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Abstract 33 

During high-speed behaviour, animals must predict, detect, process, and respond synchronously to 34 

rapid environmental changes, including those caused by their own movements. How neural systems 35 

achieve such precision remains unclear. Here, we investigate how the housefly (Musca domestica), 36 

renowned for agile aerial manoeuvres, maintains visual accuracy during ultrafast motion. Although 37 

rapid movements typically blur vision, houseflies exhibit remarkable visual acuity; their visual 38 

neurons achieve record-high rates of information sampling (~2,500 bits/s) and synaptic transmission 39 

(~4,100 bits/s), substantially surpassing previous estimates. Using intracellular and 40 

photomechanical recordings of photoreceptors exposed to rapid sequences of saccade-like stimuli, 41 

we traced information transmission to large monopolar cells (LMCs), the first interneurons in the 42 

visual pathway. We identify a previously unknown mechanism—synaptic high-frequency jumping—43 

in which photoreceptor–LMC synapses dynamically shift transmission towards higher frequencies 44 

during saccadic input. This mechanism extends visual bandwidth to ~920 Hz, eliminates synaptic 45 

delays, and quadruples traditional flicker-fusion limits (~230 Hz). Ultrafast behavioural experiments 46 

confirm flies respond synchronously within ~13–20 ms, even while photoreceptor responses are still 47 
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approaching their peak (9–16 ms), directly challenging classical sequential-processing models. Our 1 

biophysically realistic photoreceptor–LMC model demonstrates how photomechanical, quantal, and 2 

refractory sampling processes co-adapt dynamically with behaviour. Thus, flies actively shape their 3 

visual input through self-generated saccades, driving high-frequency jumping, efficient neural 4 

coding, hyperacute vision, and neural synchronisation. These findings redefine foundational 5 

principles of compound-eye function, uncovering a universal neural strategy underlying 6 

synchronous, high-speed predictive processing. 7 

 8 

 9 

Main 10 

Animals moving at high speeds must process visual information rapidly to avoid motion blur. How 11 

neural circuits achieve this—and whether self-motion helps or hinders perception—remains unclear. 12 

Answering this requires examining how innate and learned behaviours refine sensory perception to 13 

support survival. Brains, constrained by thermodynamics, genetics, and cellular biophysics, 14 

dynamically harness electrochemical, kinetic, and thermal energy to respond rapidly and accurately 15 

to internal and external signals1. Yet prevailing models often oversimplify neural signalling by treating 16 

neurons as static, unidirectional transmitters, neglecting the role of rapid physical movements at the 17 

ultrastructural level2-8. Such morphodynamic interactions—ultrafast, activity‑dependent mechanical 18 

and structural changes in neural elements—include photoreceptor microsaccades1,2,9-15, quantal 19 

neurotransmitter release6,7,14-16, and synaptic feedback mechanisms17-20. These phenomena 20 

collectively accelerate and enhance neural signalling, enabling rapid and precise perception and 21 

action11,16. 22 

 23 

Houseflies exemplify extraordinary aerial agility21, suggesting exceptional visual capabilities shaped 24 

by strong evolutionary pressures22. Historically, however, flies were presumed incapable of resolving 25 

fine visual details during rapid movements. Fast body and head movements (saccades) produce 26 

high angular velocities21,23-26, which, coupled with presumedly slow photoreceptor responses, were 27 

thought to blur vision27,28. Although compensatory head and thorax adjustments25,26,29,30 and 28 

specialised retinal zones31,32 partially mitigate this blur, rapid saccades were still assumed to 29 

momentarily render flies "blind"33. Yet this longstanding assumption contradicts flies’ remarkable 30 

ability to evade threats: how could flies buzzing around your head in summer, effortlessly dodging 31 

every swat, truly have impaired vision?  32 

 33 

To address this paradox, we examine neural responses using controlled saccadic stimuli—light 34 

patterns effectively mimicking the temporal characteristics of natural saccades—to isolate visual 35 

processing from voluntary flight complexities. We hypothesise that the fly’s visual system has 36 

evolved specifically to process rapid saccadic inputs with exceptional speed, accuracy, minimal 37 

latency and noise. Using intracellular recordings, photoreceptor microsaccade measurements, 38 
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ultrastructural analyses, and a biophysically realistic computational model of the morphodynamic 1 

neural superposition system1,11,34 (Figure 1), we investigate how photoreceptors and large 2 

monopolar cells (LMCs) dynamically sample and encode visual information. We specifically explore 3 

how neural structure–function relationships have co‑evolved with saccadic behaviour to maximise 4 

coding efficiency. By comparing empirical data and simulations of photoreceptor-LMC interactions 5 

within a novel theoretical framework—morphodynamic information processing1—we identify and 6 

mechanistically explain a new phenomenon—synaptic high‑frequency jumping—arising from 7 

coordinated morphodynamic sampling of rapid saccadic light changes, which enables hyperacute 8 

predictive vision. 9 

 10 

Multiscale Experimental Analysis 11 

Experimentally, we assessed the compound eyes’ signalling performance by studying both static 12 

and dynamic properties (Figure 1a; Supplementary Information, Sections I-III). To examine static 13 

structure, we used synchrotron X-ray imaging (i) and electron microscopy (ii) on fixed preparations 14 

to characterise the optical and ultrastructural adaptations. This included measuring the size and 15 

positioning of R1–R6 rhabdomeres across the eye and quantifying how many microvilli—photon-16 

sampling units—each photoreceptor contains. 17 

 18 

To assess dynamic properties, we investigated neural morphodynamics in intact living flies. Using 19 

high-speed infrared microscopy (iii), we recorded photomechanical microsaccades within 20 

neighbouring ommatidia (iv), and applied beam-propagation modelling11 (v) to estimate how these 21 

microsaccades move and narrow R1–R6 receptive fields locally. Finally, we used sharp 22 

microelectrodes (vi) inserted through a small corneal opening to record intracellular voltage 23 

responses of photoreceptors and LMCs to light stimuli. 24 

  25 
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 1 

Figure 1. Investigating morphodynamic neural superposition system in the housefly compound eye. 
(a) Key structural and functional components underlying the housefly’s morphodynamic vision were studied 
using both static imaging and live-recording approaches. 
(i) The optical architecture of ommatidial structures was analysed in fixed eyes using synchrotron X-ray 
imaging.  
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(ii) The number of independent photon-sampling units (microvilli) in R1–R6 photoreceptor rhabdomeres was 
estimated via electron microscopy.  
(iii) High-speed infrared optical imaging enabled in vivo tracking of photoreceptor movements in response 
to light flashes. 
(iv) These recordings revealed photomechanical microsaccades—small, directionally diverse shifts of 
photoreceptors within ommatidia. 
(v) Microsaccades shift photoreceptor receptive fields (RFs; circles), which overlap to tile the compound 
eye’s visual field in an overcomplete pattern11,34—i.e., overlapping but not perfectly aligned, unlike earlier 
assumptions35,36. Each local LMC’s receptive field combines the photomechanically moving RFs of R1–R6 
within a morphodynamic neural superposition system. 
(vi) Intracellular voltage responses of photoreceptors and large monopolar cells (LMCs) to light stimuli were 
recorded using sharp microelectrodes. 
(b) Representative experimental responses to a 10 ms UV flash (green bar): submicrometre 
photomechanical microsaccades (top), rapid voltage changes in photoreceptors (middle), and downstream 
LMCs (bottom). R1–R6 photoreceptors in neighbouring ommatidia sample the scene independently, 
producing variable phase-shifted voltage responses (spatiotemporally overcomplete sampling of the light 
stimulus) that converge onto a shared LMC, generating a morphodynamically shaped, transient voltage 
response (thin traces = individual responses, thick traces = mean responses).  
(c) Simulated responses from a biophysically realistic model of the morphodynamic neural superposition 
system, in which over-completely tiled photomechanically moving photoreceptor receptive fields11,34, 
replicate the observed microsaccades and voltage responses. Informed by anatomical and physiological 
measurements in (a), the model accurately predicts receptive field movements and signal propagation 
through the photoreceptor–LMC circuit. 

 1 

Biophysical Model of Morphodynamic Encoding 2 

We used experimental findings to construct a biophysically accurate multiscale model of the R1-R6 3 

photoreceptor–LMC network (Figure 1c; Supplementary Information, Section IV). Beneath each 4 

ommatidial lens, each modelled photoreceptor sampled photon rate changes from its realistic 5 

receptive field via photomechanical movements2,9,11—rapidly contracting and elongating along its 6 

optical axis while shifting laterally in a complex piston-like motion. These microsaccades 7 

continuously reshaped and repositioned receptive fields in response to visual stimuli, depending on 8 

the size, eccentricity, and motion axis of each photoreceptor’s light-sensing structure, the rhabdome. 9 

Each R1–R6 rhabdomere contains a distinct number of microvilli—ranging from ~41,000 to ~74,000  10 

depending on eye location (see Supplementary Information, Section II)—each functioning as an 11 

individual photon-sampling unit37. The model generated macroscopic R1–R6 photoreceptor 12 

responses from quantal photon absorptions and integrated these dynamic inputs through 13 

feedforward and feedback synapses to form a morphodynamic neural superposition system that 14 

continuously adapted the information flow between photoreceptors and LMCs to maximise visual 15 

encoding. 16 

 17 

In the real eye, thousands of these morphodynamic neural superposition units tile the visual surface, 18 

forming overcomplete, localised encoding channels (Figures 1a-iv, v and 1b). Our model replicates 19 

how these units sample and process quantal visual information—i.e., changes in photon absorption 20 

rate—without requiring adjustable parameters. This framework links neural morphodynamics1,9,11 21 

and active sampling dynamics38-40 to emergent coding strategies, such as network synchronisation, 22 

that enable high-speed vision and visually guided behaviour. 23 

 24 
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Saccadic Bursts Amplify Neural Signalling 1 

We performed electrophysiological experiments (Figure 2a) using ‘saccadic’ light stimuli, which 2 

mimic the rapidly changing intensity patterns experienced by photoreceptors during natural visual 3 

behaviours. These stimuli featured rapid contrast fluctuations—ranging from moderate (c ≈ 0.6) to 4 

high (c ≈ 1.5)—across multiple temporal frequencies (20, 50, 100, 200, and 500 Hz; Figure 2b). As 5 

a control and to benchmark our findings against classical studies41-45, we also applied low‑contrast 6 

(c ≈ 0.3), bandwidth‑limited Gaussian white noise (GWN) stimuli (Figure 2c). 7 

 8 

GWN stimuli, traditionally used for estimating neural information capacity41-45, are known to reduce 9 

encoding efficiency in neurons such as photoreceptors9,46-49 and LMCs16, which integrate quantal 10 

events (e.g., photon and neurotransmitter arrivals) through refractory sampling9,46,47. Each 11 

photoreceptor microvillus—a discrete photon-sampling unit—generates a quantum bump only after 12 

fully recovering from its previous phototransduction event46,47,50. Because GWN lacks the temporal 13 

structure of natural stimuli, it drives these sampling units into prolonged refractory states, impairing 14 

ability to track rapid photon-rate changes, and thereby reducing response amplitude and information 15 

content9,46,47,51.  16 

 17 

Consistent with this, photoreceptors and LMCs exhibited their strongest responses to high-contrast 18 

saccadic bursts (Figure 2c). These stimuli comprise brief, bright events separated by short, darker 19 

intervals, which allow photoreceptors to recover from refractoriness and integrate more photon 20 

quanta efficiently9. In contrast, responses to low-contrast GWN stimuli were significantly smaller and 21 

decreased further as stimulus frequency increased (bottom row, right column). The 500 Hz GWN 22 

stimulus was particularly ineffective, revealing a limit in how well these neurons can track rapidly 23 

changing, randomly ordered light contrast changes.  24 

 25 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2025. ; https://doi.org/10.1101/2025.08.20.671248doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.20.671248
http://creativecommons.org/licenses/by/4.0/


7 

 

Figure 2. Synaptic high-frequency jumping in the morphodynamic neural superposition system: 
shifting saccadic light information from photoreceptors to higher-frequency band in LMCs. 
(a) Left-schematic: The Cardan arm system positions light-point stimulus (L) at the centre of the recorded 
neuron’s receptive field, while micromanipulator-controlled measurement (M) and reference (R) 
microelectrodes record intracellular voltage responses. Right-schematic: R1-R6 photoreceptor and LMC 
recordings are conducted separately from the retina and lamina of intact, head-fixed flies (with intact eyes, 
red in the inset). 
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(b) Typical photoreceptor and LMC voltage responses to 30 repetitions of 2-second-long 100 Hz high-
contrast bursts. 
(c) Photoreceptor and LMC responses to varying stimuli, from high-contrast "saccadic" bursts to low-
contrast Gaussian white-noise (GWN) stimuli across specific bandwidths (20, 50, 100, 200 and 500 Hz). 
Mean (thick traces) and individual responses (thin) to repeated stimuli (coloured). The yellow box highlights 
the most varying responses to 100 Hz high-contrast bursts. Recordings are from the same photoreceptor 
and LMC. 
(d) A 600 ms segment of the recordings (from b) illustrates how an LMC generates ultrafast, inverted 
biphasic on/off responses (down- and up-arrows) to the slower, more monotonically rising and falling 
photoreceptor responses. While the photoreceptor outputs reflect low-frequency changes in light intensity, 
the LMC transforms this input into high-frequency transients, effectively transposing the slow signal into a 
faster carrier band. 
(e) Signal-to-noise ratios of the bursty light stimulus and the resulting photoreceptor and LMC responses 
(from b and d) demonstrate how synaptic high-frequency jumping causes LMC responses to effectively 
double the base frequencies of the original light stimulus patterns. This results in LMC responses displaying 
an effective signalling bandwidth of approximately 920 Hz (signal-to-noise ratio > 1), compared to the 
photoreceptor responses and the light stimulus at approximately 230 and 600 Hz, respectively. 

 1 

Together, our results from individual neurons and across populations (Supplementary Figures 2, 2 

3, 5 and 6; Supplementary Tables 1, 2 and 4) show that housefly photoreceptors and LMCs 3 

preferentially encode fast, burst-like changes in light intensity—similar to those encountered during 4 

high-speed saccadic movements9. These findings highlight a fundamental limitation of neural coding 5 

under unnatural steady-state conditions (e.g., prolonged exposure to bright backgrounds with GWN 6 

stimulation), which artificially elevate refractoriness, reduce quantal integration efficiency, and 7 

suppress neural responses46,48,49. 8 

 9 

Synaptic High-Frequency Jumping Accelerates Vision 10 

Because rapid saccadic flight behaviours are often thought to momentarily “blind” flies through 11 

motion blur33, we investigated how accurately the housefly photoreceptor–LMC superposition 12 

system encodes fast-changing visual inputs. Figure 2d illustrates, with high temporal resolution, how 13 

typical R1–R6 photoreceptors and LMCs respond to a bursty sequence of saccadic light fluctuations. 14 

Both photoreceptor and LMC responses were nearly noise-free (Supplementary Figures 2b and 15 

5b), faithfully tracking repeated bursts of contrast. However, their voltage waveforms differed 16 

markedly.  17 

 18 

Photoreceptors responded to stimulus intensity with relatively smooth, continuous signals. In 19 

contrast, LMC responses consisted of sharp, ultrafast transient signals, precisely aligned to the rising 20 

and falling phases of the photoreceptor response (Figure 2d, yellow box with up/down arrows). 21 

These transients were temporally locked to contrast changes and effectively segmented the input 22 

signal into a string of biphasic events. 23 

 24 

Comparing stimulus and response bandwidths revealed that LMC signals consistently shifted toward 25 

significantly higher frequencies, reliably encoding information up to ~920 Hz (signal-to-noise ratio > 26 

1; Figure 2e). This synaptic high-frequency jumping far exceeded both the reliable stimulus 27 

bandwidth (~600 Hz) and the photoreceptor's encoding limit (~230 Hz in this example). Thus, the 28 
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biphasic nature of LMC responses (Figure 2d, below) effectively doubled the frequency content of 1 

their photoreceptor inputs (above), efficiently and instantaneously accentuating transitions in the 2 

photoreceptor signal to enhance temporal precision, enabling the synapse to resolve events with 3 

~0.5 ms precision (Supplementary Video 1). 4 

 5 

Thus, during rapid saccadic visual input, the photoreceptor–LMC circuit employs high‑frequency 6 

jumping to accelerate vision—shifting neural signals into higher‑frequency carrier bands where fast 7 

transients can be more effectively represented and transmitted — a strategy that mitigates motion 8 

blur and supports high‑speed, predictive control of behaviour. 9 

 10 

High-Frequency Jumping Maximises Neural Information 11 

We next investigated how high-frequency jumping affects information transfer between R1–R6 12 

photoreceptors (Figure 3a) and LMCs (Figure 3b) under diverse visual stimuli. To simulate realistic 13 

conditions encountered during rapid, cluttered flight, we used ten saccadic light patterns and five 14 

randomised light patterns (Gaussian white noise, GWN) as controls (Figure 2c). 15 

 16 

Photoreceptor responses (Figure 3a) showed that faster saccadic stimuli broadened their effective 17 

signalling bandwidth (signal-to-noise ratio > 1) to ~440 Hz. Variations across recordings (cf. Figure 18 

2e) reflected natural differences in the number of microvilli—the photon-sampling units forming the 19 

photoreceptor’s light-sensitive part, the rhabdomere, whose length and thickness vary across the 20 

compound eye (Supplementary Figures 17-19). This bandwidth expansion substantially increased 21 

their information content (Figure 3c, left). Notably, these intracellular recordings typically exceeded 22 

the classic flicker-fusion frequency for Musca (~230 Hz)52, which was originally derived from 23 

electroretinograms—extracellular field potential measurements that underestimate local neural 24 

performance by averaging spatial and temporal signal variations, background activity, and noise 25 

across the eyes18. 26 

 27 

LMC responses (Figure 3b) exhibited even stronger phasic activity under the same conditions. 28 

Synaptic high-frequency jumping redistributed photoreceptor signals into higher-frequency carrier 29 

bands, greatly extending LMC bandwidth (Figure 3c, right). This effect was most pronounced during 30 

high-frequency, high-contrast bursts, where photoreceptor signal-to-noise ratios reached ~2,000 31 

(Figure 3c, left). Under these conditions, LMC bandwidth (~920 Hz, right) more than doubled that of 32 

the corresponding photoreceptors (~440 Hz, left), whereas GWN stimuli (Figure 3d) produced only 33 

modest increases (photoreceptors: ~210 Hz, left; LMCs ~255 Hz, right). These results underscore 34 

GWN’s limitations in evaluating naturalistic neural coding1,9,46,49, particularly for fast, behaviourally 35 

relevant inputs. 36 

 37 
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With improved high-frequency signal-to-noise ratios, photoreceptor information transfer rates 1 

(Figure 3e, left) peaked at ~1,200–2,500 bits/s during 200 Hz saccadic stimulation—compared to 2 

~600–1,000 bits/s under GWN. Corresponding LMC rates (Figure 3e, right) were 2–3 times higher, 3 

reaching ~2,500–4,100 bits/s. These are likely the highest neural information rates reported to date 4 

and more than double those previously measured in Calliphora photoreceptors and LMCs under 5 

GWN41. Thus, the housefly’s morphodynamic neural superposition system appears explicitly tuned 6 

to encode fast saccadic inputs with exceptional efficiency and minimal noise—far surpassing 7 

conventional expectations44,53,54. 8 

 9 
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Figure 3. High-frequency jumping maximises information transfer to LMCs during fast, high-contrast 
saccadic bursts.  
(a) Analysis of R1-R6 photoreceptor signalling performance was based on intracellular voltage responses 
to repeated 2-s light patterns across 15 different stimuli. 
(b) Similar analyses were conducted for LMCs to compare their responses to those of photoreceptors across 
all the stimuli. 
(c) Left: in R1-R6s, faster saccadic stimulation (right arrow) expands effective signalling bandwidth up to 
~440 Hz (indicated by dotted lines, where the signal-to-noise ratio >1), increasing information content. 
Right: in LMCs, high-frequency jumping reallocate this enhanced information across their entire bandwidth 
(up arrow), elevating the signal-to-noise ratio and achieving effective signalling up to ~920 Hz (excluding 
the slowest 20 Hz bursts, pink trace). 
(d) Left: Photoreceptors’ effective signalling bandwidth massively expands with stimulus contrast. For high-
contrast saccadic bursts (c ≈ 1.29), the maximum signal-to-noise ratio reaches ~2,000, and the bandwidth 
doubles to ~440 Hz, compared to low-contrast Gaussian white noise (GWN; c ≈ 0.33) where the maximum 
signal-to-noise ratio is ~100 with an effective bandwidth of ~210 Hz. Right: LMCs’ effective signalling 
bandwidth also increases and broadens with stimulus contrast. High-frequency jumping is notably more 
effective during high-contrast bursts than with GWN. As a result, during saccadic stimuli, LMCs’ effective 
signalling range extends to over twice that of photoreceptors, reaching ~920 Hz. Whereas with GWN, the 
LMCs’ effective signalling range is only slightly wider, ~255 Hz, compared to the photoreceptors’ ~210 Hz.  
(e) Photoreceptors’ information transfer rates peaked for 200 Hz high-contrast "saccadic" (bursty) 
stimulation, with the highest estimates reaching about 2,500 bits/s. Their information transfer rates during 
GWN stimulation were 2-to-3-times lower.  
(f) LMCs’ information transfer rates were 2-to-3-times higher than those of photoreceptors, reaching up to 
4,000 bits/s (in one male fly). These estimates typically peaked for 100 Hz or 200 Hz high-contrast "saccadic" 
bursts. The corresponding information transfer rates during GWN stimulation were 2-to-3 times lower. (e, f) 
Thin line, individual cells; thick, mean ± SD. The cell-to-cell variations in information transfer rate estimate 
likely reflect variable microelectrode recording locations and the eye’s sexual dimorphism. 

 1 

While our intracellular recordings clearly demonstrate the crucial role of synaptic high-frequency 2 

jumping in maximising information transfer during saccadic stimulation—mimicking information flow 3 

during high-speed behaviours—they cannot fully explain the underlying biophysical mechanisms. To 4 

address this, we systematically tested our multiscale model of the morphodynamic neural 5 

superposition system (Figures 1c and 4), directly comparing its predictions with experimental 6 

intracellular recordings and performance analyses. 7 

 8 
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Figure 4. Morphodynamic neural superposition model: high-frequency jumping and hyperacuity 
emerge from parallel photoreceptor inputs shaped by multilayered interactions. 

(a) Model architecture. R1–R6 photoreceptors from neighbouring ommatidia sample light 
through a "flower pattern" of partially overlapping receptive fields (RFs). Feedback loop 1 (top): 
Individual microsaccades dynamically shift RFs in response to local contrast changes, driving 
stochastic quantum bump sequences and adapting the receptive field positions. Feedback loop 
2 (bottom): Voltage differences between R1–R6 photoreceptors trigger quantal histamine release, 
which binds to postsynaptic chloride channels on LMCs, generating hyperpolarising responses. 
This engages excitatory synaptic feedback from LMCs to photoreceptors, balancing synaptic loads 
and enabling fast, phasic signal transmission. 
(b) Biophysical signal flow during high-speed stimulation (200 Hz). Top to bottom: photon 
absorption in R1–R6 during microsaccades; neural responses; histamine release probabilities and 
quantal output; resulting LMC voltage; and depolarising synaptic feedback. Simulated responses 
(blue/red) closely match in vivo recordings (black/grey), demonstrating the model's precision. 
(c) Complete model reproduces high-frequency jumping. Signal-to-noise ratios (SNRs) of 
both recordings and simulations show high reliability across a broad frequency range under bursty 
stimulation, confirming the emergence of high-frequency jumping in LMCs. Note: L1/L2 LMC-
subtypes receive “identical” histaminergic input from R1–R618,55,56, and their On/Off polarities57 
only emerge downstream in the medulla, likely shaped by their distinct neurotransmitters and local 
circuitry. 
(d) Single input disrupts high-frequency jumping. Driving the LMC with input from only one 
photoreceptor (here R1) removes high-frequency jumping and reduces SNR. 
(e) Slower transmitter release suppresses high-frequency jumping. Reducing synaptic speed 
lowers temporal resolution and disrupts high-frequency structure in LMC output. 
(f) Phase locking persists without microsaccades. A static-eye model (no photomechanical 
input) still supports high-frequency jumping due to intrinsic morphodynamic sampling. 
(g) Information rates match recordings. Simulated R1-R6 and LMC responses across stimulus 
bandwidths carry similar information to real recordings, peaking near 200 Hz. Mean and SD of the 
recordings in Figures 3e and 3f (thin grey trace, R1-R6 recording with the highest rates). 
(h) Model resolves hyperacute visual features. Incorporating morphodynamic microsaccades, 
the model reproduces LMC recordings by resolving single and paired moving dots at separations 
of 0.7°, 2.1°, and 3.5°. In contrast, a static-eye model (red traces) with receptive fields 
overcompletely tiling visual space (optophysically accurate)11,34 achieves only limited hyperacuity 
(~2.1° separation). A traditional fused-RF model35,36 (purple traces), which assumes identical R1–
R6 responses and perfectly overlapping receptive fields, fails entirely to resolve closely spaced 
dots—the limit being the interommatidial angle (𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2.9°). See Supplementary Figures 11–
14 for R1–R6 hyperacuity. 

 1 

Multiscale Interactions Induce High-Frequency Jumping 2 

The morphodynamic photoreceptor-LMC neural superposition model (Figure 4a–b) accurately 3 

replicates experimental data and elucidates the mechanistic origins of high-frequency jumping 4 

(Figure 4c; Supplementary Figures 28–34). Simulations show that LMCs’ transient responses 5 

(Figure 2b)—and thus high-frequency jumping—arise during the parallel tonic16-18,58 quantal 6 

histamine release from six photoreceptors (R1–R6) into a shared LMC. Importantly, high-frequency 7 

jumping is not the result of a single mechanism but emerges from concurrent adaptive interactions 8 

between pre- and postsynaptic processes, as illustrated by two major circular feedback loops 9 

(Figure 4a). 10 

 11 

The model reflects the compound eye anatomy: R1–R6 photoreceptors from neighbouring 12 

ommatidia have partially overlapping receptive fields, forming a “flower pattern”11,34 (Figure 4a). In 13 
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the first feedback loop (top arrow circle), these receptive fields react to a spatiotemporal light stimulus 1 

(green disk) with microsaccades—tiny, directionally varied shifts driven by stochastic refractory 2 

photon sampling and photomechanical transduction in ~41,000-74,000 microvilli per photoreceptor. 3 

This morphodynamic sampling generates diverse quantum bump sequences and voltage responses 4 

across R1-R6 (Figure 4b, top three traces), dynamically tuning each photoreceptor’s receptive field 5 

to local stimulus changes.  6 

 7 

In the second feedback loop (bottom arrow circle), differences in R1-R6 voltages modulate their tonic 8 

histamine release probabilities. Histamine binding to LMC receptors triggers Cl- influx (left) and 9 

produces hyperpolarising postsynaptic responses16,18,19,59. The LMC thus integrates quantal input 10 

from six photoreceptors with partially overlapping receptive fields, boosting visual information flow to 11 

the brain16,18,57,60 while suppressing aliasing9,11. Simultaneously, LMC signals provide excitatory 12 

feedback to photoreceptors, maintaining their tonic readiness. By continuously balancing excitatory 13 

and inhibitory loads17-19,56,61, this feedback ensures phasic and undelayed synaptic transmission. 14 

 15 

To identify the components essential for high-frequency jumping, we systematically disabled or 16 

modified key mechanisms within the model. Simulations, consistent with the data processing 17 

theorem48,62, revealed that pooling signals from all six photoreceptors is critical (Figure 4d). A single 18 

photoreceptor–LMC synapse, even under ideal noise-free conditions, transmits no more information 19 

than the photoreceptor itself. Tonic quantal release alone—e.g. in a single R1–LMC connection—20 

introduces background noise, reducing the LMC's signal-to-noise ratio and preventing high-21 

frequency jumping. In contrast, pooling slightly variable conductance changes from six 22 

photoreceptors (Figure 4b)—each with a signal‑to‑noise ratio >1,000 (Figure 3)—naturally cancels 23 

this noise9. Pooling increases the collective photoreceptor output six‑fold, driving the synapse to 24 

progressively “clip” the extremes of these near‑noise‑free bursts (see Supplementary Information, 25 

Section IV.11). This clipping produces a square‑like waveform, injecting high‑frequency (>500 Hz) 26 

components that extend the LMC response bandwidth to nearly 1,000 Hz and enable in vivo‑like 27 

high-frequency jumping (Figure 4c). This clipping effect, which boosts high‑frequency signals over 28 

time, resembles the slit effect, where an occluding object temporarily narrows a photoreceptor’s 29 

receptive field to yield hyperacute resolution over space (see Supplementary Information, 30 

Section II.8; Supplementary Figures 20 and 21). 31 

 32 

Another crucial requirement is the speed of quantal transmitter release, particularly in the 33 

photoreceptors (Figure 4e), though feedback synapses also play a role. Slower release weakens 34 

the histamine release probability modulation, making LMC responses more low-pass and 35 

photoreceptor-like. This reduces the high-frequency signal-to-noise ratio and impairs high-frequency 36 

jumping. Moreover, removing excitatory feedback from lamina interneurons to photoreceptor 37 
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terminals substantially degrades both photoreceptor and LMC signal fidelity, consistent with 1 

experimental findings (Figure 4g)18,63. 2 

 3 

Interestingly, the model suggests that microsaccades contribute only indirectly to high-frequency 4 

jumping. Even in simulations with static (non-moving) photoreceptors, high-frequency jumping 5 

persists if synaptic feedback is preserved, though with altered dynamics (Figure 4f).   6 

 7 

Microsaccades introduce variability due to asymmetric, stochastic and slightly asynchronous R1–R6 8 

movements. In a neural superposition system, this results in small timing offsets—where one 9 

photoreceptor may activate before another. This temporal variability reduces the estimated 10 

information transfer rates of both photoreceptors and LMCs by ~10% (Figure 4g). For example, 11 

simulated LMCs transmit an average of 3,063 bits/s with static photoreceptors, compared to 2,732 12 

bits/s with microsaccadic sampling. 13 

 14 

Still, this modest reduction is a small trade-off. Microsaccadic motion—arising from the asymmetric, 15 

rotated rhabdomere arrangements across neighbouring ommatidia—enables ultrafine hyperacute 16 

perception9,11 (cf. Supplementary Figures 11–14 and 20), enhancing the compound eye’s spatial 17 

acuity9,11 from the anatomical limit of ~2.9° to below 0.7°, a more than fourfold improvement (Figure 18 

4h).  19 

 20 

In summary, the second (synaptic) feedback loop plays the primary role in enabling temporal high-21 

frequency jumping by coordinating phasic LMC responses to pooled inputs (Supplementary Video 22 

1). The first (photoreceptor) feedback loop, by contrast, primarily enhances spatial acuity, generating 23 

asymmetric “flower pattern” receptive field motion (Supplementary Video 2) that sharpens object 24 

resolution, especially for moving objects (Figure 4h), and combats spatial aliasing9,11.  25 

 26 

Morphodynamics Matching Visual Lifestyles 27 

In houseflies, as in Drosophila9 and honeybees10, photoreceptors contract photomechanically in 28 

response to changes in light intensity. However, in Musca, these movements—driven by refractory 29 

photon sampling reactions1,2,9-11,37—occur much more rapidly, reducing saturation and more 30 

effectively maximising phasic information9 (Figure 5a–c). This faster refractory quantal sampling 31 

improves the signal-to-noise ratio at higher stimulus frequencies (Figure 5e). For example, Musca 32 

R1-R6 photoreceptors integrate voltage signals three to four times faster than those in Drosophila, 33 

as reflected in their effective signalling bandwidths: ~308 Hz versus ~72 Hz for the same 20 Hz 34 

bursty stimulus. 35 

 36 

Consequently, a typical R1-R6 photoreceptor in a fast-flying housefly samples approximately three 37 

times more information from the same stimulus than its slow-flying Drosophila counterpart, which 38 
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has roughly half as many microvilli (~30,000) and exhibits slower refractory and quantum bump 1 

dynamics9,42,43,46,50. During high-contrast saccadic bursts, Musca photoreceptors reach maximal 2 

information rates of ~2,510 bits/s (Figure 3e), compared to ~850 bits/s in Drosophila9 (Figure 5d).  3 

 4 

When six neural superposition photoreceptor outputs—each modulated by its own microsaccades—5 

are combined with top-down synaptic feedback, visual information can be frequency-shifted into 6 

biphasic and aliasing-free phase-locked LMC responses. These transiently amplify even the smallest 7 

changes in environmental light contrast with minimal delay. In both species, this rapid, bidirectional 8 

information flow eliminates classical synaptic delay: photoreceptor and LMC responses begin rising 9 

simultaneously (Musca ~3.5 ms; Drosophila ~6.5 ms after stimulus onset) (Figure 5b). Yet in both 10 

cases, LMC responses peak significantly earlier than their corresponding photoreceptor inputs—by 11 

~4 ms in Musca and ~13 ms in Drosophila—consistent with predictive coding mechanisms operating 12 

at the synapse (Supplementary Figure 1a, b). Musca’s faster LMC responses (Figure 5a–c) match 13 

its quicker behavioural reactions and its need to time-lock visual processing to fast motor outputs. 14 

 15 

These findings suggest that evolution has tuned visual information processing to meet each species’ 16 

behavioural demands—adjusting microvillus numbers, refractory periods, quantum bump dynamics, 17 

photomechanical responses, membrane conductances, and synaptic connectivity—while also 18 

constraining metabolic cost9,46,47 (see Supplementary Information, Section IV). As a result, 19 

housefly photoreceptors and LMCs jointly encode contrast changes at roughly twice the speed of 20 

those in Drosophila9 (Figure 5a–c). 21 

 22 
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Figure 5. Morphodynamic sampling and synaptic transmission are adapted to species-specific 
visual behaviours. 
(a) Anatomical specialisations. Musca photoreceptors contain ~54,000 microvilli—nearly twice as many 
as Drosophila (~30,000)—providing greater capacity for light sampling. The average interommatidial angle 
is also smaller in Musca (2.9° vs. 4.5°), enhancing spatial acuity. 
(b) Photomechanical microsaccades. Musca R1–R6 photoreceptors exhibit smaller, faster 
microsaccades than those in Drosophila, enabling higher temporal resolution. 
(c) Ultrafast neural transmission. In both species, LMC responses are biphasic and peak earlier than 
photoreceptor responses, with no detectable synaptic delay (see also Supplementary Figure 1). In Musca, 
R1–R6 responses to a 10-ms flash reach their peak within 10–16 ms, aligning with the onset of visually 
guided behaviours (cf. Figure 6). 
(d) Temporal structure of saccadic responses. R1–R6 voltage responses to bursty (20 Hz) saccadic 
contrast changes show clear, phasic dynamics in both species, but Musca responses lead those of 
Drosophila in phase. 
(e) Signal-to-noise ratio (SNR). Musca photoreceptors maintain reliable signalling (SNR > 1) across a 
broader frequency range than Drosophila, supporting high-speed visual processing. 
(f) Information transfer. Musca R1–R6 photoreceptors transmit up to three times more information than 
those in Drosophila, peaking at 200 Hz for high-contrast bursts—twice the optimal frequency observed in 
Drosophila (100 Hz). Dotted box highlights the information rates for the data in d and e. 

 1 

Predictive Coding Enables Ultrafast Behaviours 2 

Next, we investigated whether ultrafast morphodynamic processing, combined with high–frequency–3 

jumping–induced acceleration of neural signalling, is also reflected in the speed of Musca’s visually 4 

triggered behaviours (Figure 6). To test this, we employed two behavioural paradigms that yielded 5 

similar results. First, binocular light flashes elicited rapid antennal movements (Figures 6a–d), 6 

potentially allowing the fly to gather additional olfactory, auditory, or thermal information to reduce 7 

stimulus-related uncertainty. Second, when startled by a rapidly looming dark object, a tethered 8 

Musca exhibited a synchronised, rapid lift of all six legs (Figures 6e–h; Supplementary Video 3).  9 

 10 

Strikingly, the shortest response latencies ranged from 13 to 16.8 ms. These exceptionally brief 11 

delays are remarkable because the behaviours appear voluntary and decision-based—conditions 12 

typically associated with greater response variability and a higher likelihood of no response1,64. In 13 

both cases, neural signals must first be generated in the photoreceptors and then transmitted 14 

through brain circuits (e.g. Supplementary Video 4). Even the most direct “reflex-like” pathway—15 

bypassing central decision-making—would involve at least five synapses (see Supplementary 16 

Information, Section VI) before reaching the muscles. Yet both responses were highly variable in 17 

timing and often absent, distinguishing them from classic, involuntary reflexes65. 18 

 19 

To estimate the minimal possible reaction time, we extrapolated from the complete Drosophila brain 20 

connectome, adjusting for Musca’s brain being approximately three times larger (see 21 

Supplementary Information, Section VI). Using standard values for synaptic transmission, neural 22 

charging, and conduction delays within a unidirectional signalling model (Figures 6h–i; see 23 

Methods), we predicted a minimum reaction time of 18–29 ms for reflex-like pathways, containing 24 

four to six synapses. These predicted delays are 5–16 ms (38%-123%) longer than the shortest 25 

observed voluntary response latencies. 26 
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 1 

 2 

 
Figure 6. Voluntary behavioural responses in flies outpace classical conduction-delay predictions, 
even along the shortest neural pathways—revealing accelerated sensorimotor processing. 
(a) High-speed infrared videography (1 kHz) was used to track Musca antennae responses to a brief UV 
light flash. Antennal motion was recorded relative to stimulus onset to measure reaction times. 
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(b) Cross-correlation of antennal motion traces revealed that the shortest reaction latencies occurred within 
13-18 ms (left), while more typical responses peaked around 24-25 ms (right), indicating variability across 
trials. 
(c) The broad distribution of reaction times suggests that antennal responses are not reflexive but instead 
voluntarily modulated. Some flies responded consistently, others sporadically, and some not at all. 
(d) A candidate antennal response circuit comprising 5 synapses was reconstructed using the Drosophila 
connectome and scaled to Musca using X-ray microtomography. Standard estimates predict a minimal 
unidirectional pathway latency of ~21-29 ms. This is 8-16 ms (up to two times) slower than the fastest 
observed 13 ms antennal responses, implying the involvement of in vivo acceleration mechanisms (e.g., 
synaptic high-frequency jumping). 
(e) In a separate setup, tethered flies were presented with high-speed looming stimuli via a 360 Hz projector 
and back-projection screen, while leg-lift responses were recorded using a 2.5 kHz high-speed camera. 
(f) Reaction times to looming stimuli varied substantially across individuals and trials. The fastest responses 
were detected after 16.8-18 ms, with others occurring at 32, 42, or even >100 ms post-stimulus, suggesting 
a mixture of voluntary and non-responses. 
(g) Distribution of leg reaction times reveals a multimodal pattern, again consistent with voluntary rather 
than reflexive control. 
(h) The leg-lift pathway includes at least 4 synapses and spans ~1.1 mm in conduction length to giant fibres 
(GFs). Using standard assumptions (Methods), the fastest expected motor response would take ~18-22 ms. 
Yet observed leg responses at 16.8 ms are 1.2-5.2 ms faster than predicted, reinforcing the idea that 
classical serial conduction models underestimate the true speed of visual processing in active fly behaviour. 

 1 

This discrepancy suggests that Musca’s neural processing is not strictly feedforward. Instead, it likely 2 

involves continuous bottom-up and top-down interactions across brain circuits17,18,64. Within this 3 

predictive framework, the fly’s internal state—its ongoing intentions and behavioural context—4 

modulate sensory processing1,66-68 and synchronise perception across the brain. We propose that 5 

this global feedforward–feedback interplay uses high-frequency jumping to bind object features 6 

across space and time, enabling predictive, phasic information flow powered by quantal, refractory, 7 

and morphodynamic mechanisms—mirroring those observed at the photoreceptor–LMC synapse 8 

(Figure 4). 9 

 10 

 11 

Discussion 12 

Integrating multiscale experimental and modelling approaches, we uncover synaptic high-frequency 13 

jumping and explain how it emerges. This previously undescribed mechanism enables peripheral 14 

visual neurons to shift information into higher carrier frequencies in response to high-speed saccadic 15 

input, thereby minimising communication delays and increasing the coding speed of reliable vision. 16 

Remarkably, housefly LMCs can transmit information at rates exceeding 4,000 bits/s and operate at 17 

bandwidths approaching 1 kHz—far beyond classical flicker-fusion limits52. Using ultrahigh-speed 18 

videography, we further show that houseflies initiate voluntary, stimulus-triggered behaviours at a 19 

time when photoreceptor responses are only just reaching their peak. 20 

 21 

These findings challenge long-standing models of sequential neural transmission and reveal how 22 

vision dynamically adapts to behavioural demands. Rather than passively processing visual 23 

information, houseflies actively shape their sensory input through high-speed flight behaviours, 24 
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generating the spatiotemporal structures that drive high-frequency jumping, predictive coding, 1 

hyperacute perception and rapid neural synchronisation with environmental dynamics. 2 

 3 

By highlighting the critical roles of saccadic visual behaviours, morphodynamic mechanisms, and 4 

bidirectional synaptic interactions in enabling fast, parallel, low-latency information sampling and 5 

processing, our results have broad implications for understanding efficient encoding and predictive 6 

coding. In particular, synaptic high-frequency jumping provides a neurophysiological solution to the 7 

binding problem—that is, how information encoded across distinct brain circuits is synchronised to 8 

produce unified perception, decision, and action—within the physical constraints of neural 9 

computation. 10 

 11 

High-Speed Saccadic Behaviours Enhance Vision 12 

Houseflies maintain superior visual performance during rapid saccadic turns generated by flight 13 

manoeuvres. These self-induced movements do not impair vision; rather, they enhance it. 14 

Morphodynamic neural superposition enables photoreceptors and downstream circuits to extract 15 

temporally structured, behaviourally relevant features with minimal delay, enabling simultaneous 16 

efficient processing of high-speed visual information and hyperacute perception. The resulting 17 

phasic signals are rapidly amplified and undergo synaptic high-frequency jumping, emerging as 18 

transient, biphasic LMC responses that broaden bandwidth and shorten latency. These signals are 19 

further accelerated by the brain’s bidirectional information flow, where tonic feedforward (inhibitory) 20 

and feedback (excitatory) interactions help balance synaptic load1,17-19,61. As a result, they become 21 

synchronised with internal motor states, generating a predictive, time-locked encoding of 22 

environmental dynamics—facilitating high-speed decision-making and stable visual perception, even 23 

under variable lighting conditions. 24 

 25 

Information throughput increases with the number of samples, assuming constant conditions1,47,48,62. 26 

Photoreceptors continuously adapt to fluctuating light intensities—reflecting logarithmic changes in 27 

environmental photon rates—through refractory quantal sampling, which dynamically adjusts the 28 

quantum efficiency of microvilli1,9,46,50. This mechanism enables signal-to-noise ratios of ~1,000–29 

8,000 (e.g. Figure 5e) in response to fast saccadic contrast changes under bright daylight conditions. 30 

Approximately 54,000 microvilli per cell engage in stochastic sampling, effectively absorbing ~10⁵–31 

10⁶ photons per second. In bright illumination (>107 photons/s), microvillar refractoriness prevents 32 

most absorbed photons from eliciting a quantal response1,9,46,47,50. Under these conditions, 33 

photoreceptor microsaccades—together with the fly’s saccadic flight behaviours—selectively 34 

enhance the sampling of contrast changes1,9,11. As a result, photoreceptors produce accurate anti-35 

aliased estimates of the dynamic visual scene without saturating their biophysically limited amplitude 36 

or frequency ranges, while averaging out residual noise1,9,46,50. Their histaminergic synapses can 37 

thus respond reliably and efficiently to even the slightest contrast changes.  38 
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 1 

Each LMC integrates slightly variable inputs from six photoreceptors, or seven in the male’s frontal-2 

dorsal “love spot” region52, via overlapping, photomechanically moving receptive fields. This 3 

morphodynamic pooling of parallel photoreceptor outputs enhances spatiotemporal resolution, 4 

enabling hyperacute pattern detection and object tracking well below the ~2.9° limit imposed by the 5 

average interommatidial angle (Figure 4h), which defines the static pixel resolution of the compound 6 

eye. Remarkably, our recordings and simulations show that the morphodynamic neural 7 

superposition system, evident in LMC voltage responses, can resolve moving objects separated by 8 

just 0.7°—narrower than the ommatidial lens’s airy‑disk angle (1.1°), the theoretical diffraction limit 9 

(Supplementary Information, Section II.8, S‑Figure 20)—a performance once thought 10 

impossible33. 11 

 12 

Notably, high-frequency jumping is absent in recordings using Gaussian white noise (GWN; Figure 13 

3d), which increases refractoriness and desensitises phototransduction9,46. It is also missing from 14 

responses to linearly presented naturalistic image time series, dominated by slow frequencies (1/𝑓𝑓 15 

statistics)9,18,48,69. Our results therefore suggest that animals’ active vision—combining high-speed 16 

saccadic movements with brief fixation pauses9, including photoreceptor microsaccades11,12,27, 17 

intraocular muscle contractions70, and eye, head, and body rotations38—actively drives high-18 

frequency jumping. This, in turn, enhances the phase congruency of visual features (such as edges, 19 

occluding objects, changing textures, and outlines), making them stand out instantaneously in the 20 

scene. 21 

 22 

Behaviour-Dependent Neural Synchrony 23 

During wakefulness, and especially during active behaviour, flies exhibit heightened visual 24 

responsiveness64,67,71. Photoreceptor–LMC synapses operate tonically, maintaining continuous 25 

interactions between bottom-up sensory input and top-down modulation to support attentional 26 

readiness16-18,58,72. This dynamic state allows the generation of widespread time-locked neural 27 

responses in reaction to behaviourally relevant environmental stimuli. 28 

 29 

To understand how high-frequency jumping supports predictive sensorimotor processing, we 30 

examined the timing of photoreceptor and LMC responses to rapid stimuli. For example, Musca 31 

LMCs generate maximum responses within 6.5-9 ms of light onset (mean: 7.6 ± 0.8 ms, n = 10)—32 

well before the associated photoreceptor voltage reaches its peak 5-9.5 ms later (p = 0.012), at 9-33 

16 ms (mean: 11.6 ±1.9 ms, n = 20, Supplementary Figure 1a). Similarly, the fastest reaction times 34 

during voluntary vision-driven behaviours fall within 13-20 ms (Figure 6; Supplementary Figure 35 

1c), far shorter than expected under conventional unidirectional transmission models. These findings 36 

suggest that high-frequency jumping supports both local synaptic efficiency and global network 37 

synchronisation, enabling ultrafast, predictive sensorimotor responses. 38 
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 1 

To assess whether these principles generalise beyond the first visual synapse, we reexamined 2 

response timings deeper in the fly brain. Supporting high-frequency jumping and morphodynamic 3 

synchronisation as general neural strategies, minimal-delay responses were also observed 4 

downstream in the Drosophila visual system1,64. In tethered flying flies, electrical activity recorded 5 

from the lobula and lobula plate (Supplementary Figure 1d)—at least three synapses downstream 6 

of photoreceptors—appeared within ~15-20 ms of stimulus onset64, closely time-locked to Drosophila 7 

LMC transients (Figure 5C; Supplementary Figure 1b). Likewise, an 18 ± 1.5 ms (mean ± SD) 8 

delay was recorded in the firing of Drosophila giant fibres—a pair of large command interneurons, 9 

four synapses downstream of photoreceptors, involved in collision-avoidance reactions—in 10 

response to light-off stimuli73,74. This ultrafast signal propagation, in which transient light changes 11 

evoke near-synchronous, minimal-delay activity across the optic lobes in different experiments, 12 

further challenges classical models that assume strictly sequential processing with substantial 13 

phototransduction, synaptic, and conduction delays. 14 

 15 

Thus, information processing in vivo appears more synchronised and integrated, with signals 16 

coordinated across multiple brain regions. This is reflected in the fly brain’s broadly distributed and 17 

dynamic energy use during activity75. Rather than conveying information sequentially like falling 18 

dominoes, neurons are coupled through morphodynamic and bidirectional synaptic interactions—19 

with high-frequency jumping providing interlinked “strings” that cause the dominoes to fall together. 20 

Such synchronised, minimal-delay processing—from sensing to decision-making—is likely essential 21 

for supporting complex behaviours in real time. 22 

 23 

Implications for Neural Systems 24 

Analogous to recent concepts of human eye movements76-78, synaptic high-frequency jumping 25 

dynamically shifts neural processing of saccadic inputs into higher-frequency domains, enhancing 26 

predictive power and visual acuity. Our findings support this broader framework of encoding space 27 

through time9,11,47,76-80. Specifically, intracellular recordings and biophysically realistic modelling 28 

demonstrate how neural circuits actively transform transient visual signals—such as those elicited 29 

by saccades—to synchronise perception precisely with high-speed behaviours. This highlights a 30 

conserved principle of dynamic, spatiotemporal encoding across diverse visual systems. 31 

 32 

Recent studies suggest that synaptic transmission involves ultrastructural mechanical movements1,5-33 

8,14,15. Building on this, we propose that high-frequency jumping may be sensitised by stochastic 34 

ultrastructural oscillations—morphodynamic jitter—driven by tonic transmitter release. This process 35 

may help maintain neural processing and perception in an attentive, ready state at synapses 36 

transmitting both bottom-up and top-down signals1. Morphodynamic jitter, a form of mechanical 37 

stochastic resonance81,82, could enable interconnected circuits to respond in phase (i.e., 38 
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synchronise) to dynamic or behaviourally relevant inputs, selectively amplifying salient signals while 1 

suppressing irrelevant ones. Additionally, jitter could temporally align bottom-up sensory signals with 2 

top-down motor predictions83-85, facilitating faster error correction and behavioural adaptation. 3 

 4 

This study underscores the value of an integrative, multi-scale approach to understanding neural 5 

systems. By linking molecular, cellular, and systems-level dynamics with high-speed saccadic 6 

behaviour, we demonstrate how form, function, and behaviour co-adapt to support robust, adaptive 7 

vision in rapidly changing environments—enabling advanced computations already at the level of 8 

information sampling. This framework reveals emergent properties—such as high-frequency 9 

jumping, efficient coding, hyperacute vision, fast adaptive gain control, and predictive time-locking—10 

that remain obscured when neural components are studied in isolation. For instance, 11 

morphodynamic sampling (encompassing photomechanical, stochastic, refractory, and quantal 12 

processes) and high-frequency jumping cannot be reproduced by conventional high-level 13 

reductionist models that treat photoreceptors and LMCs as static, unidirectional filters. 14 

 15 

Beyond insect vision, our findings point to fundamental principles of neural computation. They offer 16 

new insights into enduring challenges, such as the neural binding problem, by showing how 17 

distributed, time-sensitive signals can be synchronised to generate unified percepts and high-speed, 18 

purposeful behaviour. More broadly, these principles could inform the design of next-generation 19 

artificial systems that, like biological vision, must operate efficiently under real-time constraints in 20 

noisy and dynamic environments. 21 

 22 

Looking ahead, uncovering how morphodynamic high-frequency jumping generalises across 23 

sensory modalities and species may reveal fundamental laws of biological intelligence—laws that 24 

could drive the next revolution in adaptive, real-time artificial systems, from autonomous robots to 25 

predictive neuromorphic architectures. 26 

 27 

 28 

Methods 29 

We provide here a brief overview of the main methods; full details of the multiscale experimental and 30 

theoretical approaches are in the Supplementary Information (Sections I–VI). Section I covers 31 

analyses of intracellular voltage responses from R1–R6 photoreceptors and LMCs under extended 32 

experimental paradigms. Section II describes high-resolution X-ray and electron microscopy (EM) 33 

analyses of Musca compound eye optics and photomechanical microsaccadic sampling underlying 34 

hyperacuity. Section III explains in vivo high-speed optical imaging of photoreceptor microsaccades. 35 

Section IV details the mathematical modelling of the morphodynamic neural superposition system, 36 

incorporating adaptive optics. Finally, Section V presents the behavioural experiments, and Section 37 

VI the functional connectomics of Musca. 38 
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Fly stocks 1 

Adult wild-type houseflies (Musca domestica) were used in the experiments. Housefly larvae and 2 

pupae were sourced from a commercial supplier (Blades Biological Ltd, Cowden, Kent, UK). They 3 

were cultured in a standard laboratory incubator (60% humidity) at the School of Biosciences and 4 

fed liver and sugar water. Flies were maintained at ~22 °C under a 12:12 h light:dark cycle. In some 5 

experiments, adult wild-type Drosophila (Canton-S) reared separately at 25 °C served as controls9. 6 

 7 

In vivo intracellular recordings 8 

Fly preparation and intracellular recordings were performed as described previously9,86. Briefly, 9 

houseflies were anaesthetised on ice. Once immobilised, their wings and legs were removed, and 10 

they were fixed to a conical holder (brass/plastic) using beeswax, securing the thorax, proboscis, 11 

and right eye to minimise movement artefacts. A small hole (covering 6–10 ommatidia) was cut in 12 

the dorsal cornea of the left eye to allow electrode access, and sealed with Vaseline to prevent 13 

drying86.  14 

 15 

Voltage responses of R1–R6 photoreceptors and L1–L3 lamina monopolar cells (LMCs) were 16 

recorded using sharp, filamented borosilicate microelectrodes (Sutter Instruments; 1.0 mm outer 17 

diameter, 0.5 mm inner diameter), with resistances of 100–250 MΩ, pulled with a P-2000 horizontal 18 

laser micropipette puller. The tip of the reference electrode was cracked to reduce its resistance. 19 

 20 

Photoreceptors and LMCs were recorded in separate sessions. Electrodes were back-filled with 3 M 21 

KCl for photoreceptors, and 3 M potassium acetate with 0.5 mM KCl for LMCs to maintain the 22 

chloride battery. The reference electrodes (blunt-tipped) were filled with fly Ringer solution (120 mM 23 

NaCl, 5 mM KCl, 5 mM TES, 1.5 mM CaCl₂, 4 mM MgCl₂, and 30 mM sucrose)42. Under a Nikon 24 

SMZ645 stereomicroscope, a remote-controlled micromanipulator (PM10, Mertzhauser) was used 25 

to position the electrodes. Thanks to the system’s stability, a single recording electrode often 26 

penetrated multiple photoreceptors—or occasionally LMCs—in sequence, yielding high-quality 27 

recordings from many cells within the same eye. 28 

 29 

The fly’s temperature was maintained at 25 ± 1 °C using a feedback-controlled Peltier device42,86. 30 

Only stable, high-quality recordings were analysed. In darkness, R1–R6 resting potentials were < –31 

60 mV, with responses ≥ 45 mV to 100 ms saturating light pulses. L1–L3 cells showed dark resting 32 

potentials < –30 mV and maximum responses ≥ 20 mV. As LMCs were blindly penetrated and not 33 

stained, individual cell identities could not be confirmed; however, most were likely L1 or L2 due to 34 

their larger size16-18. Data from all recorded LMCs were pooled, given their similar response 35 

properties, including dark resting potential, hyperpolarisation to light increments, and response 36 

amplitudes. 37 

 38 
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Ruling out efference copy interference in intracellular recordings 1 

Stable intracellular recordings require firmly head-fixed flies to eliminate movement artefacts caused 2 

by bodily functions and to minimise recording noise. As a result, the fly cannot perform overt visual 3 

behaviours, such as head or body saccades, during stimulation. The saccadic bursty stimuli used in 4 

this study, therefore, only mimicked the light intensity time-series patterns (see Visual stimuli below) 5 

that such behaviours would normally generate. However, the fly could still produce internal motor-6 

related signals—efference copies—typically associated with these behaviours68,83-85. 7 

 8 

In our recording paradigm, the fly has no control over the stimulus. Thus, any efference copies 9 

generated by its motor circuits and transmitted downstream to photoreceptors or LMCs would not 10 

be synchronised with, or predictive of, the stimulus-driven responses. Instead, any such top-down 11 

signals would appear as sporadic, uncorrelated noise in the recordings. 12 

 13 

Over the past 30 years, we have refined our bespoke intracellular recording systems to achieve 14 

exceptionally low noise levels9,16,42,43,47,63,86. This enables us to accurately quantify neural responses 15 

and distinguish signal from noise under various visual conditions. Our signal-to-noise analyses of 16 

photoreceptor and LMC responses (see Data analysis below) have never revealed extrinsic noise 17 

patterns consistent with efference copies. 18 

 19 

Indeed, all observed photoreceptor noise (variability in processing) can be fully explained and 20 

reconstructed from four well-characterised sources (see Supplementary Information, Section IV): 21 

 22 

• Quantum bump noise42,43, modelled as a Lorentzian derived from the Gamma-shaped bump 23 

profile 24 

• Microsaccade noise9, introducing a low-frequency hump 25 

• Synaptic feedback noise18 from LMCs and amacrine cells, adding high-frequency Poisson-26 

like variability shaped by the LMC waveform 27 

• 1/f instrumental recording noise42,43 28 

 29 

Given this comprehensive account of known noise sources, the likelihood that efference copies 30 

influenced our recorded data under this specific experimental paradigm is exceptionally small. 31 

Moreover, our morphodynamic neural superposition model—lacking any built-in top-down circuitry—32 

replicates both photoreceptor and LMC response dynamics (e.g. Figure 4). Therefore, the present 33 

study does not provide evidence for efference copy influence on neural signalling at this early 34 

sensory sampling stage. 35 

 36 

Visual stimuli 37 
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A high-intensity “white” LED (Seoul Z-Power P4 Star, 100 lumens) was used to deliver light stimuli 1 

centred on the receptive field via a randomised quartz fibre-optic bundle (180–1,200 nm transmission 2 

range) mounted on a rotatable Cardan-arm, subtending a 3° homogeneous light field86. Output was 3 

controlled by an OptoLED driver (Cairn Research Ltd, UK). 4 

 5 

To characterise temporal encoding, five 2-second Gaussian white noise (GWN) stimuli of varying 6 

bandwidths (20, 50, 100, 200, and 500 Hz) were presented. These stimuli were generated using 7 

MATLAB’s randn function, low-pass filtered (MATLAB Filter Toolbox), and scaled to have flat power 8 

spectra and equal peak-to-peak modulation (two units). Each bandwidth was tested under three 9 

contrast conditions on a linear intensity scale: high (BG0, 0 background light units), mid (BG0.5, 0.5 10 

units), and low (BG1, 1 unit). Contrast was defined using Weber’s law: 11 

 12 𝑐𝑐 =  
∆𝐼𝐼𝐼𝐼         (1) 13 

 14 

where 𝛥𝛥𝛥𝛥 is the intensity change (standard deviation of the stimulus), and 𝛥𝛥 is the mean background 15 

intensity. Measured contrasts were: 16 

 17 

• High-contrast “saccadic” bursts: 𝑐𝑐(𝐵𝐵𝐵𝐵0) = 1.29 ± 0.13 18 

• Mid-contrast bursts: 𝑐𝑐(𝐵𝐵𝐵𝐵0.5) = 0.61 ± 0.10 19 

• Low-contrast GWN: 𝑐𝑐(𝐵𝐵𝐵𝐵1) = 0.33 ± 0.05 20 

 21 

Stimuli were presented from the lowest to the highest adapting background. Prior to each stimulus, 22 

cells were dark-adapted for 20–30 seconds. Only cells with stable recordings across all 15 stimulus 23 

patterns were analysed. However, since LMC recordings are more difficult to maintain than 24 

photoreceptor recordings, in some cases only the five bursty stimuli were used for LMCs. Each 25 

stimulus was repeated at least 30 times per cell. 26 

 27 

Stimuli and responses were low-pass filtered at 500 Hz or 1 kHz (KEMO VBF/23 elliptic filter, UK) 28 

and digitised at 1 or 2 kHz using a 12-bit A/D converter (National Instruments, USA). Data acquisition 29 

and stimulus control were handled via custom-written software (Biosyst, M. Juusola, 1997–2020) in 30 

MATLAB (MathWorks, USA)42,48, interfaced via the MATDAQ package (H.P.C. Robinson, 1997–31 

2005) for National Instruments boards. 32 

 33 

Data analysis 34 

To ensure all the studied cells had reached a similar adaptation state, the first five responses (10 35 

seconds of data) to the repeated stimulus were excluded from both signal and noise analyses. This 36 

left at least 25 responses to the same repeated stimulus pattern. The signal was defined as the mean 37 
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response, and the noise as the deviation of individual traces from this mean42,48. Thus, 𝑛𝑛 repetitions 1 

(𝑛𝑛 = 30) yielded one signal and 25 noise traces.  2 

 3 

The signal 𝑠𝑠(𝑡𝑡) and noise 𝑛𝑛(𝑡𝑡) traces were segmented into 50%-overlapping stretches and windowed 4 

with a Blackman-Harris 4-term window. Each window produced six 500-point- or 1,000-point-long 5 

samples, corresponding to 1 or 2 kHz sampling, respectively. Fast Fourier transforms (FFTs) were 6 

applied to compute the frequency-domain signal and noise spectra, 𝑆𝑆(𝑓𝑓) and 𝑁𝑁(𝑓𝑓), respectively. The 7 

signal-to-noise ratio in the domain 𝑆𝑆𝑁𝑁𝑆𝑆(𝑓𝑓) was calculated as: 8 

 9 𝑆𝑆𝑁𝑁𝑆𝑆(𝑓𝑓)  =  
|〈𝑆𝑆(𝑓𝑓)〉|2
|〈𝑁𝑁(𝑓𝑓)〉|2      (2) 10 

 11 

where |〈𝑆𝑆(𝑓𝑓)〉|2 and |〈𝑁𝑁(𝑓𝑓)〉|2 are the power spectra of signal and noise, respectively. Here 𝑣𝑣 denotes 12 

voltage, || the absolute value, and ⟨⟩ the average over all signal and noise windows42,48. 13 

 14 

Information transfer rate (R) was calculated from the 𝑆𝑆𝑁𝑁𝑆𝑆(𝑓𝑓) using Shannon’s information formula62, 15 

which is widely applied in this context9,46,48: 16 

 17 𝑆𝑆 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑆𝑆𝑁𝑁𝑆𝑆(𝑓𝑓) + 1)𝑑𝑑𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙      (3) 18 

 19 

Signals were sampled at either 1 or 2 kHz and windowed accordingly (1,000- or 2,000-point 20 

Blackman-Harris window). Therefore, the integration bounds were 2–500 Hz (for 1 kHz sampling) or 21 

1–1,000 Hz (for 2 kHz sampling), not 0 to ∞.  22 

 23 

However, for LMC recordings sampled at the lower rate (1 kHz), Eq. 3 underestimates the true 24 

information transfer rates—particularly for mid- and high-contrast “saccadic” burst responses—25 

because these evoked high-frequency jumping, with 𝑆𝑆𝑁𝑁𝑆𝑆(𝑓𝑓) ≫ 1 at 500 Hz (cf. Figure 2e), indicating 26 

that frequencies above 500 Hz contributed non-negligible information. In contrast, this 27 

underestimation was not observed for responses to low-contrast Gaussian white noise (GWN) 28 

stimuli, which did not evoke high-frequency jumping and exhibited substantially lower response 29 

bandwidths (Supplementary Figure 7e). 30 

 31 

To correct for the high-frequency jumping effect, information losses in the 1 kHz recordings were 32 

estimated by comparison with matched 2 kHz recordings using the same stimuli. For photoreceptors 33 

(n = 2), the mean information loss was approximately 5% and consistent across cells. For LMCs 34 

(n = 2), the loss ranged from 5–23%, with the largest deficits observed for stimuli peaking near 35 

200 Hz. The information transfer rate estimates for both photoreceptors and LMCs were corrected 36 
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using stimulus-specific factors, calculated as the percentage difference between 𝑆𝑆2−500𝐻𝐻𝐻𝐻 and 1 𝑆𝑆2−1,000𝐻𝐻𝐻𝐻 as defined by Eq. 3. 2 

 3 

Moreover, information transfer rate estimates for LMCs during high-contrast bursts were less reliable 4 

than those for photoreceptors because the recorded voltage signals typically deviated from a 5 

Gaussian distribution—except when tested with a 500 Hz Gaussian White Noise stimulus 6 

(Supplementary Information, Section I, Supplementary Figure 4b). Consequently, Shannon-7 

based information estimates are most accurate under mid- and low-contrast conditions, where 8 

voltage responses more closely approximate Gaussian distributions (Supplementary Figure 7b). 9 

Applying Shannon’s method to non-Gaussian responses, which violates its assumptions, may inflate 10 

estimates by ~12%, as verified against the assumption-free triple-extrapolation method48 11 

(Supplementary Figure 8). 12 

 13 

However, several factors contribute to underestimating the true capacity of the system 14 

(Supplementary Figure 9). Microelectrode penetrations inherently damage the recorded cells, 15 

reducing signal fidelity. Additionally, responses cannot be measured in a true steady state, as they 16 

continually reflect ongoing adaptation, network dynamics17,18,61 and top-down eye-muscle activity87. 17 

Because recordings are never fully ergodic—trial-to-trial variability arises from adaptive network 18 

processes rather than pure noise—standard stationary information analyses mistakenly classify 19 

intrinsic or network-driven adaptations as additive noise. Thus, the actual information transfer rates 20 

and visual performance of housefly vision likely surpass our conservative estimates. 21 

 22 

These analyses demonstrate that estimates derived from 25 repetitions (excluding the first five 23 

responses) are conservative rather than inflated; adaptive trends cause underestimation, not 24 

overestimation, of synaptic information transfer capacity. Therefore, our reported values represent a 25 

robust lower bound on the actual encoding precision of LMCs. 26 

 27 

Flies also counteract motion blur during saccadic behaviours via multiple mechanisms: predictive 28 

stabilisation of head and body movements25,26, enhanced processing in acute zones88, and 29 

photomechanical, refractory light information sampling9,11. However, in our experiments, Musca were 30 

fixed in conical holders, eliminating head and body movement. We also used female flies and did 31 

not intentionally target the male acute zone, ensuring that neither electrode placement nor sex 32 

biased the results. Thus, the enhanced responsiveness of both photoreceptors and LMCs to fast, 33 

saccade-like stimuli reflects high-performance sampling and transmission dynamics9-11, which have 34 

evolved to support the fly’s high-speed visual behaviours and lifestyle. 35 

 36 

Morphodynamic Neural Superposition System 37 
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In the fly's neural superposition eye (as viewed statically), six R1–R6 photoreceptors from different 1 

ommatidia converge onto shared downstream neurons (LMCs and an amacrine cell)89. Each 2 

photoreceptor is optically aligned to sample light from approximately the same region of space—but 3 

due to slight angular offsets and biological variability, their receptive fields do not perfectly 4 

overlap11,34. Instead, they sample from a small, fuzzy area, creating an over-complete, spatially 5 

jittered representation of the visual scene (Figure 1b). 6 

 7 

In a living fly, however, this system operates as a spatiotemporally dynamic morphodynamic 8 

network11. The receptive fields are not fixed; they shift in space and time due to photomechanical 9 

microsaccades—tiny, light-driven rhabdomere movements (Figure 1b-c). This adds a temporal 10 

dimension to the over-complete spatial sampling, allowing receptive fields to sweep across fine 11 

spatial details and generate richer, decorrelated input patterns. 12 

 13 

The result is a morphodynamic neural superposition system that enhances information encoding 14 

by: 15 

• Dynamically refining receptive field alignment, 16 

• Exploiting redundancy for noise suppression and error correction, 17 

• Supporting high-frequency jumping and predictive coding aligned with behaviour. 18 

 19 

This system transforms passive optical overlap into an active, synchronised sampling strategy, 20 

optimised for high-speed saccadic vision. Supplementary Information, Section IV details how we 21 

modelled the photoreceptor and LMC responses of this sophisticated morphodynamic system. 22 

 23 

Extrapolating Musca reaction times.   24 

To estimate the minimal reaction time of Musca antennal and leg responses to visual stimuli, we 25 

focused on two fast sensorimotor pathways: the light-induced antennal movement and the looming-26 

induced leg escape response (see Supplementary Information, Section VI, Supplementary 27 

Figures 38–41). Although no complete connectomic or genetic dataset exists for Musca, the neural 28 

architecture underlying the visual system is highly conserved between Drosophila and Musca90. We 29 

therefore used Drosophila melanogaster, for which complete connectomic data is available. Using 30 

the FlyBrainLab platform (see Supplementary Information, Section VI for details), we identified 31 

the shortest reflex-like pathways linking the retina to motoneurons controlling antennal and leg 32 

responses (Figure 6d,h), with minimal synaptic gaps and conduction distances. Examining these 33 

pathways in Drosophila allows us to extrapolate Musca's visual-motor response time. 34 

 35 

We accumulate processing delays along the two Drosophila pathwaysattributed to phototransduction 36 

and voltage integration, synaptic transmission delay, conduction speed (see Supplementary 37 

Information, Section VI). While Musca has a larger brain, the main contributors to processing delay, 38 
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phototransduction and synaptic transmission, are likely conserved, while a small difference in 1 

conduction delays may exist and we consider that the Musca has 3 times the body size as that of 2 

the fruit fly.  3 

 4 

Together, these stages yield an estimated reaction time of 22.5-29.5 ms for the light-induced 5 

antennal movement and 18.6-22 ms for the looming induced leg escape response. We propose this 6 

as a reasonable lower-bound estimate for these visually induced motor responses in Musca, based 7 

on highly compact reflex-like pathways and conventional fast signalling assumptions. These 8 

estimates are at least 5-9 ms slower than our experimental observations of voluntary visual 9 

responses in flies (13 ms), suggesting the involvement of in vivo acceleration mechanisms (e.g., 10 

synaptic high-frequency jumping).  11 

 12 

 13 

Statistics. Statistical analyses were carried out in Python, Origin and MATLAB. Maximum 14 

information rates and visual acuity between male and female photoreceptors, and the whole 15 

population of photoreceptors and LMCs, were compared. The statistical methods are explained in 16 

the Supplementary Information, Sections I-VI. 17 

 18 
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