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Enabling accurate and fast large-scale battery simulation using only a 9-cell 
model with variance based parameters 
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Building, Mappin Street, Sheffield S1 3JD, UK   

A R T I C L E  I N F O   

Keywords: 
BESS model 
Grid-scale storage 
Electric vehicle battery 
Lithium-ion battery 
Cell balance 
Battery parameter identification 

A B S T R A C T   

For grid-connected batteries consisting of upwards of tens of thousands of cells, it can be challenging to produce 
an effective electrical model. Two methods are commonly seen in literature to model large packs, either 
represent the pack with a single cell model, or represent the pack with a cell model for every cell. The former is 
computationally efficient and suitable for real-time applications but lacks individual cell-level behaviour across 
the pack, whilst the latter offers this, due to the model size, it is unsuitable for real-time applications. Thus, a 
novel model is presented that can represent any size of battery pack using up to nine cell-models. A method for 
identifying the parameters for the nine cell models is offered, focused on ensuring the capacity limiting “weakest 
cell” is accounted for. This is verified experimentally with two lab-scale tests and a method for identifying pa-
rameters for a large sample of cells using the parameter distribution is evaluated. For a 48 cell pack under 1C 
charge/discharge cycles, modelling all cells was identical to the proposed model, with an accuracy of >99.4 % 
compared to experimental testing whilst being >20 times faster to simulate. The simulation time for the proposed 
model to provide 10 real-time hours of data was 3.7 s, compared to modelling all 48 cells in the pack requiring 
79.6 s. Finally, using the parameter distribution or variance is shown to be a viable technique to estimate the 
achievable pack capacity, with a 1C cycle test experimentally achieving an accuracy of >98.9 % when identifying 
model parameters using the variance of a sample of cells.   

1. Introduction 

Large battery packs are increasingly becoming more common, with 
applications vastly growing as the need for electricity storage is 
increasing. This can include electric vehicles where there may be hun-
dreds to thousands of cells in a car [1,2] and upwards of tens of thou-
sands in a large grid-connected battery energy storage system (BESS) 
[3]. These can be even larger when using smaller cells in these large 
packs, such as the cylindrical 2170 cell which is used in the Hornsdale 
Power Reserve - a 100 MW/129MWh BESS built by Tesla [4,5]. 

Previous work presented in [6] introduced how cells connected in a 
pack are not identical, and that this can affect the performance of the 
overall pack. For a series string, it was shown that the overall capacity of 
a pack is generally limited by a single “weak” cell. This paper explores 
creating an accurate yet computationally efficient model which takes 
into account this behaviour, combining different approaches. 

When performing analysis on a multi-cell pack, such as real-time 
state estimation or simulation, two main approaches are used when 

modelling the pack. The first is to model every cell individually, as 
represented by Fig. 1, and discussed in [7–9]. This would give the most 
complete picture of the state of the battery, with an estimate for every 
single cell in the pack to give the best understanding of the overall pack 
performance. However, it is challenging to monitor, store, and process 
data from every cell in a pack. As an example, the Willenhall Energy 
Storage System (WESS), a 1 MW, 2MWh battery system operated by the 
University of Sheffield (see [3] for more details), contains 21,120 cells. 
There are typically 2 bytes per data frame for each cell containing 
voltage readings which are reported by the cell management system to 
the battery management system every 120 ms. This is 21.1 KB of data 
per 120 ms and therefore 176 KB/s. Over a single day, stored with no 
compression, this would produce 15.2GB of data. Whilst not impossible 
to deal with, processing all data in real time for every cell in the pack 
could pose a challenge due to the large processing requirements. Various 
solutions have been proposed and implemented in different systems, 
including pre-processing in each battery module and reporting back 
information such as State-of-Charge (SoC) and State-of-Health (SoH) for 
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each cell, rather than just voltage data [10]. Even with the processed 
information for each cell, this will still not be able to give a complete 
picture of the overall output performance of the battery - the state of 
charge or the overall available energy capacity at the terminals. This 
would again mean further processing to give this information. 

The same issues are faced in the simulation of large-scale packs. As 
an example, modelling a single cell with a zero-order Equivalent Circuit 
model (Rint Model, as described in [11,12]) in Simulink as detailed in 
Section 2.1, takes 1.7 s to perform a single cycle (charge and discharge) 
at 1C with a 1 s sample rate on a modern computer (CPU - i7 7700, 24GB 
RAM, SSD). A number of simulations were performed with different 
pack configurations for 7200 s simulation time and the results can be 
seen in Fig. 2 which shows how the real processing time varies with the 
number of cells being simulated. 

Interpolating Fig. 2 for WESSs 21,120 cells, it can be estimated that 
simulating WESS for a simulation time of 7200 s would take approxi-
mately 7500 s of processing on a modern computer (specification 
mentioned previously). With the processing time being longer than the 
simulation time, it makes the approach unsuitable for real-time appli-
cations and time consuming for general simulation, though the ever 
advancement of computing power may see this approach more feasible 
in the future. 

The second approach is to model the entire pack as a single cell 
model such as those seen in [13,14], shown in Fig. 3. It can be effective 
as it is fast and straightforward to implement and allows the use of a 
more computationally intensive cell model as only a single cell is 
simulated. However, the main issue with this is the loss of accuracy in 

the model due to the cells in the pack not being identical. In other words, 
at any given time, the cells will not necessarily all have the same voltage 
and current flow due to differences in capacity, impedance, and other 
parameters. For a practical system, it is expected that modelling the pack 
with a single cell model would result in the system reporting a larger 
amount of energy available than is actually available, due to some cells 
reaching their voltage limits before others meaning some cells have 
unreachable capacity. This would vary depending on how well balanced 
the system is at any given time. 

In reality, the only important readings are the lowest and highest cell 
voltage as a full charge/discharge cycle must end or change when one 
cell reaches its upper or lower voltage limit. The work in [6] has shown 
that this will always take the place of a single cell which can be 
considered the “weakest cell”. The weakest cell in a series string will 
reach its voltage limit before all others, assuming the string is balanced. 
A string or pack is considered balanced if the SoCs of all cells becomes 
equal at any point during a cycle. A Battery Management System (BMS) 
will typically manage the balance state of a pack, using a cell balancing 
mechanism. These mechanisms are split into two categories, passive and 
active [15]. A passive BMS consists of switched resistors which 
discharge higher voltage cells to balance a pack, normally whilst the 
pack is at rest and when almost fully charged. An active BMS consists of 
controlled electronic switches that enables the transfer of charge be-
tween cells. An appropriate active BMS is an alternative approach to the 
improved modelling presented in this paper, albeit at an increased cost, 
as it can help avoid limitations of the weakest cell by transferring charge 
from the strongest to the weakest cell. 

The approach proposed in this paper aims to improve on battery pack 
models, by producing a model with a sufficient view of the state of the 
cells within the system, without having to model every single cell. The 
approach revolves around the concept that it's only necessary to know 
the maximum and minimum cell voltages to predict the remaining 
charge that can be put into the battery and removed from the battery. 
One method is to model the single weakest cell (the cell with the lowest 
capacity and highest impedance) alongside the model representing the 
whole pack. This results in the model consisting of just two cell models. 

This should show an improvement in the accuracy, but the model 
lacks the data for currents inside the system (such as between parallel 
strings), so assumes that there is equal current between strings in the 
system. Furthermore, it cannot give a measure of cell voltage imbalance 
- the difference between the highest and lowest cell voltages. Many 
systems operate with cell voltage imbalance as a limit to prevent large 
currents between parallel strings. These two metrics (cell voltage 
imbalance and maximum string current) should therefore be output 
from the model. 

To give a value for cell voltage imbalance for a series string, it is 
proposed that 3 cell models are required. The strongest cell, the weakest 
cell, and the remaining cells as a single cell model, shown later in 
Fig. 13. This study defines the weakest cell as the cell which reaches the 
upper/lower voltage limits under charge/discharge and the strongest 
cell is defined as the cell which remains furthest from the voltage limits, 
assuming the pack is balanced at a given SoC (i.e. the cell voltages 
converge at a the given SoC). This will give the highest, lowest, and 
average cell voltage, as well as the SoC of each cell model and therefore 
the overall SoC. Current is constant between cells in the string. 

Fig. 1. A model representation of WESS showing every cell being modelled, 
with each string containing 264 parallel pairs of 2.7 V (max), 20 Ah cells. There 
are 40 strings connected in parallel. 

Fig. 2. Processing time vs number of cells for a Rint model for various pack 
configurations. 

Fig. 3. A single cell model representation of WESS showing just a single cell 
being modelled, totalling the voltage and capacity of the model shown in Fig. 1. 
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To give a value for the maximum current between any number of 
cells connected in parallel, it is proposed that 3 cell models are required. 
Again, the strongest, weakest, and remaining cells, shown later in 
Fig. 15. As the voltage is constant in the parallel connections, the current 
between the cells can be calculated. It is expected that this will give the 
maximum current, as there will be the highest current through either the 
strongest or weakest cell. 

From this, to model a pack of any size with any combination of 
parallel and series connections, at most nine cell models are required as 
a combination of the series and parallel models, which is the final model 
proposed in this paper, represented in Fig. 4. With improved pack ac-
curacy, and reduced computation, this would allow the use of a more 
complex cell model in a pack, such as that seen in [16]. 

The main contributions of this paper are listed as follows.  

1. A 9 cell model is presented that can be used to simulate large battery 
packs and 20 times.  

2. A method for identifying the parameters for the model is proposed 
and demonstrated.  

3. The model and identification method is verified experimentally with 
a 12s4p pack with >99 % accuracy for capacity estimation.  

4. The simulation speed is shown to be >20 times faster than when 
modelling all cells in the pack.  

5. It is demonstrated experimentally how parameters can additionally 
be identified using cell variance data. 

The remainder of the paper is organised as follows. Section 2 de-
scribes the model proposed in this paper, detailing the cell model and 
following scale up to pack model. Section 3 details the parameter 
identification procedure, showing experimental results to highlight the 
variance between cells. An evaluation of the model is presented in 
Section 4, with experimental results from a 12s4p pack providing 
grounding in reality. Finally, the conclusions are presented in Section 5. 

2. Modelling 

The proposed model containing 9 cells to make up the overall pack 
model is produced using Simulink named the 9 Cells Model (9CM). This 
section will discuss the architecture of the model, beginning with the 
individual cell model, discussing the input parameters, and justifying 
the details of the model. It will then be shown how the 9CM is scaled 
from single cell models. 

2.1. Cell model 

The cell model used is an Equivalent Circuit Model - these represent 
the cell as an electrical circuit, typically consisting of a voltage source, 
which varies based on SoC, and additional components to represent the 

impedance. In this paper, the model was built in Simulink, functioning 
as a Rint model, as shown in Fig. 5 where the internal resistance varies 
with the current direction (charge or discharge) (seen in [7,17]) and the 
temperature. Additionally, the capacity degrades on cycling [11,12]. 
One negative aspect of the Rint model is that it will not correctly show 
the dynamic behaviour of the pack, meaning that during a large change 
in current, the voltage shown by the model may not exactly match 
experimental values due to the transient behaviour of the battery. The 
Rint model was however chosen for several reasons. Firstly, in a grid- 
scale system, the largest concern is about reaching the voltage limits. 
The Rint model will show the ‘worst case scenario’ where the steady- 
state behaviour will be reached immediately. Next, the study is look-
ing more closely at the variations between large numbers of cells. It is 
relatively straightforward to identify the parameters for the Rint model, 
meaning a large dataset can be used to give the variance of a group of 
cells without the need for impedance measurements at a range of fre-
quencies on individual cells. Finally, this study is more concerned with 
the process of modelling a large number of cells, rather than producing 
an unnecessarily complex cell model. The parameters that are consid-
ered are those that are most relevant to a grid scale system, however, it 
would be possible to increase the order of the model if the results show 
that a Rint model is insufficient. Fig. 6 shows the design of the cell model 
in Simulink. 

2.1.1. Model parameters 
The physical parameters which are used in the model include:  

1. Capacity  
2. OCV 

Fig. 4. Configuration of the 9 cells model proposed in this paper.  

+
V

OCV

R
Cell Charge

Load/

Source

+

R
Cell Discharge

Fig. 5. The proposed Rint cell model.  
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3. Impedance  
4. Temperature  
5. Coulombic efficiency  
6. Degradation rate. 

Each of these parameters has been considered individually and 
experimentally verified to determine how they are implemented in the 
cell model. This section describes the chosen implementations for each 
parameter. 

For experimental validation, a sample of ten Yuasa LIM5H cells were 
used. Ten were used to give nine cells to identify the parameters for the 
9CM and a spare. They were chosen as they are of a lithium-NMC type 
chemistry - a widely used cell chemistry [18]. 

2.1.1.1. Capacity. . The capacity of a cell describes the Coulombic 
charge which can be extracted from or input to it, before voltage limits 
are reached. The capacity of a cell is measured using a Constant Current, 
Constant Voltage (CCCV) charge/discharge test to determine the 
maximum capacity of a cell, using the procedure shown in Table 1. Using 

a CCCV discharge to measure capacity is atypical, but is used in this case 
as the capacity must represent the full Coulombic charge stored in the 
battery. 

The CV cutoff current used is C/20, a value commonly used in 
literature [19,20]. This is an important choice as a model would 
consider the battery to have reached 100 % or 0 % SoC once a CV charge 
or discharge has reached C/20, even though more energy could be 
charged or discharged at lower C-rates. In the literature, C/20 appears to 
be a suitable balance between having a good measurement for capacity 
and not having an unnecessarily lengthy test time. 

Fig. 6. Implementation of the Rint model in Simulink.  

Table 1 
Test procedure for measuring capacity of cells.   

Step Sequence Limits End Conditions 
Capacity 

Test  
1 CCCV Charge V ≥ Max V, I = 1C I < C/20 A  
2 CCCV Discharge V ≤ Min V, I = 1C I < C/20 A  
3 CCCV Charge V ≥ Max V, I = 1C I < C/20 A  

T.L. Fantham and D.T. Gladwin                                                                                                                                                                                                             
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2.1.1.2. OCV. . Open-Circuit Voltage (OCV) refers to how the voltage of 
a battery at rest (i.e., no current flow and the voltage is unchanging) 
changes depending on the charge in the battery. It is highlighted in 
[11,12] the importance of good Open Circuit Voltage (OCV) measure-
ment for having a good SoC estimate. 

It is important to understand how the OCV changes depending upon 
the state of charge. When using a Randles model, OCV is the key in 
determining the voltage at any point, with the voltage deviating from 
OCV on the application of current and subsequent voltage drop [22]. 

The datasheet for any particular cell generally states OCV, however it 
is useful to perform a test to verify this. This involves discharging in 10 
% increments of SoC, followed by charging in the same increments as 
shown in Fig. 7. 

The test begins with a full 1C cycle to ensure consistent behaviour 
(not shown in Fig. 7) before performing the OCV test. The capacity test is 
performed immediately before the OCV test, as the capacity is needed to 
perform the OCV test. Once the capacity of the pack is known, the pack is 
discharged and then charged in 10 % capacity increments at 1C, with a 
CV discharge at the end of the last discharge pulse to ensure the cell is at 
0 % before beginning the first charge pulse - a method seen used in 
literature [23]. There is a 2 h rest between each pulse and the average 
voltage between the charge and discharge for SoC is taken to eliminate 
any hysteresis or to compensate for where the cell has not completely 
reached a constant resting voltage - the latter typically occurs at a low 
SoC as seen in Fig. 7. 

Considering SoC accuracy for each pulse point for the OCV test 
shown in Fig. 7, the discharge capacity measured during the capacity 
test was 5.256 Ah and the total capacity discharged during the pulse 
discharges totalled 5.274 Ah. This is a 0.3 % difference meaning each 
OCV measurement is within at least that margin of error in terms of SoC. 

2.1.1.3. Impedance. . Impedance in a cell causes a voltage drop due to 
the current through it. In the Rint model, the voltage is dropped across 
the series resistance, seen previously in Fig. 5. 

The voltage drop can be found as Vdrop = IR and the impedance (R) 
can therefore be found through a known change in current and 
measuring the subsequent change in voltage as per Eq. (1) as described 
in [12]. 

RDCIR =
ΔV

ΔI
(1) 

Whilst straightforward, this presents issues in measurement. Imme-
diately measuring the voltage after a current change will result in a low 
value for RDCIR due to the transient behaviour. Measuring the voltage 

after a longer period of time after a current change to a nonzero current 
would result in a change in SoC and therefore give a larger RDCIR 
reading. Therefore, a suitable way to calculate R is to measure the 
voltage once it has reached steady-state and change the current from a 
specified value to zero to eliminate a change in SoC [20]. The decision 
then lies on how long a rest period is required to reach the end of the 
transient behaviour, where the voltage returns to the OCV. 

Fig. 8 shows that measuring for different lengths of time results in a 
different measurement for impedance. A very short test (<1 s) provides 
the value known as R0 - or the purely ohmic component of a multi-order 
Randles model [20]. A much longer test, in the shown case upwards of 1 
h, shows the charge transfer resistance [24] (RCT) (the resistance due to 
charge transfer at the interface between the electrode and electrolyte) 
and the polarisation resistance [17] (Rp) (the resistance due to ionic 
diffusion). Inductive impedance is dominant at time periods shorter than 
1 ms, though ramp current ramp rates (dI

dt) and inductance small enough 
such that it is insignificant to the measurable time domain response. As 
an example, inductance for a cell is in the order of 10−8H, and the 
MACCOR S4000 cell tester ramps to its maximum current (10A) in 500 
μs. This would give a ΔV of 0.2 mV, which is less than the 0.3 mV res-
olution for a time period shorter than the 10 ms fastest sample rate. 
Hence, the inductive impedance is ignored going forwards. Therefore R 
for the Rint model is shown as per Eq. (2): 
RDCIR = R0 +RCT +RP (2) 

The transient behaviour of these cells ends after 2 h at most SoCs, so 
2 h will therefore be used as the rest time for subsequent impedance 
experiments using these cells. However, this is only necessary to 
calculate the open-circuit voltage. If coulomb-counting can be used to 
estimate the state-of-charge, then the open circuit voltage can be used 
instead of waiting for 2 h. This can vastly accelerate the testing pro-
cedure. Therefore, instead of ΔV = Vload − Vrest to find the voltage drop, 
ΔV = Vload − VOCV can be used. 

Naturally, a lengthy OCV test is still required on at least one cell, as 
well as high-precision current sensing to provide suitably accurate 
coulomb-counting to give a good estimate for SoC. It should also be the 
most accurate method, as in the model, the voltage is estimated based 
upon the OCV and the voltage drop caused by the impedance under load. 
For identifying parameters using this method, the impedance is calcu-
lated based upon the estimated OCV, the measured voltage under load 
and the measured current. This is essentially a direct inverse as the OCV- 
SoC relationship is the same in the model and the parameter 
identification. 

All measured values assume that all resistance is from the cell, and 
not from any physical connections. This is justified as the tests use 
remote voltage sense, and due to the very low current in the sense wires, 

Fig. 7. Experimental test profile to find the OCV-SoC relationship of 
LIM5H cells. Fig. 8. The relaxation of the cell voltage for a LIM5H cell, after a 1C charge.  
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there is an immeasurable loss due to the connection. 
However, when connected in a pack, this is not the case for the 

output, which will experience a voltage drop due to connections within 
the pack. Therefore, this is an input which is added to the multi-cell 
model and represents a constant addition to the resistance as per Eq. (3): 
RTotal = RCell +RConnection (3) 

Fig. 9 shows RDCIR for the LIM5H cell using the method presented 
above, using OCV for Vrest to find the voltage drop. This is ideal, as it is 
fast and is the inverse method for how it is implemented in the model. 

It can be seen that the measured impedance to charging is different 
from the impedance to discharging, also observed and modelled in [7]. 
The impedance changes across the range of SoC, and so charging and 
discharging impedance will be implemented separately in the model 
using two lookup tables based on the experimental result. 

2.1.1.4. Temperature. . The results presented thus far have all been 
performed in tests within an environmental chamber at 25◦C. Observa-
tions from real battery systems such as WESS suggest that there is often 
significant non-uniformity in temperature between cells in large-scale 
battery packs, as they are not in a closely controlled environment, 
despite the use of Heating, Ventilation and Air Conditioning (HVAC) 
systems. Therefore, it is helpful for a model to have temperature as an 
input, to be able to model the effects of changing temperature. 

Some have observed that a reduction in temperature results in a 
reduction in cell voltage [25]. A test of 10 LIM5H cells at rest between 
40◦C and -10◦C, with 2 h at each temperature at 50 % SoC showed no 
change in the Open Circuit Voltage. However, the impedance was shown 
to change. A short impedance test (350 ms pulse charge, 1C current) was 

used to minimise heating from the test. Considering Fig. 8, this 350 ms 
test finds a value for R0. 

It can be seen that the impedance trend is inversely proportional to 
temperature, which can be approximated with a linear approach as per 
Eq. (4). Some outliers can be seen in the data in Fig. 10, likely due to 
practical disturbances in the test, such as the environmental chamber 
door being erroneously opened. 
RT = (25−T)*0.0075R25 (4)  

where RT is the resistance at T◦C and R25 is the resistance at 25◦C. 
This is the purely ohmic impedance R0, and assumes that R0 ∝ RDCIR 

for implementing it in the model. This method was chosen as the test is 
very short, so only a small amount of energy flows in or out of the 
battery, meaning the total heat generation from I2R losses is very small. 
This in turn means that the cell temperature is as close to the environ-
ment temperature as possible. Later work involves improved modelling 
of temperature, but this is sufficient for general validation of the model 
and should indicate the effect of temperature on a battery, although it 
may not provide absolute values. 

2.1.1.5. Coulombic efficiency. . Batteries do not have a perfect 
Coulombic Efficiency (CE), where CE is defined in Eq. (5) as: 

CE =

∫ tch,end

tch,start
I dt

∫ tdch,end

tdch,start
I dt

(5) 

(adapted from [26]) This can be caused through the consumption of 
lithium or electrolyte and generally by side reactions in the cell during a 
cycle [26,27]. 

This will be calculated and implemented as an efficiency in the 
model, with half the efficiency factor applied during both charge and 
discharge, providing the correct overall CE. In reality, it is likely that 
there is differing CE during the charge and discharge phase [26], how-
ever, this would be very dependent on the chemistry as well as the age of 
the battery. Due to the fact that <1 CE is due to side reactions or lithium 
consumption, CE can be a factor which indicates degradation [28]. CE 
will be calculated using coulomb-counting from the capacity test with 
Eq. (5). 

2.1.1.6. Degradation. In order to simulate the change in capacity with 
cycling, the model includes a factor for degradation based on the charge 
throughput for each cell, similar to the model described in [29–31]. The 
degradation factor is calculated based on the expected number of full 
cycles the cell will throughput before degrading to a specific proportion 

(a)

(b)

Fig. 9. RDCIR of 10 LIM5H cells.  Fig. 10. R0 vs temperature for a sample of 10 LIM5H Cells.  
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of its original capacity. Generally, a cell datasheet will state the number 
of cycles before reaching a given SoH. Eq. (6) shows the relationship 
implemented in the model, where the cell capacity reduces as a factor of 
energy throughput. 
Ct = Ct−1 −ΔQ*k, (6) 

where k is the degradation factor. 
This is useful in the model as it should highlight whether some cells 

have a higher capacity throughput and are therefore degrading faster 
than others. 

2.1.2. Cell model results 
To validate the results for the single cell model, the model (shown in 

Simulink in Fig. 6) was parameterised using the experimental data from 
one of the LIM5H cells. 

Three cycles were then performed on both the model and the phys-
ical cell at 2.5A, 5A and 7.5A (0.5C, 1C, 1.5C), so the results could be 
directly compared as shown below (Table 2). 

Fig. 11 shows that the voltage profiles closely match, with only a 
small discrepancy. As expected, the dynamic behaviour is not exactly 
correct, as at the change from charge to discharge, the voltage jumps 
instantaneously, whereas the experimental result shows the change as 
somewhat damped due to the relaxation of the cell which is not 
modelled. This is more clear in Fig. 12. 

The capacity of the pack shows a very accurate result, with a very 
small error. When considering the energy in the pack, this is slightly less 
accurate - likely due to the voltage not matching exactly due to the as-
sumptions made in the impedance model. 

2.2. Pack model 

This section considers using the cell model to produce the proposed 
model of a large battery pack. Initially a model with just series con-
nections is produced (3 s), then a model with just parallel connections 
(3p). These are then combined to give the full pack model (3s3p). 
Breaking the model down in this way allows better understanding and 
verification of the overall pack model. 

Each of the three models is verified experimentally using data par-
ameterised from the LIM5H cells. The packs were cycled using the 
MACCOR S4000. To measure the current in parallel connections, an 
LEM LTS 15NP current sensor was used, which has an accuracy of 0.2 %. 
These were connected to the MACCOR's 16-bit analogue inputs, each 
giving 0.0003 V resolution and a worst accuracy of 0.02 % (0.004 V). 
Using 3 primary turns on the current sensor, this gives a range of ±16A 
and therefore an accuracy of 32 mA at a resolution of 2 mA. 

The experimental procedure used to validate the model is shown in 
Table 3. 

This consists of four cycles, a single cycle as to reach thermal equi-
librium and three test cycles, each at different C-rates to verify how 
accurately the model estimated the available capacity under conditions 
(which should result in differing capacities). Here, only constant current 

cycles are used, where a constant voltage cycle maybe used as an 
alternative. This was chosen to minimise the risk of a single cell 
becoming in an over-voltage state during a constant voltage charge. 

2.2.1. Series model 
In the series model, the voltage and impedance of each cell are 

summed to produce the overall battery pack voltage. Three cells are 
modelled as shown in the diagram below. The cell models are labelled A- 
C and the cells which the model represents are labelled 1-n (represented 
in italics), where n is the number of cells in the string. The cells are 
ranked strongest to weakest by capacity, with cell 1 being the weakest 
and cell n being the strongest. 

This results in Cell B being a model of the average capacity of cell 2 to 
cell n-1, with the voltage being the number of cells in Cell B multiplied by 
the average cell voltage. Then summing the voltage of Cells A, B & C 
gives the overall pack voltage, shown by Eqs. (7) and (8). 
VA = V1, VB = V2 +…+Vn−1, VC = Vn (7)  

Vpack = VA +VB +VC (8) 
To compare the model with an experimental result, 3 LIM5H cells 

Table 2 
Summary of results comparing the model and experimental constant current 
capacity for a single LIM5H cell across 3 cycles at 0.5C, 1C and 1.5C.   

Mean 
model 
result 

Mean 
experimental 
result 

Mean 
model error 

Error 
standard 
deviation 

Discharge 
capacity/Ah  

4.818  4.821  0.0035  0.0177 

Charge 
capacity/Ah  

4.804  4.794  −0.0099  0.0230 

Discharge 
energy/Wh  

17.111  17.161  0.0499  0.0288 

Charge 
energy/Wh  

17.474  17.361  −0.1132  0.1571  
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Fig. 11. Model vs experimental results for a single LIM5H cell.  
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Fig. 12. Model vs experimental results for a single LIM5H cell, zoomed to the 
start of the 1C charge to highlight the different curve shape. 
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were used and 3 Constant Current (CC) cycles were performed as per the 
procedure in Table 3. The aim is to show that the voltages are different 
between cells during the cycles, which is reflected both experimentally 
and using the model in a simulation. The model parameters were found 
using the experimental data for the 3 cells used. The results are shown in 
Fig. 14. 

It is clear from the figure that the voltage tracks as accurately as with 
the single cell model, and the error is in the same order of magnitude as 
with the single cell test. 

2.2.2. Parallel model 
The parallel model is modelled similarly to the series model as shown 

in the diagram in Fig. 15. 
For Fig. 15, again the cells are ranked strongest to weakest by ca-

pacity, with cell 1 being the weakest and cell n being the strongest. To 
identify parameters for cell model B, the capacity ‘C’ for all cells is 
summed as per Eq. (9), and impedance is calculated using the equation 
shown in 10: 
CA = C1, CB = C2 +…+Cn−1, CC = Cn (9)  

RA = R1,
1

RB

=
1

R2

+…+
1

Rn−1

, RC = Rn (10) 

These are both straightforward, however, the voltage is constant 
between the cells. Given the same current, the cells would reach 
different voltages. In reality, different current flows through each cell 
due to different impedances and SoCs. For the model, a SimScape model 
was produced to calculate the current in each cell. Each cell consists of a 
voltage source and a resistor, which have values that are the cell voltage 
and cell impedance. These are connected in parallel as shown in the 
figure below (Fig. 16). 

Again, to compare the model with an experimental result, 3 LIM5H 

Cell 1 Cell 3 Cell nCell n-1Cell 2

Model C l leCBledoMlleCAledoMlleC

Fig. 13. Configuration of the cells in the cell models for a pack with series connections.  

Fig. 14. Model vs experimental results for a 3 LIM5H cells connected in series.  

Cell 1

Cell 3

Cell n

Cell n-1

Cell 2

Cell Model A

Cell Model B

Cell Model C

Fig. 15. Configuration of the cells in the cell models for a pack with parallel 
connections. 
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cells were used and 3 CC cycles were performed as per the procedure in 
Table 3. The model parameters were identified using the experimental 
data for the 3 cells used. It is expected that the voltage will be the same 
between cells and the current will vary between them, as this experi-
ment will demonstrate. The current profile for each cell is shown in 
Fig. 17. 

It can be seen in Fig. 17 that during a change in current, there is 
initially a large discrepancy in the current between the cells before it 
settles. In the model, this should show the cell which is working the 
‘hardest’, or the cell that has the most current throughput and therefore 
will most likely see the most degradation. There is a larger current 
change seen in the experimental results than in the simulation. It is 
expected that this is due to a slightly higher connection impedance not 
accounted for in one cell compared to the others. 

2.2.3. Series and parallel combined model 
Combining the series and parallel models gives a model of the 

following architecture: 
The cells are labelled similarly to the series and parallel model, with 

cells A-I being the 9 cell models which are computed. The cells which the 
model represents are labelled as cell x/y where y is the string number and 
x is the position in that string. p represents the number of parallel con-
nected strings and s represents the number of cells in a series string. 

To verify this model, a 3s3p pack was assembled and tested. Each cell 
had individual voltage and temperature measurements and each series 
string had a current measurement. This provides data points for all the 
cells being calculated by the model. By having accurate parameters for 
the 9 cells, these can be directly compared to the model results to observe 
where there are discrepancies between the model and reality, giving a 

f(x) = 0

Solver

Configuration

1R1 2R2

4 V1
5 V2

1 Current 1

3R3

6 V3

2 Current 2 3 Current 3

Fig. 16. Calculation of the current in each cell to ensure constant voltage using Simscape in Simulink.  

Fig. 17. Model vs experimental results for a 3 LIM5H cells connected in parallel showing the cell currents.  
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physical demonstration of the limitations. An image of the experimental 
setup is shown in Fig. 19. 

It is expected that the model shows the same constant current ca-
pacity as the experimental pack, thereby verifying the assumptions 
made. A result within 1 % would be considered sufficient as it allows for 
the imbalance in SoC due to the accuracy of the MACCOR S4000. The 
results comparing the model with the experimental results are shown in 
Fig. 20 and Table 4. 

This shows that for CC cycles of a 3s3p pack, the model is to within 1 
% across a range of C-rates. It is expected that this accuracy would 
remain for a larger pack, assuming similarly good parameter identifi-
cation. This notion will be verified in Section 4. 

It can be seen that the current profiles are much better here than with 
the 3 parallel cells. This is likely due to a better connection which 

minimises the impedance differences between cells, and the same 
connection impedance would have less of an impact as there is greater 
impedance in each string with 3 cells in series. 

3. Parameter identification 

Section 2.1.1 discusses methods for identifying the parameters of the 
individual cells. This section considers how to ‘scale up’ the model, using 
a small sample of cells to estimate how a larger pack would behave by 
producing a sample with the same distribution. This new distribution 
can be used to populate the model in Fig. 18. 

3.1. Variance 

There is a difference between the capacity and impedance of each 
cell, considered as the variance. The following plot shows the capacity 
and impedance of each of the 10 cells. 

As can be seen, there is little correlation between capacity and 
impedance, which agrees with other studies [32] - particularly with new 
cells. 

Considering just the capacity and applying a normal distribution for 
the sample produces the distribution shown in Fig. 22. 

This distribution can be used to produce a new dataset of any number 
of cells which matches the distribution. It is expected that the larger the 
dataset, the greater the chance the sample set includes outlier results. 

For the impedance, it is not quite so straightforward as the imped-
ance used in the model changes with SoC. Looking back at Fig. 9, as 
impedance increases, so does the difference in the impedance, suggest-
ing that a multiplication factor would be ideal to define the variance 
between cells. This is done by taking the mean impedance at 50 % and 
multiplying to increase or decrease the impedance by the factor based on 

Fig. 18. Configuration of the cells in the cell models for a pack with series and parallel connections.  

Fig. 19. An image of the experimental setup for LIM5H cells connected in a 
3s3p configuration. 
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the variance, as per Eq. (11), and is shown in Fig. 23. 
Rx = Rmean

*kx (11)  

where kx is the variance factor for cell x and Rx is the impedance for cell 
x. 

Using the discussed distribution of capacity and impedance, a sample 
of any number of cells can be produced which match the distribution. 

3.2. Model population 

To populate the model in Fig. 18 where there are >9 cells, it must be 
decided which cells are represented by which cell models. 

In terms of individual cells, it has been shown in Fig. 21 that there is 
no correlation between capacity and impedance of a cell, so these values 

are distributed randomly among the sample of cells, except for the 
strongest and weakest cells. To consider the worst case scenario, the 
highest impedance cell can be given the lowest capacity for the weakest 
cell and the lowest impedance cell is given the highest capacity for the 
strongest cell. The cells are then distributed randomly into the pack, 
other than the strongest and weakest cells, which should be in different 
strings. If the worst case scenario is not being considered, then the cells 
are ranked by capacity to determine the weakest and strongest. The 
string containing the weakest cell is represented by cells A-C. Cell A 
represents the weakest cell in the string, cell C represents the strongest 
cell in the string and cell B represents a model of the remaining cells in 
the string. Similarly, the string containing the strongest cell is repre-
sented by cells G-I. Cell G represents the weakest cell in the string, cell I 
represents the strongest cell in the string and cell H represents a model of 

Fig. 20. Test profile showing the cell voltages in the model and the cell voltages from the experimental data.  
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the remaining cells in the string. Finally, for the remaining strings, all 
weakest cells in each string are represented by a model in Cell D, all 
strongest cells in each string are represented by a model in Cell F and all 
remaining cells are represented by a model in cell E. This should give the 
metric for cell voltage imbalance and an indication of the currents 
flowing between the strings. This process is outlined in the flowchart 
and diagram in Figs. 24 and 25. 

The previous section discussed and validated the model, where the 
number of cell models and number of cells is the same. For scale-up, a 
number of assumptions have been made. There is an element of 
randomness in identifying the parameters of a large model when 
creating a sample of cells from a distribution. This is because the 
MATLAB function used to produce the sample (RANDRAW), produces 
random values based on a distribution. Therefore, each time a set of 
samples is produced, it will be slightly different. Additionally, decisions 
have been made regarding which cells should be replaced by a single cell 
model and which ones should be grouped together into a single cell 
model. Therefore, to verify these assumptions, experimental work has 
been completed on a 12s4p pack, which will be discussed in the 
following section. 

4. Model evaluation 

This study aims to produce a large battery pack model with a shorter 
simulation time than modelling every cell individually, but provides a 
more accurate model than modelling all cells as a single cell. This section 
will compare the modelling approach outlined in this paper to these two 
types of models. The same cell model will be used for each. For an 
experimental comparison, a 12s4p pack is used which is comprised of 4 
Yuasa LIM50E modules connected in parallel. This configuration was 
chosen to verify the model population procedure outlined in Section 3.2 
as there are >3 cells with series connections and >3 strings with parallel 
connections. This means that the model will be combining both parallel 
and series connections. 

The cell model parameters were identified using the in-situ test 
method presented in [33], and the impedance and OCV relationships are 
shown in Figs. 26 & 27. A variance model was produced using the 
sample of 48 cells in the 12s4p pack giving the distribution of impedance 
and capacity shown in Fig. 28. This data was then used to populate the 
model using different methods, as will be discussed. 

The tests performed experimentally and on the models were CC cycle 

Fig. 21. R vs Capacity for a sample of 10 LIM5H Cells.  

Fig. 22. Histogram with normal distribution showing distribution of capacities 
for sample of 10 LIM5H cells. 

Fig. 23. Impedance variance from the mean impedance for a sample of 10 
LIM5H cells, showing RDCIR during charge and discharge. 
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tests at 0.25C, 0.5C, 0.75C and 1C. These C-rates were chosen as the 
maximum charge rate given by the manufacturer is 1C, and a range of C- 
rates were used to observe the model under different operating condi-
tions. The test profile was as shown in Table 5. 

The test was performed experimentally at the different C-rates and 

simulated under different scenarios. Two main experiments were 
performed:  

• Comparison between models of varying numbers of cell models 

Fig. 24. Flowchart describing the method for producing a battery pack based on a distribution of Impedance (R) and Capacity (C).  

Fig. 25. Diagram showing where cells in a pack produced from the process in figure are located in the model.  
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• Comparison between using experimentally derived parameters and 
using parameters generated from a distribution. 

4.1. Varying numbers of cell models 

For a baseline, an All Cells Model (ACM) was simulated - a model 
consisting of a cell model representing each cell. The parameters used in 
the model were those which were experimentally measured. Addition-
ally, a model consisting of a single cell model Single Cell Model (SCM) 
which represents the entire pack was also simulated, again using the 
parameters experimentally measured. These were then compared to the 
9CM. Parameters were chosen using the weakest cell ranked as the cell 
with the lowest capacity and equally the strongest cell ranked as the cell 
with the highest capacity. The model was populated respecting the 
configuration of the parameters in the experimental pack. The results for 
the CC cycle tests at different C-rates found experimentally, and using 
these models are shown in Table 6. The average percentage error of each 
model compared to the experimental result is shown in Table 7, along 
with the standard deviation across C-rates. 

It can be seen that the ACM performs identically to the proposed 
9CM. These are not perfect, however, are within a 1 % tolerance, with 
different errors at different C-rates. The model correlates best at 1C, 
which is unsurprising, as the parameters were identified using tests at 
1C. The errors are likely due to inconsistent temperatures between the 
different tests (future work considers this). The SCM is notably worse, 

Fig. 26. OCV vs SOC relationship for LIM50E cells used to identify the pa-
rameters for the model. 

Fig. 27. Mean impedance relationship for LIM50E cells used to identify the 
parameters for the model. 

Fig. 28. Impedance and Capacity distributions for a sample of 48 LIM50E cells 
used to identify the parameters for the model. 

Table 3 
Test procedure for verification of the model.  

Sequence Limits End condition 
CC charge I = 1C Any cell ≥ Max V 
CC discharge I = 1C Any cell ≤ Min V 
CC charge I = 0.5C Any cell ≥ Max V 
CC discharge I = 0.5C Any cell ≤ Min V 
CC charge I = 1C Any cell ≥ Max V 
CC discharge I = 1C Any cell ≤ Min V 
CC charge I = 1.5C Any cell ≥ Max V 
CC discharge I = 1.5C Any cell ≤ Min V  

Table 4 
Summary of results comparing the model and experimental results for a 3s3p 
pack made from LIM5H cells.   

Model capacity/ 
Ah 

Experimental capacity/ 
Ah 

Model error/ 
% 

0.5C 
discharge  

14.28  14.24  0.26 

0.5C charge  14.21  14.24  −0.24 
1C discharge  14.08  14.09  −0.02 
1C charge  14.00  13.92  0.57 
1.5C 

discharge  
13.88  13.87  0.08 

1.5C charge  13.79  13.78  0.11  

Table 5 
Test sequence for testing a 12s4p pack of LIM50E cells. The portion of the test 
sequence used for the results is shown in bold.  

Sequence Limits End condition 
CC charge I = 1C Any cell ≥ Max V 
CC discharge I = 1C Any cell ≤ Min V 
CC charge I = Test C-rate Any cell ≥ Max V 
CC discharge I = Test C-rate Any cell ≤ Min V 
CC charge I = Test C-rate Any cell ≥ Max V  
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with approximately 2 % error on average. 
Considering the simulation time, it can be seen in Table 8 that 

simulation of the ACM took 80s, whereas the proposed 9CM only took 4 
s. For virtually the same result, this is a significant improvement. 

4.2. Generating parameters from a distribution 

The 9CM simulation result using experimental parameters can then 
be compared to using the variance relationship to identify the parame-
ters for the model. The distribution shown in Fig. 28 was used to produce 
a sample of 48 cells. The sample was then used to populate the model for 
a “worst case” scenario according to the method outlined in 3.2, where 
the “weakest cell” has the lowest capacity and highest impedance. 
Additionally, the model was populated with impedance and capacity 
distributed randomly, with the weakest cell ranked by capacity as with 
the simulation of the 9CM in Table 6. The capacity for these is shown in 
Tables 9 and 10. 

Using variance to produce a dataset produced a similar result, 
however, with a lower constant current capacity (2 %) than using the 
parameters found experimentally. 

4.3. Discussion 

The results show that modelling all cells in the 12s4p pack will give 
virtually the same capacity as the proposed model which considers nine 
cells in a 3s3p configuration when simulating cycles at a constant cur-
rent different C-rates. With just a single cell model, the result is around 1 
% worse across the range of C-rates. 

Generating parameters from a distribution gives a similar error to 
using experimental parameters, however gives lower capacity estima-
tions than were experimentally found. This is likely due to the distri-
bution producing more outliers than are in the experimental pack. A 
reason for this could be due to manufacturer selection, where new cells 
are tested, and poorer performing cells removed. 

One error is that at lower C-rates, the experimental capacity was 
found to be lower than the expected capacity from the simulations. It is 
expected that this is due to temperature, which was not compensated for 
as there is poor temperature sensing on the LIM50E modules, with only 

one measurement for all of the 12 cells in each module. At a lower C- 
rate, the cell will generate less heat over a given time period, meaning 
the cell temperature is lower, thereby reducing the impedance according 
to the relationship found in Section 2.1.1. Future work involves sensing 
temperature for each cell individually to be able to compensate for the 
temperature-related errors and producing a model to simulate changes 
in temperature. 

5. Conclusions 

In conclusion, the proposed model consisting of 9 cell models, has 
been shown to model a large battery with the same accuracy as 
modelling all cells, yet with a reduced simulation time comparable to 
that of simulating a single cell. At 1C, a 12s4p pack was experimentally 
found to have a capacity of 150 Ah and the proposed model estimated a 
capacity of 150.8 Ah - identical to modelling all cells. Modelling all cells 
however took 79.6 s, whereas the proposed model took just 3.7 s, 
showing its significantly improved computational efficiency. It has been 
shown that it is a viable option to model a sample of cells from a dis-
tribution to simulate the behaviour of a different sample of cells which 
follow the same distribution, as when generating parameters based on 
the distribution of a sample of cells, the proposed model gave a capacity 
of 148.4 Ah. These will enable fast modelling of large batteries to predict 
how they will behave under different conditions. 

Future work involves using the model to investigate how different 
scenarios can affect a battery, for example, the optimal SoC to perform 
cell balancing at and determining a level of cell voltage imbalance that is 
safely acceptable. Finally, further experimentation using cell-level data 
from WESS will be used to evaluate the model at a larger scale, using the 
model to inform a real-time estimator. 
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Table 6 
Comparison for the capacity across a range of C-rates for the 3 different model 
types.  

Capacity/Ah 0.25C 0.5C 0.75C 1C 
Experimental  180.1  169.6  159.6  150.0 
ACM  184.6  170.6  159.1  150.8 
SCM  186.3  172.5  161.0  152.7 
9CM  184.6  170.6  159.1  150.8  

Table 7 
Comparison of the error for simulations of the 3 different model types compared 
to the experimental results.   

Error Std. Deviation 
ACM 0.82 % 1.00 % 
SCM 1.90 % 0.90 % 
9CM 0.82 % 1.00 %  

Table 8 
Comparison of test times for the 3 different model types for a 10 h 
experiment.   

Test time for 10 h simulation/s 
Experimental 36,000.0 
ACM 79.6 
SCM 1.2 
9CM 3.7  

Table 9 
Comparison for the capacity across a range of C-rates for the 9CM for different 
model population methods, where parameters are generated from the variance 
relationship.  

Capacity/Ah 0.25C 0.5C 0.75C 1C 
Experimental  180.1  169.6  159.6  150.0 
Generated parameters 

Impedance/capacity distributed randomly  
182.8  168.5  156.9  148.4 

Generated parameters 
Pack configured as weakest cell has highest 
impedance  

182.1  167.7  156  147.3  

Table 10 
Comparison of the error compared to the experimental result across a range of C- 
rates (shown in Table 9 for the 9CM for different model population methods, 
where parameters are generated from the variance relationship).  

Capacity Mean Error Std. Dev 
Generated parameters 

Impedance/capacity distributed randomly 
−0.47 % 1.20 % 

Generated parameters 
Pack configured as weakest cell has highest impedance 

−1.03 % 1.29 %  

T.L. Fantham and D.T. Gladwin                                                                                                                                                                                                             



Journal of Energy Storage 54 (2022) 105225

16

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors gratefully acknowledge support from the EPSRC via 
grant EP/L016818/1 which funds the Centre for Doctoral Training in 
Energy Storage and its Applications. 

References 
[1] T. Bruen, J. Marco, Modelling and experimental evaluation of parallel connected 

lithium ion cells for an electric vehicle battery system, J. Power Sources 310 (2016) 
91–101, https://doi.org/10.1016/j.jpowsour.2016.01.001. 

[2] D. Baek, Y. Chen, N. Chang, E. Macii, M. Poncino, Battery-aware electric truck 
delivery route exploration, Energies 13 (2020) 1–18, https://doi.org/10.3390/ 
en13082096. 

[3] T. Feehally, D. Gladwin, R. Todd, A. Forsyth, M. Foster, D. Strickland, D. Stone, 
Battery energy storage systems for the electricity grid: Uk research facilities, in: 
The 8th IET International Conference on Power Electronics, Machines and Drives 
(PEMD 2016), 2016, pp. 1–6, https://doi.org/10.1049/cp.2016.0257. 
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