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Poor maintenance regimes often contribute to unplanned downtimes, quality defects and accidents; thus it
is crucial to apply an effective maintenance strategy to achieve efficient and safe processes. Industry 4.0
has brought about a proliferation of digital data and with it new opportunities to advance and improve
the way maintenance activities are planned. Here, we propose a novel methodology that utilises machine
learning to predict both machine faults and repair time, and uses this data to underpin the scheduling of

maintenance activities. This can be used to plan maintenance, and optimise the schedule with a cost objective
within the constraints of labour availability and plant layout. When applied to a dataset obtained using
a simulated Fischertechnik (FT) model, this methodology reduced the overall plant maintenance costs by
decreasing unplanned downtimes and increasing maintenance efficiency. This work provides a promising first
step towards improving the way maintenance tasks are approached in Industry 4.0.

1. Introduction

Machine maintenance is paramount to the process industry with re-
gards to both safety and effectiveness. A poor maintenance system has a
direct impact on costs, deadlines, quality, and accidents making it catas-
trophic to an organisation in terms of both operational performance
and process safety. Unplanned downtime due to emergency repairs
resulting from poor maintenance is estimated to have led to £13.1
billion in discrete manufacturing in 2016 (Thomas and Weiss, 2020).
Given the important nature of maintenance, it must be conducted in
parallel with a plant’s normal operations to avoid compromising the
plant’s productivity levels (Kobbacy and Murthy, 2008).

Currently, industry is in a process of transformation towards Indus-
try 4.0 where process automation and digitisation are becoming the
norm (Gilchrist, 2016). One of the key factors that Industry 4.0 brings
with it is the abundance of digital data, which can be used in the
control and operation of a plant, improving production efficiency and
managing process safety. Technologies using the Internet of Things pro-
vide the ability to measure and store large amounts of data from many
sensors enriched by the control commands of actuators, transforming
manufacturing environments into complex cyber—physical production
systems (Gunes et al., 2014). The proliferation of data resulting from
wide spread digitisation of manufacturing processes is opening up new
opportunities to advance the way maintenance tasks are scheduled.
These opportunities promise to improve process safety and reduced
maintenance costs.
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This manuscript aims to improve the standard smart maintenance
scheduling by considering both predictive maintenance and mainte-
nance time estimation modelling. The standard smart maintenance
scheduling approach uses predictive maintenance and optimisation to
schedule maintenance tasks. However, the authors believe this concept
can be improved by additionally considering the time required to
complete each maintenance task. This new framework predicts when
maintenance is required and how long each task will take before
optimising the schedule. Thus, the integration of machine learning
techniques creates an optimal maintenance schedule that is robust and
reliable.

The most popular method that utilises machine learning and digital
data is predictive maintenance (Zonta et al., 2020; Carvalho et al.,
2019). Predictive maintenance utilises machine learning on real time
sensor data to provide estimations of when maintenance is required
on a machine (Yan et al., 2017). The most common predictive main-
tenance techniques use machine learning classification to predict a
fault or failure occurring (Susto et al., 2015). The other techniques
use machine learning regression to predict Remaining Useful Life of
machines (Van Horenbeek and Pintelon, 2013) and forecast industrial
ageing processes (Bogojeski et al., 2021). A systematic literature review
by Carvalho et al. (2019) showed that the most common machine
learning algorithms used are Random Forest, Neural Networks, Support
Vector Machine and k-means clustering. Additionally, they found each
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machine learning method proposed was applied to a specific piece of
equipment, for example turbines (Kumar et al., 2018), motors (Dos San-
tos et al., 2017) and compressors (Prytz et al., 2015). For this reason,
it becomes difficult to compare various machine learning algorithms
as each study uses vastly different data for validation (Carvalho et al.,
2019). Typically, predictive maintenance is employed on single ma-
chine systems. This approach lacks applicability to large industrial sites
as it fails to consider the causal sequence of fault occurrence in process
manufacturing. As such, further research that focuses on the application
of predictive maintenance, integrating it within industrial sites to help
develop maintenance workflow strategies instead of deriving novel
machine learning algorithms is necessary.

Failure to properly consider time to complete maintenance tasks
leads to prolonged downtime, increased technician time, and poorly
executed jobs causing process incidents (Palmer, 2013). Estimating the
time a maintenance task takes is a difficult task in large industrial
settings, but it is essential to allow maintenance tasks to be accom-
plished more efficiently, leading to lower costs (Nyman and Levitt,
2006). Various methods are available to help estimate the time required
including time study (Duffuaa and Raouf, 2015), predetermined motion
time series (Alkan et al., 2016), or estimations based on past experi-
ence. However, these methods often lead to inaccurate errors leading
to expensive overtime and rushed fixes.

Machine learning has been proven to be a valuable tool for time
estimation models to aid the prediction of product manufacturing
times (Liu and Jiang, 2005; Lingitz et al., 2018). Therefore, mainte-
nance time estimation models using machine learning algorithms are
possible. To the authors knowledge, Khalid et al. (2020) developed the
only maintenance time estimation model. In their work, the historical
work orders, functional locations and equipment related variables were
used in machine learning algorithms to create better estimations of
work hours for preventative maintenance tasks in an Oil Company. The
work compared nine machine learning algorithms and found the Ran-
dom Forest algorithm performed the best, decreasing the mean absolute
error from 4.57 h (when using estimation based on experience) to
3.83 h. A decrease of 0.74 h from using a maintenance time estimation
model is 16% better than from using estimation. Fully realised, this
saving is significant; for example in 2016 census data estimates that the
US spent $50 billion on maintenance and repair, with a 16% saving on
this representing around $8 billion (Thomas, 2018). While this number
is somewhat inflated by the inclusion of building maintenance and
other internal expenditures, it does do well to capture the gravity of
the potential savings that predictive maintenance could contribute.

The knock-on impact of a failure to consider maintenance time
is a poor maintenance schedule. This is to the detriment of prof-
itability (Vassiliadis and Pistikopoulos, 2001). Careful consideration of
scheduling is required since performing more preventative maintenance
will prevent serious failures but can cause unnecessary downtime and
incur high maintenance costs. On the other hand, too little maintenance
leads to corrective maintenance where tasks are performed due to
failures occurring, thus, leading to process downtime and increased
expenses. Traditional scheduling approaches rely on frequent periods
of plant shutdown to perform maintenance tasks. Maintenance schedule
optimisation is now a popular research topic due to its capabilities in
increasing plant profits. It has been conducted for short-term schedul-
ing of a multipurpose plant (Dedopoulos and Shah, 1995), long-term
chemical plant turnarounds (Amaran et al.,, 2015), cleaning sched-
ules in a furnace (Jain and Grossmann, 1998). These maintenance
scheduling techniques are optimised to reduce costs focusing on when
to schedule periodic maintenance. This, however, is not an optimal
approach as it does not consider the relationship between maintenance
and machine degradation. Thus, combining maintenance schedule op-
timisation with predictive maintenance offers opportunities to improve
current practices. In literature, adaptive process scheduled have been
developed to select acceptable process conditions based on predicted
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anomalies (Goriir et al., 2021). Alternatively, condition-based mainte-
nance scheduling enables dynamic maintenance scheduling based on
the estimations from predictive maintenance (Mobley, 2002) to help
create optimisation schedules (Jardine et al., 2006). Recently, preventa-
tive maintenance and optimisation were combined to create a schedule
for a biomass boiler (Macek et al., 2017), a building heating ventilation
and air conditioning system (Wu et al., 2021), and an ethylene cracking
furnace system (Feng et al., 2021). Research studies have illuminated
the combination of predictive maintenance and developed complex
mathematical optimisation techniques, yet to the authors knowledge,
no study to date has examined the optimisation of condition-based
scheduling for a full industrial process.

The work presented within this paper develops a novel maintenance
framework and then investigates its efficacy through its application to
a full industrial process as a case study. The standard smart mainte-
nance process involves using predictive maintenance with optimisation
to build a maintenance schedule. This schedule however cannot be
accurately constructed without an appreciation for the time required
to conduct maintenance. Using machine learning to accurately forecast
this time enables a more accurate schedule. Thus, the novel methodol-
ogy developed in this work integrates machine learning techniques to
optimise the way maintenance is conducted and hence drive savings not
only through reduced equipment downtime but also through reduced
labour costs.

Here, we present a novel methodology that can analyse the col-
lection of machine sensor data to provide an optimum maintenance
schedule through the combination of multiple machine learning tech-
niques. We aim to provide a data-driven approach that automates the
learning of models for predictive maintenance and maintenance time
estimation. The main objective of this work, therefore, is to build
such a workflow that implements machine learning and optimisation in
an approach that produces an optimum maintenance schedule. To do
this, we first perform an investigation into the classification algorithms
readily available for predictive maintenance. Predicting whether a
fault has occurred in each machine can be used as the first tool in a
promising application to develop robust maintenance scheduling in an
industrial plant. We then seek to improve condition-based maintenance
schedules by implementing a maintenance time estimation model that
offers greater accuracy compared to physical observation. This work
will build on the time estimation models previously created by Khalid
et al. (2020) by estimating the maintenance time required to fix a
predicted fault using live sensor readings as input variables. Finally,
the workflow is completed by using the plant layout data, the predicted
faults and the estimated maintenance time to optimise a full industrial
process.

The remainder of the paper is structured as follows. First, Section 2
presents the novel workflow created. Then a case study is described
in Section 3 to which each stage of the workflow is tested on. Finally,
Section 4 presents the analysis from each of the investigations and the
results produced from the overall workflow.

2. Maintenance policy method

To create a robust maintenance schedule, we propose the workflow
shown in Fig. 1 that combines three techniques to enable accurate
scheduling of maintenance tasks. The novel maintenance framework
builds on standard smart maintenance policies by incorporating main-
tenance time estimation to ensure the maintenance schedule produced
is robust. Here, we outline the methodology focusing on the imple-
mentation of the algorithm withing industry to create a maintenance
policy.

Fig. 1 shows historical maintenance records and sensor readings
require feature engineering and separation to train and validate ma-
chine learning models. This training process is necessary to ensure the
machine learning models can accurately predict whether a fault has
occurred on each machine in the plant and how long the maintenance



A.S. Yeardley et al

Computers and Chemical Engineering 166 (2022) 107958

to produce an optimal maintenance schedule.

Together, the integration of predictive maintenance, maintenance time estimation and schedule optimisation is used
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Fig. 1. A flowchart of the ensemble of machine learning techniques used to produce an optimum maintenance schedule.

task will take to complete. Validation is necessary to prevent any
occurrence of overfitting of the model (i.e. learning the noise of the
data, not the trend). The novel methodology uses raw machine mainte-
nance and telemetric data to make predictions regarding the state of
each machine. For this case study, the training and prediction were
conducted in an offline mode, owing to the lack of availability of real-
time plant data. Once both the classification model and the regression
model are trained and validated to ensure they are achieving accurate
predictions, the novel maintenance workflow proceeds as follows.

The first element of the workflow uses a classification model for pre-
dictive maintenance to classify which machine requires maintenance
to fix a fault based on sensor readings. Please note, that these faulty
machines have not yet failed but are indicating faults, or signs of
failure, which will need intervention before complete machine failure
is realised. The output from the predictive maintenance model is a
machine number that requires maintenance.

Maintenance time estimation is then performed using a further
regression model to accurately predict the maintenance time required
to fix a fault using the sensor readings as input variables. The training
of this model uses historic sensor readings to learn a blackbox function
that maps the sensor readings to previous times required to fix a fault.

The results from both predictive models are passed to the mainte-
nance schedule optimisation. The maintenance schedule optimisation
seeks to determine the most cost-effective maintenance plan. Here, the
mathematical model is explained in detail for the maintenance schedule
optimisation with the objective to minimise the total cost comprising
downtime costs, technician costs and the cost of part for replacement
under corrective and/or preventative maintenance scenarios.

3. Case study

The following section describes the case study to which the method-
ology described in the previous section is applied.

3.1. Data

The application of the method outlines in Section 2 requires the
availability of historical maintenance and complex sensor reading data
related to an industrial plant. However, the availability of real-data
from industry is extremely limited due to confidentiality issues. For
this reason, data provided by a simulation, developed by Klein and
Bergmann (2019), of a cyber—physical production system using a Fis-
chertechnik (FT) factory model was used. The production plant con-
sists of five workstations as described in an ontological knowledge
base (Klein et al., 2019).

The large FT plant provides a realistic and challenging case study
for detecting faults using a simulation of an industrial production
plant. The FT simulation consists of 14 machines. The sensor readings
indirectly relate to each machine as some machines had more sensors
fitted than others. The cyber—physical system contains 61 different
sensors and actuators, measuring the telemetry of every machine to
monitor their current condition. The sensor readings measure various
telemetrics such as the differential pressure sensor on the pneumatic
lift. The simulation generated 28 faults in total by running multiple
run-to-failure simulations where the sensor readings and the fault were
recorded with time. Altogether, the simulation created 27073 readings
for each of 61 sensors. These sensor readings form the inputs for the
models described in Section 2.

Besides the sensor readings, machine states are also required for
each time so that if a fault has occurred maintenance can be conducted
before failure occurs. Primarily, it is important to know at any given
point during the simulation if a machine is in fault mode, and if so
which machine. To this end, 27073 readings is coupled with an integer
identifier for a machine in a fault condition or 0 where no fault was
observed.

In addition to this, the actual nature of the fault should be noted
and, for the FT plant simulation, 28 unique faults are observed. There-
fore, at any given time during the simulation, if the system is at fault
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the nature of that fault was given its own integer identifier. When the
system was not at fault, an additional ‘no-fault’ class was recorded.
This results in 29 unique fault-type classes representing the system
fault name. Knowing the nature of the fault is crucial to predicting the
required time to perform maintenance.

Predictive maintenance in this case is posed as a classification
problem, where at each time the 61 sensor readings are used to predict
which of the 14 machines is in a state of fault, if any. The training data
set can therefore be represented by Eq. (1) where X is the training data
set consisting of pairwise relationships between inputs, x,, the sensor
readings at a given time period ¢, and r, the number of the faulting
machine.

X ={x,.r}Y, (€]

The classification problem can therefore be posed as Eq. (2), where
h is the classification model, C; is the set of times where no fault has
occurred, C; is the set of times where a fault has occurred somewhere
in the system and N is the machine which has caused the fault state.

0ifx, €C;, i#j
hexy=4 I @
N if x, € C; where N €1... 14

In addition to these datum, the time used to fix each fault would
provide the output that could then be used for training and testing.
Given that the FT plant is a model simulation, this is not possible.
Therefore, we have combined expert knowledge with that from the
Ontology (Klein et al., 2019) to generate maintenance task times for
each of the 28 faults that occur and the failures that each fault could
lead to. Additionally, Gaussian noise with zero mean and unit STD was
added on to account for the variance between each maintenance task
(for example, fixing a low wear fault may take 53 minutes previously
but 62 minutes the next time). The average time for each maintenance
task obtained in this manner is shown in Table 2.

The plant layout data (provided by Klein et al. (2019)) and the
following assumptions were used to provide a basis for the maintenance
scheduling:

The plant operates at a sold out supply chain. When the plant is
shutdown, it is losing profits.

The plant is operating at a just in time manufacturing rate and
overtime is not incurred.

The plant is sequential so that a shutdown machine shutdowns
the entire plant.

Middle value products are packaged so that every hour of down-
time is worth £10,000.

A maintenance engineer can only work on one machine at a time.
Multiple engineers are available.

Each maintenance engineer is highly skilled in all departments
and costs include planning time and overheads. This costs the
plant £32.53 per hour of maintenance (Glassdoor Inc., 2021).
Faults can be fixed without replacing parts.

Failures are fixed by replacing parts that have a cost informed by
an expert as shown in Table 2.

The objective of the maintenance scheduling is assumed to minimise
cost under the assumptions mentioned. For the data given, we want
to determine the maintenance schedule for each fault that occurs on
a machine in the plant. This can be obtained using mathematical
formulation described in Section 3.4.1.

3.2. Predictive maintenance

Here, we compare five classification techniques; Decision Tree,
Random Forest, Neural Network, AdaBoost and Quadratic Discriminant
Analysis. The implementation used here was taken from the Python
library, Scikit Learn 1.0 (Pedregosa et al., 2011). Each classification
technique used gradient descent to minimise the cross-entropy loss
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Table 1
A summary of the data used to train and test
predictive maintenance techniques.

Machine no. Train Test
No Fault 22,763 3,233
1 9 2

2 14 24

3 207 234

4 21 6

5 23 27

6 7 2

7 28 45

8 105 97

9 36 31

10 16 11

11 13 20

12 42 34

13 6 0

14 13 4
Total 23,303 3,770

function and train the predictive maintenance models. The techniques
are applied to the data to provide and insight into the promising tools
readily available.

To ensure a robust comparison, the full data is split into training
and test data based on complete simulations from start to finish so that
each individual simulation leading to a fault are either only included
in the test or training data set (Klein and Bergmann, 2019). Therefore,
a fault that continued for multiple time steps was not found in both
training and test data. A summary of the classification data is shown in
Table 1, where the clear split between training data and test data can
be seen for each of the 15 classes.

3.3. Time estimation model

The second stage of the proposed workflow involves creating a time
estimation model. Thus, here the study provides a comparison between
Gaussian Processes, Neural Networks, Gradient Boosting Regression,
Support Vector Regression and Random Forests to evaluate the most
promising regression technique to estimate the required time for the
maintenance policy.

Irrespective of the technique being used, the models are trained
and tested in the same way. Previously, Section 2 described the novel
maintenance policy and the importance of using historical data to train
the machine learning models. For the maintenance time estimation
model, the objective is to accurately predict the time required for
maintenance given the sensor readings and the machine number as
input variables. To do this, the machine learning regression models
listed above are trained using historical data. The machine learning
models optimise their parameters to minimise the errors between the
observed maintenance time and that predicted b the models. In a sense,
the machine learning model is a blackbox function that is optimised
to map the input variables to the output. Here, the models use the
simulation data that consists of the 61 sensor readings and the machine
number as input variables, and the output is the time required to fix
the fault in hours. The distribution of the maintenance time in hours is
shown in Fig. 2.

Here, cross-validation was chosen due to only 1,077 data points
classed as faults being used from the original FT model simulation.
Therefore, this study split the data into 15 data sets so that each
complete run to failure simulation is kept together in the same set,
creating 14 historical maintenance data sets for training, and one
remaining data set as new work orders to be used as validation. This
procedure is repeated to ensure all the data points are used for testing.



A.S. Yeardley et al

Table 2

Summary of FT model data.

Computers and Chemical Engineering 166 (2022) 107958

Fault no. Machine no. Machine Plant area Fault Fault fix time (hours) Failure fix time (hours) Cost of part (£)
1 1 Conveyor txtl5 Driveshaft Slippage 1 5 400
2 2 Lightbarrier txt15 Lightbarrier Mode 1 0.5 2 100
3 2 Lightbarrier txt15 Lightbarrier Mode 2 0.5 2 200
4 2 Lightbarrier txt15 Lightbarrier Mode 3 0.5 2 300
5 3 M1 txt1l5 High Wear 1 7 200
6 3 M1 txt15 Low Wear 1 7 100
7 3 M1 txtl5 Type 2 Wear 1 7 200
8 4 Pneumatic lift txtl5 Leakage Mode 1 0.5 3 100
9 4 Pneumatic lift txt15 Leakage Mode 2 0.5 3 300
10 4 Pneumatic lift txt15 Leakage Mode 3 0.5 3 500
11 5 Conveyor txt1l6 Driveshaft Slippage 0.5 5 400
12 5 Conveyor txt16 Big Gear Tooth Broken 2 12 500
13 5 Conveyor txt16 Small Gear Tooth Broken 2 12 200
14 6 Switch txt1l6 Switch Mode 2 0.5 3 200
15 7 Lightbarrier txt16 Lightbarrier Mode 1 0.5 2 100
16 8 M3 txtl6 High Wear 0.5 7 500
17 8 M3 txt16 Low Wear 0.5 7 200
18 8 M3 txtl6 Type 2 Wear 0.5 7 300
19 9 Switch txt17 Switch Mode 1 0.5 2 100
20 9 Switch xtl7 Switch Mode 2 0.5 2 200
21 10 Pneumatic Lift txt1l7 Leakage Mode 1 0.5 3 100
22 11 Transport Workpiece txtl7 Transport Workpiece Missing 0.5 9 300
23 12 Pneumatic Lift txt18 Leakage Mode 1 0.5 3 100
24 12 Pneumatic Lift txt18 Leakage Mode 2 0.5 3 300
25 12 Pneumatic Lift txt18 Leakage Mode 3 0.5 3 200
26 13 Transport Workpiece txt18 Transport Workpiece Missing 0.5 9 200
27 14 Lightbarrier txt19 Lightbarrier Mode 1 0.5 2 100
28 14 Lightbarrier txt19 Lightbarrier Mode 2 0.5 2 200
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Fig. 2. The maintenance time required to fix a fault for each machine in the FT model plant. At then end of the x-axis, the total spread for all of the machines is shown.

3.4. Maintenance schedule optimisation

The maintenance schedule optimisation utilises the predictions from
the previous two methodologies to produce an optimal maintenance
schedule. This work focuses on providing a maintenance schedule with
the minimum cost for the case study. Therefore, in this section, the
mathematical formulation for the maintenance schedule optimisation
is described.

3.4.1. Mathematical formulation

The objective of the maintenance schedule optimisation is to min-
imise the costs to the plant given system constraints resulting from
plant procedures, plant layout data, and other operational considera-
tions. Here, we present the mathematical optimisation model with a
full nomenclature.

The problem is posed as follows:
Given:

+ a set of machines (devices) in a plant;

» a set of possible faults per machine, the (predicted) time of
occurrence and whether or not it causes a plant to be shutdown;
estimated maintenance times required by each fault per machine
before and after failure occurs;

cost of parts and engineering personnel for each fault that occurs
within a machine;

downtime cost of the plant and machine;

maximum number of available engineers for maintenance activi-
ties;

Determine:

+ the maintenance schedule for each fault that occurs on a machine
within the plant;

So as to:

» minimise the total cost over the time period of consideration. The
cost comprises of the plant downtime cost, engineering personnel
cost, and the cost of replacing machine parts during maintenance.
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In addition to the assumptions previously stated, the following also
apply:

+ An engineer may only carry out a single maintenance activity for
a specific fault at any given time;

Only three machine states are considered: ‘Running’, ‘Failed’ or
’Under Maintenance’;

A maintenance activity may start on a machine for a predicted
fault before the time of occurrence, further referred to as preven-
tative maintenance (PM);

Different times are allocated to preventative maintenance ac-
tivities and maintenance activities carried out after a fault has
occurred i.e. a machine already in a failed state requires longer
maintenance time (corrective maintenance, CM);

For any given time period, all machines must be in only one
state (Eq. (3)), and the total number of machines being simultane-
ously maintained must not surpass the available number of engineers
(Eq. (4)).

Z S =1 Vit 3)

ZS”,SN" Vse (M) )

In order to represent the states of each machine, and their tran-
sitions, over the time of consideration, Egs. (5)-(10) are introduced.
The state of machines at the first time period (+ = 0) are defined using
Egs. (5) and (7), with a machine in a failed state if a fault is predicted
to occur, else ‘Running’. The machine remains in a ‘Running’ state at
time ¢ except a failure occurs or maintenance activity begins (Eq. (6)).

Si/R’ >1-F, i0 Vi 5)
Si,’R’,t > Si,’R’,tfl - Si,’M’J - Si,’F’,t Vi, t>0 6)
Siipro>=Fo Vi @)

A machine may only be in a ‘Failed’ state at any time period if a
fault occurs (Eq. (8)), and it may only transition to the state 'Under
Maintenance’ (Eq. (9)).

Si/F’,t < Si,’F’,t—l + EZ Vijt>0 (8)

Si,’F’,t > Si,’F',tfl - Si,’M’J + Fit Vit>0 (©)]

Finally, the end of maintenance activities on a machine is tracked using
the binary variable Wy in Eq. (10).

SrM/ >S/M/II—W8 Vi, t>0 (10)

The start and end times of maintenance activities are tracked using
the binary variables W} and W,/ respectively, which are evaluated
using Eq. (11). Egs. (12) and (13) ensure these variables may only take
a value of 1 when the machine is under maintenance. Maintenance
activities may not also start and end at the same time period (Eq. (14)).

Wi =Wy 2 S — Sirmr-i Vit 11)
W3 < Sy Vit 12)

”_SIM/, 1 Vit (13)
WitWi<l Vit (14)

Given that faults on each machines are being predicted, it becomes
important to allow for preventative maintenance actions in the sched-
ule, as opposed to the traditional corrective maintenance actions after a
fault occurs. This feature is incorporated into the model using Eq. (15).

t+opP

< ZF’I_Z lt’

where v denotes the number of time periods before fault occurrence
maintenance activities are allowed to start for each fault.

Vit (15)
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As each machine can have a number of possible faults that can
cause failure with different cost implications for maintenance, it is also
important to predict each machine’s state per fault that occurs and
maintenance activity required. Eq. (16) evaluates the start and end
times of a maintenance action (PM or CM) for each fault that can
occur on a machine. The binary variable S,.’; , takes a value of unity
if a machine is currently under maintenance at time ¢ for fault f.

WS, —We 2 Sh —sh . VGHellt (16)

wi= Y Wy Vit a7
fia.ners

We= Y WG Vit (18)
fia.ners

It is assumed that only one fault is corrected during a maintenance
activity, hence the start time of a maintenance activity for a machine
(evaluated using I/V[f) can only be mapped to one fault (Eq. (17)). The
same applies to the end times of maintenance activities (Eq. (18)).

The binary variable S}, may only take a value of unity if a corre-
sponding fault is predicted to occur on a machine (Eq. (19)), and only
one fault is corrected (Eq. (20))

+opP
Ift— Z ift “Sitmra

V@i, fyell 19)

> osn, Vit (20)
fia.nets

N

A similar set of constraints to Egs. (19) and (20) are used to determine
when a machine is in a failed state for a specific fault (Egs. (21)-(22)).
In order to accurately calculate the downtime costs, Egs. (23) and (24)
are introduced. Eq. (23) determines if any machine under consideration
in the plant is in a failed state for each time period using the binary
variable gtf. In Eq. (24) on the other hand, the binary variable Srf only
takes a value of unity when a machine with a fault f which causes
plant shutdown is in a failed state.

Supa= Y, Sl Via (21)
fia.nert
t+vp?
S,f}, < W Sup,  YGNHel (22)
t'=0
- .
S, 2 S, Vit (23)
S > p .87 v (i VN 24
it 2 HipSiy el

In order to properly attribute maintenance duration’s for corrective and
preventative maintenance actions, Eqs. (25)-(32) are introduced. The
time difference between fault occurrence and the start of a maintenance
activity is determined using Eq. (25) when corrective (Kiff > 0) or
preventative maintenance occurs (Ki’} > 0) for each fault f on a
machine i.

Zr (Fl-WS) Yafel (25)
A binary variable, y; 75 which takes a value of 1 when PM actions are
performed is then evaluated using Eq. (26), and big M’ constraints
introduced to ensure only one of Ki/f and Kf/. take non-zero values for
each machine-fault pair.

vig Sk, YG.E 1’ (26)
K <M.y, VGHel @7)
Ko <M-(-pp VGNHel (28)

The number of contiguous times in which a machine with a particular
fault is under maintenance is then enforced using Eq. (29) depending
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on whether CM (M&) or PM (M ,.” f) actions are deemed optimal by the
model.

_ D ! f ! ) f
Si”}r =Yif Zﬁifan/i_sf,r—ﬂﬂ +- }’if) Zéifeu/i},r—sﬂ V. el
t t
29
where
f
1, t< M
[ _ > if i S
6, = Vi frel,t (30)
ift {0, 1> M,-/}
1, t<M?
& = if V@i, el (31)
ift 0, 1M

Finally, Eq. (32) enforces the maintenance times (corrective or
preventative) for each machine-fault pair only if the fault is predicted
to occur.

—rf p f .
ZSI.%—Fiﬂ(M,.fyif+Mif(l -7p))  YG@pel (32)
t
The objective function is defined by Eq. (33) and minimises the total
cost accrued by the plant over the time of consideration. It comprises
the sum of the plant downtime cost, machine downtime cost, personnel
and parts cost for every maintenance activity per machine-fault pair.

. ; ot re s .
mmZ(C".S[ +¢ 5+ ) C,.ef~VV,-},(1—}',-f)+C"~S,-,'M/,;>+N”
it fiG,Nels

(33)

subject to Egs. (3)-(32). This results in a mixed integer non-linear pro-
gramming (MINLP) model owing to the bilinear terms in Eq. (29) which
can be solved using popular MINLP or mixed integer quadratically
constrained programming (MIQCP) solvers.

4. Results
4.1. Predictive maintenance

As described in Section 2, this research analysed five machine
learning classification techniques and evaluated each using three pop-
ular classification error diagnostics. The standard measures considered
are Precision, Recall and the F1 Score, each calculated as weighted
averages based on the number of examples per class. An accuracy value
was not chosen due to the imbalance between classes as shown in
Table 1, where 3,233 test points are in the class “No Fault” out of
a total 3,770. Therefore, if the classification algorithm predicted “No
Fault” constantly would achieve an accuracy score of 85.76%. Each
error metric counts the number of true positive predictions, but the
precision score represents this as a ratio to all of the predicted positives,
whereas, the recall is the ratio to all actual positives. To combine them
both into one metric, the F1 scores weight both recall and precision
equally.

Table 3 show the weighted averages obtained for each of the ma-
chine learning methods. As can be seen, the best results were obtained
by the Quadratic Discriminant Analysis model due to it having the
largest value for the precision, the recall and the F1 score. The results
for all five machine learning models are satisfactory, but to get the best
from the maintenance policy, trust in the predicted faults is of highest
priority. Therefore, for the given case study, the Quadratic Discriminant
Analysis was the chosen classification model to predict the faults passed
on to the time estimation model.
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Table 3
Resulting diagnostic values from the predictive maintenance.
Precision Recall F1 score

Decision Tree 0.839 0.878 0.838
Random Forest 0.735 0.858 0.792
Neural Network 0.788 0.861 0.799
AdaBoost 0.736 0.858 0.793
Quadratic Discriminant Analysis 0.880 0.883 0.877

4.2. Time estimation model

Once the predictive maintenance model has been trained, the next
stage would be to ensure the time scheduled for maintenance is ac-
curately fed into the optimisation model. Hence, validation of a time
estimation model is of critical importance.

Once again, the case study was used to test five machine learn-
ing algorithms for regression, these being; Gaussian Processes, Neural
Network, Gradient Boosting, Support Vector Regression, and Random
Forest. Using these algorithms provides a variety of approaches that
are widely available for use (Pedregosa et al., 2011; Milton and Brown,
2019) and so increases the chances of finding the optimum model.

As previously stated in Section 3.3, the machine learning models
are tested using 15-fold cross-validation, ensuring every fault avail-
able as data were used for testing. Once again, three popular error
diagnostics were chosen to evaluate each regression technique. For
regression, these diagnostics were the coefficient of determination (R2),
the standardised root mean squared error (RMSE (-)), and the root
mean squared error of time (RMSE (hours)).

Table 4 presents the values calculated for the validation of each
method. Clearly, all five methods have an average R?, above 50% but
below 70%, providing an indication of the amount of variation in the
observed maintenance time ascribable to the estimated maintenance
time. The two RMSE diagnostics reveal the distance each prediction
is away from the true value on average using Eq. (34).

RMSE = (34)

However, the RMSE (-) compares standardised values calculated
using the mean and standard deviation of the data. Whereas, the
RMSE (hours) puts the error in the predictions into a more visual con-
text for time estimation using units of hours. The average actual work is
0.696 h, meaning an average offset of less than 0.35 h gives a 50% time
overlap to consider when setting work tasks. In comparison, previous
work from Khalid et al. (2020) has shown using traditional methods
the offset is 87%, but the research used machine learning algorithms to
reduce this to 73%. Therefore, although predictions are initially seen to
be satisfactory, the results from this time estimation investigation show
the techniques applied provide an improved accuracy in predicting the
maintenance time.

Importantly, Table 4 shows the Gaussian Process has the best per-
formance as it has the largest R?> value and lowest values for error.
As such, the Gaussian Process is chosen to be used in this case study
for a time-estimation model. Fig. 3 clearly shows the performance of
the Gaussian Process by plotting residuals of the predicted maintenance
hours vs the actual maintenance hours. It can be clearly seen that the
Gaussian Process performs exceptionally well, often predicting values
close to the observed time. However, a significant anomaly did occur
when the GP predicted a maintenance time of just 1 hour when the
true maintenance time was actually 2.2 h. This anomaly highlights the
importance of batch learning and cross-validation before implementing
an online policy.
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Fig. 3. The residuals predicted by the Gaussian Process regression model.
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Table 4
Resulting diagnostic values from the time prediction.

R squared Standardised RMSE RMSE (hours)
Gaussian Process 66.3% 0.600 0.202
Neural Network 57.9% 0.670 0.226
Gradient Boosting 56.9% 0.681 0.230
Support Vector Regression 51.8% 0.723 0.244
Random Forest 51.7% 0.720 0.243

4.3. Maintenance schedule optimisation

Following the preventative maintenance and time estimation model
implementation, we use these models’ outputs to obtain a cost optimal
maintenance schedule for the case study presented in Section 3.1.

The data implemented was split into three cases based on calendar
dates of fault occurrence. Figs. 4-6 shows the Gantt chart produced for
each case. Each case corresponded to a day’s worth of data showing
the machines and their relative time periods of fault occurrence with
each time unit corresponding to a five minute period. The maintenance
scheduling model was solved using Gurobi 9.0.3 on 2 threads of an Intel
i7-3615QM processor with 16 GB RAM.

In order to demonstrate the benefits of our proposed maintenance
policy two strategies are considered:

+ Condition-based scheduling — using predictive maintenance model
outputs and performs maintenance activities as soon as a fault
occurs based on available resources;

Our proposed workflow which extends the condition-based
scheduling allowing for preventative maintenance actions. Hence,
maintenance actions can be performed on machines before faults
occur, which lead to failures in a preventative manner. This
allows for a more flexible approach to maintenance and allows
for downtime cost savings and a reduced maintenance time.

The Gantt chart in Fig. 7 shows the results for Case 1 for the
condition-based scheduling strategy. Using the preventative mainte-
nance model predictions, and performing maintenance only at the point
of, or after, a fault occurs, a total cost of £8,196 was obtained requiring
three engineers during the period of consideration. A reduced cost
of £7,322 however, is obtained using our proposed strategy with the
same number of personnel (Fig. 8). This is as preventative maintenance
actions for faults detected take shorter times translating to reduced
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man-power costs, as well as a cost saving on parts replacement, overall
reducing costs by 10.7%.

Similar sets of results are observed for Case 2 for the condition-
based (Fig. 9) and preventative maintenance scheduling (Fig. 10) strate-
gies. A cost reduction of up to 44% was obtained, which can be
attributed not only to the difference in maintenance times for pre-
ventative and corrective maintenance actions, but also to the reduced
number of engineering personnel required for the time period in ques-
tion. As in Case 1, but also more obvious in the current case, our
proposed maintenance strategy also leads to a shorter completion time
despite the reduced number of personnel. This allows for additional
production hours for the plant which can lead to higher revenues
and/or flexibility of plant operation.

In Case 3 with a smaller number of machines subject to predicted
faults, Fig. 11 shows the cost optimal maintenance schedule when fail-
ures are corrected at the point of or after occurrence. A 25% reduction
in cost is also observed with a reduced number of personnel when
our preventative maintenance strategy is adopted instead (Fig. 12).
In each of these three cases, it becomes evident that obtaining opti-
mal schedules for preventative maintenance tasks (in comparison to
condition-based maintenance) leads not only to a general reduction

in costs via reduced total maintenance times, but also to possible
reduction in the number of personnel required.

5. Conclusion

A poor maintenance system can be catastrophic to an industrial
plant’s performance and safety. In this paper, we propose a novel
methodology to be used in industry to create an optimum mainte-
nance schedule. The methodology utilises the abundance of data made
available due to Industry 4.0 by combining various machine learning
methods to create an optimum maintenance schedule.

The proposed framework consists of three stages, predictive mainte-
nance, maintenance time estimation and optimisation. In this research,
the main objective of this work is to build such a methodology and in-
vestigate each stage as a proof of concept. Due to the lack of availability
of real-data, we applied the proof of concept investigation to a Fis-
chertechnik (FT) simulation model (Klein and Bergmann, 2019). Thus,
each stage of the algorithm was investigated through batch training,
whereas, in a real application, we would recommend this batch training
approach before implementing an online version to ensure validation
of the best machine learning model is chosen to fit the plant’s data.



A.S. Yeardley et al

- Running

txt17 | Pneumatic lift

- Failure

Computers and Chemical Engineering 166 (2022) 107958

- Maintenance

10:17 13:53 17:29 21:05 00:41 04:17 07:53 11:29 15:05

-3

Time

PM- X

Fig. 7. Case 1 results — No preventative maintenance.

@ txt18 | Pneumatic lift
£
Q
©
= txt16| M3
©
g
<
= txt15 | M1
©
[
txtl7 | Transort Workpiece
% - £8’]-96
- Running
txt17 |Pneumatic lift
o txt18 | Pneumatic lift
et
£
O
©
s txt16 | M3
o
=
. txt15 | M1
c
©
a

txt17 | Transort Workpiece

- Failure

- Maintenance

10:17 13:53 17:29 21:.05 00:41 04:17 07:53 11:29 15:05

W - £7322

i -3

Time

PM-vV

Fig. 8. Case 1 results — With preventative maintenance.

The algorithm describing the maintenance policy was robustly
tested by investigating the three steps of the framework. First, the
popular method of predictive maintenance was analysed by comparing
five readily available machine learning methods to ensure faults occur-
ring in the FT plant can be identified. In this work, the demonstration
of methodology, training and validation of machine learning meth-
ods, is vital to understanding how the maintenance policy begins its
successful implementation. The predictive maintenance results showed
the Quadratic Discriminant Analysis model to be superior of the five
methods as it has the largest value for the precision, the recall and the
F1 score. Therefore, the Quadratic Discriminant Analysis was chosen to
identify faulty machines and share predictions to get the best from the
maintenance policy.

The second stage of the algorithm requires accurate predictions to
ensure the final proposed schedule can be followed without delays.
Here, we addressed a gap in literature by investigation maintenance
time estimation models. Once again, the method was demonstrated
using five regression techniques that use historical data from the FT
plant to map the sensor readings to the time it takes to fix a fault
before failure occurs. Results found the Gaussian Process (Yeardley

et al., 2020, 2021) to be the best performing machine learning method,
often predicting values close to the observed time.

At the final stage, the FT model data was split into three cases based
on calendar dates of fault occurrence. To demonstrate the benefits of
the proposed maintenance policy, the maintenance schedules of the
three cases were optimised using condition-based scheduling and our
proposed strategy. The results of the optimisation provided high quality
maintenance schedules and evidence that preventative maintenance ob-
tains schedules with a lower cost, personnel requirement and/or overall
maintenance times when compared to condition-based maintenance.

The workflow presented in this work could readily be applied to
reduce maintenance costs; however, first, to assess its efficacy at a
wider scale it would be beneficial to apply this data to other case
studies based on real industrial plant data. Further, the workflow could
be implemented in an online environment that allows data to flow
automatically to update maintenance schedules.

Nomenclature

The abbreviations and symbols used are defined as follows:
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Abbreviations/Acronyms

CM Corrective Maintenance

PM Preventative Maintenance

MINLP Mixed Integer Non-linear Programming
Indices

f fault description

i devices/machines

s device/machine state

t time/period

Set

I devices/machines

1’ ordered pairs of device and possible faults
S set of possible device/machine states

T set of time/periods

Parameters
Hif

PP

0,1 parameter denoting if fault f on device i causes the
plant to shutdown

0,1 parameter denoting if preventative maintenance is
allowed

number of times period before fault occurrence
maintenance is allowed to start

personnel/engineer cost per hour

cost of device parts for replacement for fault f in
device i

plant downtime cost per hour

device downtime cost per hour

0,1 values denoting time device i fails
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0,1 values denoting time fault f occurs on device i

a ’big’ number

time taken for maintenance on item i

time taken for maintenance on item i for fault f after
failure occurs

time taken for preventative maintenance on item i for
fault f on fault detection

Binary variables

Vif

1 if preventative maintenance occurs on device i for
fault f; O otherwise

1 if device i is in state s at time ¢; O otherwise

1 if any device is in a failed state at time ¢ and causes
the plant to shutdown; 0 otherwise

1 if any device is in a failed state at time #; O otherwise

Siff ; 1 if device i is currently in a failed state for fault f at
time f; O otherwise

Si'; . 1 if device i is currently under maintenance for fault f
at time f; 0 otherwise

Wy 1 if maintenance is completed on device i at time f; 0
otherwise

lef , 1 if maintenance is completed on device i for fault f at
time #; O otherwise

w; 1 if maintenance starts on device i at time #; 0
otherwise

W‘Sf/ : 1 if maintenance starts on device i for fault f at time ¢;
0 otherwise

Integer variables

NP number of technicians available for maintenance
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Continuous variables

K':.U - difference in time periods between the time of fault
occurrence and the start of maintenance for
preventative maintenance actions

K difference in time periods between the time of fault
occurrence and the start of maintenance for corrective
maintenance actions
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