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1. Introduction

In the paper all rings are unital. When we say ring we mean a K-algebra over a 

commutative ring K that belongs to the centre of the ring.

The goal of the paper is to start to develop the most general theory of one-sided 

fractions. For that the following new concepts are introduced: the almost Ore set, the 

localizable set and the localizable perfect set. Their relations are given by the chain of 

inclusions:

{Denominator sets} ⊆ {Ore sets} ⊆ {almost Ore sets} ⊆ {perfect localizable sets}

⊆ {localizable sets}.

The ring R〈S−1〉. Let R be a ring and S be a multiplicative set in R (that is SS ⊆ S, 

1 ∈ S and 0 /∈ S). Let R〈XS〉 be a ring freely generated by the ring R and a set 

XS = {xs | s ∈ S} of free noncommutative indeterminates (indexed by the elements of 

the set S). Let us consider the factor ring

R〈S−1〉 := R〈XS〉/IS (1)

of the ring R〈XS〉 at the ideal IS generated by the set of elements {sxs−1, xss −1 | s ∈ S}.

The kernel of the ring homomorphism

R → R〈S−1〉, r �→ r + IS (2)

is denoted by ass(S) = assR(S). The ideal assR(S) of R has a complex structure, its 

description is given in Proposition 2.12 when S is a left localizable set. Lemma 1.2, 

Proposition 1.1.(1) and its proof describe a large chunk of the ideal assR(S), which is 

the ideal a(S). The proof of Proposition 1.1 contains an explicit description of the ideal 

a(S). The ideal a(S) is the key part in the definition of perfect localizable sets.

Localizable sets.

Definition. A multiplicative set S of a ring R is called a left localizable set of R if

R〈S−1〉 = {s−1r | s ∈ S, r ∈ R} �= {0}
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where R = R/a, a = assR(S) and S = (S + a)/a, i.e., every element of the ring R〈S−1〉

is a left fraction s−1r for some elements s ∈ S and r ∈ R. Similarly, a multiplicative set 

S of a ring R is called a right localizable set of R if

R〈S−1〉 = {rs−1 | s ∈ S, r ∈ R} �= {0},

i.e., every element of the ring R〈S−1〉 is a right fraction rs−1 for some elements s ∈ S

and r ∈ R. A right and left localizable set of R is called a localizable set of R.

The sets of left localizable, right localizable and localizable sets of R are denoted by 

Ll(R), Lr(R) and L(R), respectively. Clearly, L(R) = Ll(R) ∩ Lr(R). In order to study 

these three sets simultaneously we use the following notation L∗(R) where ∗ ∈ {l, r, ∅}

and ∅ is the empty set (L(R) = L∅(R)). Let

ass L∗(R) = {assR(S) | S ∈ L∗(R)}. (3)

For an ideal a of R, let L∗(R, a) = {S ∈ L∗(R) | assR(S) = a}. Then

L∗(R) =
∐

a∈ass L∗(R)

L∗(R, a) (4)

is a disjoint union of non-empty sets.

The ideals a(S), ′a(S) and a′(S). For each element r ∈ R, let r· : R → R, x �→ rx and 

·r : R → R, x �→ xr. The sets ′CR := {r ∈ R | ker(·r) = 0} and C′
R := {r ∈ R | ker(r·) = 0}

are called the sets of left and right regular elements of R, respectively. Their intersection 

CR = ′CR ∩ C′
R is the set of regular elements of R. The rings Ql,cl(R) := C−1

R R and 

Qr,cl(R) := RC−1
R are called the classical left and right quotient rings of R, respectively. 

Goldie’s Theorem states that the ring Ql,cl(R) is a semisimple Artinian ring iff the ring 

R is semiprime, udim(R) < ∞ and the ring R satisfies the a.c.c. on left annihilators 

(udim stands for the uniform dimension).

Proposition 1.1. Let R be a ring and S be a non-empty subset of R.

1. Suppose that there exists an ideal b of R such that (S + b)/b ⊆ CR/b. Then there is 

the least ideal, say a = a(S), that satisfies this property.

2. Suppose that there exists an ideal b of R such that (S + b)/b ⊆ ′CR/b. Then there is 

the least ideal, say ′a = ′a(S), that satisfies this property; and ′a(S) ⊆ a(S).

3. Suppose that there exists an ideal b of R such that (S + b)/b ⊆ C′
R/b. Then there is 

the least ideal, say a′ = a′(S), that satisfies this property; and a′(S) ⊆ a(S).

For a multiplicative set S in a ring R, we fix the following notation (unless it is stated 

otherwise): ′a = ′a(S) and a′ = a′(S) (see Proposition 1.1),



V.V. Bavula / Journal of Algebra 610 (2022) 38–75 41

′R := R/′a, ′π : R → ′R, r �→ ′r = r + ′a, ′S = ′π(S), (5)

R′ := R/a′; π′ : R → R′, r �→ r′ = r + a′, S′ = π′(S). (6)

The proof of Proposition 1.1 is given in Section 2. The ideals a(S), ′a(S) and a′(S) are 

defined in an explicit way, see (10), (11) and (12), respectively. They play an important 

role in the proofs of many results of this paper.

Lemma 1.2. Given S ∈ L∗(R) where ∗ ∈ {l, r, ∅}. Then assR(S) ⊇ a(S) where a(S) is 

the least ideal of R such that (S + a(S))/a(S) ⊆ CR/a(S), see Proposition 1.1.(1).

The structure of the ring R〈S−1〉 and its universal property. Let R be a ring. A 

multiplicative subset S of R is called a left Ore set if it satisfies the left Ore condition: 

for each r ∈ R and s ∈ S,

Sr ∩ Rs �= ∅.

Let Orel(R) be the set of all left Ore sets of R. For S ∈ Orel(R), assl(S) := {r ∈ R | sr =

0 for some s ∈ S} is an ideal of the ring R.

A left Ore set S is called a left denominator set of the ring R if rs = 0 for some 

elements r ∈ R and s ∈ S implies tr = 0 for some element t ∈ S, i.e., r ∈ assl(S). Let 

Denl(R) be the set of all left denominator sets of R. For S ∈ Denl(R), let

S−1R = {s−1r | s ∈ S, r ∈ R}

be the left localization of the ring R at S (the left quotient ring of R at S). Let us stress 

that in Ore’s method of localization one can localize precisely at left denominator sets. 

In a similar way, right Ore and right denominator sets are defined. Let Orer(R) and 

Denr(R) be the set of all right Ore and right denominator sets of R, respectively. For 

S ∈ Orer(R), the set assr(S) := {r ∈ R | rs = 0 for some s ∈ S} is an ideal of R. For 

S ∈ Denr(R),

RS−1 = {rs−1 | s ∈ S, r ∈ R}

is the right localization of the ring R at S.

Given ring homomorphisms νA : R → A and νB : R → B. A ring homomorphism 

f : A → B is called an R-homomorphism if νB = fνA. A left and right Ore set is called 

an Ore set. Similarly, a left and right denominator set is called a denominator set. Let 

Ore(R) and Den(R) be the set of all Ore and denominator sets of R, respectively. For 

S ∈ Den(R),

S−1R ≃ RS−1

(an R-isomorphism) is the localization of the ring R at S, and ass(S) := assl(S) =

assr(R).
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For a ring R and ∗ ∈ {l, r, ∅}, Den∗(R, 0) be the set of ∗ denominator sets T of R such 

that T ⊆ CR, i.e., the multiplicative set T is a ∗ Ore set of R that consists of regular 

elements of the ring R. For a ring R, we denote by R× its group of units (invertible 

elements) of the ring R. Theorem 1.3 describes the structure and the universal property 

of the ring R〈S−1〉 and gives a characterization of the ideal assR(S).

Theorem 1.3. Let S ∈ L∗(R, a) where ∗ ∈ {l, ∅}, R = R/a, π : R → R, r �→ r = r + a

and S = π(S). Then

1. S ∈ Den∗(R, 0).

2. The ring R〈S−1〉 is R-isomorphic to the ring S
−1

R.

3. Let b be an ideal of R and π† : R → R† = R/b, r �→ r† = r + b. If S† = π†(S) ∈

Den∗(R†, 0) then a ⊆ b and the map

S
−1

R → S†−1
R†, s−1r �→ s†−1

r†

is a ring epimorphism with kernel S
−1

(b/a). So, the ideal a is the least ideal of the 

ring R such that S + a ∈ Den∗(R/a, 0).

4. Let f : R → Q be a ring homomorphism such that f(S) ⊆ Q× and the ring Q is 

generated by f(R) and the set {f(s)−1 | s ∈ S}. Then

(a) a ⊆ ker(f) and the map

S
−1

R → Q, s−1r �→ f(s)−1f(r)

is a ring epimorphism with kernel S
−1

(ker(f)/a), and Q = {f(s)−1f(r) | s ∈

S, r ∈ R}.

(b) Let R̃ = R/ker(f) and π̃ : R → R̃, r �→ r̃ = r + ker(f). Then S̃ := π̃(S) ∈

Denl(R̃, 0) and S̃−1R̃ ≃ Q, an R̃-isomorphism.

A similar result holds for ∗ = r, i.e., for right localizable sets. Statements 3 and 4 

of Theorem 1.3 are the universal property of localization of a ring at a (left or right) 

localizable set. In the particular case when S ∈ Den∗(R), these are precisely the universal 

property of localization of a ring at a (left or right) denominator set.

In view of Theorem 1.3.(1,2), for S ∈ L∗(R) we denote by S−1R the ring R〈S−1〉 for 

∗ ∈ {l, ∅} and by RS−1 for ∗ ∈ {r, ∅}. In particular, for S ∈ L(R), R〈S−1〉 = S−1R ≃

RS−1. Elements of the rings S−1R and RS−1 are denoted by s−1r and rs−1, respectively, 

where s ∈ S and r ∈ R.

Perfect localizable sets. By Lemma 1.2, assR(S) ⊇ a(S) for all S ∈ L∗(R) where 

∗ ∈ {l, r, ∅}.

Definition. A localizable set S ∈ L∗(R) is called perfect if assR(S) = a(S), i.e., the ideal 

assR(S) is ‘the least possible’.
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Therefore, localizations at perfect localizable sets are the most free/largest possible. 

Another feature of perfect localizable sets is that the ideal assR(S) = a(S) admits an 

explicit description that can be computed in many examples (see the proof of Proposi-

tion 1.1 and (10)).

Let Lp
∗(R) = {S ∈ L∗(R) | assR(S) = a(S)} and ass L

p
∗(R) = {assR(S) | S ∈ L

p
∗(R)}. 

Clearly,

Lp
∗(R) =

∐

a∈ass L
p
∗(R)

Lp
∗(R, a) (7)

where Lp
∗(R, a) = {S ∈ L

p
∗(R) | assR(S) = a}. Clearly, Lp

∗(R, a) = L
p
∗(R) ∩ L∗(R, a).

The sets ′Ll(R), L′
r(R) and ′L′

l,r(R). We denote by Ore∗(R) (where ∗ ∈ {l, r, ∅}) the 

set of ∗ Ore sets of R. So, Orel(R) is the set of all left Ore sets of R.

Definition. Let ′Ll(R) (resp., L′
r(R)) be the set of all multiplicative sets S of R such 

that ′S ∈ Orel(
′R) (resp., S′ ∈ Orer(R′)) (see (5) and (6)). Let

′L′
l,r(R) := ′Ll(R) ∩ L′

r(R) and LOre∗(R) := L∗(R) ∩ Ore∗(R)

where ∗ ∈ {l, r, ∅}. The elements of the set LOre∗(R) are called the localizable ∗ Ore 

sets.

Localizable left/right Ore sets. The study of localizations at left, right, and left and 

right Ore sets was started in the paper [2]. In particular, [2, Theorem 4.15] states that 

every Ore set is a localizable set, i.e., Ore(R) ⊆ L(R). Therefore,

LOre(R) = Ore(R). (8)

This fact also follows from Theorem 1.6.(2). Proposition 1.4 establishes relations between 

the concepts that are introduced above.

Proposition 1.4.

1. LOrel(R) ⊆ ′Ll(R) ⊆ L
p
l (R) and LOrel(R) = ′Ll(R) ∩ Orel(R) = L

p
l (R) ∩ Orel(R).

2. LOrer(R) ⊆ L′
r(R) ⊆ Lp

r(R) and LOrer(R) = L′
r(R) ∩ Orer(R) = Lp

r(R) ∩ Orer(R).

3. Ore(R) ⊆ ′L′
l,r(R) ⊆ Lp(R).

Criterion for a left Ore set to be a left localizable set. For a ring R and its ideal a, let

′Denl(R, a) := {S ∈ Denl(R) | assl(S) = a, S ⊆ ′CR},

Den′
r(R, a) := {S ∈ Denr(R) | assr(S) = a, S ⊆ C′

R}.
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Theorem 1.5.(1) is a criterion for a left Ore set to be a left localizable set and Theo-

rem 1.5.(2) describes the structure of the localization of a ring at a localizable left Ore 

set.

Theorem 1.5. Let R be a ring, S ∈ Orel(R), and a = assR(S). Then

1. S ∈ Ll(R) iff ′a �= R where the ideal ′a = ′a(S) of R is as in Proposition 1.1.(2) and 

(11).

2. Suppose that ′a �= R. Let ′π : R → ′R := R/′a, r �→ ′r = r + ′a and ′S = ′π(S). Then

(a) ′S ∈ ′Denl(
′R).

(b) a = ′π−1(assl(
′S)).

(c) S−1R ≃ ′S−1′R, an R-isomorphism.

Theorem 2.11 is a criterion for a right Ore set to be a localizable set.

Localization at an Ore set. Theorem 1.6.(1) is the reason why every Ore set is local-

izable. For an Ore set S of a ring R, Theorem 1.6.(1,2) shows that a(S) = assR(S) and 

gives an explicit description of this ideal.

Theorem 1.6. Let R be a ring and S ∈ Ore(R).

1. a := {r ∈ R | srt = 0 for some elements s, t ∈ S} is an ideal of R such that a �= R.

2. Let π : R → R := R/a, r �→ r = r + a. Then S := π(S) ∈ Den(R, 0), a = a(S) =

assR(S), S ∈ L(R, a), and S−1R ≃ S
−1

R, an R-isomorphism. In particular, every 

Ore set is localizable.

3. Let b be an ideal of R and π† : R → R† := R/b, r �→ r† = r + b. If S† := π†(S) ∈

Den(R†, 0) then a ⊆ b and the map

S
−1

R → S†−1
R†, s−1r �→ s†−1

r†

is a ring epimorphism.

4. Let f : R → Q be a ring homomorphism such that f(S) ⊆ Q× and the ring Q is 

generated by f(R) and {f(s)−1 | s ∈ S}. Then

(a) a ⊆ ker(f) and the map

S
−1

R → Q, s−1r �→ f(s)−1f(r)

is a ring epimorphism with kernel S
−1

(ker(f)/a).

(b) Let R̃ = R/ker(f) and π̃ : R → R̃, r �→ r + ker(f). Then S̃ := π̃(S) ∈ Den(R̃, 0)

and S̃−1R̃ ≃ Q, an R̃-isomorphism.
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Theorem 1.6.(1,2) also states that every Ore set S of R is localizable and the local-

ization S−1R of the ring R at the Ore set S is R-isomorphic to the localization S
−1

R of 

the ring R at the denominator set S of R.

Corollary 1.7 provides a view from another angle at the localization of a ring at an 

Ore set.

Corollary 1.7. Let R be a ring, S ∈ Ore(R) and a = assR(S). We keep the notation of 

Theorem 1.6. Let al := assl(S) and πl : R → Rl := R/al, r �→ r + al; ar := assr(S) and 

πr : R → Rr := R/ar, r �→ r + ar. Then

1. al + ar ⊆ a.

2. Sl := πl(S) ∈ Den′
r(Rl, a/al) and RlS

−1
l ≃ S−1R ≃ RS−1, R-isomorphisms.

3. Sr := πr(S) ∈ ′Denl(Rr, a/ar) and S−1
r Rr ≃ S−1R ≃ RS−1 ≃ RlS

−1
l , R-

isomorphisms.

4. ′a(S) = ar and a′(S) = al.

Proposition 1.8 explains the origin of the construction of localizable sets. For every 

Ore set it gives an explicit construction of a localizable set with the same localization. 

For a ring R and its ideal a, let Ore(R, a) := {S ∈ Ore(R) | assR(S) = a}.

Proposition 1.8. Let R be a ring, S ∈ Ore(R, a), π : R → R := R/a, R �→ r = r + a and 

S̃ = S + a. Then S ⊆ S̃, S̃ ∈ L(R, a) and S̃−1R ≃ S−1R, an R-isomorphism.

The set max L∗(R) maximal elements in L∗(R) where ∗ ∈ {l, r, ∅}. For a ring R, 

the set max.Denl(R) of maximal left denominator sets (w.r.t. ⊆) is a non-empty set, 

[3, Lemma 3.7.(2)]. Let max L∗(R) be the set of maximal elements (w.r.t. ⊆) of the set 

L∗(R).

Theorem 1.9. Let R be a ring. Then max L∗(R) �= ∅.

The key idea of the proof of Theorem 1.9 is to use Lemma 1.10 and Zorn’s Lemma.

Lemma 1.10. Let R be a ring, S ∈ L∗(R, a) and T ∈ L∗(R, b) such that S ⊆ T where 

∗ ∈ {l, r, ∅}. Then a ⊆ b and for ∗ ∈ {l, ∅} the map S−1R → T −1R, s−1r �→ t−1r is an 

R-homomorphism with kernel S−1(b/a) = S
−1

(b/a) where S = {s +a | s ∈ S}. A similar 

result holds for ∗ = r.

Classification of maximal Ore sets of a semiprime Goldie ring. It was proved that the 

set max.Denl(R) is a finite set if the classical left quotient ring Ql,cl(R) := C−1
R R of R is 

a semisimple Artinian ring, [4], or a left Artinian ring, [5], or a left Noetherian ring, [6]. 

In each of the three cases an explicit description of the set max.Denl(R) is given. For a 

ring R, let min(R) be the set of its minimal prime ideals. For a ring R, the rings



46 V.V. Bavula / Journal of Algebra 610 (2022) 38–75

Ql,cl(R) := C−1
R R and Qr,cl(R) := RC−1

R

are called the classical left and right quotient rings provided they exist, respectively. If 

both rings exist then they are isomorphic and the ring

Qcl(R) := Ql,cl(R) ≃ Qr,cl(R)

is called the classical quotient ring of R. Ideals of a ring are called incomparable if none 

of them is contained in the other.

The next theorem is an explicit description of maximal Ore sets of a semiprime Goldie 

ring.

Theorem 1.11. Let R be a semiprime Goldie ring and N∗ := {S ∈ max L∗(R) | CR ⊆ S}

where ∗ ∈ {l, r, ∅}. Then

1. max Ore(R) = max Den(R) = {C(p) | p ∈ min(R)} = N∗ for all ∗ ∈ {l, r, ∅} where 

C(p) := {c ∈ R | c + p ∈ CR/p}. So, every maximal Ore set of R is a maximal 

denominator set, and vice versa.

2. For all S ∈ max Ore(R) the ring S−1R is a simple Artinian ring.

3. Qcl(R) ≃
∏

S∈max Ore(R) S−1R.

4. max ass Ore(R) = ass max Ore(R) = min(R). In particular, the ideals in the set 

ass max Ore(R) are incomparable.

Classification of maximal left localizable sets of a semiprime left Goldie ring that 

contain the set of regular elements of the ring. Theorem 1.12 is such a classification.

Theorem 1.12. Let R be a semiprime left Goldie ring and N := {S ∈ max Ll(R) | CR ⊆

S}. Then N = max Denl(R) = {C(p) | p ∈ min(R)}.

So, every maximal left localizable set of a semiprime left Goldie ring that contains 

the set of regular elements of the ring is a maximal left denominator set, and vice versa. 

The proof of Theorem 1.12 is based on Theorem 1.13.

Theorem 1.13. Let R be a ring and S1, . . . , Sn ∈ L∗(R) where ∗ ∈ {l, r, ∅}, pi = assR(Si), 

Ri := R/pi and Qi be the localization of R at Si. Suppose that the rings Qi are simple 

Artinian rings, 
⋂n

i=1 pi = 0 and 
⋂n

j �=i pj �= 0 for i = 1, . . . , n. Then

1. The rings Ri are semiprime ∗ Goldie rings.

2. min(R) = {p1, . . . , pn}.

3. Qi ≃ Q∗,cl(Ri) for i = 1, . . . , n (an R-isomorphism).

4. Si ⊆ C(pi) for i = 1, . . . , n.

5. Q∗,cl(R) ≃
∏n

i=1 Qi.

6. For all i = 1, . . . , n, C(pi) ∈ max L∗(R).
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In Section 7, examples are considered. In [7], we continue to develop the most general 

theory of one-sided fractions. The aim of [7] is to introduce 10 types of saturations of 

a set in a ring and using them to study localizations of a ring at localizable sets, their 

groups of units and various maximal localizable sets satisfying some natural conditions. 

The results are obtained for denominator sets (the classical situation), Ore sets and 

localizable sets.

2. Localizable sets and the localization of a ring at a localizable set

In this section, (left, right) localizable sets of a ring and the construction of local-

ization of a ring at them are introduced and studied. A proof of Theorem 1.3 is given. 

A criterion for a left (resp., right) Ore set to be a left (resp., right) localizable set is 

presented, Theorem 1.5.(1) (resp., Theorem 2.11.(1)). A description of the ideal assR(S)

of R is given, Proposition 2.12. Proofs of Proposition 1.1, Proposition 1.4, Theorem 1.9, 

Lemma 1.10, Theorem 1.12 and Theorem 1.13 are given.

The following notation is fixed: R is a ring, S is a multiplicative set of R, assl(S) :=

{r ∈ R | sr = 0 for some s ∈ S} and assr(S) := {r ∈ R | rs = 0 for some s ∈ S}. We use 

standard terminology on localizations of a ring at denominator sets, see [8,10,11].

Proof of Proposition 1.1. We keep the notation of Proposition 1.1. Let Γ be the set of 

ordinals. The ideal a (resp., ′a, a′) is the union

a =
⋃

λ∈Γ

aλ (resp., ′a =
⋃

λ∈Γ

′aλ, a′ =
⋃

λ∈Γ

a′
λ) (9)

of ascending chain of ideals {aλ}λ∈Γ (resp., {′aλ}λ∈Γ, {a′
λ}λ∈Γ), where λ ≤ μ in Γ implies 

aλ ⊆ aμ (resp., ′aλ ⊆ ′aμ, a′
λ ⊆ a′

μ). The ideals aλ (resp., ′aλ, a′
λ) are defined inductively 

as follows: the ideal a0 = a(S, R) (resp., ′a0, a′
0) is generated by the set {r ∈ R | sr = 0

or rt = 0 for some elements s, t ∈ S} (resp., {r ∈ R | rt = 0 for some element t ∈ S}, 

{r ∈ R | sr = 0 for some element s ∈ S}), and for λ ∈ Γ such that λ > 0 (where below (
{. . .}

)
means the ideal of R generated by the set {. . .}),

aλ =

⎧
⎨
⎩

⋃
μ<λ∈Γ aμ if λ is a limit ordinal,(
{r ∈ R | sr ∈ aλ−1 or rt ∈ aλ−1 for some s, t ∈ S}

)
if λ is not a limit ordinal,

(10)

(resp.,

′aλ =

⎧
⎨
⎩

⋃
μ<λ∈Γ

′aμ if λ is a limit ordinal,(
{r ∈ R | rt ∈ ′aλ−1 for some t ∈ S}

)
if λ is not a limit ordinal,

(11)

a′
λ =

⎧
⎨
⎩

⋃
μ<λ∈Γ a′

μ if λ is a limit ordinal,(
{r ∈ R | sr ∈ a′

λ−1 for some s ∈ S}
)

if λ is not a limit ordinal),
(12)
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and the proposition follows (since ′aλ ⊆ aλ and a′
λ ⊆ aλ for all λ ∈ Γ). �

The first ordinal such that the ascending chain of ideals in (9) stabilizes is called the 

Γ-length of the ideal denoted lΓ(a) (resp., lΓ(′a), lΓ(a′)).

Lemma 2.1. Let R be a ring, S be a multiplicative set, a = assR(S), b be an ideal of the 

ring R such that b ⊆ a, R̃ = R/b and S̃ = (S + b)/b = {s ∈ b | s ∈ S}. Then

1. S̃ is a multiplicative set of the ring R̃, R̃〈S̃−1〉 ≃ R〈S−1〉 and assR̃(S̃) = a/b.

2. Let R = R/a and S = (S + a)/a. Then R〈S−1〉 ≃ R〈S
−1

〉, S ⊆ CR and assR(S) =

a/a = 0.

Proof. Straightforward. �

Proof of Lemma 1.2. Let a = assR(S) and R = R/a. Then S = (S + a)/a ∈ CR. Hence, 

a ⊇ a(S), by the minimality of the ideal a(S), see Proposition 1.1.(1). �

For a ring R, its ideal a, and ∗ ∈ {l, r, ∅}, let Den∗(R, a) be the set of ∗ denominator 

sets S of R such that ass∗(S) = a.

Lemma 2.2 and Lemma 2.3 show that denominator sets are localizable sets, the lo-

calization of a ring at a denominator set is the same as the localization of a ring at the 

denominator set treated as a localizable set, and ass∗(S) = a(S) for all S ∈ Den∗(R, a). 

So, the localization at a localizable set is a generalization of the localization at a denom-

inator set.

Lemma 2.2. Given S ∈ Den∗(R, a) where ∗ ∈ {l, r, ∅}. Then a = a(S) where a(S) is the 

least ideal of R such that (S + a(S))/a(S) ∈ CR/a(S), see Proposition 1.1.(1).

Proof. By the very definition of the ideal a, a ⊆ a(S). Since (S+a)/a ∈ CR/a, we have the 

inverse inclusion a ⊇ a(S), by the minimality of the ideal a(S). Therefore a = a(S). �

Lemma 2.3. Den∗(R) ⊆ L∗(R) where ∗ ∈ {l, r, ∅}. For all ideals a of R, Den∗(R, a) ⊆

L∗(R, a) and for all S ∈ Denl(R, a), S−1R ≃ R〈S−1〉 and a = a(S) = assR(S).

Proof. Given S ∈ Denl(R, a). By Lemma 1.2 and Lemma 2.2, a = a(S) ⊆ assR(R). Let 

R = R/a and S = (S + a)/a. Then

S ∈ Denl(R, 0) and S−1R ≃ S
−1

R.

The ring S
−1

R is generated by the ring R and the set {s−1 | s ∈ S}. Therefore, there 

is natural ring epimorphism R〈S−1〉 → S
−1

R which is an R-homomorphism. Hence, 

assR(S) ⊆ a, and so a = a(S) = assR(S) and R〈S−1〉 ≃ S
−1

R. �
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Proof of Theorem 1.3. To prove the theorem it suffices to consider the case ∗ = l.

1 and 2. Let R = R〈S−1〉. By Lemma 2.1.(2),

R〈S−1〉 ≃ R〈S
−1

〉, S ⊆ CR and assR(S) = 0.

Hence, R ⊆ R. Then, for all elements s ∈ S and r ∈ R,

rs−1 = s−1
1 r−1

1

for some elements s1 ∈ S and r1 ∈ R. Then s1r = r1s in R. Hence, S ∈ Denl(R, 0), and 

so R〈S
−1

〉 ≃ S
−1

R, by Lemma 2.3.

3. There is a natural R-epimorphism R〈S−1〉 → S†−1
R†, and statement 3 follows 

from statement 2.

4. The ring homomorphism r : R → Q induces the ring epimorphism f : R〈S−1〉 → Q

since the ring Q is generated by f(R) and the set {f(s)−1 | s ∈ S}. Since R〈S−1〉 ≃ S
−1

R

(statement 2), the statement (a) follows. In particular,

Q = {f(s)−1f(r) | s ∈ S, r ∈ R}.

Furthermore, Q = {f(s)−1f(r) | s ∈ S, r ∈ R} since a ⊆ ker(f). Hence, Q =

{f(s̃)−1f(r̃) | s ∈ S, r ∈ R}. Therefore, S̃ ∈ Denl(R̃, 0) and S̃−1R̃ ≃ Q, via f . �

Corollary 2.4. If S ∈ L(R, a) then S ∈ Ll(R, a), S ∈ Lr(R, a) and the localizations of R

at S as a localizable set, a left localizable set and a right localizable set are R-isomorphic.

Proof. The corollary follows from Theorem 1.3.(1,2). �

Proof of Lemma 1.10. Recall that a = assR(S) and b = assR(T ). Let Q be a subring 

of T −1R which is generated by the images of the ring R and the set {s−1 | s ∈ S}

in T −1R (recall that S ⊆ T ). Applying Theorem 1.3.(4a) to the ring homomorphism 

R → Q ⊆ T −1R, r �→ r
1 we obtain the ring R-homomorphism

S−1R → T −1R, s−1r �→ s−1r.

Since S−1R = S
−1

R and T −1R = T
−1

(R/b) where T = {t + b | t ∈ T}, the kernel of the 

R-homomorphism is S
−1

(b/a). �

The maximal elements in L∗(R) where ∗ ∈ {l, r, ∅}.

Lemma 2.5. Let R be a ring, ∗ ∈ {l, r, ∅}, and a set {Si}i∈I ⊆ L∗(R) be such that 

for any two elements Si and Sj there is an element Sk such that Si ∪ Sj ⊆ Sk. Then 

S :=
⋃

i∈I Si ∈ L∗(R) and the ring S−1R = inj lim S−1
i R is the injective limit of R-

homomorphism of rings {S−1
i R}i∈I given by the R-homomorphisms S−1

i R → S−1
j R in 

Lemma 1.10 in case Si ⊆ Sj.
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Proof. Straightforward (use Lemma 1.10). �

Proof of Theorem 1.9. The Theorem 1.9 follows from Zorn’s Lemma and Lemma 2.5. �

Classification of maximal left localizable sets of a semiprime left Goldie ring that 

contain the set of regular elements.

Proof of Theorem 1.13. 1. By the assumption 
⋂n

i=1 pi = 0. So, we have ring monomor-

phisms

R → R :=

n∏

i=1

Ri → Q :=

n∏

i=1

Qi, r �→ (r+p1, . . . , r+pn), (r1, . . . , rn) �→

(
r1

1
, . . . ,

rn

1

)
.

We identify the rings R and R with their images in the ring Q.

(i) Ri is a prime ∗ Goldie ring with Q∗,cl(Ri) ≃ Qi, an R-isomorphism: By Theo-

rem 1.3.(1,2),

Si := (Si + pi)/pi ∈ Den∗(Ri, 0) and S
−1

i Ri ≃ Qi,

an R-isomorphism. Since the ring Qi is a simple Artinian ring, Si ⊆ CRi
⊆ Q×

i . Hence, 

CRi
∈ Den∗(R, 0) and Qi ≃ Q∗,cl(Ri). By Goldie’s Theorem, Ri is a prime ∗ Goldie ring.

(ii) pi ∈ Spec(R) for i = 1, . . . , n: By the statement (i), the ring Ri is prime, and so 

pi ∈ Spec(R).

(iii) The ring R is a semiprime ∗ Goldie ring: The ring R is a semiprime ring since ⋂n
i=1 pi = 0 and the ideals pi are prime.

Let udim∗,R denote the ∗ uniform dimension of the ∗ R-module (udiml,R is the left 

uniform dimension, udimr,R is the right uniform dimension and udimR stands for udiml,R

and udimr,R). The ring Ri = R/pi is a prime ∗ Goldie ring. Hence, udim∗,R(Ri) =

udim∗,R(Ri) < ∞. Since R ⊆
∏n

i=1 Ri,

udim∗,R(R) ≤ udim∗,R

( n∏

i=1

Ri

)
=

n∑

i=1

udim∗,R(Ri) =
n∑

i=1

udim∗,Ri
(Ri) < ∞.

Let X be a non-empty subset of R and ∗.annR(X) be its ∗ annihilator (l.annR(X) =

{r ∈ R | rX = 0} is the left annihilator of X in R, etc). Since R ⊆ R, ∗.annR(X) =

R ∩ ∗.annR(X). By the statement (i), the ring R =
∏n

i=1 Ri satisfies the a.c.c. on ∗

annihilators, hence so does the ring R. The proof of the statement (iii) is complete.

2. (i) min(R) ⊆ {p1, . . . , pn}: Given p ∈ min(R). Then 
⋂n

i=1 pi = {0} ⊆ p, hence 

pi ⊆ p for some i, and so pi = p, by the minimality of p.

(ii) min(R) = {p1, . . . , pn}: By the statement (i), the ring R is semiprime, i.e., ⋂
p∈min(R) p = 0. Since min(R) ⊆ {p1, . . . , pn} and 

⋂
j �=i pi �= 0 for all i = 1, . . . , n, 

we must have
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min(R) = {p1, . . . , pn}.

3. Statement 3 has already been proven, see the statement (i) in the proof of statement 

1.

4. See the proof of the statement (i) in the proof of statement 1.

5. The ring R is a semiprime ∗ Goldie ring. By [4, Theorem 4.1],

Q∗,cl(R) ≃
∏

p∈min(R)

Q∗,cl(R/p).

By statement 2, min(R) = {p1, . . . , pn} and Qi ≃ Q∗,cl(Ri) for i = 1, . . . , n (statement 

3). Now, statement 5 follows.

6. By [4, Theorem 4.1],

C(pi) ∈ max Den∗(R), ass∗ C(pi) = pi and C(pi)
−1R ≃ Qi,

a simple Artinian ring. Suppose that C(pi) ⊆ T for some T ∈ L∗(R). By Lemma 1.10,

pi = assR(C(pi)) ⊆ a := assR(T )

and there is an R-homomorphism Qi = C(pi)
−1R → R〈T −1〉. Since Qi is a simple 

Artinian ring, pi = a. Then, by Theorem 1.3.(1),

T = (T + pi)/pi ∈ Den∗(Ri, 0).

Hence, T ⊆ CRi
, and so T ⊆ C(pi), and statement 6 follows. �

Proof of Theorem 1.12. Let M = max Denl(R). By [4, Theorem 4.1],

M = {C(p) | p ∈ min(R)}

and the set M satisfies the conditions of Theorem 1.13. By Theorem 1.13.(2,6),

M ⊆ max L∗(R).

Since CR ⊆ C(p) for all p ∈ min(R), M ⊆ N . To finish the proof it remains to show that 

N ⊆ M. Given S ∈ N . Let a = assR(S).

(i) a =
⋂

p∈min(R),a⊆p p: Since S ∈ N , CR ⊆ S, and so there is an R-homomorphisms 

f : Q := C−1
R R → S−1R. Therefore, a = R ∩ ker(f) and ker(f) = C−1

R a. By [4, Theorem 

4.1],

C−1
R R ≃

∏

p∈min(R)

C(p)−1R
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is a finite direct product of simple Artinian rings C(p)−1R with assR(C(p)) = p, and the 

statement (i) follows.

(ii) S ⊆ C(p) for some (unique) p ∈ min(R) such that a ⊆ p: By Theorem 1.3.(1), 

S := (S + a)/a ∈ Denl(R, 0) where R = R/a is a semiprime ring with

min(R) = {p/a | p ∈ min(R), a ⊆ p},

by the statement (i). Since CR ⊆ C(p) for all p ∈ min(R), we have that CR := (CR+a)/a ⊆

CR since

R = R/a = R/
⋂

p∈D

p ⊆
∏

p∈D

R/p

where D := {p ∈ min(R) | a ⊆ p}, see the statement (i). Since CR ∈ Orel(R), CR ∈

Denl(R, 0) and

C
−1

R R ≃ C−1
R (R/a) ≃ C−1

R R/C−1
R a ≃

∏

p∈D

C(p)−1R.

Therefore, R is a semiprime left Goldie ring with min(R) = {p/a | p ∈ D}.

Since S ∈ Denl(R, 0), the left denominator set S is contained in a maximal denomi-

nator set R, i.e., S ⊆ CR(p/a) for some prime ideal p ∈ D. Then

S ⊆ CR(p)

since R/(p/a) ≃ R/p. �

The set T∗,a(R) and the ring Q∗,a(R). Lemma 2.6.(4) describes the largest element 

T∗,a(R) in the set L∗(R, a).

Lemma 2.6. Let R be a ring and a ∈ ass L∗(R) where ∗ ∈ {l, r, ∅}.

1. The set L∗(R, a) is a commutative multiplicative semigroup where for S, T ∈

L∗(R, a), ST is the submonoid of (R, ·) generated by S and T .

2. For all S, T ∈ L∗(R, a), S ∪ T ⊆ ST .

3. For all S1, S2, T ∈ L∗(R, a) such that S1 ⊆ S2, TS1 ⊆ TS2.

4. The set T∗,a :=
⋃

S∈L∗(R,a) S is the largest element in the set L∗(R, a) (w.r.t. ⊆), 

and ST∗,a = T∗,a for all S ∈ L∗(R, a).

5. For all S, T ∈ L∗(R, a) such that S ⊆ T , S−1R ⊆ T −1R ⊆ T∗,a(R)−1R =⋃
S′∈L∗(R,a) S′ −1R.

Proof. Let π : R → R := R/a, r �→ r = r + a.

1. By Theorem 1.6.(1), S, T ∈ Den∗(R, 0). By [3, Theorem 2.1.(1)], ST ∈ Den∗(R, 0). 

Hence,
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ST = S T ∈ Den∗(R, 0) and ST ⊆ ((ST )−1R)×.

By Theorem 1.3.(3), ST ∈ L∗(R, a).

2 and 3. Statements 2 and 3 are obvious.

4. Statement 4 follows from statement 2 and Lemma 2.5.

5. Statement 5 follows from Lemma 1.10 and Lemma 2.5. �

Definition. Let R be a ring and a ∈ ass L∗(R, a) where ∗ ∈ {l, r, ∅}. The localization of 

the ring R at T∗,a(R) (see Lemma 2.6.(5)) is denoted by Q∗,a(R).

A left or right Ore set of a ring is called regular if it consists of regular elements of 

the ring. A regular left/right Ore set is automatically a left/right denominator set.

Theorem 2.7. [3, Theorem 2.1] For a ring R there is a largest (w.r.t. inclusion) regular 

left Ore set Sl(R) in R and the ring Ql(R) := Sl(R)−1R is called the largest left quotient 

ring of R.

For a ring R there is a largest regular Ore set S(R) in R and the ring

Q(R) := S(R)−1R ≃ RS(R)−1

is called the largest quotient ring of R, [3, Theorem 4.1.(2)]. The interested reader is 

referred to [3] for more information about the largest regular left/right Ore sets and the 

largest left/right quotient rings. Notice that for a ring R, its classical left/right quotient 

ring does not always exist.

Theorem 2.8 describes the multiplicative sets T∗,a(R) and the rings Q∗,a(R) via the 

largest regular Ore sets and the largest quotient rings.

Theorem 2.8. Let R be a ring, a ∈ ass L∗(R) and π : R → R := R/a, r �→ r = r + a. 

Then

1. T∗,a(R) = π−1(S∗(R)) where S∗(R) is the largest regular ∗ Ore set in R.

2. Q∗,a(R) ≃ Q∗(R), an R-isomorphism where Q∗(R) = S∗(R)−1R for ∗ ∈ {l, ∅} and 

Qr(R) = RSr(R)−1.

3. T∗,a(R) = σ−1(Q∗,a(R)×) = σ−1(Q∗(R)×) where σ : R → Q∗,a(R) ≃ Q∗(R), r �→ r
1 .

Proof. 1. The set T := π−1(S∗(R)) is a multiplicative set in R since π(T ) = S∗(R) is so. 

Clearly, T∗ := T∗,a(R) ⊆ T since π(T∗) ∈ Den∗(R, 0), by Theorem 1.3.(1). Since

π(T ) = S∗(R) ∈ Den∗(R, 0) and b := assR(T ) �= R,

we have that T ∈ L∗(R, b) and b ⊆ a. Since T∗ ⊆ T , we have that a ⊆ b, and so a = b. 

Therefore,
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T ∈ L∗(R, a).

Since T∗ ⊆ T , we must have T∗ = T , by the maximality of T∗.

2. Statement 2 follows from statement 1.

3. The map σ is the composition of the homomorphisms

R
π
→ R

σ
→ Q∗,a(R) ≃ Q∗(R)

where σ(r + a) = r
1 . By [3, Theorem 2.8.(1)], S∗(R) = σ−1(Q∗(R)×). Now, statement 3 

follows from statement 1. �

The L∗-radical L∗rad(R).

Definition. An element S of the set max L∗(R) where ∗ ∈ {l, r, ∅} is called the maxi-

mal left/right localizable set and the maximal localizable set, resp., and the rings S−1R, 

RS−1 and S−1R ≃ RS−1 are called the maximal left/right localization and the maximal 

localization of R, respectively.

Definition. The intersection

L∗rad(R) =
⋂

S∈max L∗(R)

assR(S) (13)

is called the L∗-radical of R.

For a ring R, there is the canonical exact sequence where ∗ ∈ {l, r, ∅},

0 → L∗rad(R) → R
σ
→

∏

S∈max L∗(R)

S−1R, σ :=
∏

S∈max L∗(R)

σS , (14)

where σS : R → S−1R, r �→ r
1 . A similar sequence exists for ∗ =r.

Definition. The sets LL∗(R) :=
⋃

S∈L∗(R) S and N LL∗(R) := R\LL∗(R) are called the 

set of L∗-localizable and L∗-non-localizable elements of R, resp., and the intersection

CL∗(R) =
⋂

S∈max L∗(R)

S

is called the set of completely L∗-localizable elements of the ring R.

By the very definition the sets LL∗(R), N LL∗(R) and CL∗(R) are invariant under 

the action of the automorphism group of the ring R, i.e., they are characteristic sets.

The sets ′Ll(R), L′
r(R) and ′L′

l,r(R). Recall that for an ideal a of a ring R,

′Denl(R, a) = {S ∈ Denl(R, a) | S ⊆ ′CR} and Den′
r(R, a) = {S ∈ Denr(R, a) | S ⊆ C′

R},



V.V. Bavula / Journal of Algebra 610 (2022) 38–75 55

and a localizable set S ∈ L∗(R) is called perfect if assR(S) = a(S). So, the perfect 

localizable sets S of R have the ‘smallest’ possible ideal assR(S). Proposition 2.9 shows 

that the sets ′Ll(R), L′
r(R) and ′L′

l,r(R) are perfect localizable sets of the ring R. See 

the Introduction for their definitions.

Proposition 2.9. We keep the notation as above.

1. ′Ll(R) ⊆ L
p
l (R) and for each S ∈ ′Ll(R), assR(S) = a(S) = ′π−1(assl(

′S)) and 

R〈S−1〉 ≃ ′S−1′R where assl(
′S) = {′r ∈ ′R | ′s′r = 0 for some ′s ∈ ′S}. Further-

more, ′S ∈ ′Denl(
′R, a/′a) where a = assR(S).

2. L′
r(R) ⊆ Lp

r(R) and for each S ∈ L′
r(R), assR(S) = a(S) = π′ −1(assr(S′)) and 

R〈S−1〉 ≃ R′S′ −1 where assr(S′) = {r′ ∈ R′ | r′s′ = 0 for some s′ ∈ S′}. Further-

more, S′ ∈ Den′
r(R′, a/a′) where a = assR(S).

3. ′L′
l,r(R) ⊆ Lp(R) and for each S ∈ ′L′

l,r(R), assR(S) = a(S) = ′π−1(assl(
′S)) =

π′ −1(assr(S′)) and R〈S−1〉 ≃ ′S−1′R ≃ R′S′ −1. Furthermore, ′S ∈ ′Denl(
′R, a/′a)

and S′ ∈ Den′
r(R′, a/a′) where a = assR(S).

Proof. 1. Recall that a(S) is the ideal in Proposition 1.1.(1).

(i) ′a ⊆ a(S): The inclusion follows from Proposition 1.1.(2) (by the minimality of the 

ideal ′a since (S + a(S))/a(S) ⊆ CR/a(S) ⊆ ′CR/a(S)).

(ii) b := ′π−1(assl(
′S)) ⊆ a(S): The inclusion b ⊆ a(S) follows from the inclusion 

′a ⊆ a(S) and the definition of the ideals b and a(S).

(iii) b = assR(S): By Lemma 1.2, a(S) ⊆ assR(S). Now,

b ⊆ assR(S),

by the statement (ii). Since S̃ := (S + b)/b ∈ Denl(R/b, 0), we must have

b ⊇ assR(S),

by the minimality of the ideal assR(S) (Theorem 1.3.(3)), and the statement (iii) follows.

By the statements (ii) and (iii),

assR(S) = a(S) = b

(since b ⊆ a(S) ⊆ assR(S) = b) and R〈S−1〉 ≃ ′S−1′R. Clearly, ′S ∈ Denl(
′R, a/′a).

2. Statement 2 can be proven in a similar/dual way as statement 1.

3. Statement 3 follows from statements 1 and 2. �

For L ∈ {′Ll(R), L′
r(R), ′L′

l,r(R)}, let ass(L) := {assR(S) | S ∈ L}. Then

′Ll(R) =
∐

a∈ass ′Ll(R)

′Ll(R, a) where ′Ll(R, a) = {S ∈ ′Ll(R) | assR(S) = a}, (15)
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L′
r(R) =

∐

a∈ass L′
r(R)

L′
r(R, a) where L′

r(R, a) = {S ∈ L′
r(R) | assR(S) = a}, (16)

′L′
l,r(R) =

∐

a∈ass ′L′
l,r(R)

′L′
l,r(R, a) where ′L′

l,r(R, a) = {S ∈ ′L′
l,r(R) | assR(S) = a}.

(17)

Left/right localizable Ore sets. Recall that for a ring R, the sets

LOrel(R) := Ll(R) ∩ Orel(R), LOrer(R) := Lr(R) ∩ Orer(R),

LOre(R) := L(R) ∩ Ore(R) = Ore(R)

are called left, right and Ore localizable, respectively. Clearly, LOre(R) = LOrel(R) ∩

LOrer(R) since

LOre(R) = L(R) ∩ Ore(R) = (Ll(R) ∩ Lr(R)) ∩ (Orel(R) ∩ Orer(R))

= (Ll(R) ∩ Orel(R)) ∩ (Lr(R) ∩ Orer(R)) = LOrel(R) ∩ LOrer(R).

For each element ∗ ∈ {l, r, ∅}, let ass LOre∗(R) := {assR(S) | S ∈ LOre∗(R)}. Then

LOre∗(R) =
∐

a∈ass LOre∗(R)

LOre∗(R, a)

where LOre∗(R, a) := {S ∈ LOre∗(R) | assR(S) = a}. (18)

Clearly, LOre∗(R, a) = L∗(R, a) ∩ Ore∗(R). Since Ore(R) ⊆ L(R) see (8), we have that 

LOre(R) = Ore(R). So, the letter ‘L’ is redundant in the definition of the sets ‘LOre(R)’, 

‘ass LOre(R)’ and ‘max LOre(R, a), and we drop it. So, (18) takes the form

Ore(R) =
∐

a∈ass Ore(R)

Ore(R, a) where Ore(R, a) := {S ∈ Ore(R) | assR(S) = a}. (19)

Proposition 2.10.

1. Given S ∈ LOrel(R). Then ′a �= R (see Proposition 1.1.(2)) and the ideal ′a is 

the least ideal b of the ring R such that (S + b)/b ∈ ′Denl(R/b). In particular, 

(S + ′a)/′a ∈ ′Denl(R/′a).

2. Given S ∈ LOrer(R). Then a′ �= R (see Proposition 1.1.(3)) and the ideal a′ is 

the least ideal b of the ring R such that (S + b)/b ∈ Den′
r(R/b). In particular, 

(S + a′)/a′ ∈ Den′
r(R/a′).

Proof. 1. By Proposition 1.1 and Lemma 1.2, ′a ⊆ a(S) ⊆ assR(S) �= R. Then

′S := (S + ′a)/′a ∈ ′Denl(R/′a).
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Since the ideal ′a is the least ideal of the ring R such that (S + ′a)/′a ∈ ′CR/′a, statement 

1 follows.

2. Statement 2 is proven in a dual way to statement 1. �

Proof of Proposition 1.4. 1. By Proposition 2.10.(1), LOrel(R) ⊆ ′Ll(R). By Proposi-

tion 2.9.(1), ′Ll(R) ⊆ L
p
l (R). Now,

LOrel(R) = ′Ll(R) ∩ LOrel(R) = ′Ll(R) ∩ L(R) ∩ Orel(R) = ′Ll(R) ∩ Orel(R),

LOrel(R) = L
p
l (R) ∩ LOrel(R) = L

p
l (R) ∩ L(R) ∩ Orel(R) = L

p
l (R) ∩ Orel(R).

2. Statement 2 can be proven in a similar way to statement 1.

3. Since Ore(R) = LOrel(R) ∩ LOrer(R), statement 3 follows from statements 1 and 

2 and the fact that Ore(R) ⊆ L(R), see (8)). �

Using some of the above results we obtain criteria for a left/right Ore set to be a 

left/right localizable set, Theorem 1.5 and Theorem 2.11.

Proof of Theorem 1.5. 1 (⇒) If S ∈ Ll(R) then a �= R. Now, the implication follows 

from the inclusions ′a ⊆ a(S) ⊆ a (Lemma 1.2).

2(a) If ′a �= R then clearly ′S ∈ ′Den(′R).

1 (⇐) Since ′a ⊆ a(S) ⊆ a (Lemma 1.2), the implication follows from the statement 

2(a) and Lemma 2.1.(1).

2(b,c) Since ′a ⊆ a (Lemma 1.2),

R〈S−1〉 = ′R〈′S−1〉,

by Lemma 2.1.(2). Now, the statements (b) and (c) follow from the inclusion ′S ∈
′Denl(

′R) (the statement (a)). �

Theorem 2.11.(1) is a criterion for a right Ore set to be a left localizable set and 

Theorem 2.11.(2) describes the structure of the localization of a ring at a localizable 

right Ore set.

Theorem 2.11. Let R be a ring, S ∈ Orer(R), and a = assR(S). Then

1. S ∈ Lr(R) iff a′ �= R where the ideal a′ = a′(S) of R is as in Proposition 1.1.(3) 

and (12).

2. Suppose that a′ �= R. Let π′ : R → R′; = R/a′, r �→ r′ = r + a′ and S′ = π′(S). Then

(a) S′ ∈ Den′
r(R′),

(b) a = (π′)−1(assr(S′)),

(c) RS−1 ≃ R′S′ −1, an R-isomorphism.

Proof. The proof of the theorem is dual to the proof of Theorem 1.5. �
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Description of the ideal assR(S) for S ∈ L∗(R). For each localizable set S ∈ L∗(R, a), 

Proposition 2.12 describes the ideal a.

Proposition 2.12. Let R be a ring and S be a multiplicative set in R.

1. Let S ∈ Ll(R, a). For each pair of elements s ∈ S and r ∈ R fix a pair of elements 

s1 ∈ S and r1 ∈ R such that s1r − r1s ∈ a, and let bl be the ideal of R generated 

by the elements s1r − r1s, πl : R → Rl := R/bl, r �→ r + bl. Then Sl := πl(S) ∈

LOrel(Rl, a/bl) and a = π−1
l (a(Sl)) where the ideal a(Sl) of the ring Rl is defined in 

Proposition 1.1.(1).

2. Let S ∈ Lr(R, a). For each pair of elements s ∈ S and r ∈ R fix a pair of elements 

s1 ∈ S and r1 ∈ R such that rs1 − sr1 ∈ a, and let br be the ideal of R generated 

by the elements rs1 − sr1, πr : R → Rr := R/br, r �→ r + br. Then Sr := πr(S) ∈

LOrer(Rr, a/br) and a = π−1
r (a(Sr)).

3. Let S ∈ L(R, a), b = bl+br and π̃ : R → R̃, r �→ r+b. Then S̃ := π̃(S) ∈ Ore(R̃, a/b)

and a = π̃−1(a(S̃)).

Proof. 1. By the very definition, bl ⊆ a. By Lemma 2.1.(2),

Sl ∈ Ll(Rl, a/bl).

By the definition of bl, Sl ∈ LOrel(Rl, a/bl). By Proposition 1.4.(1), a/bl = a(Sl), and 

so a = π−1
l (a(Sl)).

2 and 3. Statements 2 and 3 can be proven in a similar way. �

Proposition 2.13 gives a sufficient condition for an epimorphic image of a left localiz-

able set to be a left localizable left Ore set.

Proposition 2.13. Let R be a ring, S ∈ Ll(R, a), b be an ideal of R such that a ⊆ b

and R = R/b. Suppose that the left ideal S−1Rb is an ideal of the ring S−1R such that 

S−1Rb �= S−1R. Then S := (S + b)/b ∈ LOrel(R, c) for some ideal c of R such that 

b ⊆ c where c = c/b.

Proof. Since S ∈ Ll(R, a) and a ⊆ b, S ∈ Orel(R). Let b1 be the kernel of the ring 

homomorphism

R → S−1R/S−1Rb, r �→
r

1
+ S−1Rb.

Clearly, b ⊆ b1, S̃ = (S + b1)/b1 ∈ Denl(R/b1, 0) and S−1R/S−1Rb ≃ S̃−1(R/b1). By 

Theorem 1.3.(3), S ∈ LOrel(R, c) for some ideal c of R such that b ⊆ c. �
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3. Localization of a ring at an Ore set

The localization of a ring at an Ore set was introduced in [3]. The aim of this section 

is to prove Theorem 1.6 which among other things explains what is the localization of a 

ring at an Ore set and why it always exists. Proofs of Corollary 1.7 and Proposition 1.8

are given.

Proof of Theorem 1.6. 1. (i) a + a ⊆ a: Given elements a, a′ ∈ a. Then sat = s′a′t′ = 0

for some elements s, s′, t, t′ ∈ S. Fix elements s1, t1 ∈ S such that s1s = αs′ and tt1 = t′β

for some elements α, β ∈ R. Then s1s, tt1 ∈ S and

s1s(a + a′)tt1 = s1(sat)t1 + α(s′a′t′)β = 0 + 0 = 0,

and so a + a′ ∈ a.

(ii) RaR ⊆ a: Given elements r, r′ ∈ R and a ∈ a. Then sas′ = 0 for some elements 

s, s′ ∈ S. Using the left and right Ore conditions, we have the equalities

s1r = r1s and r′
1s′

1 = s′r′
1

for some elements s1, s′
1 ∈ S and r1, r′

1 ∈ R. Then

s1rar′s′
1 = r1sas′r′

1 = r10r′
1 = 0,

and so rar′ ∈ a, and the statement (ii) follows.

The statements (i) and (ii) imply that the set a is an ideal of the ring R.

(iii) a �= R: If a = R then 1 ∈ a, and so s · 1 · t = 0 for some elements s, t ∈ S. Then 

0 = st ∈ S, a contradiction.

2. (i) S ∩ a = ∅: If r ∈ S ∩ a then srt = 0 for some elements s, t ∈ S. This is not 

possible since 0 = srt ∈ S, a contradiction.

(ii) S ∈ Den(R, 0): Clearly, S ∈ Ore(R). If sr = 0 or r′ s′ = 0 for some elements 

s, s′ ∈ S and r, r′ ∈ R. Then sr ∈ a and r′s′ ∈ a. Then s1srs′
1 = 0 or s2r′s′s′

2 = 0 for 

some elements s1, s2, s′
1, s′

2 ∈ S, and so r ∈ a and r′ ∈ a, i.e., r = 0 and r′ = 0, and the 

statement (ii) follows.

(iii) S−1R ≃ S
−1

R and a = assR(S): The statement (iii) follows from Theo-

rem 1.3.(2,3).

(iv) a = a(S) = assR(S): The result follows from the inclusions a ⊆ a(S) ⊆ assR(S)

and the equality a = assR(S) (the statement (iii)).

(v) S ∈ L(R, a): The statement (v) follows from statements (iii) and (iv).

3. (i) a ⊆ b: Given an element a ∈ a. Then sat = 0 for some elements s, t ∈ S, and so 

s†a†t† = 0. Hence a† = 0 in R† since s†, t† ∈ CR† , and so a ∈ b, and so a ⊆ b.

(ii) The map S
−1

R → S†−1
R†, s−1r �→ s†−1

r† is a ring epimorphism: The statement 

(ii) follows from the universal property of localization.
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4(a) (i) Q = {f(s)−1f(r) | s ∈ S, r ∈ R} = {f(r)f(s)−1 | s ∈ S, r ∈ R}: The statement 

(i) follows from the fact that S ∈ Ore(R) and that the ring Q is generated by the sets 

f(R) and {f(s)−1 | s ∈ S}.

(ii) a ⊆ ker(f): Given an element a ∈ a. Then sat = 0 for some elements s, t ∈ S, and 

so

0 = f(sat) = f(a)f(s)f(t).

Hence, f(a) = 0 since f(s), f(t) ∈ Q×, and so a ∈ ker(f), and the statement (ii) follows.

(iii) The map S
−1

R → Q, s−1r �→ f(s)−1f(r) is a ring epimorphism: Since the ring 

Q is generated by the set f(R) and {f(s)−1 | s ∈ S}, and a ⊆ ker(f), the statement (iii) 

follows from the universal property of localization.

(iv) The kernel of the map in the statement (iii) is S
−1

(ker(f)/a): The statement is 

obvious.

4(b) The statement (b) follows from the statement (a). �

Definition ([3]). Let S ∈ Ore(R). The ring S
−1

R ≃ RS
−1

in Theorem 1.6.(2) is called 

the localization of the ring R at the Ore set S and is denoted by S−1R = RS−1. The 

ideal a in Theorem 1.6.(1) is denoted by ass(S).

Statement 4 (and statement 3) of Theorem 1.6 is the universal property of localization 

of a ring at Ore set. If the Ore set is a denominator set this is precisely the universal 

property of localization at a denominator set.

Proof of Corollary 1.7. 1. Statement 1 follows from Theorem 1.6.(1).

2. (i) Sl ∈ Orer(Rl) with assl(Sl) = 0: Since S ∈ Ore(R) and Rl = R/assl(S), the 

statement (i) is obvious.

(ii) Sl ∈ Den′
r(Rl, a/al): Since S ∈ Ore(R), we have that Sl ∈ Denr(Rl) since 

assl(Sl) = 0 ⊆ assr(Sl), by the statement (i). By Theorem 1.6.(1),

assr(Sl) = a/al.

In more detail, πl(r) ∈ assr(Sl) iff 0 = πl(r)πl(t) = πl(rt) for some element t ∈ S iff 

rt ∈ al iff srt = 0 for some s ∈ S iff r ∈ a, by Theorem 1.6.(1).

(iii) RlS
−1
l ≃ S−1R ≃ RS−1: The statement (iii) follows from Theorem 1.6.(2).

3. Statement 3 is proven in a similar fashion as statement 2.

4. Let ′a = ′a(S) and a′ = a′(S). By the very definition of the ideals al and ar,

′a ⊇ ar and a′ ⊇ al.

The reverse inclusions follow from statements 2 and 3 and the ‘minimality of the ideals 
′a and a′ in the sense of Proposition 1.1.(2,3). �
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Proof of Proposition 1.8. (i) S̃ is a multiplicative set of R such that S ⊆ S̃: The set 

S = π(S) is a multiplication set of the ring R, hence the set S̃ = π−1(S) is a multiplicative 

set of R.

(ii) S̃ ∈ L(R): It suffices to show that S̃ ∈ Ll(R) since then by symmetry we will get 

S̃ ∈ Lr(R). Given elements s ∈ S̃ and r ∈ R. Since π(s̃) = S ∈ Denl(R, 0), s1r = r1s for 

some elements s1 ∈ S and r1 ∈ R. Then s1r −r1s ∈ a. By Theorem 1.6.(1), a ⊆ assR(S̃), 

S̃ ∈ Ll(R).

(iii) S̃ ∈ L(R, a): Let ã = assR(S̃). We have to show that ã = a. Since S ⊆ S̃, we have 

the inclusion

a ⊆ ã,

by Lemma 1.10. Since π(S̃) = S ∈ Denl(R, 0), we have the reverse inclusion

a ⊇ ã

(by Theorem 1.6.(2,4)), and so ã = a.

(iv) S̃−1R ≃ S−1R is an R-isomorphism: By the statement (iii), S̃−1R ≃ π(S)−1R =

S
−1

R = S−1R. �

The following obvious lemma is a useful criterion when an epimorphism image of Ore 

set is an Ore set.

Lemma 3.1. Let R be a ring, S ∈ Ore(R) and b be an ideal of R. Then S := (S + b)/b ∈

Ore(R/b) iff S ∩ b = ∅.

Proof. Straightforward. �

An element a of ring R is called a normal element if aR = Ra. Suppose that R is 

a K-algebra over a field K. A K-linear map ∗ : R → R, r �→ r∗ is an involution if 

(rs)∗ = s∗r∗ and s∗∗ = s for all elements s, r ∈ R.

We keep the notation of Corollary 1.7. The next example shows that for an Ore set 

S of R, the ideals al, ar and a are distinct and a = al + ar, but, in general, a � al + ar

(see the second example).

Example. Let P = K[x1, x2, . . . , y1, y2, . . .] be a polynomial algebra over a field K in 

countably many variables x1, x2, . . . , y1, y2, . . .. Let R be a K-algebra generated by P

and an element a subject to the defining relations:

ax1 = 0, axi = xi−1a (i ≥ 2), y1a = 0, yia = ayi−1 (i ≥ 2).

The K-algebra R admits a K-involution ∗ where

a∗ = a, x∗
i = yi and y∗

i = xi for all i ≥ 1.
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The element a is a left normal element of R, i.e.,

aR ⊆ Ra.

In view of the involution ∗ and the fact a∗ = a, the element a is also a right normal, and 

so the element a is a normal element of the ring R. Hence,

Sa := {ai | i ∈ N} ∈ Ore(R), assl(Sa) = (x1, x2, . . .), assr(R) = (y1, y2, . . .),

ass(Sa) = (x1, . . . , y1, . . .) = assl(Sa) + assr(Sa), and S−1
a R ≃ RS−1

a ≃ K[a, a−1] (Corol-

lary 1.7.(2,3)). Clearly, the ideals assl(Sa), assr(Sa) and ass(Sa) are distinct and

ass(Sa) = assl(Sa) + assr(Sa).

The next example shows that, in general, ass(Sa) properly contains the sum assl(Sa) +

assr(Sa).

Example. Let P = K[x1, x2, . . . , . . . , y1, y2, . . .] be a polynomial algebra over a field K in 

variables x1, x2, . . . , y1, y2, . . .. Let R be a K-algebra generated by P and an element a

subject to the defining relations:

ax1 = 0, axi = xi−1a (i ≥ 2), y1a = 0, y2a = a(y1 + x2), yia = ayi−1 (i ≥ 3).

Then a is a normal element of R (since aR ⊆ Ra (as ay1 = (y2 − x1)a) and Ra ⊆ aR), 

hence Sa := {ai | i ∈ N} ∈ Ore(R), assl(Sa) = (x1, x2, . . .), assr(R) = (y1),

ass(Sa) = (x1, x2, . . . , y1, y2, . . .) � assl(Sa) + assr(Sa) and S−1
a R ≃ RS−1

a ≃ K[a, a−1]

(Corollary 1.7.(2,3)).

4. Localization of a ring at an almost Ore set

The aim of this section is to introduce almost Ore sets, to give a criterion for an almost 

Ore set to be a localizable set (Theorem 4.1.(1), Theorem 4.2.(2) and Theorem 4.3.(2)) 

and for each localizable almost Ore set S to give an explicit description of the ideal 

assR(S) and of the ring S−1R (Theorem 4.1.(2), Theorem 4.2.(3) and Theorem 4.3.(3)).

Almost Ore sets. Let R be a ring. Recall that a multiplicative set S of R is a left

(resp., right) Ore set if the left (resp., right) Ore condition holds: For any elements s ∈ S

and r ∈ R, there are elements s1 ∈ S and r1 ∈ R such that s1r = r1s (resp., rs1 = sr1). 

A left and right Ore set of R is called an Ore set of R.

Definition. Let R be a ring. A multiplicative set S of R is called an almost left (resp., 

right) Ore set of R if the almost left (resp., right) Ore condition holds:
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(ALO) For any elements s ∈ S and r ∈ R there are elements s1, s2 ∈ S and r1 ∈ R

such that (s1r − r1s)s2 = 0.

(ARO) For any elements s ∈ S and r ∈ R there are elements s1, s2 ∈ S and r1 ∈ R

such that s2(rs1 − sr1) = 0.

Let AOrel(R) and AOrer(R) be the sets of almost left and right Ore sets, respectively. 

Elements of the set AOre(R) := AOrel(R) ∩ AOrer(R) are called almost Ore sets.

Clearly, Ore∗(R) ⊆ AOre∗(R) for ∗ ∈ {l, r, ∅}. Let

LAOl(R) := Ll(R) ∩ AOrel(R),

LAOr(R) := Lr(R) ∩ AOrer(R),

LAO(R) := LAOl(R) ∩ LAOr(R) = L(R) ∩ AOre(R).

Elements of the sets LAOl(R) and LAOr(R) are called left localizable almost left Ore 

sets and right localizable almost right Ore sets, respectively. Elements of the set LAO(R)

are called localizable almost Ore sets.

Let ass LAO∗(R) := {assR(S) | S ∈ LAO∗(R)}. Then

LAO∗(R) =
∐

a∈ass LAO∗(R)

LAO∗(R, a)

where LAO∗(R, a) := {S ∈ LAO∗(R) | assR(S) = a}. (20)

Clearly, LAO∗(R, a) = LAO∗(R) ∩ L∗(R, a).

Theorem 4.1.(1) is a criterion for an almost Ore set to be a localizable set. It also gives 

an explicit description of the ideal assR(S) for each S ∈ LAO(R) (Theorem 4.1.(2b)).

Theorem 4.1. Let R be a ring, S ∈ AOre(R), al and ar be the ideals of R generated by 

the sets assl(S) = {r ∈ R | sr = 0 for some s ∈ S} and assr(S) = {r ∈ R | rs = 0 for 

some s ∈ S}, respectively.

1. The following statements are equivalent:

(a) S ∈ L(R).

(b) al + ar �= R.

2. Suppose that ã = al + ar �= R. Let R̃ = R/ã and S̃ = (S + ã)/ã. Then

(a) S̃ ∈ Ore(R̃).

(b) assR(S) = π̃−1(a◦) where π̃ : R → R̃, r �→ r̃ = r + ã and a◦ is the ideal in 

Theorem 1.6.(1) for the Ore set S̃ ∈ Orel(R̃), that is a◦ = {r̃ ∈ R̃ | ̃sr̃t̃ = 0 for 

some elements s̃, ̃t ∈ S̃}.

(c) Let a = assR(S) and π : R → R := R/a, r �→ r = r + a. Then S := π(S) ∈

Den(R, 0).

(d) S−1R ≃ S
−1

R, an R-isomorphism.
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Proof. Recall that a = assR(S) and a(S) is the least ideal of the ring R such that 

(S + a(S))/a(S) ⊆ CR/a(S) (Proposition 1.1.(1)).

(i) ã ⊆ a(S) ⊆ a: The first inclusion follows from (10) and the second one does from 

Lemma 1.2.

1 (a ⇒ b) If S ∈ L(R) then a �= R, and so ã �= R, by the statement (i).

1 (b ⇒ a)

(ii) If ã �= R then S̃ ∈ Ore(R̃): The statement (ii) follows at once from the conditions 

(ALO) and (ARO).

Since each Ore set is localizable, the implication (b ⇒ a) follows from the statement 

(ii).

2(a) The statement (a) is the same as the statement (ii).

2(b,c,d) The statements (b), (c) and (d) follow from the statement (a) and Theo-

rem 1.6.(1,2). �

Criterion for an almost left/right Ore set to be a left localizable set. Theorem 4.2 is 

such a criterion.

Theorem 4.2. Let R be a ring, S ∈ AOrel(R), a = assR(S), ar be the ideal of R generated 

by the set assr(S) = {r ∈ R | rs = 0 for some s ∈ S}. Then

1. Sr := (S + ar)/ar ∈ Orel(R/ar).

2. S ∈ Ll(R) iff Sr ∈ Ll(R/ar) iff ′a(Sr) �= R/ar iff ′a(S) �= R (see Proposition 1.1.(2) 

and (11)).

3. Suppose that ′a := ′a(S) �= R. Let ′π : R → ′R = R/′a, r �→ ′r = r + ′a and 
′S = ′π(S). Then

(a) ′S ∈ ′Denl(
′R).

(b) a = ′π−1(assl(
′S)).

(c) S−1R ≃ ′S−1′R, an R-isomorphism.

Proof. 1. Statement 1 follows at once from the condition (ALO) and the definition of 

the ideal ar.

2. Since ar ⊆ a(S) ⊆ assR(S) (Lemma 1.2), S ∈ Ll(R) iff Sr ∈ Ll(R/ar), by 

Lemma 2.1.(1). Recall that Sr ∈ Orel(R/ar) (statement 1). Now, by Theorem 1.5.(1),

Sr ∈ Ll(R/ar) iff ′a(Sr) �= R/ar.

Since ar ⊆ ′a(S), ′a(S)/ar = ′a(Sr). Therefore,

′a(Sr) �= R/ar iff ′a(S) �= R.

3. Since ′a �= R, the set Sr is a localizable left Ore set of the ring R/ar, by statements 

1 and 2. Since ar ⊆ ′a(S) ⊆ a(S)) ⊆ assR(S), R〈S−1〉 ≃ (R/ar)〈S−1
r 〉 (Lemma 2.1.(1)) 

and ′a(S)/ar = ′a(Sr), statement 3 follows from Theorem 1.5.(2). �
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Theorem 4.3. Let R be a ring, S ∈ AOrer(R), a = assR(S), al be the ideal of R generated 

by the set assl(S) = {r ∈ R | sr = 0 for some s ∈ S}. Then

1. Sl := (S + al)/al ∈ Orer(R/al).

2. S ∈ Lr(R) iff Sl ∈ Lr(R/al) iff a′(Sl) �= R/al iff a′(S) �= R (see Proposition 1.1.(3) 

and (12)).

3. Suppose that a′ := a′(S) �= R. Let π′ : R → R′ = R/a′, r �→ r′ = r + a′ and 

S′ = π′(S). Then

(a) S′ ∈ Den′
r(R′).

(b) a = π′ −1(assr(S′)).

(c) RS−1 ≃ R′S′ −1, an R-isomorphism.

Proof. The proof of the theorem is ‘dual’ to the proof of Theorem 4.2. �

Localizable almost Ore sets are perfect localizable sets. Corollary below shows that 

localizable almost Ore sets are perfect localizable sets.

Proposition 4.4.

1. LAOl(R) ⊆ ′Ll(R) ⊆ L
p
l (R) and LAOl(R) = ′Ll(R) ∩ AOrel(R) = L

p
l (R) ∩

AOrel(R).

2. LAOr(R) ⊆ L′
r(R) ⊆ Lp

r(R) and LAOr(R) = L′
r(R) ∩ AOrer(R) = Lp

r(R) ∩

AOrer(R).

3. LAO(R) ⊆ ′L′
l,r(R) ⊆ Lp(R).

Proof. 1. Statement 1 follows from Theorem 4.2.(3).

2. Statement 2 follows from Theorem 4.3.(3).

3. Statement 3 follows from statements 1 and 2. �

5. Classification of maximal localizable sets and maximal Ore sets in semiprime Goldie 

ring

The aim of this section is to classify the maximal Ore sets in a semiprime Goldie ring 

(Theorem 1.11.(1)). One of the key results that is used in the proof of Theorem 1.11 is 

Theorem 5.2. The concept the maximal left denominator set of a ring was introduced 

and studied in [3].

Lemma 5.1. Let R be a ring and S ∈ Ore(R). For any elements s, t ∈ S, there is an 

element ν ∈ S such that ν = x1s = x2t = sy1 = ty2 for some elements xi, yi ∈ R for 

i = 1, 2.

Proof. Since S ∈ Orel(R), s1s = r1t for some elements s1 ∈ S and r1 ∈ R. Since 

S ∈ Orer(R), ss2 = tr2 for some elements s2 ∈ S and r2 ∈ R. Then ν = ss2s1s ∈ S and
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ν = s · (s2s1s) = ss2s1 · s = t · r2s1s = ss2r1 · t,

as required. �

Theorem 5.2. Let R be a semiprime left Goldie ring. Then CR ∩ assR(S) = ∅ for all 

S ∈ Ore(R).

Proof. The ring R is a semiprime left Goldie ring. By Goldie’s Theorem, its classical left 

quotient ring Q = Ql,cl(R) := C−1
R R is a semisimple Artinian ring, Q =

∏n
i=1 Qi where 

Qi are simple Artinian rings. The map

σ : R → Q =

n∏

i=1

Qi, r �→
r

1
= (r1, . . . , rn)

is a ring monomorphism. We identify the ring R via σ with its image in Q. So, r = r
1 =

(r1, . . . , rn) where ri = r
1 ∈ Qi.

Suppose that CR ∩ assR(S) �= ∅ for some S ∈ Ore(R), we seek a contradiction. Fix an 

element c ∈ CR ∩ assR(S). By Theorem 1.6.(1),

sct = 0

for some elements s, t ∈ S. By Lemma 5.1, we can assume that s = t, i.e., scs = 0, i.e., 

Qi ∋ sicisi = 0 for all i = 1, . . . , n where s = (s1, . . . , sn) and c = (c1, . . . , cn). Clearly, 

ci ∈ Q×
i for all i = 1, . . . , n. Hence,

si /∈ Q×
i for all i = 1, . . . , n

(since sicisi = 0). The ideal of R, al = assl(S), is a nonzero ideal (since s · cs = 0 and 

0 �= cs ∈ al). The ring Q is a left Noetherian ring. Hence C−1
R al is an ideal of Q. If si = 0

then C−1
R al ∩ Qi = Qi. Suppose that si �= 0. Then 0 �= cisi ∈ C−1

R al ∩ Qi, and so

0 �= C−1
R al ∩ Qi = Qi

since Qi is a simple ring. Therefore, C−1
R al ∩ Qi = Qi for all i = 1, . . . , n, and so

C−1
R al =

n∏

i=1

Qi = Q.

Hence, CR ∩ al �= ∅. Fix an element a ∈ CR ∩ al. Then s′a = 0 for some s′ ∈ S (since 

a ∈ al = assl(S)) but a ∈ CR, hence 0 = s′ ∈ S, a contradiction. �

Classification of maximal Ore sets of a semiprime Goldie ring.

Proof of Theorem 1.11. 1. By [4, Theorem 4.1],
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max Den(R) = {C(p) | p ∈ min(R)}.

By Theorem 1.12,

{C(p) | p ∈ min(R)} = N∗ for ∗ ∈ {l, r, ∅}.

To finish the proof of statement 1 it suffices to show that every Ore set S of the ring R

is contained in a maximal denominator set.

The ring R is a semiprime Goldie ring. The left and right quotient ring of R,

Qcl(R) = C−1
R R ≃ RC−1

R ≃
n∏

i=1

Qi

is a product of simple Artinian ring Qi. Let a = assR(S). By Theorem 5.2,

C−1
R a �= Q.

Hence, up to order, C−1
R a =

∏n
i=m+1 Qi for some m such that 1 ≤ m < n. We have ring 

homomorphisms

σ : R
π
→ R/a

τ
→ C−1

R (R/a) ≃ Q :=

m∏

i=1

Qi

where σ = τπ, π(r) = r := r +a and τ(r) = r
1 . The homomorphism π is an epimorphism 

and the homomorphism τ is a monomorphism. Let S = π(S). By Theorem 1.6.(2),

S ∈ Den(R/a, 0).

In particular, S ⊆ Q
×

. Therefore, σ1(S) ⊆ Q×
1 where σ1 : R → Q → Q1 where the first 

map is r �→ r
1 and the second is the projection onto Q1. Therefore,

S ⊆ σ−1
1 (Q×

1 ).

By the explicit description of the set max Den(R) at the beginning of the proof,

σ−1
1 (Q×

1 ) ∈ max Den(R),

as required.

2. In view of the first equality in statement 1, statement 2 is [4, Theorem 4.1.(2d)].

3. In view of the first equality in statement 1, statement 3 is [4, Theorem 4.1].

4. In view of the first equality in statement 1, statement 4 is [4, Theorem 4.1.(2c)]. �
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6. Localization of a module at a localizable set

The aim of the section is to introduce the concept of localization of a module at a 

localizable set and to consider its basic properties.

Definition. Let R be a ring, S ∈ L∗(R, a) where ∗ ∈ {l, ∅} and M be a left R-module. 

Then the left S−1R-module

S−1M := S−1R ⊗R M

is called the (left) localization of M at S. If S ∈ L∗(R, a) where ∗ ∈ {r, ∅} and M be a 

right R-module. Then the right RS−1-module

MS−1 := M ⊗R RS−1

is called the (right) localization of M at S.

We consider the case when ∗ ∈ {l, ∅} and M is a left R-module. By the very definition, 

S−1M is a left S−1R-module. The elements of the S−1R-module S−1M are denoted by 

s−1m. In particular, s−1r ⊗ m = s−1rm for s ∈ S, r ∈ R and m ∈ M , and m
1 := 1 ⊗ m. 

The map

iM : M → S−1M, m �→ 1 ⊗ m

is an R-homomorphism.

Proposition 6.1. Let R be a ring, S ∈ L∗(R, a) where ∗ ∈ {l, ∅}, M be an R-module, and 

iM : M → S−1M , m �→ 1 ⊗ m. Then

1. S−1M ≃ S
−1

(M/aM) where S := (S + a)/a ∈ Denl(R, 0) and R = R/a (Theo-

rem 1.3.(1)).

2. Let M be an S−1R-module and f : M → M be an R-homomorphism. Then there is 

a unique S−1R-homomorphism S−1f : S−1M → M such that f = S−1f ◦ iM .

3. tS(M) := ker(iM ) = {m ∈ M | sm ∈ aM for some s ∈ S}.

Proof. 1. Let M = M/aM . Then S−1(aM) = S−1R ⊗R aM = S−1Ra ⊗R M = 0, and 

so

S−1M = S−1M = S−1R ⊗R M ≃ S
−1

R ⊗R M = S
−1

M.

2. The R-homomorphism f : M → M determines a ring homomorphism

R → EndZ(M), r �→ (m �→ rm).
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The images of the elements of the set S in EndZ(M) are units. Now, statement 2 follows 

from Theorem 1.3.(4).

3. Statement 3 follows from statement 1. �

For a ring R, let R − mod be the category of left R-modules. By Proposition 6.1.(1), 

the localization at S functor,

S−1 : R − mod → S−1R − mod, M �→ S−1M,

is the composition of two right exact functors

S−1 = S
−1

◦ (R/a ⊗R −). (21)

Therefore, the functor S−1 is also a right exact functor for all S ∈ L∗(R): Given a 

short exact sequence of R-modules 0 → M1 → M2 → M3 → 0, then the sequence of 

S−1R-modules

0 → S
−1

(M1 ∩ aM2/aM1) → S−1M1 → S−1M2 → S−1M3 → 0 (22)

is exact. Notice that

M1 ∩ aM2/aM1 ≃ M1 ∩ (aM2/aM1).

An R-module M is called S-torsion (resp., S-torsionfree) if S−1M = 0 (resp., tS(M) =

0, i.e., the map iM : M → S−1M , m �→ 1 ⊗ m is an R-module monomorphism). Let 

fS(M) = im(iM ), the image of the map iM , and we have a short exact sequence of 

R-modules

0 → tS(M) → M → fS(M) → 0. (23)

Clearly, aM ⊆ tS(M),

tS(M)/aM = torS(M) := {m ∈ M | sm = 0 for some element s ∈ S}

where M = M/aM and

fS(M) = M/tS(M) ≃ (M/aM)/(tS(M)/aM) ≃ M/torS(M).

By taking the short exact sequence (23) modulo aM , we obtain a short exact sequence 

of R-modules

0 → torS(M) → M → M/torS(M) → 0. (24)

Lemma 6.2. Let R be a ring, S ∈ L∗(R, a) where ∗ ∈ {l, ∅} and M be an R-module. Then
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1. tSfS(M) = 0 and so the R-module fS(M) is S-torsionfree.

2. fSfS(M) = fS(M).

Proof. 1. tSfS(M) = tS(M/torS(M)) = torS(M/torS(M)) = 0.

2. fSfS(M) ≃ fS(M)/tSfS(M) = fS(M) since tSfS(M) = 0, by statement 1. �

Theorem 6.3 is a criterion for the functor S−1 : M → S−1M to be exact.

Theorem 6.3. Let R be a ring, S ∈ L∗(R, a) where ∗ ∈ {l, ∅}, R = R/a and S :=

(S+a)/a. The functor S−1 is exact iff for all R-modules M1 and M2 such that M1 ⊆ M2, 

the R-modules M1 ∩ aM2/aM1 is S-torsion.

Proof. The theorem follows from the exact sequence (22). �

Corollary 6.4. Let R be a ring, S ∈ L∗(R, a) where ∗ ∈ {l, ∅}, R = R/a and S :=

(S + a)/a. If the functor S−1 is exact then the R-module a/a2 is S-torsion (recall that 

S ∈ Denl(R, 0), by Theorem 1.3.(1)).

Proof. Applying Theorem 6.3 to the pair of R-modules M1 = a ⊆ M2 = R, we conclude 

that the R-module (M1 ∩ aM2)/aM1 = a/a2 is S-torsion. �

For an R-module M and S ∈ L∗(R, a), we have a descending chain of R-modules

tS(M) ⊇ t2S(M) ⊇ · · · ⊇ tnS(M) ⊇ · · ·

where tnS(M) = tStS · · · tS(M), n times.

7. Examples

In this section, we consider several examples and present explicitly some of the con-

cepts that are introduced in the paper.

The algebras Sn, n ≥ 1, of one-sided inverses. Let K be a field and K× be its group 

of units, and Pn := K[x1, . . . , xn] be a polynomial algebra over K.

Definition ([1]). The algebra Sn of one-sided inverses of Pn is an algebra generated over 

a field K by 2n elements x1, . . . , xn, y1, . . . , yn that satisfy the defining relations:

y1x1 = · · · = ynxn = 1, [xi, yj ] = [xi, xj ] = [yi, yj ] = 0 for all i �= j,

where [a, b] := ab − ba, the commutator of elements a and b.

Let us recall some results of [1] that are used in proofs below. By the very definition, 

the algebra Sn is obtained from the polynomial algebra Pn by adding commuting, left 
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(or right) inverses of its canonical generators. The algebra S1 is a well-known primitive 

algebra [9], p. 35, Example 2. Over the field C of complex numbers, the completion of the 

algebra S1 is the Toeplitz algebra which is the C∗-algebra generated by a unilateral shift 

on the Hilbert space l2(N) (note that y1 = x∗
1). The Toeplitz algebra is the universal 

C∗-algebra generated by a proper isometry.

Clearly, Sn = S⊗n
1 and S1 = K〈x, y | yx = 1〉 =

⊕
i,j≥0 Kxiyj . For each natural 

number d ≥ 1, let Md(K) :=
⊕d−1

i,j=0 KEij be the algebra of d-dimensional matrices 

where {Eij} are the matrix units, and M∞(K) := lim
−−→

Md(K) =
⊕

i,j∈N
KEij be the 

algebra (without 1) of infinite dimensional matrices. The algebra S1 contains the ideal 

F :=
⊕

i,j∈N
KEij , where

Eij := xiyj − xi+1yj+1, i, j ≥ 0. (25)

For all natural numbers i, j, k, and l, EijEkl = δjkEil where δjk is the Kronecker delta 

function. The ideal F is an algebra (without 1) isomorphic to the algebra M∞(K) via 

Eij �→ Eij . For all i, j ≥ 0,

xEij = Ei+1,j , yEij = Ei−1,j (E−1,j := 0), (26)

Eijx = Ei,j−1, Eijy = Ei,j+1 (Ei,−1 := 0). (27)

S1 = K ⊕ xK[x] ⊕ yK[y] ⊕ F, (28)

the direct sum of vector spaces. Then

S1/F ≃ K[x, x−1] =: L1, x �→ x, y �→ x−1, (29)

since yx = 1, xy = 1 − E00 and E00 ∈ F .

Lemma 7.1 is used in the proof of Proposition 7.2.

Lemma 7.1. Let R be a ring, a be an ideal of R, and π : R → R := R/a, r �→ r + a. 

Suppose that S is a multiplicative set in R such that S := π(S) ∈ Den∗(R, b) and 

a ⊆ ass∗(S) where ∗ ∈ {l, r, ∅}. Then S ∈ Den∗(R, b) where b = π−1(b).

Proof. We prove the lemma for ∗ = l. The other two cases can be proven in a similar 

way. For each element r ∈ R, let r = π(r).

(i) S ∈ Orel(R): Given elements s ∈ S and r ∈ R. Then s ∈ S and r ∈ R. Since S is 

a left Ore set in R, s1r = r1s for some elements s1 ∈ S and r1 ∈ R. Hence,

a := s1r − r1s ∈ a.

Since a ⊆ assl(S), we can choose an element, say s2 ∈ S, such that 0 = s2a = s2s1r −

s2r1s, and the statement (i) follows.
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(ii) assl(S) = b: Given an element b ∈ b. Then b ∈ b, and so sb = 0 for some element 

s ∈ S (since S ∈ Denl(R, b)). Hence, sb ∈ a, and so tsb = 0 for some element t ∈ S

(since a ⊆ assl(S)). Therefore, b ∈ assl(S) and b ⊆ assl(S).

Conversely, given an element a ∈ assl(S). Then sa = 0 for some element s ∈ S. Then 

sa = 0, and so a ∈ b and a ∈ b. Therefore, b ⊇ assl(S), and the statement (ii) follows.

(iii) S ∈ Denl(R, b): In view of the statements (i) and (ii), we have to show that if 

as = 0 for some elements a ∈ R and s ∈ S then a ∈ b. Clearly, as = 0, and so a ∈ b. 

Hence, a ∈ π−1(b) = b, as required. �

The algebra Sn admits the involution

η : Sn → Sn, xi �→ yi, yi �→ xi, i = 1, . . . , n,

i.e., it is a K-algebra anti-isomorphism (η(ab) = η(b)η(a) for all a, b ∈ Sn) such that 

η2 = idSn
, the identity map on Sn. So, the algebra Sn is self-dual (i.e., it is isomorphic 

to its opposite algebra, η : Sn ≃ Sop
n ). This means that left and right algebraic properties 

of the algebra Sn are the same.

Let an := (x1y1 − 1, . . . , xnyn − 1), an ideal of Sn. By [1, Eq. (19)], the factor algebra

Sn/an = Ln = K[x±1
1 , . . . , x±1

n ]

is the Laurent polynomial algebra. Clearly, L×
n = {λxα | λ ∈ K×, α ∈ Zn} where xα =

xα1

1 · · · xαn
n . Let

σ : Sn → Ln, a �→ a + an.

Proposition 7.2. Let X = 〈x1, . . . , xn〉 and Y = 〈y1, . . . , yn〉 be multiplicative submonoids 

of (Sn, ·) that are generated by the elements in the brackets. Then

1. Y ∈ Denl(Sn, an) and Y −1Sn = Ln.

2. X ∈ Denr(Sn, an) and SnX−1 = Ln.

Proof. Recall that Sn = S⊗n
1 . By [1, Eq. (19)], an = p1 + · · · + pi + · · · + pn where

p1 = F ⊗ Sn−1, . . . , pi = Si−1 ⊗ F ⊗ Sn−i, . . . , pn = Sn−1 ⊗ F.

By (26), pi ⊆ assl(Si) where Si = {yj
i | j ≥ 0} ⊆ Y . Hence, an ⊆ assl(Y ). Notice that 

Y ∈ Denl(Ln, 0). By Lemma 7.1, Y ∈ Denl(Sn, an). Now,

Y −1Sn ≃ Y −1(Sn/an) = Y −1Ln = Ln.

2. By applying the involution η of the algebra Sn to statement 1 we obtain statement 

2 (since η(an) = an, η(Y ) = X and η(X) = Y ). �
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For the algebra Sn and its multiplicative set Y , Lemma 7.3 presents explicitly all the 

ingredients of Proposition 1.1 and Theorem 1.3.

Lemma 7.3.

1. Y ∈ Ore(Sn) and Y /∈ Denr(Sn), Y ⊆ ′CSn
, assl(Y ) = an, and assr(Y ) = 0.

2. The ideals a(Y ) = a(Y )′ = an and ′a(Y ) = 0 (see Proposition 1.1).

3. We keep the notation of Theorem 1.3. Then for all ∗ ∈ {l, r, ∅},

(a) Y ∈ L∗(Sn, a), a = an, and Y −1Sn ≃ SnY −1 ≃ Ln,

(b) Sn := Sn/a = Sn/an = Ln,

(c) Y = Ỹ ∈ Den∗(Sn, 0).

Proof. 1. The equalities yixi = 1, i = 1, . . . , n, imply that yi ∈ ′CSn
, and so Y ⊆ ′CSn

. 

Hence, assr(Y ) = 0. By Proposition 7.2.(1), assl(Y ) = an. Hence, Y /∈ Denr(Sn) (since 

0 �= an = assl(Y ) � assr(Y ) = 0).

By Proposition 7.2.(1), Y ∈ Orel(Sn). To finish the proof of statement 1, it remains 

to show that Y ∈ Orer(Sn). Since Sn = S⊗n
1 , it suffices to prove the statement for 

n = 1, that is Y = {yi | i ≥ 0}, we drop the subscript ‘1’. The algebra S1 is generated 

by the elements x and y, and Y = {yi | i ≥ 0}. So, it suffices to check that the right Ore 

condition holds for the elements x ∈ S1 and y ∈ Y , i.e. to prove that there are elements 

a ∈ S1 and yi such that xyi = ya. It suffices to take i = 2 and a = 1 − E11:

xy2 = (1 − (1 − xy))y = (1 − E00)y = y − E01 = y(1 − E11).

2. By statement 1, Y ⊆ ′CSn
, and so ′a(Y ) = 0. By Proposition 7.2.(1), Y ∈

Denl(Sn, an). Hence, a(Y ) = an. On the one hand, a(Y )′ ⊆ a(Y ) = an, by Proposi-

tion 1.1.(3). On the other hand, an ⊆ a(Y )′, by (26). Therefore, a(Y )′ = an.

3. The case ∗ = l follows from the fact that Y ∈ Denl(Sn, an) (Proposition 7.2.(1)). 

It suffices to consider the case where ∗ = r. By statement 1, assl(Y ) = an. Clearly, 

assl(Y ) ⊆ assR(Y ). Since Sn/assl(Y ) = Sn/an = Ln and the elements of the set Y are 

units in the Laurent polynomial ring Ln, we have that assR(Y ) = an, Y ∈ Lr(Sn, an)

and SnY −1 ≃ Ln. Now statements (b) and (c) follow. �

For the algebra Sn and its multiplicative set X, Lemma 7.4 presents explicitly all the 

ingredients of Proposition 1.1 and Theorem 1.3.

Lemma 7.4.

1. X ∈ Ore(Sn) and X /∈ Denl(Sn), X ⊆ C′
Sn

, assr(X) = an, and assl(X) = 0.

2. The ideals a(X) = ′a(X) = an and a(X)′ = 0 (see Proposition 1.1).

3. We keep the notation of Theorem 1.3. Then for all ∗ ∈ {l, r, ∅},

(a) X ∈ L∗(Sn, a), a = an, and X−1Sn ≃ SnX−1 ≃ Ln,
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(b) Sn := Sn/a = Sn/an = Ln,

(c) X = X̃ ∈ Den∗(Sn, 0).

Proof. Since η(Y ) = X and η(an) = an, the lemma follows from Lemma 7.3. �

Localization of a ring at the powers of a normal non-nilpotent element. In commuta-

tive algebra and algebraic geometry a localization of a commutative ring at the powers 

of a non-nilpotent element plays a prominent role in many proofs. An analogue of this 

situation for a noncommutative ring is a localization of a ring at the powers of a normal 

non-nilpotent element, see Lemma 7.5 for details.

Let R be a ring and x ∈ R be a normal non-nilpotent element (Rx = xR and xi �= 0

for all i ≥ 1). Then Sx := {xi | i ∈ N} is an Ore set.

Lemma 7.5. We keep the notation of Theorem 1.6. Let R be a ring, x ∈ R be a normal 

non-nilpotent element, and Sx := {xi | i ∈ N}.

1. a = a(Sx) = assR(Sx) = {r ∈ R | xirxj = 0 for some i, j ≥ 0}.

2. Let π : R → R := R/a, r �→ r = r + a. Then Sx := π(Sx) ∈ Den(R, 0), Sx ∈ L(R, a), 

and S−1
x R ≃ Sx

−1
R, an R-isomorphism.

3. Let b be an ideal of R and π† : R → R† := R/b, r �→ r† = r + b. If x† ∈ CR† then 

a ⊆ b and the map

Sx
−1

R → S−1
x† R†, x−ir �→ x†−i

r†

is a ring epimorphism.

4. Let f : R → Q be a ring homomorphism such that f(x) ∈ Q× and the ring Q is 

generated by f(R) and f(x)−1. Then

(a) a ⊆ ker(f) and the map

Sx
−1

R → Q, x−ir �→ f(x)−if(r)

is a ring epimorphism with kernel Sx
−1

(ker(f)/a).

(b) Let R̃ = R/ker(f) and π̃ : R → R̃, r �→ r+ker(f). Then S̃x := π̃(Sx) ∈ Den(R̃, 0)

and S̃x

−1
R̃ ≃ Q, an R̃-isomorphism.

Proof. 1. Statement 1 follows from Theorem 1.6.(1,2) where S = Sx.

2–4. Statements 2–4 follow from Theorem 1.6.(2)–Theorem 1.6.(4), respectively. �

Localization of a ring at the powers of a normal nonzero idempotent element. If, in 

addition, the above element x is an idempotent we can find ingredients of Lemma 7.5

explicitly, see the corollary below.
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Corollary 7.6. We keep the notation of Lemma 7.5. Let R be a ring, x ∈ R\{0} be a 

normal idempotent, and Sx := {xi | i ∈ N} = {1, x}.

1. R = xRx × (1 − x)R(1 − x) is a direct product of rings and a = a(Sx) = assR(Sx) =

(1 − x)R(1 − x).

2. S−1
x R ≃ R/(1 − x)R(1 − x) ≃ xRx.

Proof. 1. The elements of R, e1 = x and e2 = 1 − x, are orthogonal idempotents 

(e1e2 = e2e1 = 0) such that 1 = e1 + e2. Hence, the ring R is canonically isomorphic to 

the matrix ring

(
R11 R12

R21 R22

)
where Rij = eiRej for i, j = 1, 2,

and each element r ∈ R is identified with the matrix

(
r11 r12

r21 r22

)
where rij = eirej for i, j = 1, 2.

Since the element x is a normal idempotent of R, R12 = xR(1 − x) = Rx(1 − x) = 0 and 

R21 = (1 − x)Rx) = (1 − x)xR = 0. Therefore, the ring R = xRx × (1 − x)R(1 − x) is a 

direct product of rings. Statement 1 follows from Lemma 7.5.(1).

2. Statement 2 follows from statement 1 and Lemma 7.5.(2). �
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