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A Quantum Theory with Non-Collapsing Measurements

Vincenzo Fiorentino∗, Stefan Weigert

aDepartment of Mathematics, University of York, York, YO10 5GH, United Kingdom

Abstract

A collapse-free version of quantum theory is examined to systematically study
the role of the projection postulate. This foil theory assumes “passive”
measurements that do not update quantum states although measurement
outcomes still occur probabilistically, and in accordance with Born’s rule.
The Hilbert space setting of quantum theory is retained. “Passive quan-
tum theory” is shown to reproduce preparational uncertainty relations, the
no-cloning theorem, and no-signalling, among other properties. Striking dif-
ferences occur, however, if protocols involve post-measurement states. For
example, a single system, rather than an ensemble, is sufficient to reconstruct
the state of the system. The possibility to “observe” a state increases the
computational power of some quantum algorithms. Passive quantum theory
is not locally tomographic but capable of “simulating” quantum measure-
ments modulo a finite delay. Outcome probabilities for composite systems
may violate Bell inequalities, without however entailing an argument against
local hidden variables.

1. Motivation

Experimental evidence for the state update of a quantum system induced
by measurements was available since 1925. Using a cloud chamber, Compton
and Simon [1] studied the scattering of “x-ray quanta” by electrons. They
discovered that the angle characterizing the path of the recoiling electron and
the angle of the photon scattering direction are strongly correlated. Knowing
one of them is sufficient to determine where the particles interacted. These
“position measurements” can be carried out in arbitrary temporal order.
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According to von Neumann [2], this experiment implements two subse-
quent measurements of one single observable, namely the spatial coordinate
of the interaction locus. The measurements of the angles can happen in quick
succession and lead to identical results. The resulting deterministic repeata-

bility is argued by von Neumann to be equivalent to assuming the projection
postulate: immediately after measuring a non-degenerate observable, a quan-
tum system will reside in the unique eigenstate associated with the observed
outcome. In principle, Nature could have decided to realize other relations
between the outcomes of two identical consecutive measurements in quick
succession. Von Neumann mentions two options. Either a deterministic

mechanism could control the measurement outcomes (this assumption effec-
tively amounts to the existence of hidden variables), or the outcomes of the
second measurement could be governed by the same probability distribution
as the outcomes of the first.

In this paper, we investigate a quantum-like theory that realizes von
Neumann’s second option: measuring an observable causes no update of
the state of the system. All other features of quantum theory, such as its
setting in Hilbert space and the Born rule, are retained. The resulting passive
quantum theory (pQT) shares many features with standard quantum theory
but is manifestly different from it. As a foil theory, pQT does not aim to
reproduce quantum theory, unlike unitary models that try to eliminate the
projection postulate.

One of our main motivations is to examine the role of the projection
postulate in quantum theory: it should become evident which properties
cease to hold when the collapse is suspended. This scenario has not yet been
investigated systematically; Sec. 6.2 briefly summarizes earlier work relevant
to our approach. Our study is, in fact, a first step towards investigating
operationally consistent, quantum-like theories in which the familiar state-
update rule of quantum theory is replaced by another rule [3].

2. Passive quantum theory

Five axioms define a bare-bones version of (non-relativistic) quantum
theory. Four of these axioms describe the mathematical framework of the
theory: (S) the states of a quantum system correspond to rays |ψ⟩ in a
separable, complex Hilbert spaceH and to their probabilistic mixtures ρ; (O)
observables are represented by Hermitean operators Â acting on the space
H; (T ) the time evolution of quantum states is governed by Schrödinger’s
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equation; (C) the state space of a composite system is obtained by tensoring
the Hilbert spaces of its constituent parts.

The fifth axiom M relates theory to experiment. Its three parts specify
(M1) the measurement outcomes (the eigenvalues ar of the measured ob-
servable Â), (M2) the probability with which they will occur1 (Born’s rule:
pA(ar) = |⟨ar|ψ⟩|

2 for non-degenerate Â), and (M3) the post-measurement

states (the eigenstates |ar⟩ of Â when ar has been observed). As a mapping,
the projection postulate M3 states that

|ψ⟩
ar−→ P̂r|ψ⟩/

√

⟨ψ|P̂r|ψ⟩ , (1)

where P̂r = |ar⟩⟨ar| projects onto the state |ar⟩. The quantum states undergo
non-linear transformations.

The model pQT is defined by the same set of postulates as quantum
theory, except for the state-update rule M3. It will be convenient to refer to
states and measurements in pQT as p-states and p-measurements etc. The
modified projection postulate reads

M′

3
: A system resides in the same p-state |ψ⟩ before and after mea-
suring an observable Â.

Thus, p-states undergo a linear transformation when measurements are car-
ried out,

|ψ⟩
ar−→ |ψ⟩ . (2)

Our main goal is to investigate the consequences of replacing rule (1) by (2).

3. Single p-systems

3.1. Uncertainty relations

The predictions of standard quantum theory and pQT agree as long as
post-measurement states are neither used nor referred to. The expectation
value of an observable Â in pQT, for example, can be determined just as

1We emphasise that Axiom M2 is understood to assign outcome probabilities to each
individual measurement; on its own, it does not account for correlations between outcomes
of multiple measurements carried out sequentially or by distinct parties in composite sys-
tems. This distinction proves significant when examining modifications of M3 in Sec.
6.
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in quantum theory: the eigenvalue ar of the observable Â will occur with
probability pA(ar) upon measuring it repeatedly on an ensemble of systems
each of which resides in the p-state |ψ⟩. Hence, preparational uncertainty re-
lations [4, 5] for the variances of non-commuting observables do hold in pQT.
It follows that the inequalities exist solely due to the probabilistic character
of measurement outcomes—state changes caused by quantum measurements
cannot be their source. This property of pQT represents an independent
argument against any disturbance-based interpretation of preparational un-
certainty relations in quantum theory.

In other words, Heisenberg’s original plausibility argument—measuring
the position of an electron will cause an uncertainty of its momentum, due to
an uncontrollable state change [6]—is invalid for preparational uncertainties.
Heisenberg’s classically inspired reasoning needs to be justified in terms of
measurement uncertainty [7, 8].

Replacing projective measurements by passive ones also suppresses the
well-known dual role of quantum mechanical measurements. On the one
hand, their outcomes provide information about the measured state; on the
other hand, they will, generally, leave the system in a different, possibly pure
state. In contrast, passive measurements cannot be used to “prepare” states
in this sense, and, a fortiori, will also not “disentangle” an entangled state
of a multipartite system (cf. Sec. 4.2).

It becomes obvious that pQT will deviate from quantum theory whenever
post-measurement states play a role. For example, the expectation value of
an observable may be obtained in pQT from a single copy of a p-state |ψ⟩, in
contrast to the ensemble needed in quantum theory. Since a (non-destructive)
passive measurement of Â does not update a p-state, it is possible to repeat
it on one and the same system as often as is necessary to determine the
outcome probabilities pA(ar) = ⟨ψ|P̂r|ψ⟩. This observation has far-reaching
consequences.

3.2. Single-copy state reconstruction

Both a quantum state and a p-state correspond to a unique ray in the
Hilbert space of the system. However, they differ from an operational point
of view: the collapse-free theory allows us to reconstruct an unknown p-state
|ψ⟩ from a single system [9, 10, 11]. To identify the ray in Hilbert space
associated with |ψ⟩, one simply repeats p-measurements of an informationally
complete set of observables [12, 13, 14] on the given system, without the need
for an ensemble.
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What is more, an experimenter can tell apart any two distinct non-
orthogonal p-states |ψ⟩ and |ϕ⟩ with certainty, even when being presented
with a single copy only. Successful state reconstruction and discrimination
based on a single copy of the unknown state means that p-states represent
observable, classical quantities. From an ontological point of view, this “re-
ality” of p-states in pQT removes notorious interpretational issues posed by
quantum states.

The absence of state updates after p-measurements means that only a
single dynamical law exists in pQT, described by Axiom T . Hence, the ten-
sion between the unitary dynamics of a quantum system and its “stochastic”
time evolution caused by measurements is entirely absent in pQT. Attempts
to eliminate the non-deterministic evolution from quantum theory have a
long history, ranging from models which consider the measurement device as
a quantum system [2, 15] to alternative interpretations of the theory [16, 17].
In pQT, this problem does not arise. Nevertheless, part of the measurement
problem persists in the sense that Axiom T appears insufficient to explain
the emergence of specific measurement outcomes.

3.3. Density operators

Gleason’s theorem [18] tells us that mixed states emerge naturally in the
Hilbert space setting of quantum theory. The proof of the theorem, based on
associating measurement outcomes with projection operators, remains valid
in pQT. Thus, non-negative Hermitean operators with unit trace also repre-
sent candidates for states in pQT. However, their interpretation as mixtures

of pure quantum states cannot be upheld in pQT as it is possible to identify
an unknown p-state |ψ⟩ by carrying out single-copy state reconstruction, at
least in principle [9]. If the ignorance contained in the classical probability of
a p-density operator can always be removed, proper (or epistemic) mixtures
do not represent a fundamental concept in pQT.

However, improper p-density matrices still play a role in pQT. They arise
if an observer can access only a part of a larger p-system, just as in quantum
theory. To see this, we need to discuss the behaviour of composite systems
when p-measurements are carried out. For simplicity, we will limit ourselves
to bipartite systems.
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4. Composite p-systems

4.1. Measurements

The pure states |Φ⟩ of a bipartite quantum system are elements of the
space HAB = HA⊗HB (cf. Axiom C). The corresponding bipartite p-system
has the same state space. The mathematical distinction between product
states and entangled states in the space HAB applies equally to pQT and
quantum theory.

An experimenter who has access to a part of a composite system only
can still measure “local” observables, using a “local” device. This situation
is characteristic for Bell-type experiments. Having observed the outcome ar
upon measuring the observable Â, a suitable projection operator describes
the update of the initial quantum state |Φ⟩,

|Φ⟩
ar−→ P̂r ⊗ I|Φ⟩/

√

⟨Φ|P̂r ⊗ I|Φ⟩ . (3)

In contrast, a p-measurement of the local observable Â does not cause
the p-state |Φ⟩ to update if we extend the map (2) to states of a composite
system and arbitrary measurements performed on them. In quantum theory,
the probability to obtain the value ar is found from repeated measurements
on an ensemble of systems in state |Φ⟩,

pA(ar) = ⟨Φ|P̂r ⊗ I|Φ⟩ . (4)

In pQT the value of the probability pA(ar) can be found from repeated mea-
surements of Â on a single system. Quantum theory and its foil predict the
same numerical value pA(ar).

Interestingly, given a single physical system, local p-measurements on a
subsystem can reveal whether the composite system resides in a product state
|ϕA⟩ ⊗ |ϕB⟩ or in an entangled state |Φ⟩: single-copy state reconstruction
will return either the p-state |ϕA⟩ or the mixed p-state ρA = TrB|Φ⟩⟨Φ|,
respectively. In this case, the use of a p-density matrix ρA is both necessary
and justified since it provides the correct description of the subsystem as seen
by a local observer.

4.2. Joint probabilities

Passive measurements on subsystems do not create correlations between
entangled systems since they do not collapse p-states. Therefore, local p-
measurements cannot reveal the probabilities of joint outcomes which are es-
sential to probe Bell-type inequalities. Global p-measurements must be used
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to extract joint outcome probabilities which may violate Bell-type inequal-
ities. However, a violation would not imply the existence of non-classical
correlations and, hence, could not be used to rule out the existence of local
hidden variables. It is also impossible to reconstruct entangled p-states from
local p-measurements which means that pQT is not locally tomographic.

5. Quantum information with passive measurements

5.1. Cloning p-states

The no-cloning theorem [19, 20] states that it is impossible to dynamically

generate copies of an unknown quantum state, i.e. through the application
of unitary gates. This result also holds in pQT since no quantum measure-
ments are required to derive it. However, an alternative cloning procedure
exists which requires a single system only. Once the state of a p-system
has been revealed by single-copy state-reconstruction, another system can be
prepared in the observed p-state. In quantum theory, such a measurement-
based copying procedure would require an ensemble of identically prepared
systems.

5.2. Teleportation, quantum cryptography and quantum computation

The state update induced by quantum measurements is essential for
many protocols of quantum information. Teleportation [21] and entangle-
ment swapping [22], for example, rely on system-wide state changes as a
result of local measurements. Thus, they will no longer work in pQT. The
impossibility to “steer” the state of a distant subsystem means that quan-
tum key distribution protocols based on entangled states are also ruled out.
At the same time, single-copy state reconstruction would allow for perfect
eavesdropping on p-states, i.e. without leaving a trace.

Collapse-free measurements also modify the computational power of quan-
tum theory. Measurement-based quantum computation [23] is evidently im-
possible in pQT. In contrast, p-algorithms based on “quantum parallelism”
turn out to be more powerful than their quantum counterparts since the out-
put of a quantum circuit is “observable” via single-copy state reconstruction
[24, 25].

To see this, let us consider the quantum algorithms by Deutsch and Jozsa,
Grover, and Simon [26, 27, 28], for example. They are based on oracles which
“evaluate” a function f(x) by means of a unitary operator, Ûf : |x, 0⟩ →

|x, f(x)⟩. Acting with the operator Ûf on the linear combination |s⟩ =
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2−n/2
∑

2
n
−1

x=0
|x, 0⟩, the output state will carry information about all values

of the function f(x). A projective measurement on the state Ûf |s⟩ will,
however, reveal at most one value of f(x), necessitating further calls to the
oracle.

In the absence of projective measurements, however, all values f(x) can
be extracted from the final p-state Ûf |s⟩ by reconstructing it from a single

copy. Hence, within pQT a single call to the oracle is sufficient to obtain
the result of the computation. This substantial reduction in computational
cost is accompanied by a large increase in measurement complexity that is
difficult to quantify.

Quantum measurements on their own, i.e. without the need for a circuit,
allow one to directly access and extract the eigenvalues of any Hermitean
matrix [29]. The protocol only depends on the production of measurement
outcomes, not on assigning a specific post-measurement state. Consequently,
p-measurements also possess this particular computational power. What is
more, all eigenvalues can be obtained from a single p-state rather than an
ensemble as required in the quantum setting.

5.3. Instruments

The collapse of a quantum state upon measuring an observable Â =
∑

r arP̂r has a convenient description in the language of quantum instru-
ments. The Lüders instrument consists of a collection of maps {ωL

1
, ωL

2
, . . .},

each sending the initial state ρ to the appropriate (un-normalised) post-
measurement state,

ρ
ar−→ ωL

r (ρ) = P̂rρP̂r , (5)

conditioned on the outcome ar. The trace of the map ωL

r equals the outcome
probability, Tr[ωL

r (ρ)] = pA (ar). Projective measurements act non-linearly

on the elements |ψ⟩ of Hilbert spaceH (cf. Eqs. (1) and (3)) while the Lüders
instrument acts linearly on density matrices. More generally, quantum in-

struments consist of linear, completely positive maps [30] of density matrices,
all of which can be realised by the Lüders instrument with post-processing
[31].

In contrast, pQT is linear at the level of p-states, |ψ⟩
ar→ |ψ⟩. The maps

{ωP

1
, ωP

2
, . . .} defining the associated p-instrument act non-linearly on density

matrices,
ρ

ar−→ ωP

r (ρ) = Tr[P̂rρP̂r]ρ . (6)
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Thus, for a pair of density matrices ρ1 ̸= ρ2, we find

ωP

r (λρ1 + (1− λ) ρ2) ̸= λωP

r (ρ1) + (1− λ)ωP

r (ρ2) , λ ∈ (0, 1) . (7)

This inequality captures the distinguishability of proper and improper mix-
tures in pQT. Operationally, its left-hand side corresponds to performing a
measurement on the improper mixture ρ = λρ1 + (1− λ) ρ2; the right-hand
side describes the effect of a passive measurement on the proper mixture of
ρ1 and ρ2 with weights λ and (1− λ), respectively.

5.4. Linearity and no-signalling

A non-linear time evolution of quantum states would, in combination with
projective measurements on entangled states, enable superluminal commu-
nication [32, 33, 34]. This result, known as Gisin’s argument, is based on
the fact that different convex combinations of quantum states can be used to
describe one and the same mixed state. Using local measurements, an exper-
imenter steers the state of the remote part of a bipartite system into one of
two distinct convex combinations corresponding to the same mixed state at
the other location. Assuming a non-linear quantum time evolution, a space-
like separated observer could subsequently distinguish these decompositions,
leading to signalling. However, some fine-tuned non-linear time evolutions
cannot be ruled out by Gisin’s argument [10, 35, 36]. In other words, the
linearity of quantum instruments ensures the peaceful coexistence of the in-
stantaneous, non-local collapse and special relativity.

Alternative state-update rules (rather than alternative time evolutions)
may also result in non-linear transformations of joint and reduced states.
Any modification leading to signalling would be unphysical. In pQT, mea-
surements have no effect on p-states making them entirely unsuitable for
signalling.

5.5. Simulating quantum theory

We now show that a physical system realizing pQT can simulate mea-
surements performed on a quantum system, modulo a finite time delay. Re-
call that after a standard quantum measurement of the observable Â with
(non-degenerate) outcome ar, the measured system is known to reside in the
associated eigenstate of Â. This is the scenario we wish to replicate.

First, consider the measurement of a non-degenerate observable Â on
a single-partite system in an unknown p-state |ψ⟩. If the outcome ar is
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obtained, then the experimenter simply replaces the system that continues
to reside in the p-state |ψ⟩ by another one residing in the p-state |ar⟩. Then,
the post-measurement situation is identical to the one in which a quantum
measurement with outcome ar has occurred. An observer without access
to the experimenter’s lab could not tell apart this procedure from a proper
quantum measurement.

However, substituting the state |ψ⟩ by |ar⟩ will take a finite amount of
time. This “replacement” time cannot be made arbitrarily small: if the
experimenter generates the state |ar⟩ from a given state |χ⟩ by applying
an appropriate unitary, “quantum speed limits” [37] kick in. Even if the
experimenter were to prepare a collection of the eigenstates of the observable
Â in advance, the “instantaneous” projection cannot be reproduced since
identifying the state |ar⟩ in the set and physically replacing |ψ⟩ by it will
take time.

To reproduce the effect of a local measurement performed on a bipartite

quantum system HAB within pQT, the experimenter must, in fact, be able
to access all parts of the p-system. Having obtained the (non-degenerate)
outcome ar upon measuring the local observable Â on a known entangled
p-state |Φ⟩, the observer needs to substitute |Φ⟩ by the appropriate product
state |ar⟩ ⊗ |ψ⟩, generated by the quantum mechanical update rule. To
identify the correct factor |ψ⟩, the experimenter must reconstruct the p-
state |Φ⟩ through global measurements, i.e. by using devices implementing
operators of the form Â ⊗ B̂. Only then will it be possible to produce the
correct post-measurement state.

6. Conclusions

6.1. Summary and discussion

We have presented a collapse-free foil theory of quantum mechanics char-
acterized by measurements that produce outcomes in line with Born’s rule
but do not update the state of the measured system. The resulting passive

quantum theory is a unique tool to investigate the role of the projection pos-
tulate. The predictions of pQT agree with those of quantum theory as long
as post-measurement states are not used or looked at. Any deviation from
the properties of quantum theory must be a consequence of the assumption
that states do not collapse when performing measurements in pQT.

Passive quantum theory does not represent an interpretation of quantum
theory. Proposals of unitary quantum mechanics, such as modal interpreta-
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tions [17] including Bohm’s theory [38] and the relative-state approach [16],
aim to remove the need for collapsing quantum states without changing the
predictions of quantum theory. Many predictions of pQT differ from those
of quantum theory.

Is it logically consistent to modify the standard projection postulate?
To do so, it must be independent from the other postulates. Ozawa has
given a justification of the quantum instrument formalism for describing
state-updates through Bayesian inference [39], without requiring a separate
collapse postulate. The derivation relies, however, on using the quantum-
mechanical joint probability formula for local measurements, which does not
hold in pQT. In a sense, the author adopts a stronger interpretation of Ax-
iom M2 (cf. Sec. 2) than the one used explicitly by us (and implicitly by
other authors [10, 11, 24, 42] where M3 is modified). The stronger interpre-
tation of Born’s rule is assumed to govern not only individual measurement
outcomes but also correlations between local measurements carried out by
different experimenters with access to parts of a composite system only. The
independence of the quantum mechanical state-update from the other pos-
tulates has also been questioned in [40] but continues to be debated [41, 42]
(cf. Sec. 6.2).

Here are the main differences between pQT and quantum theory we have
identified. The possibility of single-copy state reconstruction turns p-states
into observable quantities so that any time-evolved state—such as the out-
put of a quantum circuit—can be accessed directly in pQT. Therefore, the
number of calls to oracles in well-known quantum algorithms can be reduced
considerably; the computational power of these algorithms and their cost
must be evaluated anew. Single-copy state reconstruction also implies that
passive quantum theory can, in principle, simulate quantum theory including

the collapse, except for an inevitable finite delay in updating the measured
state. In contrast, quantum theory cannot simulate pQT.

In standard quantum theory, projective measurements can be used to
prepare specific states. In pQT, a desired state can only be prepared dynam-

ically, i.e. by suitably evolving a known state in time.
As is well-known, proper and improper mixtures of quantum states are

indistinguishable. Their equivalence turns out to be a consequence of the
quantum mechanical projection postulate. The collapse-free measurements
of pQT, however, allow one to reveal each of the individual states form-
ing a proper mixture. Therefore, these mixtures can be distinguished from
improper ones which are still required in order to describe the state of a sub-
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system. In other words, in pQT only improper mixtures are a fundamental
concept.

In quantum theory the observable Â ⊗ B̂ can be measured by a single
global device DAB, or by two local devices DA and DB supplemented by
classical communication. The equivalence of the physically different mea-
surement scenarios is a consequence of the way we understand the update
rule defined by the projection postulate. In pQT, these two measurement
scenarios lead to entirely different outcome statistics.

6.2. Related work

A key feature of passive measurements is the possibility to determine an
unknown quantum state without disturbing it. Consequences of this idea
have occasionally been addressed in the literature. In his 1997 paper [9],
Busch augments quantum theory by adding a hypothetical procedure to it
that allows one to directly observe the density operator of an individual

quantum system. He shows that the proposed individual state determination

(ISD) is incompatible with standard quantum theory: it becomes possible to
distinguish between proper and improper mixtures and to send superluminal
signals when combining ISD with standard, collapse-inducing measurements.

In 2005, hypothetical read-out devices that implement Busch’s ISD pro-
cedure by providing access to the so-called “local state” of a single system
were introduced independently by Kent [10, 24]. Measurements performed
with such devices can effectively generate non-linear transformations of states
without permitting superluminal signalling, thereby circumventing Gisin’s
argument [32]. The stochastic eigenvalue read-out device appearing in [24]
effectively implements passive measurements, and a theory featuring only
devices of this type was briefly mentioned in [42]. Read-out devices have also
been used to argue that the quantum mechanical state-update rule cannot
be derived from the other postulates of quantum theory [42].

Aaronson et al. augment, in 2016, quantum theory by non-disturbing, i.e.
passive measurements to explore their potential computational advantages
[11]. They consider a scenario in which passive measurements may be per-
formed at intermediate stages of a quantum circuit, without their output
feeding back into the circuit. It turns out that this additional resource does
not enable efficient solutions of NP-hard problems.

Thus, most of the earlier work involving passive measurements can be
characterized as ISD-augmented quantum theory. The focus of our contribu-
tion is, in contrast, on the properties of pQT, an ISD-only quantum theory in
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which non-disturbing measurements replace projective measurements rather
than coexist with them.

6.3. Outlook

It will be instructive to investigate the consequences of passive measure-
ments more comprehensively, including other quantum information protocols
and concepts such as contextuality, POVMs and generalised instruments [43].
It will also be important to clarify the extent to which pQT is a non-classical

theory—does a description in terms of hidden variables exist?
Passive measurements clearly represent just one alternative to the projec-

tion postulate of quantum theory. Thus, a more general framework is called
for, aiming to establish acceptable state-update rules based on operational
requirements such as the uniqueness of post-measurement states and no-
signalling. In such a family of foil theories [3], an intriguing question arises:
can we identify physical principles which single out the quantum mechanical
projection postulate within a larger set of alternatives?
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