𝑝(𝜎

′). First, since 𝜎′ is a maximal prefix of 𝜎 that is a trace of 𝑝, we have that ⊝ ∉ enabled(𝑞0
𝑝
). By the definition 

of an ATC, since 𝑞0
𝑝
is not a leaf we have that 𝑂 ⊆ enabled(𝑞0

𝑝
). It is therefore sufficient to prove that no inputs are enabled at 𝑞0

𝑝
.

We use proof by contradiction and assume that 𝑝′ is the union of 𝑝 and 𝜎 and some input ?𝑖 belongs to enabled(𝑞0
𝑝
). Since 𝜎′.⊝ is 

a prefix of the trace 𝜎, it is an evolution of the STC 𝜎. Since 𝑝′ is the union of 𝑝 and 𝜎, we therefore have that 𝜎′.⊝ is a trace of 𝑝′. 
In addition, every event enabled at the state 𝑞0

𝑝
of 𝑝 is also enabled at the state 𝑞0

𝑝′
= after𝑝′ (𝜎

′). Thus, since ?𝑖 ∈ enabled(𝑞0
𝑝
), we also 

have that ?𝑖 ∈ enabled(𝑞0
𝑝′
). We therefore have that both ?𝑖 and ⊝ are enabled at state 𝑞0

𝑝′
. This contradicts the definition of an ATC 

and so completes the proof by contradiction. □

Finally we have the case where the next event in 𝜎 is an input.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092 

10 



R.M. Hierons, M.G. Merayo and M. Núñez 

Algorithm 1 Checking whether an STC and an ATC can be merged.
function PossibleMerging
Input: 𝜎,𝜎′ ∈ Σ∗

⊝
, 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ), 𝑞0

𝑝
∈𝑄

if 𝜎 = 𝜎′ ∨ 𝑞0
𝑝
is a leaf then

𝑚𝑒𝑟𝑔𝑒= 𝑡𝑟𝑢𝑒

else
if (𝐼 ∪ {⊝}) ∩ enabled(𝑞0

𝑝
) = ∅ then

𝑚𝑒𝑟𝑔𝑒= 𝑡𝑟𝑢𝑒

else
𝑚𝑒𝑟𝑔𝑒= 𝑓𝑎𝑙𝑠𝑒

end if
end if
return 𝑚𝑒𝑟𝑔𝑒

Proposition 10. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC, and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). 
Let us suppose that after𝑝(𝜎

′) is not a leaf of 𝑝 and next𝜎(𝜎
′) =?𝑖. If there is an ATC 𝑝′ that is the union of 𝑝 and 𝜎 then enabled(after𝑝(𝜎

′)) =𝑂.

Proof. Let 𝑞0
𝑝
be after𝑝(𝜎

′). Let us suppose that there is some ATC 𝑝′ that is the union of 𝑝 and 𝜎. Let 𝑞0
𝑝′
be after𝑝′ (𝜎

′). Consider the 

set of events enabled(𝑞0
𝑝′
).

• ?𝑖 ∈ enabled(𝑞0
𝑝′
) since next𝜎(𝜎

′) =?𝑖.

• All outputs must be enabled.
• If an event 𝑎 ∈ 𝐼 ∪ {⊝} belongs to enabled(𝑞0

𝑝
) then 𝑎 must also belong to enabled(𝑞0

𝑝′
). This is because all evolutions of 𝑝 are also 

evolutions of 𝑝′.

The result now follows by observing that, since 𝑝′ is an ATC, if input ?𝑖 ∈ enabled(𝑞0
𝑝′
), then we must have that ⊝ ∉ enabled(𝑞0

𝑝′
)

and also no other input is enabled at state 𝑞0
𝑝′
. □

5. Merging STCs

This section develops the algorithm for converting a set 𝑆 of STCs into an equivalent set 𝐴 of ATCs. We start with an algorithm 
that checks whether an ATC 𝑝 and an STC can be merged (Section 5.1). Section 5.2 then gives the rules for merging and proves that 
they are correct. Finally, the algorithm is given in Section 5.3.

5.1. Checking whether merging can happen

Algorithm 1 checks whether an STC 𝜎 can be merged with a sound and non-redundant ATC 𝑝. In this algorithm, as usual, 𝜎′ is 
the longest prefix of 𝜎 that is an evolution of 𝑝 and 𝑞0

𝑝
= after𝑝(𝜎

′). As noted above (Proposition 7), we only consider the case where 

𝑉 (𝑞0
𝑝
) = ok; if 𝑉 (𝑞0

𝑝
) = fail then we can simply remove 𝜎 without changing 𝑝. The algorithm allows merging to happen if one of four 

situations occurs:

1. 𝜎′ = 𝜎 and 𝑉 (𝑞0
𝑝
) = ok. In Section 5.2, Proposition 11 shows how we can form a suitable 𝑝′.

2. State 𝑞0
𝑝
of 𝑝 is a leaf. In Section 5.2, Proposition 12 shows how we can form a suitable 𝑝′.

3. By Proposition 9, we know that if 𝑞0
𝑝
is not a leaf, 𝜎′ ≠ 𝜎, and next𝜎(𝜎

′) =⊝ then we can only merge 𝑝 and 𝜎′ if enabled(𝑞0
𝑝
) =𝑂.

4. By Proposition 10, we know that if 𝑞0
𝑝
is not a leaf, 𝜎′ ≠ 𝜎, and next𝜎(𝜎

′) ∈ 𝐼 then we can only merge 𝑝 and 𝜎′ if enabled(𝑞0
𝑝
) =𝑂.

5.2. Rules for merging

We now consider the separate cases, giving results showing how an STC and an ATC can be combined. We use 𝜎, 𝜎′ and 𝑞0
𝑝
as 

before. We consider three cases.

• We have that 𝜎′ = 𝜎 and 𝑉 (𝑞0
𝑝
) = ok (Proposition 11).

• We have that 𝜎′ ≠ 𝜎, 𝑞0
𝑝
is a leaf and 𝑉 (𝑞0

𝑝
) = ok (Proposition 12).

• We have that 𝜎′ ≠ 𝜎, 𝑞0
𝑝
is not a leaf and 𝑉 (𝑞0

𝑝
) = ok (Proposition 13).

We start with the case where 𝜎′ = 𝜎.

Proposition 11. Let us suppose that 𝜎 is an STC and 𝑝 is a sound and non-redundant ATC. Let us suppose that 𝜎 ∈ 𝐸𝑣(𝑝) and that 
𝑉 (after𝑝(𝜎)) = ok. Then, after𝑝(𝜎) is a leaf and if we form a new ATC 𝑝′ by changing the verdict of after𝑝(𝜎) to fail then 𝑝′ is the union of 𝑝
and 𝜎.
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Proof. First, since 𝜎 is an STC, by Definition 1, 𝜎 must be a disallowed trace. Since 𝜎 is a disallowed trace and 𝑝 is non-redundant, 
we must have that after𝑝(𝜎) is a leaf of 𝑝. This has established the first part of the result. In addition, it immediately follows that 
𝐸𝑣(𝑝′) =𝐸𝑣(𝑝).

We are now required to prove that 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) and we do so by proving that if 𝜎1 is a trace then 𝜎1 ∈𝐸𝑣𝐹 (𝑝

′) if 
and only if 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). By the definition of 𝐸𝑣𝐹 (𝑝

′), 𝜎1 ∈𝐸𝑣𝐹 (𝑝
′) if and only if 𝑉 (after𝑝′ (𝜎1)) = fail. By the definition of 

𝑝′, this is the case if either 𝑉 (after𝑝(𝜎)) = fail or 𝜎1 = 𝜎. Thus, 𝜎1 ∈𝐸𝑣𝐹 (𝑝
′) if and only if 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪ {𝜎}. The result now follows 

by observing that 𝐸𝑣𝐹 (𝜎) = {𝜎}. □

Example 5. Consider the ATC 𝑝 presented in Fig. 1 (right) and the STC 𝜎 =!𝑜1!𝑜2. Let 𝑝
′ be equal to 𝑝 but changing the verdict of 

the state reached after the sequence !𝑜1!𝑜2 from ok to fail. Then, 𝑝′ is the union of 𝑝 and 𝜎.

We now consider the case where 𝜎′ ≠ 𝜎 and 𝑞0
𝑝
is a leaf of 𝑝. We start by showing how we can extend 𝑝 with 𝜎 in this case. Note 

that since 𝑞0
𝑝
is a leaf of 𝑝, 𝑝 does not have any transitions from 𝑞0

𝑝
.

Definition 16. Let us suppose that 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) is a sound and non-redundant ATC, 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
is an STC, 𝜎′ = 𝑎1…𝑎𝓁

is the longest prefix of 𝜎 such that 𝜎′ ∈ 𝐸𝑣(𝑝), 𝑙 < 𝑘, and 𝑞0
𝑝
= after𝑝(𝜎

′). Further, suppose that 𝑞0
𝑝
is a leaf of 𝑝. The extension of 𝑝

with 𝜎, 𝑥𝑡𝐿(𝑝, 𝜎), is the ATC 𝑝′ = (𝑄′, 𝑞0, 𝐼,𝑂,𝑇 ′, 𝑉 ′) in which we have the following.

1. 𝑞𝓁 denotes 𝑞
0
𝑝
.

2. 𝑄′ =𝑄 ∪ {𝑞𝓁+1,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 𝓁 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. 𝑇 ′ = 𝑇 ∪ {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 𝓁 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 𝓁 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

4. The verdict function is defined as follows

𝑉 ′(𝑞) =

⎧⎪⎨⎪⎩

𝑉 (𝑞) if 𝑞 ∈𝑄

fail if 𝑞 = 𝑞𝑘
ok otherwise

Example 6. Consider the ATC 𝑝 in Fig. 1 (left) and the STC 𝜎 =?𝑖1!𝑜1⊝. Fig. 2 (left) gives the ATC 𝑥𝑡𝐿(𝑝, 𝜎).

Proposition 12. Let us suppose that 𝜎 is an STC, 𝑝 is a sound and non-redundant ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). 
Let 𝑞0

𝑝
be after𝑝(𝜎

′). Let us suppose that 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is a leaf of 𝑝. Then 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎) is the union of 𝑝 and 𝜎.

Proof. First, by construction it is clear that 𝑝′ satisfies the requirements of an ATC and 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎).
We now prove that 𝐸𝑣𝐹 (𝑝

′) = 𝐸𝑣𝐹 (𝑝) ∪ 𝐸𝑣𝐹 (𝜎). Let 𝜎1 be a trace and it is sufficient to prove that 𝜎1 ∈ 𝐸𝑣𝐹 (𝑝
′) if and only if 

𝜎1 ∈ 𝐸𝑣𝐹 (𝑝) ∪ 𝐸𝑣𝐹 (𝜎). Observe that 𝜎1 ∈ 𝐸𝑣𝐹 (𝑝
′) if and only if 𝑉 (after𝑝′ (𝜎1)) = fail. By the definition of 𝑝′, this is the case if and 

only if either 𝑉 (after𝑝(𝜎1)) = fail or 𝜎1 = 𝜎. The first case holds if and only if we have that 𝜎1 ∈𝐸𝑣𝐹 (𝑝). The second case holds if and 
only if we have that 𝜎1 ∈𝐸𝑣𝐹 (𝜎). Thus, 𝜎1 ∈𝐸𝑣𝐹 (𝑝) if and only if either 𝜎1 ∈𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎) as required. □

Finally, we now consider the case where 𝜎′ ≠ 𝜎 and 𝑞0
𝑝
is not a leaf of 𝑝. We again extend 𝑝 with 𝜎 but we require a slightly 

different extension function because 𝑝 has transitions leaving 𝑞0
𝑝
. The only difference between this definition and Definition 16 is 

that, because 𝑞0
𝑝
is not a leaf, we no longer need to add transitions from 𝑞0

𝑝
for alternative outputs. This is reflected in the second sets, 

used in defining 𝑄′ and 𝑇 ′, having the condition 𝓁 + 1 ≤ 𝑖 < 𝑘 rather than 𝓁 ≤ 𝑖 < 𝑘.

Definition 17. Let us suppose that 𝑝 = (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) is an ATC, 𝜎 = 𝑎1…𝑎𝑘 ∈ Σ+
⊝
is an STC, 𝜎′ = 𝑎1…𝑎𝓁 is the longest prefix of 

𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝), 𝑙 < 𝑘, and 𝑞0
𝑝
is after𝑝(𝜎

′). Further, suppose that 𝑞0
𝑝
is not a leaf of 𝑝. The extension of 𝑝 with 𝜎, 𝑥𝑡𝑁 (𝑝, 𝜎), is 

the ATC 𝑝′ = (𝑄′, 𝑞0, 𝐼,𝑂,𝑇 ′, 𝑉 ′) in which we have the following.

1. 𝑞𝓁 denotes 𝑞
0
𝑝
.

2. 𝑄′ =𝑄 ∪ {𝑞𝓁+1,… , 𝑞𝑘} ∪ {𝑞
𝑗

𝑖+1
∣ 𝓁 + 1 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

3. 𝑇 ′ = 𝑇 ∪ {(𝑞𝑖, 𝑎𝑖+1, 𝑞𝑖+1) ∣ 𝓁 ≤ 𝑖 < 𝑘} ∪ {(𝑞𝑖, !𝑜𝑗 , 𝑞
𝑗

𝑖+1
) ∣ 𝓁 + 1 ≤ 𝑖 < 𝑘 ∧ !𝑜𝑗 ∈𝑂 ⧵ {𝑎𝑖+1}}.

4. The verdict function is defined as follows

𝑉 ′(𝑞) =

⎧⎪⎨⎪⎩

𝑉 (𝑞) if 𝑞 ∈𝑄

fail if 𝑞 = 𝑞𝑘
ok otherwise

Example 7. Consider the ATC 𝑝 presented in Fig. 1 (left) and the STC 𝜎 =?𝑖1⊝?𝑖1!𝑜1. Fig. 3 presents the ATC 𝑥𝑡𝑁 (𝑝, 𝜎).
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okstart

okok ok

okok ok

𝑓ok ok

𝑓ok

?𝑖1!𝑜1 !𝑜2

⊝!𝑜2 !𝑜1

!𝑜1!𝑜2 ?𝑖1

!𝑜1!𝑜2

Fig. 3. The ATC 𝑥𝑡𝑁 (𝑝, ?𝑖1⊝?𝑖1!𝑜1) for the ATC 𝑝 in Fig. 1 (left). 

The proof of the following is almost identical to that of Proposition 12.

Proposition 13. Let us suppose that 𝜎 is an STCs, 𝑝 is an ATC and 𝜎′ is the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). Let 𝑞0
𝑝
be after𝑝(𝜎

′). 

Let us suppose that 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is not a leaf of 𝑝. Further, suppose that enabled(𝑞0

𝑝
) = 𝑂. Then the ATC 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎) is 

the union of 𝑝 and 𝜎.

5.3. Algorithm

We now give an algorithm for combining a set of STCs. This algorithm maintains a set of ATCs, which is initially empty, and 
then goes through a number of iterations, adding one STC in each iteration. When an STC 𝜎 is considered, the algorithm determines 
whether 𝜎 can be merged with any of the current ATCs: if 𝜎 can be merged with one or more of the ATCs then it is merged with one 
of these and otherwise the ATC (𝜎) is added to the current set of ATCs.

Let 𝑝 be an ATC, 𝜎 be an STC and 𝜎′ be the longest prefix of 𝜎 such that 𝜎′ ∈𝐸𝑣(𝑝). Further, let 𝑞0
𝑝
be after𝑝(𝜎

′). Note that, since 𝑝
is deterministic, the sequence reaches a single state. Several cases are considered in the algorithm and these are now briefly reviewed.

1. If 𝑉 (𝑞0
𝑝
) = fail, then Proposition 7 tells us that we can discard 𝜎. Note that, as a result of the definition of STCs, this scenario can 

only occur if 𝜎 = 𝜎′.
2. If 𝑉 (𝑞0

𝑝
) = ok and 𝜎 = 𝜎′, then Proposition 11 tells us that 𝑞0

𝑝
is a leaf of 𝑝 and we simply change the verdict of 𝑞0

𝑝
to fail. The idea 

is that if we observe 𝜎 then we must indicate that this behaviour is not allowed and so the verdict must be fail.
3. If 𝑉 (𝑞0

𝑝
) = ok and 𝜎 ≠ 𝜎′ then there are the following cases:

a. 𝑞0
𝑝
is a leaf of 𝑝. By Proposition 12, we can just extend 𝑝 with the rest of 𝜎. Thus, one can merge 𝜎 and 𝑝 to form 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎).

b. 𝑞0
𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) ∈𝑂. By Proposition 8 we know that this case cannot occur since, by the definition of ATCs, 

𝑂 ⊆ enabled(𝑞0
𝑝
), contradicting 𝜎′ being the longest common prefix.

c. 𝑞0
𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) = ⊝. Proposition 9 tells us that we can only merge 𝑝 and 𝜎 if enabled(𝑞0
𝑝
) = 𝑂. If we can 

merge 𝑝 and 𝜎 then Proposition 13 tells us that we can extend 𝑝 with the rest of 𝜎 to form 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎).
d. 𝑞0

𝑝
is not a leaf of 𝑝 and next𝜎(𝜎

′) ∈ 𝐼 . By Proposition 10, we can only merge 𝑝 and 𝜎 if enabled(𝑞0
𝑝
) = 𝑂. If we can merge 𝑝

and 𝜎 then Proposition 13 tells us that we just extend 𝑝 with the rest of 𝜎 to form 𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎).

We now give the overall algorithm (Algorithm 2) that takes a set of sequential test cases and produces a set of ATCs. The algorithm 
is iterative. In each iteration, the algorithm tries to merge an STC 𝜎 with an ATC that includes a non-empty prefix of 𝜎. The algorithm 
uses the 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑒𝑟𝑔𝑖𝑛𝑔 function (Algorithm 1) to determine which of the current ATCs can be merged with 𝜎, placing these in 
the set 𝐴𝑇𝐶𝑠𝑖𝑔. If 𝐴𝑇𝐶𝑠𝑖𝑔 is non-empty then the algorithm chooses an ATC 𝑝 from 𝐴𝑇𝐶𝑠𝑖𝑔 and replaces 𝑝 with the ATC 𝑝′ formed 
by merging 𝑝 and 𝜎. If 𝐴𝑇𝐶𝑠𝑖𝑔 is empty, and so the STC cannot be merged with any ATC, then a new ATC corresponding to (𝜎)
will be created. Naturally, this last case applies on the first iteration since at this point there are no ATCs.

In an iteration, it is possible that 𝐴𝑇𝐶𝑠𝑖𝑔 contains more than one ATC that can be merged with 𝜎. The algorithm chooses an 
ATC 𝑝 from 𝐴𝑇𝐶𝑠𝑖𝑔 such that this maximises the length of the longest prefix of 𝜎 that is in the set of evolutions of 𝑝 (i.e. the length 
of the corresponding 𝜎′). The motivation is that this minimises the increase in the total number of nodes in the ATCs (and maximises 
how much the traces of 𝑝 and 𝜎 overlap).

The algorithm uses a separate function 𝑀𝑒𝑟𝑔𝑒 (see Algorithm 3) that takes an ATC 𝑝 and a sequential test 𝜎 and combines these.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101092 

13 



R.M. Hierons, M.G. Merayo and M. Núñez 

Algorithm 2 Creating ATCs from STCs.

Input: Σ = 𝐼 ∪𝑂, 𝑆𝑇𝐶𝑠 ⊆ Σ+
⊝

Let 𝐴𝑇𝐶𝑠 = ∅

for all 𝜎 = 𝑎1 …𝑎𝑛 ∈ 𝑆𝑇𝐶𝑠 do
𝐴𝑇𝐶𝑠𝑖𝑔 = {𝑝 ∣ 𝑝 ∈𝐴𝑇𝐶𝑠 ∧ ∃𝜎′ ∈ (pref (𝜎) ⧵ {𝜖}) ∩𝐸𝑣(𝑝)}

𝑚𝑒𝑟𝑔𝑒= 𝑓𝑎𝑙𝑠𝑒

while (¬𝑚𝑒𝑟𝑔𝑒 ∧ 𝐴𝑇𝐶𝑠𝑖𝑔 ≠ ∅) do
Choose a tree 𝑝= (𝑄,𝑞0, 𝐼,𝑂,𝑇 ,𝑉 ) ∈𝐴𝑇𝐶𝑠𝑖𝑔 including
the longest non-empty prefix of 𝜎. Let 𝜎′ = 𝑎1 …𝑎𝑘 be this prefix.
𝑞0
𝑝
= after𝑝(𝜎

′)

𝐴𝑇𝐶𝑠𝑖𝑔 =𝐴𝑇𝐶𝑠𝑖𝑔 ⧵ {𝑝}

if 𝑉 (𝑞0
𝑝
) = fail then

𝑚𝑒𝑟𝑔𝑒 = 𝑡𝑟𝑢𝑒

else if 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑀𝑒𝑟𝑔𝑖𝑛𝑔(𝜎,𝜎′, 𝑝, 𝑞0
𝑝
) then

𝑝′ =𝑀𝑒𝑟𝑔𝑒(𝜎,𝜎′, 𝑝, 𝑞0
𝑝
)

𝐴𝑇𝐶𝑠 =𝐴𝑇𝐶𝑠 ⧵ {𝑝} ∪ {𝑝′}

𝑚𝑒𝑟𝑔𝑒 = 𝑡𝑟𝑢𝑒

end if
end while
if ¬𝑚𝑒𝑟𝑔𝑒 then

𝐴𝑇𝐶𝑠 =𝐴𝑇𝐶𝑠 ∪ {(𝜎)}

end if
end for

Algorithm 3 Merging an STC and an ATC.
function Merge
Input: 𝜎 = 𝑎1 …𝑎𝑛 , 𝜎

′ = 𝑎1 …𝑎𝑘 ∈ Σ∗
⊝
, 𝑝 = (𝑄,𝑞0 , 𝐼,𝑂,𝑇 ,𝑉 ), 𝑞0

𝑝
∈𝑄

if 𝜎′ = 𝜎 then
Update 𝑉 with 𝑉 (𝑞0

𝑝
) = fail

else
if 𝑞0

𝑝
is a leaf of 𝑝 then

𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎)

else
𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎)

end if
end if
return 𝑝′

Example 8. Consider 𝐼 = {?𝑖1, ?𝑖2}, 𝑂 = {!𝑜1, !𝑜2}. Fig. 4 provides a graphical representation of how the algorithm produces a set 
of ATCs when it receives as input the set 𝑆 = {!𝑜1?𝑖1!𝑜2⊝, !𝑜1?𝑖1!𝑜1, ?𝑖2!𝑜1, !𝑜1?𝑖1⊝, ?𝑖2⊝, ?𝑖2!𝑜2!𝑜1}. The algorithm goes through the 
following iterations.

1. In the first iteration the set of ATCs is empty, therefore a new ATC 𝑝1 corresponding to (!𝑜1?𝑖1!𝑜2⊝) is created (Fig. 4a).
2. Next, considering the STC 𝜎 =!𝑜1?𝑖1!𝑜1, the algorithm searches for the longest prefix of 𝜎 that is an evolution of 𝑝1. In this case, 
this prefix coincides with 𝜎, and the verdict of the state of 𝑝1 reached by 𝜎 is changed to fail (Fig. 4b).

3. The algorithm now considers the STC ?𝑖2!𝑜1, none of its prefixes are evolutions of 𝑝1 and the ATC 𝑝2 = (?𝑖2!𝑜1) is created (Fig. 4c).
4. The longest prefix of !𝑜1?𝑖1⊝ in 𝑝1 and 𝑝2 are !𝑜1?𝑖1 and !𝑜1, respectively. In the first case, the outgoing transitions from the 
state reached by the prefix are not labelled with an input or ⊝ and the state reached by the second in 𝑝2 is a leaf. Therefore, the 
STC can be merged with either of them. Since !𝑜1?𝑖1 is longer than !𝑜1, 𝑝1 is selected to be merged with the STC and is extended 
with the rest of the sequence, that is, ⊝ (Fig. 4d).

5. The STC ?𝑖2⊝ can be merged only with 𝑝2 by extending 𝑝2 with ⊝ to form 𝑥𝑡𝑁 (𝑝2, ?𝑖2⊝) (Fig. 4e).
6. Finally, the STC ?𝑖2!𝑜2!𝑜1 is also merged with 𝑝2. In this case, the state reached by the prefix ?𝑖2!𝑜2 is a leaf and the merge of 𝑝2
and the STC corresponds to 𝑥𝑡𝐿(𝑝2, ?𝑖2!𝑜2!𝑜1) (Fig. 4f).

In conclusion, the set 𝑆 is represented by the ATCs given in Figs. 4d and 4f.

Finally, the correctness of Algorithm 2 is based on the merging rules being correct.

Theorem 1. If Algorithm 2 is given set 𝑆 of STCs as input then it returns a set 𝐴 of sound and non-redundant ATCs such that 𝐴 is equivalent 
to 𝑆 .

Proof. First, note that each iteration of the algorithm reduces the number of STCs in 𝑆𝑇𝐶𝑠 by 1 and 𝑆𝑇𝐶𝑠 starts with 𝑆 . Since 𝑆
is finite, we know that the algorithm terminates with 𝑆 = ∅.
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(b) 𝑝1 after merging with 𝜎 =!𝑜1?𝑖1!𝑜1.
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okstart

ok ok

ok okok

ok 𝑓𝑓

𝑓 okok

!𝑜1 !𝑜2

?𝑖1 !𝑜1!𝑜2

!𝑜2!𝑜1 ⊝

!𝑜2⊝!𝑜1

(d) 𝑝1 after merging with !𝑜1?𝑖1⊝.

okstart

okok ok

𝑓 ok𝑓

?𝑖2!𝑜1 !𝑜2

!𝑜1 !𝑜2⊝

(e) 𝑝2 after merging with ?𝑖2⊝.

okstart

okok ok

𝑓 ok𝑓

𝑓ok

?𝑖2!𝑜1 !𝑜2

!𝑜1 !𝑜2⊝

!𝑜1!𝑜2

(f) 𝑝2 after merging with ?𝑖2!𝑜2!𝑜1.

Fig. 4. ATCs obtained from the application of Algorithm 2. 

Now consider one iteration of the algorithm: to prove correctness of the algorithm as a whole it is sufficient to prove that if an 
iteration replaces non-redundant ATC 𝑝 ∈𝐴𝑇𝐶𝑠 and STC 𝜎 with ATC 𝑝′ then 𝑝′ is the union of 𝑝 and 𝜎. We separately consider the 
cases where merging happens in Algorithm 2 and what has been established about these.

Case 1: 𝑉 (𝑞0
𝑝
) = ok and 𝜎 = 𝜎′. Algorithm 2 forms 𝑝′ by changing the verdict of 𝑞0

𝑝
to fail. Proposition 11 tells us that 𝑝′ is the 

union of 𝑝 and 𝜎.
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Case 2: 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, and 𝑞0

𝑝
is a leaf of 𝑝. Algorithm 2 merges 𝜎 and 𝑝 to form 𝑝′ = 𝑥𝑡𝐿(𝑝, 𝜎). By Proposition 12, 𝑝

′ is the 
union of 𝑝 and 𝜎.

Case 3: 𝑉 (𝑞0
𝑝
) = ok, 𝜎 ≠ 𝜎′, 𝑞0

𝑝
is not a leaf of 𝑝, and enabled(𝑞0

𝑝
) =𝑂. In this case, Algorithm 2 extends 𝑝 with the rest of 𝜎 to form 

𝑝′ = 𝑥𝑡𝑁 (𝑝, 𝜎). Proposition 10, tells us that 𝑝′ is the union of 𝑝 and 𝜎.
Thus, whenever Algorithm 2 merges an ATC 𝑝 and STC 𝜎 to form an ATC 𝑝′ we have that 𝑝′ is the union of 𝑝 and 𝜎. By the 

definition of union, we have that 𝐸𝑣(𝑝′) =𝐸𝑣(𝑝) ∪𝐸𝑣(𝜎) and 𝐸𝑣𝐹 (𝑝
′) =𝐸𝑣𝐹 (𝑝) ∪𝐸𝑣𝐹 (𝜎). Thus, each step of the algorithm preserves 

the set of evolutions and the set of failing evolutions and so 𝐴 is equivalent to 𝑆 . Finally, Propositions 5 and 6 tell us that the ATCs 
formed are sound and non-redundant. The result thus follows. □

This tells us that if 𝑆 is capable of showing that a given SUT is faulty then 𝐴 can also achieve this and, in addition, the ATCs in 
𝐴 are sound and non-redundant.

6. Conclusions and future work

In this paper we considered a testing framework where test requirements are given by a set of negative test cases: a sequence 
𝜎.𝑎 represents the situation in which, if the SUT executes the sequence 𝜎 then 𝑎 should not be observed next. The goal of the work 
described in this paper was to provide an algorithm that transforms such a set of test cases (that we called sequential test cases) into 
a set of adaptive test cases that encode the same information in a more compact way. The motivation for this work was that the 
use of ATCs improves the efficiency of the testing process because there are situations where testing with ATCs will continue while 
testing with an STC would require the testing process to be reset. We formally proved the correctness of the algorithm and presented 
a complete example to show some of its intricacies.

There are several possible lines of future work. In this work we considered two verdicts: ok and fail. In contrast, a test case could 
have states that have verdict 𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒, denoting the test objective not having been achieved. We potentially lose some information 
if we replace 𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 verdicts. An alternative approach would have been for a state of an ATC 𝑝 to be associated with a tuple 
of verdicts, one for each STC used in forming 𝑝. Such a verdict would provide information about which test objectives have been 
achieved and also which original STCs failed when a fail verdict is given; such information could help with traceability. We would 
only require small changes to our approach to introduce such tuples of verdicts.

The proposed algorithm is iterative and, in an iteration, an STC under consideration is merged with at most one ATC. This makes 
sense if we are interested in limiting the (sum of) the sizes of the ATCs. Consider, however, the case where we have ATCs 𝑝1 , where 
all traces start with !𝑜1.!𝑜2.?𝑖1, and 𝑝2, where all traces start with !𝑜1.!𝑜2.?𝑖2. Further, let us suppose that we are considering the STC 
𝜎 =!𝑜1.!𝑜2.!𝑜3.!𝑜4. There is potential to merge 𝜎 with both of the ATCs, to form two new ATCs that we call 𝑝′

1
and 𝑝′

2
. If we do this 

then the test objective (STC) 𝜎 can be achieved when using either 𝑝′
1
or 𝑝′

2
and so we might require fewer test executions in order to 

achieve all test objectives. It would be straightforward to update the algorithm to allow such an approach.
A final observation is that if we have access to the specification then we might revisit the decision to give an ok verdict if the 

tester is waiting for output !𝑜1 after some prefix 𝜎1 of 𝜎 and the SUT instead produces output !𝑜2. For example, when completing an 
STC to form an ATC, we could check each such 𝜎1.!𝑜2 against the specification and set the verdict to be fail if 𝜎1.!𝑜 is a disallowed 
trace.
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