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Abstract

It is increasingly recognized that networks of brain areas work together to accomplish computational goals. However, functional

connectivity networks are not often compared between different behavioral states and across different frequencies of electrical

oscillatory signals. In addition, connectivity is always defined as the strength of signal relatedness between two atlas-based ana-

tomical locations. Here, we performed an exploratory analysis using data collected from high-density arrays in the prefrontal cor-

tex (PFC), striatum (STR), and ventral tegmental area (VTA) of male rats. These areas have all been implicated in a wide range of

different tasks and computations including various types of memory as well as reward valuation, habit formation and execution,

and skill learning. Novel intraregional clustering analyses identified patterns of spatially restricted, temporally coherent, and fre-

quency-specific signals that were reproducible across days and were modulated by behavioral states. Multiple clusters were

identified within each anatomical region, indicating a mesoscopic scale of organization. Generalized eigendecomposition (GED)

was used to dimension-reduce each cluster to a single component time series. Dense intercluster connectivity was modulated

by behavioral state, with connectivity becoming reduced when the animals were exposed to a novel object, compared with a

baseline condition. Behavior-modulated connectivity changes were seen across the spectrum, with d, h, and c all being modu-

lated. These results demonstrate the brain’s ability to reorganize functionally at both the intra- and inter-regional levels during

different behavioral states.

NEW & NOTEWORTHY We applied novel clustering techniques to discover functional subregional anatomical patches that

changed with behavioral conditions but were frequency specific and stable across days. By taking into account these changes

in intraregional signal generator location and extent, we were able to reveal a richer picture of inter-regional functional connec-

tivity than would otherwise have been possible. These findings reveal that the brain’s functional organization changes with state

at multiple levels of scale.

clustering; electrophysiology; network connectivity

INTRODUCTION

Coordinated activity between brain regions is widely
believed to allow neural circuits to bind cell assemblies
flexibly and to orchestrate information transfer efficiently
(1–3). Anatomical connections between regions constrain
and predict the range of available network states that can
be achieved (4–6). In addition, there can be different

patterns of connectivity between areas at different oscilla-
tory frequencies (4, 7–9).

Brain networks are often studied during a resting state (5–
8, 10). Particularly during rest and in relatively long epochs
of data, it has been shown that anatomical connectivity pre-
dicts functional networks well (5, 6, 9). Considering these
observations, an implicit assumption is that long periods of
resting state data collected from the same individual at
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different times should be largely the same because these

data sets would be based on the same underlying anatomy.
An important decision in the analysis of brain network

states is deciding how granularly to chunk the anatomical

space of the brain. What is the size of a functional signal gen-

erator? How are these signal generators distributed? Often,

the analysis depends on atlas-based anatomical parcella-

tions. First, some measure of pairwise connectivity is calcu-

lated for all pairs of data channels, and then connectivity is

averaged for all channel pairs that span two atlas-based ana-

tomical areas. In this way, the network connectivity graph is

built up one edge at a time (5, 9, 11, 12). In this type of analy-

sis, parcellation is static even when multiple behavioral con-

ditions are compared or the goal is to assess dynamic

connectivity changes (13). An implicit assumption is that

while the connections between areas may change, the ana-

tomical extent of an area is invariant to task or behavioral

state.
Here, we performed an exploratory analysis of large-scale

electrophysiological data that were collected from the pre-

frontal cortex (PFC), striatum (STR), and ventral tegmental

area (VTA) of male rats during a series of four behavioral

conditions lasting several minutes each.
We developed a data-driven analysis approach to identify

spatially distributed and frequency-specific clusters. These

clusters were highly reproducible within animals across dif-

ferent recording sessions. Next, we used amplitude envelope

correlations to assess between-node connectivity (14).
Our analysis revealed that when comparing data collected

during two open field periods, connectivity in the delta band

was reduced in the later period relative to the first, but the

aggregate strength of network connectivity across frequen-

cies did not change. Between the two open field periods, the

rats were exposed to a novel object. We also found consider-

able changes in the anatomical extent of intraregional areas

between different conditions, implying that important con-

nections may be missed when signals are grouped statically

by anatomical region. The strongest of these changes was

reorganization of the functional cluster structure detected in

d band signals in the VTA. Finally, incidental interaction

with a novel and later a repeated object caused a dramatic

drop in network connectivity, suggesting that even small

perturbations in environmental context can lead to dramatic

changes in brain network state.

METHODS

Analysis was primarily carried out using custom written

MATLAB code. ANOVA tests and some figure generation was

carried out in R.

Experimental Design

The experimental procedures have been described previ-

ously (15). Briefly, all experimental procedures were per-

formed in accordance with the EU directive on animal

experimentation (2010/63/EU), and the Dutch nationally

approved ethics project 2015-0129. All recordings were per-

formed in the laboratory of M.X.C. We included five male

Long–Evans TH:Cre rats (�3 mo old, weight: 350–450 g at

time of recordings). Nonoverlapping findings from this data

set have been reported elsewhere (15).

Electrophysiological recordings were collected from the

PFC, STR, and VTA. There were 64 contacts per region. For
target recording locations see Fig. 2A. Sixty-four electrodes

covered an area of 1 � 2 mm with typical spacing of 225 μm
in each shank and 330 μm between shanks in PFC. STR elec-
trodes also covered an area of 1 � 2 mmwith the same shank

distance (330 μm). However, two shanks contained only tetr-
odes and two shanks had only single sites with typical spac-
ing of 130 μm between single sites and 660 μm between

tetrodes. VTA implants contained eight shanks of eight elec-
trodes each and covered an area of 1.5� 0.14mm.

After 1 wk of training and handling habituation, each ex-
perimental session consisted of four conditions. Habituation

and experimental sessions both utilized the same black plas-
tic square box (60 � 40 � 40 cm) with bedding covering the
floor. All sessions took place under well-lit conditions. First,

animals were placed in an open field. Second, a novel object
(e.g., a cup or toy) was presented in the middle of the box.
Third, the animal was alone in the open field again. Fourth,

the same object presented in the second condition was pre-
sented again. Each condition lasted between 5 and 6 min.

We termed these conditions open field, novel object, open
field 2, and repeat object. Rats moved freely throughout the
experimental sessions. There was no delay between condi-

tions. A camera was placed above the box to trackmovement
(Fig. 1, A–C). A maximum of one session per animal was
recorded on a single day. There were 28 recording sessions in

total with each animal contributing between four and eight
sessions. The difference in the number of sessions per ani-
mal was due to their participation in multiple experiments

with the collection of these open field and novel object data
being of secondary priority.

Using data from video recordings and DeepLabCut (16),
we created binary vectors indicating interaction with the

object (during encoding and retrieval conditions) and move-
ment. These were upsampled to 1,000 Hz and aligned to LFP
data.

Statistical Analyses

The overall analysis pipeline is sketched out in Table 1.

Calculating memory strength.
For each session, the percentage of time spent interacting

with the object was calculated for the novel object and repeat
object periods. The percentage during repeat was subtracted
from the percentage during novel. Positive values indicate

that the rat spent more time exploring the object when it was
novel (Fig. 1E).

Local field potential data cleaning.
Data were notch-filtered to remove 50 Hz line noise, ICA fil-

tering was done, and components that appeared to capture
muscle and line noise were removed, channels that appeared

to be contaminated with noise by visual inspection were
removed. Finally, cross-channel covariance matrices were
calculated in 2,000-ms windows in steps of 100 ms. A mean

covariance matrix was calculated. Epochs whose covariance
matrices were more than 2 standard deviations from the
mean were discarded from further analysis. Distance

between epoch andmean covariance matrices wasmeasured
using matrix Euclidean distance. Covariance based cleaning
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was implemented using the custom covMatCleaning func-
tion (see CODE AVAILABILITY).

Identifying intraregional clusters.

Data were filtered using 42 logarithmically spaced central
frequencies between 2 and 150 Hz using the custom
filterFGx function. After filtering, data from novel and
repeat object periods were limited to periods of interaction
with the object. These data included both stationary and
movement periods. This was done to maximize the
amount of available data for analysis and because move-
ment periods comprised a similar proportion of data
across conditions. However, results were highly similar

when the main analyses were repeated on the stationary data
alone (see Supplemental Data available on Github; https://
github.com/adede1988/subNetworkDynamics). Channel �
channel correlation matrices were calculated in nonoverlap-
ping 2.5-s epochs. These epochs were averaged together to
create a single channel � channel correlation matrix (Fig.
3A). In addition, the average correlation matrix was calcu-
lated 20 additional times with an evenly spaced sliding win-
dow such that a continuous 10% segment of the data was left
out from each average. Effectively, this corresponded to
between a half and a whole session being left out from each
fold. These 20 partial averages were used for validation. This
was done for each behavioral condition independently.
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Figure 1. Behavioral paradigm and behavior results. A: still image taken from the video recording of an experimental session. The rat is exploring a white

object. B: output of movement tracking results for the frame shown in A. C: example experimental session behavioral data. Stars indicate the presence

of an object to explore (novel object and repeat object periods). During open field and open field 2 periods, there were no objects in the box. Different

objects were used on different testing days. Within day, the same object was used in the novel object and repeat object periods. In the bottom of each

panel is the path followed by the rat during the corresponding condition. Orange vs. blue points differentiate locations with and without interaction with

the object, respectively. D: median distribution of animal speed movement from all the recordings. The dashed line shows the motion speed threshold

separating resting from movement. E: histogram depicts memory for the object in terms of the percentage of time spent interacting with the object dur-

ing the novel object period minus the corresponding percentage during the repeat object period. In general, more time was spent interacting with the

object when it was novel [after removal of outliers more than 2 SDs below mean t(25)=4; P� 0.001]. F: pie charts show percentages of time spent in dif-

ferent behavioral states during each of the behavioral conditions.

Table 1. General analysis pipeline

Step Analysis Description Analysis Purpose

1 Granular narrowband filtering of data from each condition Extracting key values

2 Create channel � channel correlation matrices using frequency and condition specific data Extracting key values

3 Group channels into clusters using DBscan (Fig. 3) Extracting key values

4 20-fold validation, comparison to random clusters, and calculation of silhouette values (Figs. 3 and 4) Validation and reliability

5 Combine clusters across wider frequency bands using normalized mutual information (NMI) as similarity

metric (Fig. 5)

Dimensionality reduction

6 Compare clusters across frequency and condition using NMI (Fig. 6) Inference and results

7 Create a single time series for each cluster using generalized eigen decomposition Dimensionality reduction

8 Find connectivity between cluster time series using amplitude envelope correlation (Fig. 7) Inference and results
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Clustering was done for each animal, condition, region,

frequency, and validation fold independently. Clustering
relied on a custom DBscanDynamicEpi function, whose gen-
eral calculations are described here. Before clustering, we

first took the correlation coefficient of each row of the chan-
nel� channelmatrix compared to each column of thematrix
(Fig. 3, E–G). The resulting matrix was the same size as the

input matrix, but now values in the matrix represented how
the map of connectivity associated with one channel corre-
lated with the map of connectivity associated with another

channel (17). Finally, we took the squared Euclidean distance
comparing each row to each column of the new matrix (Fig.
3H). Squaring accentuates high similarities and forces all
values to be positive, both of which facilitate clustering. This

final matrix is referred to as the distancematrix.
The DBscan algorithm (18) was applied to distance matri-

ces. The DBscan algorithm requires two input parameters: K
and epsilon. Epsilon is the search radius around each point.

K is the number of points that must be found within that ra-
dius to constitute a cluster. We chose the value of K to be
constant at eight for all clustering. This was done for two rea-

sons. First, study by Ester et al. (18) noted that cluster discov-
ery is largely invariant to the choice of K within a reasonable
range. Second, we tested all values of K between 2 and 22

and visual inspection of resulting silhouette values of clus-
tering schemes suggested that K = 8 was reasonable (see
Supplemental Fig. S3-1).

Our choice for the epsilon value was set dynamically for
each run of DBscan. To do this, we calculated the 8-distance,

which is the minimum epsilon value needed to reach eight
points from a given point to be clustered. When all 8-distan-
ces in a data set are sorted and these values are plotted, natu-

ral divisions in the cluster structure of the data can be
identified at points of sharp steepness in the 8-distance plot
(Fig. 3I). Algorithmic identification of sharp steepness was

identified using the running difference between sorted 8-dis-
tance values (Fig. 3J). The running difference between sorted
8-distance values approximates the first derivative of the

curve, so peaks in the plot correspond to points of maxi-
mum steepness in the 8-distance values. We identified the
first peak above a threshold for each clustering run. The
threshold was the mean of the running difference plus 2

standard deviations. Threshold calculation excluded the
maximum value and the surrounding five points on either
side. The epsilon value corresponding to the detected peak

was used for clustering (see vertical and horizontal lines in
Fig. 3, I and J).

For each animal, condition, region, and frequency, clus-
tering was performed on the correlation matrix calculated

from the full recording and also on each of the 20 validation
folds. Each cluster was examined across folds individually.

For each fold, we asked what proportion of the channels in

the cluster in the full data set were clustered together in the
fold. We termed this value the agreement value. We further
asked what proportion of the channels that were not a part
of the cluster in the full data set were also given the same

label as that which yielded the highest agreement value. We
termed this value the outside value. The agreement value
minus the outside value was termed the net agreement

value, and clusters with an average net agreement value
below 0.85 across folds were discarded as unstable (Fig. 3D).

Assessing cluster validity.
In addition to 20-fold validity testing, which assessed cluster
reliability across sessions, we assessed cluster validity

through the use of several metrics. These were used to dem-
onstrate validity but were not used to select clusters. Only

the 20-fold validity testing contributed to cluster selection.
We calculated fourmeasures of cluster validity.

First, the silhouette value is a measure both of how well a
point fits into a particular cluster and how poorly it fits into

any other cluster. A good cluster organization will yield clus-
ters that maximize the fit of all points to their respective

clusters while minimizing the fits of points to other clusters
(19, 20) (Fig. 3, C and N). Silhouette values were calculated

using the customwritten function getSil.
Second, we calculated the pairwise Pearson correlations

among narrowband channel time series, and assessed

whether those correlation coefficients were higher between
channels within a cluster compared with those across differ-
ent clusters (correlations were taken across conditions and

frequencies, and the analysis was done separately per ana-
tomical region) (Fig. 4A). Mean differences were evaluated

using a t test. In addition, the difference in correlation value
between all of the within cluster minus between cluster cor-

relations was calculated within each specific combination of
animal, region, frequency, and condition (Fig. 4B). To
facilitate interpretation of these correlation values, a set of

randomly chosen clusters was generated. For each animal,
these clusters included the same number of channels, in

the same regions, at the same frequencies, and in the same
conditions.

Third, we calculated the ratio of variance in mean power

across the session between channels within clusters versus
between all channels in a cluster’s containing region. This
was done separately for all clusters using frequency, region,

condition, and animal-specific data. Assuming sampling from
a normal population, variance is invariant to sample size.

Thus, it would be expected that any randomly chosen set of
channels within a region should have a similar variance in

power as that observed for the region as a whole. This expec-
tation would yield a cluster/region variance ratio of 1.0. By
contrast, if clustering successfully identified channels with

similar signals, then those signals might have similar mean
power to each other. If this is true, then it would be expected

that the cluster/region variance ratio would be below 1.0. This
ratio was calculated for both the observed and randomly cho-

sen clusters (see previous paragraph) and then compared
using a two-sample Kolmogorov–Smirnov test (Fig. 4E).

Fourth, we evaluated the percent of variance explained by
the first generalized eigendecomposition component of each

observed cluster. It is expected that clusters with no unifying
signal would have variance uniformly distributed across

their eigenspectra. Considering that clusters contained an
average of 18–26 channels (Fig. 4G), the expected percentage

of variance explained by the top component should be�4%–

6% in the absence of any unifying signal across the cluster.
Generalized eigen decomposition was performed using the

custom function GEDclust.

Aggregating clusters.
Normalized mutual information (NMI) was calculated for all

pairs of cluster schemes within each region using Eq. 3 from
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Strehl and Ghosh (21). NMI was calculated using the custom

function nmi. NMI yields a measure of the similarity

between two cluster schemes of the same data. It is robust to
differences in arbitrary labels (e.g., cyan vs. mauve in Fig.

5D) and tomissing data (e.g., unclustered white electrodes in

Fig. 5D). NMI ranges from 0 to 1. Values near 0 represent
completely different clustering schemes where channels

grouped into the same cluster in one scheme are in different
clusters in another scheme. An NMI of 1 indicates an identi-

cal cluster scheme. NMI was calculated between cluster

schemes from within the same condition. NMI values were
averaged across conditions within each region, yielding a

frequency � frequency matrix of cluster similarity for each

region. Based on visual inspection of these matrices (Fig. 5,
A–C), we decided to break frequency up into five bands. The

breakpoints for these bands were chosen by a greedy search
algorithm. The algorithm began with four breakpoints

spaced evenly across logarithmic frequency space. For each

breakpoint, the average NMI within all frequency bands and
between all frequency bands was calculated. The between-

NMI was subtracted from the within-NMI. This net NMI

value was calculated for all possible positions of the current
breakpoint such that it was at least three frequencies away

from the two breakpoints (or ends) on either side of it. The
breakpoint was moved to the position with the maximum

net NMI value. This loop was repeated until no breakpoint

moves weremade. Although increasing the number of break-
points from three to four markedly increased the final net

NMI, only a marginal increase was found by increasing to

five, confirming the use of four breakpoints to create five fre-
quency bands.

Next, cluster schemes were aligned within each frequency

band for each rat, condition, and region independently. This

was done using the custom function greedyNMIalign. We
used Eq. 5 from Strehl and Ghosh (21) to calculate the aver-

age NMI (aNMI) between a candidate cluster scheme and all
cluster schemes within a frequency band. The initial candi-

date cluster scheme was chosen by selecting the input clus-

ter scheme that had the highest aNMI with the other cluster
schemes within its frequency band. The initial candidate

scheme was relabeled to meet two constraints: i) k1= 1; ii) for

all i =1, . . ., n � 1: ki þ 1 � maxj = 1, . . ., i (kj) þ 1 (21). Here, k
represents the cluster label of the channel indicated by the

subscript. Next, the algorithm looped over channels. For
each channel, the aNMI of the whole scheme was calcu-

lated with the channel in question having each of the pos-

sible cluster labels available in the scheme. If the aNMI
was higher for some other label than the channel had at

the start of the loop, then the channel’s label was changed.

Looping continued until no further changes were made.
This yielded a single cluster scheme across the entire fre-

quency band (Fig. 5E).

Measuring changes in within-region functional

structure.
aNMI was used to measure cluster similarity between condi-
tions (within frequency) and between frequencies (within

conditions). This analysis reused the custom nmi function.

In both ways of doing the analysis, each rat was considered
independently. In the between-conditions analysis, cluster

schemes from all four conditions were considered for one

region and one frequency at a time. For each of these four

cluster schemes (one from each behavioral condition), the

aNMI was calculated with respect to the other three condi-

tions. On this metric, values near 0 would indicate that

within a particular frequency band, the functional structure

of a region observed during a particular condition was dra-

matically different from other conditions. By contrast, val-

ues near 1 would indicate a high degree of functional

stability between conditions. The values obtained from indi-

vidual rats were subjected to a within-subjects ANOVA with

the factors frequency band and condition. For conditions,

dummy variables encoding linear contrasts were used to

compare open field 1 versus open field 2, novel object versus

repeat object, and periods with objects (novel and repeat

object) versus periods without objects (open field 1 and 2).

For frequencies, linear contrasts were used to compare delta

versus others, theta versus others, low gamma versus others,

and high gamma versus others.
The between frequency analysis was similar. Cluster

schemes from all five frequencies were considered for one

region and one condition at a time. For each of these five

cluster schemes (one from each frequency band), the aNMI

was calculated with respect to the other four conditions.

Again, within-subjects ANOVA was used with the factors fre-

quency band and condition. The same set of linear contrasts

were used.

Measuring changes in between-region functional

connections.
To facilitate measuring connections between regions, we

used generalized eigendecomposition (GED) to reduce the

signals from electrodes within each cluster to a single time

series. This was done using the custom GEDclust function.

The goal of GED is to identify a component, defined as a

weighted combination of the channel time series from

within each cluster, that maximizes the power of narrow-

band activity relative to broadband activity:

argmax
||wT

X||2

||wTY||2
;

where X is the narrowband-filtered data, Y is the broadband

data, and w is the vector of channel weights. The solution to

this optimization can be obtained from the GED on two co-

variancematrices: S =XX
T andR = YY

T (22, 23):

SW ¼ RWK;

whereW is the squarematrix of eigenvectors, andK is the di-

agonal matrix of eigenvalues. After solving the GED for each

cluster, the eigenvector associated with the largest eigen-

value was used to calculate a weighted combination of the

narrowband signals from the cluster resulting in a single

time series for each cluster that explained the maximum

amount of variance between the two covariance matrices. In

our case, this corresponded to the narrowband specific signal

relative to the broadband signal. The largest eigenvalue was

divided by the sum of all eigenvalues to estimate the propor-

tion of variance explained by the single time series (Fig. 4F).
Connectivity between cluster time series was assessed

using amplitude envelope correlations (14). Time series were

transformed into amplitude envelopes by taking the abso-

lute value of the Hilbert transform. For every pair of cluster
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time series within a given rat and condition, correlations

were calculated in nonoverlapping 2.5-s windows. Windows
with a correlation greater than 2 standard deviations from
the mean were ignored. The remaining correlations were

averaged together to obtain a connectivity strength for the
pair of clusters. To assess the significance of these connectiv-
ity strength values, the same amplitude envelope correlation

analysis was carried out again with one of the time series off-
set such that the last X data points in the time series were cut
from the end and placed at the beginning of the series. X was

a random value. This recalculation was carried out 1,000
times for each pair of connections. Connections whose origi-
nal correlation was stronger than 950 or more of the compar-
ison correlations were deemed significant.

To make inferences from the resulting significant connec-

tivity graphs discovered to this point, we followed a general
process similar to that implemented by van den Heuvel and
Sporns (24). The general approach was to assess the network

in a simplified group-level network connectivity form (Fig. 7,
A–K) that aggregated data into a common shared network
across animals, and then also to assess the network at the

individual rat graph measures level (Fig. 7, L–S). Thus,
the aggregated form of the network was more easily visualiz-
able (Fig. 7, A–K) but the process of aggregating introduced

the possibility of spurious results. The nonaggregated form
of the network used all connections from all rats and was not
easily visualizable but was more easily amenable to statisti-
cal evaluation and less likely to be biased.

To visualize connectivity maps at the group-level, connec-

tions were pooled across animals. First, we took each rat’s
strongest significant connection between pairs of regions
and frequency bands. Because of a limited number of signifi-

cant connections involving high c, low and high c were com-
bined for this analysis. Next, for connections that were
significant for at least 4/5 animals, the median connectivity

strength across rats was calculated. This resulted in a group
connectivity matrix that was 12� 12 (3 regions� 4 frequency
bands). For display, these connections were plotted on a

schematic of the rat brain using line thickness to indicate
connectivity strength (Fig. 7, A–D). In addition, the group
12� 12 connectivity matrix for the first open field period was
used as a reference, and plots were generated to display the

subset of connections that increased in strength relative to
this baseline (Fig. 7, F–H) and decreased relative to this base-
line (Fig. 7, I–K). Finally, the mean connectivity strength rel-

ative to baseline was also calculated between nodes within
each frequency band (Fig. 7E), and these relative changes in
connectivity strength were compared to 0 using t tests.

For graph-theoretic measurements on the individual rat

level, each cluster was treated as a node and significant con-
nections were treated as weighted edges. Strength, between-
ness centrality, clustering coefficient, and average path

length were calculated using functions from the Brain
Connectivity Toolbox (25). These measures were combined
across rats within each condition and sorted by strength
(Fig. 7, L–O). The total strength within each combination of

frequency band and region was summed and plotted as a
heatmap for each condition (Fig. 7, P–S). Summed strength
values were submitted to a series of within-subject ANOVAs

with frequency band, region, and condition as factors.
ANOVAs compared two conditions at a time: open field 1

versus novel object, open field 1 versus open field 2, open field

1 versus repeat object. t tests were used to assess changes in

total strength in individual frequency bands.

We examined the relationship between connectivity

strength and memory strength. To do this, amplitude enve-

lope correlations were calculated on an individual session

basis for connections that were significant in the group (sig-

nificant at the individual level for 4/5 rats). The mean of

these sessionwise connectivity values was taken for each ani-

mal. In addition, each animal’s mean memory strength was

calculated by taking the mean of its individual session mem-

ory strengths. Sessions with memory strength of more than 2

standard deviations from the mean were discarded from this

analysis (2/28 recording sessions). Correlations were calcu-

lated betweenmeanmemory strengths andmean connectiv-

ity strengths. This analysis yielded similar results when

sessions were kept separate and correlations were calculated

across all 26 sessions (after removal of 2 outlier sessions).
Finally, we repeated the generation of pooled connectivity

maps treating each region as a single large cluster. The same

band divisions that were used in themain clustering analysis

used here. The goal of this analysis was to see whether simi-

lar connectivity patterns would be discovered if the cluster-

ing process was skipped.

Supplemental Analyses

All analyses presented here were performed on data com-

bined from periods when the rats were moving and when

they were stationary. It is known that movement can dra-

matically alter neural signals in rats. However, we chose to

combine these behavioral states to maximize the available

data for analysis. To check whether this combination may

have biased results, all of the main analyses presented here

were repeated with data collected during stationary periods

only. This analysis largely replicated the results presented

here, but where differences arose they are highlighted in the

RESULTS section. The full analysis using data limited to sta-

tionary periods is available in the supplement.

RESULTS

Behavior

Animals were serially exposed to 1) an empty open field,

2) the same open field with a novel object, 3) the empty

open field again, and finally 4) the open field with the

same object. These conditions were termed open field 1,

novel object, open field 2, and repeat object, respectively

(Fig. 1C). During the open field 1 and open field 2 periods,

rats tended to sit still (85% and 93% of the time, respec-

tively; Fig. 1F). During the novel object and repeat object

periods, rats rested for somewhat less time (84% and 90%

of the time, respectively). Rats spent more time interacting

with the object in the novel object than repeat object pe-

riod (16% vs. 9%, respectively), but subtracting the percent

of time spent interacting with the object during the repeat

object period from the corresponding percentage during

the novel object period did not yield a significant differ-

ence unless two visually apparent outliers were removed

[after removal of outliers more than 2 SDs below mean t

(25)=4; P < 0.001; Fig. 1E].
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Local Field Potential Power Effects

We calculated power spectra averaged across time and

electrode for each behavioral condition and each brain

region (Fig. 2, B–G). Repeated-measures t tests were used to

compare each condition to baseline for each frequency indi-

vidually. In general, spectral dynamics in all three regions

were characterized by a 1/f-like decrease in power with

increasing frequency and a peak in the h range (5–10 Hz).

The only reliable difference in the spectral profiles between

behavioral conditions was a relative increase in power

around 4 Hz in the STR during the novel object period.
Closer inspection of the individual power spectra per elec-

trode revealed considerable interelectrode variability (Fig. 2,

H–M). This suggests that the multielectrode arrays may have

spanned multiple functionally distinct neural networks. We

therefore proceeded to identify clusters of channels based on

interchannel correlationmatrices.

Identification of Intraregional Clusters

We identified clusters of channels based on similar pat-

terns of interchannel correlations of their LFP time series,

which were identified using the DBscan algorithm (18). The

clustering method was applied separately per animal, brain

region, task condition, and narrowband frequency between 2
and 150 Hz, and the reliability of clusters was confirmed

using 20-fold cross-validation (see METHODS for details and
Fig. 3). Correlation matrices had strong block-diagonal pat-

terns both between- and within-region, and these patterns
were successfully detected and emphasized using clustering

analysis (Fig. 3, A and B). Most clusters exhibited high sil-
houette values (19) (Fig. 3N). Across animals, there was a

similar number of clusters detected for each condition

(range 270–283 clusters over all frequencies), and the num-
ber of clusters per condition did not vary widely between

animals (range 250–285). However, not all clusters survived
20-fold reliability testing.

Cluster Reliability, Validity, and Descriptive Statistics

To ensure cluster reliability, we assessed clusters in 20 vali-

dation folds. For each fold, we repeated the clustering analysis
using only 90% of the data. Clusters that were not at least 85%

consistent across folds were discarded as unstable (see
METHODS). This procedure led to the elimination of 13.8% of

Figure 2. Power spectra do not differ reliably between conditions. A: recording locations are shown for the PFC (left), STR (middle), and VTA (right).

Scale bars indicate 2 mm. B–G: group mean relative power spectra are displayed. Power spectra were calculated for each electrode. Electrode spectra

were averaged and normalized to the summed spectral power across frequencies within each animal and region. Shaded regions indicate group

means ± standard error. H–M: relative power is shown for every electrode individually, which highlights the variability in the spectra of individual: elec-

trodes. PFC, prefrontal cortex; STR, striatum; VTA, ventral tegmental area.
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clusters. Although we did not explicitly use silhouette values
as a criterion for thresholding, eliminated clusters had lower
average silhouette values than accepted clusters (Fig. 3, D and
N). After 20-fold validation, there was still no marked differ-
ence in clusters per condition (range 229–247), but rat 1 exhib-
ited fewer reliable clusters than other animals (rat 1: 199; range
excluding rat 1: 238–261). The group average number of clus-
ters summed over conditions and frequencies was not mark-

edly different across regions (PFC: 77; STR: 76; VTA: 85.6).
Considering the narrowband signals used for clustering,

the Pearson r values comparing channels within the same

cluster were higher than those obtained when comparing
channels from different clusters or that were unclustered [t
test on animal means: t(8)=10.7; P < 0.001; Fig. 4A].
The mean r value within clusters was 0.38, and the mean
value between clusters was �0.11. For 97% of cases, the aver-
age within cluster correlation was larger than the average
between cluster correlation (Fig. 4B). For each animal� con-
dition � region � frequency, 1,000 random cluster schemes

were chosen with the same number of clusters and the same
number of channels per cluster as those detected in our
main analysis. Randomly chosen clusters did not exhibit a
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difference for within versus between cluster channel time-

series correlations (Fig. 4, C and D).
The high correlation between channels within clusters

suggested that clustering successfully detected groups of

channels influenced by the same signal. To explore this fur-

ther, we calculated the variance in power between channels

within each cluster divided by the variance in power

between all channels within each cluster’s region (Fig. 4E).

For random samples from a normal distribution, variance is

insensitive to sample size, so this ratio would be expected to

equal 1. Indeed, for randomly chosen clusters with the same

frequency, region, and channel count characteristics as

those observed, the average value for this ratio was 0.99.

However, for observed clusters, the average value for this ra-

tio was 0.83. The distributions of these power variance ratios

were different (two-sample Kolmogorov–Smirnov test: D =

0.24; P � 0.001). We also found that a sizable percent of the

variance between channels within each cluster could be

explained by a single generalized eigendecomposition (GED)

component (group average between 13% and 17% across fre-

quencies; Fig. 4F). Interestingly, there was a visually appa-

rent local maximum in variance explained by the first GED

component in the theta range (6–10 Hz).
Finally, the number of channels in any given cluster

tended to be lower at higher frequencies, and correspond-

ingly the number of clusters detected tended to be higher at

higher frequencies (Fig. 4G; r = �0.72; P � 0.001). This

pattern suggests that the anatomical organization of higher

frequency signals is more locally differentiated than that of

low frequency signals.

Aggregating Clusters

In total, we found a mean of 238.4 statistically reliable

clusters per condition across animals. Visual inspection of

electrode groupings revealed that clusters were largely sta-

ble across wide ranges of frequencies (e.g., Fig. 5D). To

assess this stability quantitatively, we calculated the nor-

malized mutual information (NMI) (21) between cluster

schemes at different frequencies and averaged the result-
ing NMI matrix across conditions and animals for each

region (Fig. 5, A–C). Based on NMI, we utilized a greedy

optimization algorithm to select divisions between fre-

quency bands that maximized average NMI (aNMI) within

bands and minimized aNMI between bands. We divided

the frequency space into five bands for each region

(dashed lines in Fig. 5, A–C; see METHODS). Remarkably, de-

spite the algorithm being applied separately per region

and without a priori constraints regarding the size or spec-

tral extent of clusters, the resulting frequency bands were

similar across regions and corresponded to canonical fre-

quency bands. In the PFC and STR, the clusters mapped

onto canonical d, h, b, low c, and high c (Fig. 5, A and B). By

contrast, in the VTA there was a separate band for a and b

was combined with low c (Fig. 5C). For ease of explanation,
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the same band labels will be used throughout the text (see

Table 2 for specific band divisions).

Next, information from different cluster schemes within

each band was used to create a single cluster scheme within

each band for each animal, condition, and region. To do this,

we again used a greedy optimization algorithm. This time,

the algorithm selected a cluster scheme that maximized the

aNMI calculated across the cluster schemes within each

band (Fig. 5,D and E).(21) This procedure resulted in an aver-

age of 31.5 clusters per animal in each condition.

Changes in Within-Region Functional Structure

Clusters were detected independently within-frequency

and within-condition, and the steep drop-off in aNMI values

away from the diagonals in Fig. 5, A–C indicates that cluster

schemes were different in different frequency bands. To

quantify cluster organization similarity across behavioral

conditions and frequencies, we calculated the aNMI

between pairs of cluster schemes detected either within a

single frequency band but between different behavioral

conditions (Fig. 6, A–F), or within a single condition but

between different frequency bands (Fig. 6, G–M). An aNMI

near 1 indicates that network structure is very stable across

either frequency or condition, and an aNMI near 0 indi-

cates that network structure is very different across either

frequency or condition.
In general, aNMI values were higher than would be

expected by chance but also consistently below 1, meaning

that internal network structure in the PFC, STR, and VTA
was neither completely remapped or completely stable ei-
ther when looked at across different conditions (Fig. 6, A–F)
or across different frequencies (Fig. 6, G–M). More specifi-
cally, for every paired combination of animal, condition,
region, and frequency, we generated 1,000 random pairs of
cluster schemes where the total number of channels, the
number of clusters, and the number of channels per cluster
were held constant. aNMI between these pairs was calcu-
lated. The 99th percentile of these random distributions is
plotted in Fig. 6 (dashed lines). Random restructuring led to
a maximum aNMI of �0.2 across all situations. Yet, we
observed aNMI values that were consistently higher than
this.

To examine remapping between different conditions, we
calculated the aNMI of cluster schemes within frequency
between different conditions. Separately for each condition,
this analysis captures the average similarity of a condition

Table 2. Divisions between frequency bands, values
in Hz

Region Delta (δ) Theta (θ) Beta (β) Gamma Low (γL) Gamma High (γH)

PFC 2–4.6 4.6–12.0 12.0–34.3 34.3–79.4 79.4–150

STR 2–4.6 4.6–8.7 8.7–38.2 38.2–79.4 79.4–150

VTA 2–3.8 3.8–8.8 8.8–14.8 14.8–47.1 47.1–150

PFC, prefrontal cortex; STR, striatum; VTA, ventral tegmental
area.
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with the other three conditions while holding the frequency

constant. For example, considering only clusters observed in
the d band in the VTA and averaging across animals, the
NMI of the cluster organization observed during the open
field 2 period had similarities of 0.51, 0.25, and 0.35 with the
clusters observed during open field 1, novel object, and

repeat object periods, respectively. Averaging these three

values yielded 0.37 which is displayed in Fig. 6E. aNMI val-
ues were submitted to a 5 (frequency bands) � 4 (conditions)
within-subjects ANOVA for each region (the ANOVA numeri-
cal data are presented in Supplemental Table S1; here we
highlight only the relevant significant results). In the PFC
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there was a main effect of frequency (Fig. 6, A and B). Visual

inspection of Fig. 6A indicated that this effect was driven by
reduced cross-condition stability in high c, and this was con-
firmed by linear contrast. But it appears that a small number
of data points drove the effect (Fig. 6B). In the STR, there
was also a main effect of frequency (Fig. 6, C and D), and this
was driven by relatively high stability in the low c band (Fig.
6D) as well as low stability in the h band (not shown). The
effects in the PFC and STR were relatively modest (g2

< 0.2).
By contrast, the VTA exhibited dramatic remapping of its
cluster structure in the d band (Fig. 6, E and F; g2 = 0.48).
Taken together, the STR was generally stable across condi-
tions in all frequency bands. The PFC exhibited moderate
restructuring of its cluster structure in the high c band, and
the VTA restructured dramatically across behavioral states,
but this restructuring was limited to d band signaling.

To examine independence between different frequencies,
we again used aNMI. Separately for each frequency, this
analysis captures the average similarity of cluster organiza-
tion in one frequency band with the other four frequency
bands while holding condition constant. These aNMI values
were submitted to a 5 (frequency bands) � 4 (conditions)
within-subject ANOVA for each region (for ANOVA table see
Supplemental Table S2). In the PFC, there were main effects
of both frequency and condition (Fig. 6, G–I). These effects
were driven by lower cross-frequency cluster scheme simi-
larity in behavioral periods with an object present (both
novel object and repeat object periods; Fig. 6H) and lower
cross-frequency similarity in the cluster structure of high c

signaling relative to other frequency bands (Fig. 6I). There
were no significant effects in the STR (Fig. 6J). In the VTA,
there were main effects of both frequency and condition
(Fig. 6, K–M). As in the PFC, behavioral periods with objects
had lower cross-frequency cluster structure similarity than
those without an object (Fig. 6L). Also similar to the PFC, the
cluster scheme for high c was dissimilar from the cluster
schemes of other frequency bands. In addition, and unlike
the PFC, the cluster structure of d signaling was dissimilar to
other frequency bands in the VTA (Fig. 6M).

Taking these two analysis approaches together, PFC high c

and VTA d exhibited significant changes in cluster schemes.
This indicates that these areas remap their internal struc-
tures with respect to signaling in these frequency bands

across conditions (for single animal example see Fig. 6Q) and

that the physical layout of signaling in these frequency
bands is different from other frequency bands (for single ani-
mal example see Fig. 6O). Furthermore, both regions exhibit
more cross-frequency dissimilarity in the object periods, sug-
gesting a greater degree of functional segregation between
frequency-specific signal generators during object interac-
tion. By contrast, the STR exhibited relatively high stability
across conditions (for single animal example see Fig. 6P).
Finally, it is clear from visual examination of Fig. 6 that clus-
ter structures are generally more differentiated between
different frequencies than across different conditions, sug-
gesting independence of the neural substrates supporting
signaling in different frequency bands. Averaging across ani-
mals, conditions, regions, and frequencies, within-frequency
aNMI values had amean of 0.82 (Fig. 6,A–F), but within con-
dition aNMI values had a mean of 0.68 [Fig. 6, G–M; P �

0.001; confidence interval (CI): 0.12–0.16; see histogram in
Fig. 6N]. That said, it should be emphasized that the most
striking intraregional cluster differences were observed
within the delta frequency band in the VTA, suggesting that
this structure remapped dramatically with respect to delta-
band signal generation.

Between-Region Network Structure

Asmentioned earlier, using GED to reduce the dimension-
ality of cluster signals to a single time course generally
yielded a component that explained a sizable portion of the
variance between channels (Fig. 4F). After converting each
cluster into a single time course, we examined connectivity
between clusters using amplitude envelope correlations (14).
A bootstrapped null distribution was constructed for each
connection (see METHODS). Correlations were considered sig-
nificant if they were stronger than 95% of their correspond-
ing null correlations. The results of this procedure can be
thought of as connectivity graphs for each animal in each
condition. In these graphs, each node was a cluster with a
specific region and frequency band, and edges were the cor-
relations between nodes. Because there were often multiple
clusters with the same region and frequency band, animals
could sometimes have multiple connections along the same
edge. To aggregate connections across animals, the strongest
significant correlation between each frequency, region pair

Figure 6. Intra-regional cluster stability. A–F: average normalized mutual information (aNMI) calculated across conditions but within frequency band. A:

PFC aNMI values (y-axis) are displayed for the four conditions (x-axis). Each line indicates results for a different frequency band (legend is next to J).

Dashed lines indicate expected values in an analysis of random clusters. There was a main effect of frequency [F(4,76) = 4.13; P< 0.01]. B: PFC aNMI val-

ues were grouped by frequency band. Violin plots show aNMI values (y-axis) for condition similarity per frequency (x-axis). Each animal is represented by

4 dots (one for each condition) for each frequency. C and D: similar to A and B except for the STR. There was a main effect of frequency [F(4,76)=3.67;

P = 0.01]. E and F: similar to A and B except for the VTA. There was a main effect of frequency [F(4,76)=17.6; P � 0.01]. d had lower aNMI than other fre-

quency bands. G–M: aNMI calculated across frequencies but within condition. G: PFC aNMI values (y-axis) are displayed for the five frequency bands (x-

axis). Each line indicates results for a different condition. There were main effects of condition and frequency (F values > 3.7; P values < 0.02). H: PFC

aNMI was grouped by condition. Violin plots show aNMI values (y-axis) for frequency similarity calculated within each condition (x-axis). Each animal is

represented by 5 dots (one for each frequency) for each condition. I: PFC aNMI was grouped by frequency, generating a plot similar to B, except the

underlying calculation here was within condition instead of within frequency. J: similar to G for data from the STR. There were no significant main effects

for the STR. K–M: similar to G–I for data from the VTA. There were main effects of condition and frequency (F values> 9; P values� 0.01). N: histogram

shows aNMI in the between frequency (red) and between condition (blue) analyses. Between-frequency comparisons generally had lower aNMI. O–Q:

examples of cluster remapping. Anatomical location of recording array is shown to the left and clusters are mapped to anatomical space in panels to the

right. Pseudo colors indicate different clusters (unassigned electrodes have no color).O: this example shows that high c in the PFC had a cluster scheme

different from the other bands (see also lower aNMI values in I). P: clusters in the low c band in the STR. Note the stability in cluster organization across

conditions (see also D). Q: this example demonstrates the effect observed in E. Namely, d in the VTA had an unstable cluster map across conditions.

Asterisks indicate significant linear contrasts in an ANOVAmodel. Please see Supplemental Tables S1 and S2 for complete statistics. PFC, prefrontal cor-

tex; STR, striatum; VTA, ventral tegmental area.
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was taken for each animal. Any edge that did not have at

least one significant connection for 4/5 rats was discarded.
The medians of these maximum connection strengths across
animals in each condition are plotted in Fig. 7, A–D. There

were few significant connections including high c, so these

connections were grouped with low c for this analysis. In
general, the pattern of connectivity was dense in the first
open field period, with 72% of all possible connections
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exhibiting significant coupling. Connectivity dropped during

the novel object period, with 2% of all possible connections

exhibiting significant strength. Connectivity then rebounded

in the second open field period to 52%, and then fell again

during the repeat object period to 18%. In addition, while

PFC d was the node with the highest betweenness centrality

in the first three behavioral conditions, PFC h became the

node with highest betweenness in the repeat object period

(dot size in Fig. 7,A–D).
To unpack these results further, we replotted the connec-

tivity as a function of change relative to connectivity

strength during the first open field period (Fig. 7, F–H for

increases; Fig. 7, I–K for decreases). In general, connections

in the h band strengthened marginally during the second

open field and repeat object periods (Fig. 7E; P values <

0.07). In addition, there was also b band connection

strengthening in the second open field period (P = 0.0503),

but this result became nonsignificant when the analysis was

limited to stationary periods only. This suggests that h and b

connections strengthened markedly in movement periods,

but there was insufficient data to carry out an analysis lim-

ited to movement period alone. In the repeat object period, a

complex pattern of high frequency interactions involving

the b and c bands emerged (Fig. 7H). Interestingly, decreases

in specific d band connections between regions were

observed in all three conditions, but these were not signifi-

cant in the aggregate (Fig. 7E).
To check whether the aggregating process had biased the

results, we calculated graph theoretic descriptive statistics

on the full cluster � cluster connectivity matrices of signifi-

cant connections derived for each rat. In general, nodes with

high strength also had high betweenness, high clustering

coefficients, and low path lengths (Fig. 7, L–O). We summed

the strength of all clusters within each region and frequency

band (Fig. 7, P–S). The results observed in the aggregated

graphs were recapitulated. Overall strength reduced mark-

edly in the object periods relative to the open field periods.

In addition, while strength was concentrated in the d band

during the first open field period (Fig. 7P), h band connec-

tions exhibited the most strength during the second open

field period (Fig. 7R). These results were confirmed with a se-

ries of within-subject ANOVAs comparing pairs of conditions

using frequency band, condition, and region as factors (for

full ANOVA tables see Supplemental Tables S3, S4, and S5).

Confirming the overall drop in strength during the object

periods, there was a main effect of condition in comparisons

between the first open field period and novel object periods

and between first open field and repeat object periods [F val-

ues (1,281) > 114; P values � 0.001], but this main effect was

absent when comparing the two open field periods to each

other (P = 0.8). Confirming the shift from d to h strength,

there was an interaction between condition and frequency

for comparisons between the first open field period and all

three other conditions [F values (4,281) > 8.8; P values �

0.001]. Comparisons targeted at examining changes in rela-

tive d/h strength found that d band connections were weaker

in the second open field period relative to the first open field

period [t(58) = �3.3; P = 0.002], and connection strength in

the h band was marginally increased during the second open

field period relative to the first open field period [t(60) = 1.9;

P = 0.055]. However, although d band decreases were robust

when analysis was limited to stationary periods, h band

increases were not (see Supplemental Analyses).

We considered whether inter-regional connections played

a role in memory. To test for this, connectivity strength of all

significant connections was calculated for each session inde-

pendently. Memory strength for each session was assessed

as shown in Fig. 1E. For each animal, we took the mean con-

nection strength and memory strength values across ses-

sions and then calculated the correlation between these

values. Interestingly, during the second open field period, h

connections between the VTA and STR and between the

VTA and PFC were significantly correlated with memory (P

values < 0.05; Supplemental Fig. S7-1). However, a correla-

tion analysis with only five animals should be interpreted

with an appropriate amount of caution.
Finally, to check whether clustering had meaningfully

contributed to our network connectivity findings at all, we

repeated the GED and connectivity analysis considering

entire regions as singular clusters (Supplemental Fig. S7-2).

In general, this analysis found markedly fewer significant

connections. In particular, only three connections were

found in the repeat object period when entire regions were

considered, compared with 26 connections observed using

clusters. In other words, segregating the intraregional activ-

ity into clusters was crucial to uncovering many of the func-

tional dynamics reported here.

DISCUSSION

We found that network dynamics exhibited a complex pat-

tern of changes in inter-regional functional connectivity

Figure 7. Dynamics of inter-regional connectivity across behavioral epochs. A–D: group mean correlations between signals derived from frequency-specific

regional clusters are shown as line thickness. Stars indicate the presence of an object to explore (novel object and repeat object periods). Solid lines range

from r = 0.05 to r = 0.20. Dashed lines represent weaker connections (r > 0.0). All visualized connections were significant at the individual level for at least 4/

5 animals. Each animal contributed only its strongest single connection to each graph edge. Node size represents betweenness centrality. These connection

strengths are reused in E–K. E: group mean change relative to open field in connection strength for connections between nodes within different frequency

bands. Inter-regional connections in the h band had marginally increased strength in the open field 2 and repeat object periods (t test against 0, P values <

0.07). Connections in the b band had increased strength in the open field 2 period (P = 0.0503). F–H: specific connections that exhibited increased strength

relative to open field in the novel object (F), open field 2 (G), and repeat object (H) periods. I–K: similar to F–H but for decreased strength connections.

Throughout F–K, solid lines represent connectivity changes of between r = 0.0125 and r = 0.07. Dashed lines represent weaker connections (r > 0.0). L–O:

graph theoretic measurements of each animal’s connectivity matrix were calculated for all significant connections (rather than taking only each animal’s strong-

est edge between any two nodes). Metrics were z-scored for display on a single scale. Node-metrics from all animals were combined and sorted by strength

for plotting. In general, nodes with high strength also had high betweenness centrality, high clustering coefficients, and low mean path lengths. P–S: summed

strength values of all nodes in different regions (y-axis) and within different frequency bands (x-axis). Marginal histograms display the mean value of their re-

spective rows or columns of the heatmap. Overall node strength was lower in the novel object and repeat object periods (Q and S), and the frequency of peak

nodal strength shifted from d to h when comparing open field (P) to open field 2 (R). Please see Supplemental Tables S3–S5 for complete statistics.
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(Fig. 7) and intraregional signal distribution (Fig. 6). During

the first open field period, we observed that the STR, PFC,
and VTA were robustly connected across multiple frequency
bands, with d oscillations playing an outsized role. There

was a dramatic pruning of network connectivity when rats
were exposed to a novel object. After the novel object was
removed, connectivity rebounded during the second open

field period, but the connectivity profile shifted away from
being dominated by d. Finally, when animals were re-
exposed to objects, connections were not as severely
reduced as they had been during initial presentation, and

specifically h and higher-frequency connections were
stronger than they had been during the novel object pe-
riod. Underlying these inter-regional changes, functional

organization of c frequency signals in the PFC and both c

and d signals in the VTA all changed markedly across be-
havioral conditions.

It is important to appreciate that these patterns were de-

tectable only with the use of subregional clustering analysis
(Supplemental Fig. S3). Although there was considerable var-
iability in the signals recorded at different electrodes (Fig. 2),

we found that subregional clusters of electrodes were stable
across multiple sessions recorded on different days. These
clusters were verified using 20-fold validation, silhouette
value examination (Fig. 3), and by comparing the statistics of

observed clusters to those of randomly chosen clusters (Fig.
4). In general, clusters covered between a quarter and a third
of the space of our electrode arrays (mean cluster size 18–24

electrodes; Fig. 4G). Thus, for the STR and PFC, clusters cov-
ered an area of approximately half a square millimeter, and,
in the VTA, they covered less than a tenth of a square milli-

meter. These areas are smaller than the traditional demarca-
tions between architectonically categorized brain regions
(28). This highlights the rich pattern of fine-grained spatio-
temporal dynamics that can be discovered only through

large-scale recordings and multivariate data analyses. Of
practical importance, the finding that changing subregional
signal generators can give rise to changing network connec-

tivity raises the possibility that previous studies of network
connectivity may have averaged functionally different sig-
nals together, obscuring meaningful connections.

The idea that such small areas could act as functionally

important units in long distance patterns of connectivity is
consistent with principles of anatomy: anatomical tract trac-
ing studies have often found exquisite patterns such that
regions lying only a singlemillimeter apart can have dramat-

ically different profiles of connectivity (29), and the patterns
of connectivity between our three recording targets are no
exception (30–33). Recent work has begun to reveal the func-

tional importance of highly specific anatomy. For example,
in rodents, specific fiber pathways are independently re-
sponsible for dopamine-dependent learning about novel

objects and social stimuli in the VTA (34). In monkeys, con-
nectivity between small cortical patches supports face per-

ception (35–37). In humans, distinct subfields within the
VTA are important for novelty and reward detection, and

each of these subfields exhibits a unique pattern of func-
tional connectivity (38). The present results help to general-
ize these findings further, showing how subregional patches

of brain tissue form changing patterns of long-distance con-
nectivity even when two periods of minimally different open

field data are compared and during novel and repeated

object interaction.
In addition, we observed that signals at different temporal

frequencies and signals measured during different behav-
ioral conditions both had distinct cluster topographies (Fig.

6). This suggests that frequency-specific signal generators
are anatomically localized and can be activated or deacti-
vated depending on task demands, resulting in a constantly

shifting landscape of functional anatomy. This finding also
builds on earlier work. For example, in humans the BOLD
activation associated with semantic concepts changes across

the entire cortical mantle in response to attentional goals
(39), and nodes of the default mode network become less
connected during cognitively engaging tasks (40). More
generally, Honey et al. (5) used a computational model of

biologically inspired brain signals and known anatomical
connectivity of the macaque brain to simulate electrophysi-
ology data. They found that functional connectivity simu-

lated over a long time window (minutes) recapitulated
patterns of anatomical connectivity, but on shorter time
scales (seconds or less) patterns of functional connectivity

deviated from the model’s set anatomy. The authors inter-
preted this finding to mean that the brain is capable of
dynamically changing its functional connectivity in ways
that would not be predicted from anatomy alone, and our

results confirm this interpretation. However, Honey et al. (5)
reported that functional connectivity exhibits regression to-
ward the mean over relatively short periods of time (10 s of

seconds). By contrast, we observed sustained periods with
dramatically different cluster structures and long-distance
connectivity, implying that both local and global network

states can be held far from any equilibrium for at least sev-
eral minutes in response to environment/task changes. As
discussed by Honey et al. (5), computational modeling
efforts with explicit consideration of context may capture

this phenomenon.
Examining the specific pattern of connectivity changes

exhibited in the present results, the lack of inter-regional
connectivity during the novel object period is striking (Fig. 7,

B and Q). This result is surprising considering the vigorous
novelty response produced by dopamine neurons of the VTA
in both cats and monkeys (41, 42) and the finding that dopa-

mine (DA) antagonists can impair memory in rodents (43).
In humans, dopaminergic single-unit firing in the substantia
nigra has been shown to predict subsequent memory for
novel stimuli (44). Although we did not explicitly test mem-

ory, it is likely that rats formed incidental memories of the
objects encountered in the experiment. This may be
reflected in their decreased exploration of the objects during

the repeat object period (Fig. 1E). The seeming paradox of
the known importance of DA in novelty signaling, juxta-
posed with our observation of a disconnected VTA, could be

explained by a connection between the VTA and an area that
we did not record from. Much work has implicated the inter-
action between the hippocampus (HPC) and VTA in
response to novelty and memory encoding (45). For exam-

ple, fMRI data have revealed a novelty signal in the VTA
associated with connectivity to the HPC, nucleus accum-
bens, and primary visual cortex (38). The primary role for the

HPC in the early stage of novelty encoding is further sup-
ported by faster neural response times for memory-
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predicting firing in the HPC compared with the substantia

nigra in humans (44). Our data extend this finding by show-
ing that other connections involving the VTA and important
memory structures are suppressed during novelty encoding,

heightening the importance of any HPC-VTA connection.
A second point of interest was the shift away from d (�4

Hz) connectivity during the first open field period to possible
h (�8 Hz) connectivity during the later periods (Fig. 7, E, P,

and R). There have been many reports highlighting coherent
h oscillations linking the HPC and PFC during declarative
memory tasks (27, 44–47), and putative DA cells in the mid-

brain of humans exhibit spiking coherence with PFC theta
that is memory-dependent (44). By contrast, during a stimu-
lus-response association task, d frequency synchrony

between the HPC, PFC, and VTA was interpreted as influ-
ence from the STR (48). This interpretation was based on
prior observations of d oscillations in the STR during this
type of task. Although Fujisawa and Buzsaki (48) demon-

strated that the HPC can be influenced by d oscillations in a
network involving the PFC and the VTA, our data demon-
strate the reverse: delta oscillations can be suppressed in a

network involving the PFC and the VTA. Taken together, this
may indicate that changes in dominant frequency and con-
nectivity may be as important as changes in the overall level

of involvement of different areas in different tasks. For
example, procedural memory may be productively thought
of as involving d signaling in an extended memory network

rather than as dependent on the STR, and declarative mem-
ory may be thought of as h signaling within the same
extended network rather than as dependent on the HPC

alone. Indeed, there was some evidence that h connections
between the VTA and the other two structures during the
second open field period were related to decreases in object
exploration between the novel and repeat object periods

(Supplemental Fig. S7-1). However, Fujisawa and Buzsaki’s
experiment utilized a very different behavioral task and
analysis approach, making direct comparisons difficult.

At a subregional level, the most dramatic remapping of

cluster structure was observed in d-band signaling in the VTA.
By contrast, the STR exhibited the least remapping of the
three structures from which we recorded (Fig. 6). These find-

ings contribute to a growing literature that suggests the VTA
and dopamine signaling may coordinate the interplay
between the HPC and the STR (26, 44–46, 48–50). In this con-

text, a prediction from our results is that the HPC and VTA
would be expected to exhibit strong connectivity in response
to novelty and that this connectivity should be related to both
the d frequency remapping of the VTA and anymemory-asso-

ciated projection of h frequency signaling from the VTA to the
STR and PFC.

Finally, we observed a complex pattern of higher frequency
connections during the repeat object period that were not

present during the novel object period. It is widely accepted
that memory retrieval involves a network of activation, and
this is particularly true of oldmemories (51). Our data indicate

that some network connections needed to support retrieval
may be formedwithinminutes of initial encoding.

Three major limitations of this study are the need to relate
the local clustering and global connectivity to single-unit fir-

ing, our lack of measurement of potentially involved struc-
tures beyond the STR, VTA, and PFC (primarily the

hippocampus), and the need for more robust behavioral tests

of memory. We believe these areas present important ave-

nues for future work to extend the results presented here.

In conclusion, network state can change dramatically after

evenminimal behavioral perturbation. Inter-regional network

changes depend on underlying changes in the anatomical

extent of functional signal generators at the subregional level.

This implies a complex interplay between changes at micro-

and mesoscale levels. Future studies will likely benefit from

consideration of changes in subregional signal generators

when examining network connectivity between regions.
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