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ARTICLE INFO ABSTRACT

Keywords: Rising energy usage in wastewater treatment processes (WWTPs) poses pressing economic and environmental
Wastewater treatment challenges. Machine learning approaches to model these complex systems have been limited by highly non-
Knowledge graphs linear processes and high dataset noise. To address this, we introduce a novel Knowledge-Enhanced Graph

Disentangled representation learning
Graph convolutional networks
Timeseries forecasting

Disentanglement framework for Energy Consumption Prediction (KEGD-EC) that leverages causal inference and
graph neural networks. This work combines specific knowledge of causal relationships with a disentangled
graph convolutional network architecture to facilitate accurate predictions. In a study on a WWTP in
Melbourne, we demonstrate a 59.7% reduction in root mean squared error in energy consumption prediction
using KEGD-EC compared to the next best model. We show that causal models built using domain knowledge
outperform data-driven causal discovery models for complex systems. These results signify a step forward in
applying machine learning to complex manufacturing processes, with the integration of causal knowledge into

deep learning architectures posing a promising area of research for predictive analytics in manufacturing.

1. Introduction

Secure and plentiful access to clean water underpins human life,
enabling essential activities like drinking, irrigation, hygiene, and in-
dustrial processes. Under this vital framework, wastewater treatment
is crucial in safeguarding human health. By treating and purifying
contaminated water sources, wastewater treatment processes remove
harmful pollutants and bacteria, thereby mitigating significant health
risks for populations (Alali et al., 2022). The rapid growth of urban
populations requires that wastewater treatment processes be highly
efficient and robust to handle the demands of the expanding urban
masses (Haase et al., 2018). To add to the challenge, the performance of
wastewater treatment plants (WWTPs) intricately depends on climatic
factors like rainfall, ambient temperature, and seasonal fluctuations in
demand (Ahmad and Chen, 2018). These factors are becoming far more
important with the intensification of climate change causing conditions
towards the extremes of what would traditionally be expected. The
result is pressure on WWTPs to remain reliable and efficient. Address-
ing challenges posed by increased urbanization and climate change
is imperative for the sustainability of wastewater treatment moving
forward.

WWTPs are highly energy-intensive owing to the transport and pro-
cessing of large volumes of wastewater. The treatment of wastewater is
the largest consumer of electricity in urban dwellings, and contributes
to 25%-40% of the total energy consumption (EC) (Maslon et al.,
2018). With the rising demand for these processes, the associated rise
in EC is a pressing concern. It is expected that consumption figures
for WWTPs will increase between 60%-100% over the next 15 years
as demand for the services rises with population (Hamawand, 2023).
This raises concern in terms of both the environmental sustainability
of the processes, as well as the economic viability of operating plants
at such scale. Since electricity costs account for as much as 40% of the
operating costs of water companies, a rise in consumption would likely
necessitate a rise in the water bills of consumers (Agency, 2021). With
many places in the world already struggling to cope with an escalating
cost of living, this leaves water companies with tremendous pressure
to alleviate costs. Furthermore, with 123 countries pledging to double
their energy efficiency improvements between now and 2030, a global
imperative emerges; the need to reduce the energy requirements of
wastewater treatment processes on a worldwide scale (Bansard et al.,
2023).

Abbreviations: WWTP, Wastewater Treatment Plant; EC, Energy Consumption; KEGD-EC, Knowledge-Enhanced Graph Disentanglement for Energy
Consumption Prediction; FCI, Fast Causal Inference; GBM, Gradient Boosting Machine; RF, Random Forest; kNN, k-Nearest Neighbors; LSTM, Long Short-Term
Memory; ANN, Artificial Neural Network; GRU, Gated Recurrent Unit; DisenConv, Disentangled Convolutional; DisenGRU, Disentangled Gated Recurrent Unit;

BiLSTM, Bidirectional Long Short-Term Memory; ASM, Activated Sludge Model
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By predicting energy demands based on incoming weather pat-
terns, expected influent characteristics, and seasonal information, oper-
ators can proactively adjust treatment processes, particularly aeration
rates, which often account for the largest portion of a WWTP’s energy
consumption (Longo et al., 2016). This predictive capability enables
plants to participate more effectively in demand response programs,
shifting energy-intensive operations to off-peak hours and potentially
supporting grid stability (Kirchem et al., 2020). Furthermore, energy
consumption predictions can inform maintenance schedules, allowing
for equipment servicing during periods of lower predicted demand
and helping to identify unexpected increases in energy use that may
indicate equipment issues (Torregrossa et al., 2017). Long-term predic-
tions facilitate capacity planning and technology assessment, guiding
investment decisions for plant upgrades. Integration with renewable
energy sources, such as optimizing the use of on-site solar or wind
generation and biogas utilization, can be enhanced through accurate
energy demand forecasts (Gandiglio et al., 2017). Additionally, these
predictions can improve hydraulic management, optimizing pump op-
erations and storage utilization to minimize energy use during peak
demand periods. By implementing these strategies based on accurate
energy consumption predictions, WWTPs can significantly reduce their
energy footprint while maintaining or even improving treatment effi-
ciency, aligning with broader sustainability goals in water management
and contributing to the reduction of greenhouse gas emissions from the
wastewater treatment sector (Wang et al., 2016).

We look to address the need to reduce energy consumption by first
understanding the causal factors driving energy consumption through a
knowledge-enhanced modeling approach that combines data with vital
cause-and-effect relationships. The addition of causal knowledge can
better aid the prediction of energy consumption and therefore aid in
understanding how to reduce the overall consumption of wastewater
treatment processes. This is significant since giving operational teams
insight into EC ahead of time allows for improvements in load balanc-
ing, process scheduling, and resource allocation. The overall impact of
this is reduced costs, enhanced process sustainability, and an increase
in process robustness (Ahmad and Chen, 2018).

2. Background and relevant literature

To effectively reduce the energy consumption of WWTPs, it is
essential to first identify and understand the factors contributing to high
consumption. Producing mathematical models to describe the influence
of these factors is notoriously difficult for wastewater treatment for
several reasons. Firstly, WWTPs are subject to large fluctuations in
influent properties including the flow rates and compositions. This is a
challenge not seen by many other processes since these variations are
inherently uncontrollable owing to the waste nature of the influent. The
variability in the feed composition means that the potential number of
reactions and organism species involved in the processes is very high.
The result of this is that any mathematical model that can accurately
describe a wastewater treatment process must be extremely large and
overly complex, which may hinder their use from an operational stand-
point (Jeppsson, 1996). Further complications come when considering
the dynamic nature of WWTPs. Processes are highly non-linear, making
it difficult to produce a system of equations that accurately defines
the systems and captures the systematic complexity. The result of this
is that standard lumped parameter modeling approaches cannot be
applied to WWTPs easily (Lessard and Beck, 1991). Further to this,
WWTPs are inherently non-stationary and contain several time-varying
parameters meaning any attempt at modeling must be updateable
dynamically (Newhart et al., 2019).

Predictive modeling in this sector typically uses mechanistic models
built from domain knowledge and empirical data. The activated sludge
model (ASM) is a well-established example of this and has been em-
ployed usefully both in the design and operation of WWTPs (Quaghebeur
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et al., 2022). The ASM incorporates mass and energy balances with re-
action kinetics into a mathematical model that can be used to describe
the process and predict the effect of disturbances. These models require
extensive domain knowledge and experience which is often hard to
come by. Furthermore, the underlying dynamics are often simplified,
or asterisked with assumptions that cause uncertainty in the model’s
ability to predict (Duarte et al., 2024). More recently, and with the
advent of Industry 4.0 (I4.0) bringing a proliferation of sensor data,
researchers have explored the use of machine learning (ML) to model
the behavior of wastewater treatment processes.

2.1. Machine learning for WWTP energy prediction

One of the benefits of the adoption of ML for WWTP modeling
is the ability to directly predict variables that exist outside of the
mechanistic profiles of the mass and energy balance. One such property
is the EC. In previous work EC has been inferred from key perfor-
mance indicators (KPIs) relating to energy such as volume of water
treated, chemical oxygen demand (COD) or total oxygen demand (TOD)
removed (Huang et al., 2023). This enables an understanding of the
directionality or trend of consumption but does not directly address the
magnitude of the EC since it neglects a wealth of information in other
measured parameters. Machine learning can address this by providing
models that directly predict the absolute value of energy consumption
from measured WWTP historical data. Further advantages of ML lie
in its inherent flexibility and scalability. By leveraging historical data
alone, ML models can be readily constructed and adapted to evolving
situations. This ability has made it a popular choice for predicting
energy consumption (EC) in wastewater treatment plants (WWTPs), as
evidenced by a vast array of relevant applications documented in the
literature.

Highlighting the importance of ML for modeling WWTP operations
due to the nonlinearity of variable relationships, Zhang et al. developed
a Random Forest (RF) model to predict energy consumption for 2472
WWTPs in China (Zhang et al., 2021). This model selection stemmed
from the RF’s known stability and resilience to missing data, a crucial
factor considering the frequent noise and incompleteness inherent in
WWTP datasets (Zhang et al., 2021). While their work yielded pos-
itive results, it did not factor in external influences like climate or
meteorological effects, which demonstrably impact WWTP operations.
The model’s long-term viability demands the inclusion of these factors,
as their omission could render it less effective in adapting to shifting
conditions (Zhang et al., 2019).

Alali et al. provide a comprehensive evaluation of machine learning
methods applied to EC prediction in wastewater treatment. Despite
finding the k-nearest neighbors (kNN) model the most effective, Alali
et al. noted that deep learning models, in particular, recurrent neural
networks (RNNs) mark an intriguing avenue for this type of research
due to their inherent ability to handle time-series data (Alali et al.,
2022). It was also found that model predictions can be improved
through consideration of variables outside of the dataset since these
latent variables could have a profound impact on the results of the
prediction.

Boncescu et al. applied logistic regression models to the same prob-
lem of EC forecasting in WWTPs from Romania (Boncescu et al., 2021).
This work was done in isolation of factors that make up water quality,
for example, nitrogen concentration or ammonia which other authors
found to be important when conducting feature selection (Bagherzadeh
et al., 2021).

Bagherzadeh et al. took the work further by combining water qual-
ity information with meteorological data for a WWTP in Melbourne,
Australia. The authors compared the effectiveness of different ML mod-
els for the prediction of EC, finding gradient-boosted machines (GBM)
to be the best-performing model for the task followed by RF regres-
sion (Bagherzadeh et al., 2021). Interestingly, this work showed a better
performance of GBMs over deep learning frameworks such as artificial
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neural networks (ANNs) and RNNs on the testing data. Bagherzadeh
et al. also begin to explore the explainability of the model by consider-
ing the importance of each of the features to the predicted variable.
This approach relies on the assumption that the dataset exhibits all
possible variance for each feature to make an informed decision on
which should be included in the modeling. It may therefore lack the
information to explain all perturbations in the energy consumption
trend of the WWTP which limits the operational ability of the model to
advise on reducing EC in the future.

Torregrossa et al. found similar results in which RF regression
performed similarly to ANNs with the author commenting that the
overfitting of neural networks to the training data is a significant
problem due to the highly volatile nature of the data coming from
WWTPs (Torregrossa et al., 2018). This is a major concern for applying
deep learning frameworks, however has largely been overcome in other
fields with the use of regularization methods (Romero-Giiiza et al.,
2022).

Picos-Benitez et al. were able to demonstrate the effective use of
ANNSs to capture the non-linearities and auto-correlations from data
in a raw sewage treatment plant to be able to optimize operational
conditions. In particular, the authors demonstrated the use of ANNs
to produce fast and accurate predictions about operational parameters
to mitigate issues caused by long experimental wait times (Picos-
Benitez et al., 2020). This has been verified by other researchers who
used neural networks to predict critical WWTP parameters such as
biological oxygen demand (BOD) (Ahmadi et al., 2018). Typically,
ANNs are considered ‘black box’ methods which do not allow for
interpretable predictions, leading to questions about their application
for decision-making. Furthermore, deep learning methods such as ANNs
are extremely ‘data-hungry’. Due to the offline nature of the sampling
of water quality attributes, the level of usable data samples to train
ML models is often insufficient for deeper architectures which could be
why authors have seen lower performances from neural networks than
from other ML models.

This factor could also contribute to the reason why few authors have
experimented with RNNs to forecast energy consumption in WWTPs,
despite their high performance in time-series forecasting tasks. In cases
where this has been done, they too have shown to be less effective than
classical ML techniques such as RF and GBM (Bagherzadeh et al., 2021).
ML techniques, however, struggle with maintaining performance when
testing noise increases and therefore are not appropriate for modeling
WWTP data which is characterized by high variability and high noise.

The culmination of the above literature review goes to show that
no purely statistical or data-driven techniques enable the accurate
modeling of WWTPs without a compromise in flexibility, accuracy,
interpretability or robustness. The most applicable models concern the
combination of mechanistic and empirical domain knowledge with
lumped parameter models, such as the ASMs, however, this is limited
by assumptions and simplifications.

The combination of empirical, or mechanistic knowledge concern-
ing cause-and-effect relationships with machine learning for modeling
WWTPs is a promising research avenue. This approach, referred to here
as knowledge-enhanced machine learning, leverages the accurate pre-
dictions and robustness of machine learning, with the interpretability
of knowledge-based modeling. Further to this, learning from historical
data alleviates the need for detailed mapping of all complex relation-
ships within the process reducing the reliance on simplified equations
or biased assumptions.

Recent literature has begun to explore this direction, albeit not
framed as knowledge-enhanced approaches. For instance, Karadimos
and Anthopoulos developed NN models to predict the energy con-
sumption of WWTPs in Greece, incorporating both quantitative and
qualitative variables. Their method, while not directly integrating
causal knowledge, used feature selection methods to incorporate spe-
cific domain knowledge into the modeling approach (Karadimos and
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Anthopoulos, 2023). Both Zhang et al., Bagherzadeh et al. also im-
plicitly include knowledge through a feature engineering approach to
enhance the modeling capabilities of machine learning. The following
subsection will explore in more detail the concept of knowledge-
enhanced data-driven modeling and its applications in the context of
WWTPs.

2.2. Knowledge-enhanced data-driven modeling of WWTPs

The topic of hybrid knowledge-enhanced data-driven modeling for
WWTPs has been approached differently by several authors. Cheng
et al. pose a hybrid system in which knowledge taken from the equa-
tions of the ASM2 model is combined with convolutional neural net-
works (CNNs) and LSTMs to create a hybrid network used to forecast
water quality (Cheng et al., 2023). This interesting approach focuses
on the industry’s reliance on ASM models and expands the capabilities
through the use of deep learning to be able to incorporate hidden
factors that may influence the WWTP system beyond those captured
in the original ASM equations (Lindow et al., 2020). The method
demonstrated by Cheng et al. marks a leap forward in WWTP model-
ing, showing improvement over classical ASM models and other deep
learning architectures, pointing towards the promise of this avenue of
research.

Henze et al. use the ASM1 model to augment sparse data sets from
WWTP to improve the training of deep learning models. This works
particularly well since the ASM1 data can act as a filter to remove
some of the noise of the dataset, making it easier for the deep learning
models to find appropriate correlations between variables (Henze et al.,
2006). Heo et al. provide a multi-objective supervisory control strategy
for wastewater treatment using a hybrid approach to determine optimal
setpoints of controllers under varying inlet conditions. They first group
the influent conditions into clusters before using the benchmark simu-
lation model no.2 (BSM2), another semi-mechanistic model derivative
of the ASMs, to generate the objective function outputs. Using this,
deep neural networks are proposed to optimize the system and map
the control set points to achieve the desired output. Koksal et al.
investigated the use of physics-informed neural networks (PINNs) to
enhance machine learning models for wastewater treatment plants
(WWTPs). By incorporating simplified equations ASM1 into recurrent
neural network (RNN) architectures, they aimed to improve predictions
of key parameters like dissolved oxygen and chemical oxygen demand.
Their approach showed promise, with physics-informed models often
outperforming standard versions in offline validations. However, online
testing revealed mixed results, highlighting the challenges of applying
generalized models to specific industrial plants. Despite some limi-
tations, the PINN approach demonstrated potential for maintaining
long-term performance without frequent updates, suggesting a possible
solution to model drift in certain scenarios (Koksal et al., 2024). While
this method offers one path for integrating domain knowledge into
WWTP modeling, researchers have also explored alternative knowledge
incorporation strategies.

Spatiotemporal modeling is an approach to combine specific knowl-
edge about the geographical layout of WWTPs to enhance model ca-
pabilities. Huang et al. developed a novel approach to predict the EC
of WWTPs in China by using a ridge regression technique to extract
spatial information, while applying RF regression to extract key tem-
poral information. The authors showed that this approach enhanced
model performance for prediction of EC compared to purely temporal
methods. Spatiotemporal modeling of this kind has proved successful
in modeling aspects of wastewater treatment where the geographi-
cally dispersed nature of the system is important. Guo et al. analyzed
wastewater information from seven different areas in China to assess
the variation in the wastewater composition. These factors can help to
inform the operation of the WWTP.

Guo and Wang used graph neural networks for modeling urban
wastewater treatment systems. The authors proposed HydroNet, using
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Fig. 1. Schematic for training the proposed KEGD-EC framework. The generator section trains to produce realistic forecasts for the system against a discriminator that attempts
to differentiate real samples from the training data against fake samples from the generator. After training the generator is used to produce highly accurate predictions.

graphs to describe the layout of the wastewater network such that
nodes represents junctions, manholes and other elements with edges
weighted given the proximity of the network features. This information
is processed using a graph convolutional network (GCN) to extract key
features from both the graph and a historical dataset. It was shown that
this method can help to accurately predict water infiltration (Guo and
Wang, 2024).

Han et al. use an alternative approach for knowledge integration
via networks in their work predicting and diagnosing faults in WWTPs.
Their method, referred to as data-knowledge-driven (DKD) modeling,
uses Bayesian Networks (BNs) to estimate the root cause of process
disturbances (Han et al., 2021). Bayesian Networks are a probabilis-
tic modeling technique to represent cause-and-effect relationships of
complex processes in an acyclic graph (Scutari, 2017). Here, instead
of using ASM models, the authors generated their causal graph using
data-driven Granger causality (Granger, 1969). Representing domain
knowledge as a network has distinct advantages since it allows the
representation of directed cause-and-effect relationships within the
system. Therefore, when a change is observed within the system it
can be traced, with the network giving an understanding of why this
change took place. Furthermore, the use of data-driven causal inference
to model cause and effect in WWTP is effective in this application since
it alleviates the requirement for an in-depth understanding of each
process and removes the reliance on assumption and simplification seen
in the ASMs.

While the work of Han et al. proved effective, representing manu-
facturing processes with BN is tricky since by nature a BN is an acyclic
graph and many manufacturing processes inherently contain cycles
due to recycling streams (Gharahbagheri et al., 2017). Furthermore,
Granger causality assumes stationarity in the data, an assumption that
does not hold for wastewater treatment due to the high variability in
the waste and seasonal effects. This work marks an interesting avenue
in the representation of WWTPs using knowledge graphs built from
causal relationships within the process variables. The use of graphs
grants inherent flexibility since fully defined mechanistic equations are
not required to draw edges between graph nodes.

The field of graph machine learning is well-established in other
domains within process manufacturing, however is yet to be applied
to the modeling of WWTPs. Graph convolutional networks (GCNs)
directly exploit the non-Euclidean relational structure of data, allowing
them to learn complex dependencies (Hu et al., 2022). Graphs are
diverse structures containing relational data that can refer to geospa-
tial relations (Cao et al., 2020), plant layout information (Wu and
Zhao, 2021), or relationships from mechanistic equations (Allen et al.,
2024). This relational context facilitates more accurate predictions in
complex systems where data is noisy, or relationships are highly non-
linear. Liao et al. provide a comprehensive review of GCN applications

in power systems. The authors pose that GCNs have high potential
across this domain, particularly in exploring complex relationships in
high dimensional data (Liao et al., 2022). However, some questions
are raised around the efficacy of pure GCNs for time-series forecasting
tasks, stating that GCNs may only be suitable for short-term forecasting
tasks. Instead, researchers have highlighted opportunities in pairing
GCNs with gated recurrent unit (GRU) architectures for the application
of RNNs in the non-Euclidean domain (Liao et al., 2022).

There are relatively few works that have explored the practical
application of combining GCNs with RNN architectures. There is little
work showing the modeling of any manufacturing processes using GCN-
RNN architectures to date. Allen et al. explored the integration of
manufacturing domain knowledge for knowledge-enhanced spatiotem-
poral analysis (KESA) for fault detection and diagnosis (FDD) applied
to a case study of the Tennessee Eastman Process (TEP) (Allen et al.,
2024). Here it was found that the integration of knowledge graphs
showing mechanistic causal relationships of manufacturing variables
into the predictive framework increased the accuracy of predictions
since the complex relationships present in manufacturing are difficult
to learn in the absence of causal domain knowledge (Park et al.,
2020). This phenomenon was also observed by authors Wu and Zhao
who utilized a process topology convolutional network (PTCN) for
FDD (Wu and Zhao, 2021). Further to the accuracy benefits, the authors
found that the inclusion of knowledge graphs makes the results from
predictions inherently more explainable (Allen et al., 2024). Providing
explainable predictions is crucial for manufacturing decision-making,
since being able to quickly and clearly understand a prediction leads
to fast and effective decisions. However, it was also noted that the
accuracy of GCN-RNN architectures is largely affected by the influence
of external factors from the dataset. Given the nature of wastewater
treatment and the impact that external factors have on the processes,
some thought must go into considering the robustness of GCN-RNN
algorithms. This could be one of the barriers to the adoption of this
technology into the water treatment domain thus far. Other possible
reasons for this include the highly non-linear relationships between
variables, the complexity of the process itself, the influence of up-
stream effects on the processing leading to latent variables, or lack of
knowledge of mechanistic models which make constructing knowledge
graphs for this type of process tricky (Belia et al., 2009).

2.3. Addressing the challenges

The objective of this work is to address the difficulties of model-
ing and predicting wastewater treatment processes. This challenge is
tackled through a hybrid knowledge-enhanced deep learning approach.
Consideration is given to the current limiting factors for modeling
WWTPs including the formulation of causal knowledge, and the high
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influence of external factors. Specifically, we present a framework to
predict the energy consumption of wastewater treatment plants. Known
as knowledge-enhanced graph disentanglement for energy consumption
(KEGD-EC) prediction our framework disentangles latent factors from
contextually rich datasets from WWTPs made up of knowledge graphs
depicting cause-and-effect relationships, and historical data. This facil-
itates more accurate, robust and explainable predictions that can aid
in resource planning, production scheduling and load balancing. The
novel contributions are four-fold:

» Comparison of domain knowledge-based and data-driven causal
discovery algorithms to uncover important causal relationships in
WWTPs.

Creation of a novel framework combining latent factor disen-
tanglement with RNN architectures for time series prediction of
complex WWTP systems.

Comparison of model performance against established models
documented in recent literature using a case study from a WWTP
in Melbourne, Australia. Evaluated against model accuracy and
model robustness.

The following Section 3 details the methodology employed, first
outlining the mathematical background of each of the novel layers used
followed by a description of the framework architecture. Then, the
training of the model is described. Detail is given on the case study
dataset in Section 4, including the construction of a process knowledge
graph. Finally, Section 5 presents the results of the KEGD-EC framework
in comparison to recent literature comparing both the accuracy and
robustness of the models.

3. Methodology

Fig. 1 shows a machine learning framework in which historical
plant data can be used to predict the future consumption of the
plant (Newhart et al., 2019). Specifically, the approach described below
concerns a graph-based ML approach in which the model is given the
historical data, along with a knowledge graph depicting the cause-
and-effect relationships between dataset variables. As stated, capturing
cause-and-effect relationships from first principles for WWTPs is a
difficult challenge due to highly variable processes, and a requirement
for high amounts of domain expertise. Data-driven causal discov-
ery solutions could pose a more realistic solution to obtain a causal
knowledge graph directly from historical data (Han et al., 2021). This
work aims to compare such methods with traditional causal-graph
construction from domain knowledge. The methods employed in this
work are explicitly described in Section 4.2. Once the cause-and-effect
relationships have been mapped, they can be used in a graph-based
deep-learning framework. The proposed framework adapts the KESA-
AD algorithm for the unique challenges of modeling WWTPs (Allen
et al.,, 2024). There are two clear distinctions between the initial
KESA-AD model and the one presented in the following section.

Firstly, in this work, we have adapted the spatial dimension to
instead represent the strength of cause-and-effect relationships in the
graph rather than geometric proximity focusing while still maintaining
the spatiotemporal forecasting principles. The dissemination of rela-
tional data from temporal data is a key factor in enabling accurate
forecasts. It allows the model to capture the key drivers behind the data,
independent of just analyzing historical trends. The expansion of the
model from spatial information to relational information facilitates the
expansion of the model to include variables external to the process such
as the meteorological variables, which are important to the operations
of WWTPs (Bagherzadeh et al., 2021).

Secondly, we propose the addition of disentanglement to the graph
convolution operation. The goal of this is to produce a disentangled
representation of the node embedding for the causal graph. This repre-
sentation allows for an understanding of the impact of external factors
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on the dataset and therefore grants inherent robustness, and inter-
pretability to the model (Alemi et al., 2016). This is important since
WWTPs can be influenced by many factors outside of the measured
dataset, for example by upstream events, local conditions or the skill
of the operators. These factors are difficult to quantify but can have a
substantial impact on the measured variables from the dataset.

The KEGD-EC framework’s architecture is specifically designed to
address three key challenges in WWTP energy consumption prediction:
(1) complex interacting factors affecting energy use, (2) multi-scale
temporal dependencies, and (3) the need for interpretable predictions.
Each component of the framework addresses one or more of these
challenges:

» The disentanglement mechanism enables separation of complex,
interacting factors affecting energy consumption into interpr-
etable latent representations. This is particularly crucial for
WWTPs where multiple operational, environmental, and process
parameters simultaneously influence energy use.

The knowledge-enhanced graph structure explicitly captures
known causal relationships between process variables, leverag-
ing domain expertise to improve prediction accuracy and inter-
pretability. This addresses the challenge of integrating expert
knowledge with data-driven approaches.

The temporal modeling components combine short-term dynam-
ics through GRU layers with longer-term patterns via BiLSTM,
specifically designed to capture the multi-scale temporal patterns
characteristic of WWTP operations.

Notation: Unless stated otherwise, matrices will be depicted with bold
uppercase letters (e.g., A), vectors will be described with lowercase
bold letters (e.g., x), uppercase italic letters for sets (e.g., G), and
lowercase italic letters for scalar values (e.g., k). We use T for matrix
transpose and~! for matrix inversion. The subscript A, ; is used to
represent the value on the ith row and the jth column of the matrix
A.

3.1. Mathematical background

In the following, we express a WWTP as a directed knowledge graph
G = (V, E) where V is a finite set of nodes such that n = |V| corresponds
to the number of features describing the wastewater treatment process
in a dataset X € R™". For a node u € V, there is a corresponding
feature vector x, € R™. E is a set of edges such that ¢,,, € E shows
the existence of an edge between node u and node v where each
edge represents a causal relationship. Therefore, given a graph G of a
process and a corresponding dataset X € R”*"  can we accurately learn
the relationships between the feature variables to predict the energy
consumption of the WWTP at a future timestep?

3.1.1. Disentangled graph convolution

Knowledge graphs are used in this work to capture key causal
relationships that can aid in accurate forecasting. Graphs, however,
cannot be directly implemented into machine learning frameworks
since they do not follow the rules of Euclidean geometry (Kipf and
Welling, 2017). Instead, to use graphs we must first apply a convolution
operation to process the graph and unlock the relational information.
Researchers have successfully applied both spectral and spatial graph
convolution operations for ML (Bruna et al., 2014) and spatial graph
convolutions (Shuman et al., 2013). In both cases, a global embedding
of the graph nodes is generated where the representation for a node
is learned from its neighborhood. Despite this being successful in
many applications, some researchers have shown that this approach
fails to recognize latent factors that may be driving change in the
process resulting in non-robust and non-explainable results (Guo et al.,
2022). Applied to WWTP, using global node embeddings could result in
prediction uncertainty which since these processes can be influenced by
arange of external factors (Li et al., 2022). The uncertainty arising from
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neglecting underlying latent factors has been addressed in the literature
with disentangled convolutions that partition node neighborhoods into
channels or capsules representing the latent factors which can be
concatenated to get a disentangled node representation (Liu et al.,
2020).

To perform the disentanglement of the process knowledge graph,
G, we utilize a disentangled graph convolutional layer (DisenConv).
The goal of the DisenConv layer is to output a disentangled node
representation, y, = [c;,¢,,...,cx] € RY of node u into K channels
where each channel describes an independent latent factor such that
each graph feature is composed of K. ¢, € R¥ describes the channel
for the individual node u relating to factor k. This is done by projecting
the feature vector x, into separate subspaces. Each channel k has its
parameters: a weight matrix W, € R"*4 and a bias vector b, € R44:

o(W]x, +by)

L= ——a————, ¢h)
oWk, + bl

where Ad = £ is the output size of each channel and ¢ is a non-linear
ReLU activation function.

In real-world scenarios, the feature vector x, often contains miss-
ing values or may be incomplete, so the global network structure
cannot be preserved. In this case, it becomes necessary to explore
the second-order proximity of each node, determined through the
shared neighborhood structures (Tang et al., 2015). Ma et al. propose
a neighborhood routing mechanism to assess the likelihood of the edge
between two nodes being explained by a latent factor k. It is assumed
that a factor k is likely to be the reason why node u is connected to
a subset of its neighbors if (i) the subset is large and the nodes of the
subset are similar in aspect k (ii) if node u is similar in aspect k to each
neighbor in the subset. Mining information from the neighborhood of
each node in this way provides robustness to model predictions in cases
where the feature vector of a node x,, is incomplete or noisy (Ma et al.,
2019). This is important in the case of wastewater treatment where data
is often noisy and regularly incomplete (Ba-Alawi et al., 2022).

The algorithm calculates the probability that an edge exists between
node « and node v due to factor k. Let this probability be represented
by p, where p,;, >0 and ZkK’=1 Py = 1. The process of neighborhood
routing employs an iterative approach to estimate the value of p,
(Eq. (3)) prior to generating ¢, (Eq. (2)). Since nodes u and v are
assumed to be connected because of factor k it stands that z,; 'z,
will provide information on the edge between them. Therefore, the
iterations start by initializing p, ; as p(ul,)( o exp(z, ;' 2, /7). The param-
eter ¢ governs the rigidity or leniency of the assignment process (Ma
et al., 2019). This routing mechanism identifies the most substantial
cluster within each subspace, adhering to the restriction that any given
neighbor is confined to a single subspace. The allocation of distinct
neighbor subsets to each channel ensures that every channel embodies

an independent factor. These procedures are executed as such:
k i1
Z + Zu:eMeG Pv’k Zyk

) _
¢ =

(2

llzf + ZU:E,WGG I”U_kl z,ll> ’

o exp(zuych:)/f)

YT bz Tl /D)
for each iteration where i =2,...,1.

The DisenConv layer is used to produce a disentangled node em-

bedding for a graph G for each node where y, € RX4?, This embedding
allows us to gain better information about the relationships between
dataset features, including an understanding of how latent factors
might be influencing the outcome of the process. The goal of this work,
however, is not just to understand the relationships but to be able to
predict the future state of the system. To do this, we look to pair the
disentangled convolutional layer above with specific RNN architectures
that are adept at capturing temporal dynamics, using the disentangled
representation y, as an input. This enables us to capture both the
relational and temporal information to create accurate predictions.

3
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3.1.2. DisenGRU layer

Gated recurrent units (GRU) are RNN architectures adept at han-
dling temporal data to forecasting time-series representations, in many
cases outperforming other common RNN architectures such as LSTMs
(Dey and Salemt, 2017). Combining this with the disentangled repre-
sentations allows for accurate forecasting in dynamic and noisy sys-
tems, such as wastewater treatment processes.

A gating mechanism, reminiscent of that used in LSTMs, is utilized
by GRUs to regulate the flow of information within the unit (Chung
et al., 2014). This helps to learn which information is temporally
significant and should be retained, and which should be discarded (Cho
et al., 2014). The variant of GRU employed in this work differs slightly
from the original architecture proposed by Cho et al. since we are
using the disentangled node embeddings instead of the raw historical
data as input. The DisenConv layer generates a disentangled embedding
¥u(T) = [e)(T), (D), ..., cx(T)] € RK4 at a time stamp ¢, y, ;.

The GRU uses the previous information and the current input to
determine how much its hidden state, denoted by h,, should change.
The hidden state acts like a memory and can be thought of as a
blend between the previous hidden state (h,_,) and the newly proposed
candidate activation function (B,). This blending is controlled by an
update gate (z,) The update gate assigns weights between 0 and 1 to
each element of the previous and candidate states using element-wise
multiplication:

h,=(1-2)0h,_, +z 0h, (€]

A value of 1 in z, means the GRU relies more on the new information
(h,), while a value of 0 indicates it favors the previous state (h,_,). The
update gate is calculated as per (Chung et al., 2014):

= gz(wzyu,t + Uzhr—] + bz)- (5)

where o, is a sigmoid activation function, and W,,U,,and,b, are all
learnable parameters.

The candidate activation function is computed as in Bahdanau et al.
(2014):

h, = tanh(Wyy, , + Uy(r, © h,_) + by,), )

where r, is a reset gate where W, Uy, and, by, are learnable parameters.
The reset gate is computed as such:

r, = gr(wryu,t + Urht—l + br)’ (7)

where W, U, ,and, b, are learnable parameters.

The above modifications to the traditional GRU enable the disen-
tangled representation of the process graph to be integrated into a
disentangled gated recurrent unit (DisenGRU) layer. This DisenGRU
layer enables us to include the spatial dynamics of the system, including
potential latent factors that might be influencing the process, when
forecasting the process time series enabling more accurate and explain-
able predictions. This layer has been employed in the wider framework
below to predict the energy consumption of a WWTP.

3.2. KEGD-EC framework

3.2.1. Overview

The framework adopted here follows a broadly similar structure
to the KESA framework demonstrated in Allen et al. (2024) which
has been shown to accurately capture manufacturing dynamics. This
framework is structured as a generative adversarial network (GAN).
First proposed by Goodfellow et al., GANs comprise two elements; a
generator and a discriminator. The discriminator function evaluates the
probability of a sample’s origin being the empirical training distribution
rather than the generated distribution, whereas the generator function
endeavors to approximate the underlying data distribution and produce
accurate forecasts (Goodfellow et al., 2014). The two models are pitted
against one another in training, with the generator attempting to fool
the discriminator by producing a lifelike forecast, and the discriminator
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training to determine which samples are from the training data and
which are from the generator. The result is a model that can accu-
rately replicate the dynamics of a manufacturing system, including the
complex non-linearities to produce accurate forecasts.

3.2.2. Generator

The generator creates accurate predictions of manufacturing sys-
tems. It is crucial to consider both the short and long-term dynamics of
the system so the generator is divided into two separate modules. The
relational module aims to capture short-term changes stemming from
variations in the feed to the process, changing ambient conditions or
from step changes to process parameters during operation. By utilizing
the DisenGRU layers described in Section 3.1.2 we also aim to capture
the effects of latent factors such as operator shift change, or upstream
events. Since these events occur without precursor in many cases, we
only assess the relational dynamics across a shortened period s. The
disentangled representation is taken from the DisenConv layer and
input to the GRU which gives a final prediction in the form X qjational €
RsxKAd'

It is also important to consider the impact of longer-term fluctu-
ations in system performance due to seasonal effects, or the effects
of process degradation and wear. These types of changes occur more
slowly and are less likely to produce a fast reaction in multiple process
variables, but instead produce a trend for each feature. Therefore, we
include a temporal module consisting of a bidirectional LSTM (BiLSTM)
model has been included to capture and forecast the dynamics of each
graph feature across a period / where s < /. Bidirectional LSTMs
excel in capturing temporal dynamics within sequences and have been
readily applied to complex scenarios where spatial factors come into
play (Xie et al., 2022). BiLSTMs comprise two LSTM architectures
with one LSTM layer processing the sequence forwards, and one LSTM
layer processing the sequence in reverse. This increases the context
available to the model and therefore increases the performance of
the model, with Siami-Namini et al. demonstrating a 37.78% uplift in
performance when using a BiILSTM in comparison to a traditional LSTM
model (Siami-Namini et al., 2019). This is done for each feature such
that Xiemporal € R,

The final prediction of the generator is gained by concatenating the
relational and temporal module predictions, and passing it through a
fully connected layer with a non-linear activation function:

X = tanh(VVf [Xrelational» Xtemporal] + bf)7 (8
where W, and b, represent the weight matrix and the bias vector of
the fully connected layer.

3.3. Discriminator

The goal of the discriminator is to decide whether a sequence
has been taken from the training data, or generated by the above
generator sequence. The discriminator comprises a temporal feature
extraction step, in which a DisenGRU extracts features from the final
timestep of the sequence. A relational feature extraction occurs using
a DisenConv layer. The relational and temporal features are extracted
and concatenated. This is passed through a linear layer with a sigmoid
activation function which predicts the authenticity of the sequence as
a probability between zero and one.

3.4. Adversarial training

The generator is trained against the discriminator to enable the most
accurate prediction possible. Each network has a different loss function.
The generator loss is made up of a forecasting error, i.e. the difference
between the predicted sequence and the real value, and a realism loss
which is minimized to fool the discriminator. The overall loss function
for the discriminator is therefore given as:

Lo®) =i Y, NGy, X)) = Xlly — log(Dy(X,), ©

tebatch
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where the generator function, denoted by Gy(-) , is parameterized by
0, while Dy (") signifies the discriminator function with parameter ¢. A
hyperparameter A; is employed to equilibrate the loss between forecast
accuracy and realism. The discriminator loss function comprises a
realism loss between the data taken from the training data and the
generated data:

Lp@) = Y —log(Dy(X)) - log(Dy(X,). (10)
tebatch

Once the model has been trained, the generator can be used to accu-

rately forecast the dynamics of the plant. The purpose of the discrimi-

nator is to ensure the generator is producing the most accurate possible

predictions.

4. Case Study - Melbourne Eastern Treatment Plant

The efficacy of the above framework from Fig. 1 has been demon-
strated below on a dataset taken from the Eastern Treatment Plant
(ETP) of Melbourne Water. The ETP treats approximately 449 megal-
itres of sewage per day on average from around half the population
of Melbourne, producing 13022 megalitres of recycled, safe water
in 2022-23 (Melbourne Water, 2023). The process follows a three-
stage treatment process. Primary treatment involves removing physical
pollutants from sewage using a combination of screening processes,
sedimentation and grit removal. Secondary treatment uses aerobic and
anaerobic digestion to break down organic material in the sewage be-
fore it is passed through clarifiers where more sediment is settled. The
final tertiary treatment disinfects the water before it can be released to
the outfall pump stations.

Given the scale of the treatment that occurs at the ETP, under-
standing and being able to accurately forecast the energy consumption
is extremely important to maintaining operational efficiency, allowing
operators to adjust treatment processes to factors that might affect the
sustainability of the plant (Alali et al., 2023).

4.1. Dataset description

For an accurate energy consumption forecast at a WWTP, a di-
verse dataset reflecting influential factors is essential. This includes
characteristics of the wastewater, hydraulic variables as well as mete-
orological variables. This study uses a dataset compiled from both the
Eastern Treatment plant and Melbourne airport weather station, com-
piled initially by Bagherzadeh et al. (2021). The total dataset comprises
samples collected between 2014 and 2019. Wastewater characteris-
tics, such as the Ammonia concentration (NH4-N), biological oxygen
demand (BOD), total nitrogen (TN), and chemical oxygen demand
(COD) were sampled daily from the ETP. Meteorological data was
taken from the weather station at Melbourne Airport since it is the
closest available weather data to the ETP. Finally, EC data was collected
using revenue quality meters with a frequency of every 15 min which
was averaged daily and joined to the overall dataset using an inner-
join operation (Bagherzadeh et al.,, 2021). In preprocessing, samples
containing null data were removed, equating to approximately 5% of
the total dataset leaving 1382 samples. The data has been summarized
in Table 1. The data was normalized since features differ in scale:
norm = % a1

The raw dataset can be used to extract the temporal relationships
for each of the features but offers little to explain the interactions
between the variables, and how a change in one might impact the rest
of the plant. Therefore, we also formulate a graph Ggp = (V, E) where
n = |V| is the number of sensors equal to the 16 variables described in
Table 1.

In our previous KESA-AD work, we explored the construction of
knowledge graphs using mechanistic profiles of the process. Wu and
Zhao used the physical layout of the process to dictate the graph where

X

max min
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Table 1
Description of the variables in the ETP dataset.

Parameter (Abbreviation) Unit Mean std Min Max

Hydraulic Parameters

Average Outflow (Q,,,) m?/s 3.93 1.23 0.00 7.92
Average Inflow (Q,,) m3/s 4.51 1.44 2.59 18.97
Wastewater Parameters
Ammonia (NH, — N) mg/L 39.22 7.76 13.00 93.00
Biological Oxygen Demand (BOD) mg/L 382.06 86.00 140.00 850.00
Chemical Oxygen Demand (COD) mg/L 84596 145.42 360.00 1700.00
Total Nitrogen (TN) mg/L 62.74 3.57  40.00 92.00
Climate Parameters
Average Temperature T,, °C 15.04 5.40 0.00 35.50
Maximum Temperature T, °C 20.53 7.10 0.00 43.50
Minimum Temperature T, ;, °C 10.04 466 —-2.00 28.50
Atmospheric Pressure (AP) hPa 3.68 61.01 0.00 1022.00
Average Humidity (H) % 63.56 14.53 0.00 97.00
Total Precipitation (Pr) mm 0.22 1.31 0.00 18.03
Average Visibility (VIS) Km 9.10 16.32 0.00  512.00

Average Wind Speed (WS,,) Km/h 19.48 7.14 0.00 49.10
Maximum Wind Speed (WS,,,) Km/h 3538  11.63 0.00 83.50

Energy Consumption

Energy Consumption (EC) MwWh 275.16 44.64 116.64 398.33

units were represented by nodes and edges represent the physical con-
nection between the units. While these methods provide good results
in their applications, they do not directly apply to this case study since
either the mechanistic relationships between variables are difficult to
derive, or there are no physical connections to relate to edges (for
example between T,,, and Q;,). Therefore, alternative methods must
be established to construct the edges, E between nodes in Ggpp.

4.2. Graph building

Data-driven causal discovery is an interesting approach that looks
to recover the underlying causal structure of variables from observed
data. This process is often far quicker and more scalable than deriving a
causal graph from experiments or domain expertise. However, it comes
at the cost of accuracy since it is limited to the information present in
the dataset and the assumptions that constrain the algorithm (Molak,
2023). Here we compare two separate methods, one data-driven and
one from domain expertise, for deriving the causal structure between
the dataset variables.

While the intention is to see if the data-driven algorithm can un-
cover the correct causal structure to match the domain expert, only data
that is relevant to the cause of energy consumption prediction should
be considered. In the case of the data presented in Table 1 some of
the environmental variables have little bearing on the overall energy
consumption (Wiesmann et al., 2007). Furthermore, when analyzing
this data set Bagherzadeh et al. found that there is little correlation be-
tween EC, and the variables for wind speed, visibility and atmospheric
pressure, and therefore these variables were removed from the dataset
before the causal discovery and model training.

4.2.1. Data driven causal discovery

When building graphs for manufacturing purposes it is important
to identify links that represent causation as opposed to correlation.
The former occurs when a node v has a direct effect on the state of
node u. Alternatively, a correlation may occur when a third variable
w directly causes v and u. In this case, while nodes u and v may be
highly correlated, a change in one will not affect the other and therefore
drawing an edge here would be misleading. Node w here is known as a
confounder. Identifying correlation instead of causation is problematic
for the explainability of the model since simply noting the correlation
between variables could lead to false conclusions about factors driving
energy consumption. To solve this, there are dedicated algorithms for
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determining the causal structure from observed data. Here, we employ
a constraint-based causal discovery technique known as fast causal
inference (FCI) (Spirtes et al., 1999).

FCI constructs causal structures based on conditional independence
constraints. Conditional independence occurs when a ‘Y’ shaped struc-
ture is formed. In this scenario, both node u and node w are condition-
ally independent of node y since y is independent of u and w conditional
on knowing the state of v. This reduces concerns about hidden factors
influencing both node v and node y (Mani et al., 2012). The FCI algo-
rithm starts by assuming all variables are directly connected in a fully
connected, undirected graph. It then iteratively removes edges between
conditionally independent variables. Finally, it analyzes the specific
patterns in the remaining edges to determine the direction of the causal
relationships (Shen et al., 2020). The result is a directed, unweighted
graph that represents causal relationships between observed variables.
While other methods for data-driven causal discovery exist, FCI does
not overlook the existence of latent common causes and is therefore
appropriate for use here (Lee et al., 2023).

Applied to the adjusted ETP dataset, the FCI algorithm identifies
a graph with 11 nodes relating to each of the dataset variables and
16 edges as visualized in Fig. 2(a). The FCI algorithm derived causal
relationships between some of the nodes, for example between aver-
age temperature (T,,) and energy consumption (EC). However, the
algorithm has also identified edges likely to be influenced by latent
confounders. Therefore, it is vital to perform validation of the connec-
tions against the written knowledge of WWTP operation, and against
the knowledge of expert practitioners (Hagedorn et al., 2022).

4.3. Domain knowledge graph

Traditionally, causal knowledge is drawn from practitioner exper-
tise. Here, we use a variety of literature sources, engineering knowl-
edge, and industrial experience to produce a second graph Fig. 2(b),
with a justification of each edge explained in Table 2. By assessing
the FCI graph against the explanations in the table, we can gauge the
success of the data-driven causal discovery on the ETP dataset.

4.3.1. Discussion of graph structures

There are some key structural differences between Figs. 2(a) and
2(b) that represent differences in the causal discovery approaches. The
expert knowledge-derived graph exhibits a higher degree of directional
certainty in its causal relationships compared to the FCI-generated
graph which shows a greater amount of bidirectional edges. This is
particularly evident for the treatment of EC which appears as a sink
node in Fig. 2(b), however shows bidirectional relationships in the FCI
graph. This difference indicates a more conservative approach to causal
attribution using FCI, which potentially indicates an introduction of
bias when using expert knowledge - a known risk of causal graphs built
from expert systems.

There are several notable differences in the graph structures which
highlight some important aspects of the two approaches. The differ-
ence in the relationship between inflow (Q;,) and outflow (Q.y) is
particularly striking. While the expert graph shows a logical Q;;, = Quut
relationship, the FCI algorithm suggests the opposite direction. This
discrepancy suggests that the FCI algorithm may be misinterpreting
temporal data, highlighting the challenges in inferring causal direction
from time-series data.

Treatment of wastewater parameters (COD, BOD, NH,4-N, TN) also
differs between the graphs. The expert graph acknowledges some con-
founded relationships, while the FCI graph suggests a more intricate
web of interactions. This complexity in the FCI graph could offer valu-
able insights into the biochemical processes within WWTPs, potentially
revealing subtle interactions that expert knowledge might overlook.
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(a) Graph constructed using FCI only.

(b) Graph constructed from domain knowledge.

Key

Aisa cause of B Cis not an ancestor of D
@No set d-separates E and F C@ o Latent common cause of G and H o

Fig. 2. Causal knowledge graph of the Eastern Treatment Plant of Melbourne Water using both data-driven causal discovery (a) and domain knowledge (b).

Another notable difference lies in the treatment of precipitation
across the two graphs. The expert-derived graph establishes a direct
link between precipitation and inflow, reflecting a strong assumed re-
lationship. In contrast, the FCI-generated graph assigns a more isolated
role to precipitation, suggesting a weaker or more complex relationship
with other variables. This discrepancy potentially reveals limitations in
either the data or the FCI algorithm, but it also highlights a possible
bias introduced through expert knowledge. The UK-based practitioner
who contributed to the expert graph may place a higher weight on
the influence of precipitation, reflecting the climate conditions typical
of the United Kingdom. However, this assumption may not hold for a
WWTP located in Australia, where average monthly rainfall is consid-
erably lower. This geographical disparity underscores the importance
of contextualizing expert knowledge and reveals how data-driven ap-
proaches like FCI might help identify and mitigate regional biases in
causal assumptions.

These structural differences have significant implications for pre-
dicting energy consumption in WWTPs. While the expert graph’s di-
rectional certainty might lead to more straightforward predictive mod-
els, it could overlook subtle relationships captured by the FCI graph.
Conversely, the FCI graph’s complex treatment of wastewater parame-
ters might capture subtle interactions affecting energy use, potentially
improving prediction accuracy.

The subsequent sections of this paper will leverage both of these
graphs, ultimately comparing the success of the causal discovery by
assessing the impact of the graph structure on the accuracy of energy
consumption prediction. This comparative analysis aims to evaluate
the predictive power of expert knowledge versus data-driven causal
discovery in the context of WWTP energy consumption, identify areas
where the FCI algorithm provides novel insights that could enhance
expert understanding of WWTP dynamics, and assess the practical im-
plications of using different causal structures in graph neural network
models for energy prediction.

4.4. Model training & evaluation

4.4.1. Training data

The total ETP comprises 1382 samples and each sample has 12 fea-
tures including energy consumption. A training—testing split of 75/25%
is applied to the dataset leaving 1036 samples for training, and 346
samples for testing. Since the data is a time series, the temporal order
is maintained instead of shuffling the dataset during the split. Splitting
the data allows objective model evaluation by testing a trained model
on data it has never seen before. The testing dataset remains untouched
during model training and tuning.

The training data is further divided into a validation dataset of
259 samples. This dataset is used to test model configurations and
tune hyperparameters without revealing the final test set which is held
for unbiased evaluation. Table 3 shows the range of hyperparameters
tested using a grid search approach. This involves training a model
using each configuration and validating the result using the validation
dataset. The best model configuration is selected and the model is
trained, and final results are collected on the testing dataset.

Each of the models is trained over 5 epochs, in which we divide the
data into mini-batches of 16 samples. The Adam optimizer was used,
with a learning rate of 0.001 (Kingma and Ba, 2014).

4.5. Model evaluation

Since the purpose of the model developed in this paper is to predict
the consumption of energy in a particular WWTP in Melbourne, the
metrics used to evaluate the model should reflect how closely the
predicted time series reflects the true values of the data. Therefore,
we select metrics that capture the closeness of the fit of the predicted
data to the real data. The coefficient of determination R?> measures how
well the variance of the true data is captured by the model, with values
closer to one representing a better fit, and is calculated as follows:

T s 2
Z;:] (xt,EC - xr,EC)

R*=1- =2 —
Z[:l (xr,EC - X)

(12)
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Table 2
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Explanation for causal graph edges shown in Fig. 2(b) based on domain knowledge (see Refs. Carrera et al. (2004), de Almeida Fernandes et al. (2018), Dubber and Gray
(2010), Henze et al. (2008), Metcalf et al. (1991), Xie et al. (2024), Zhou and Xu (2019)).

Edge

Justification

BOD

Inflow directly affects the outflow in wastewater treatment plants.

Higher influent flow rates will result in higher energy consumption.

Outflow rates affect the pumping energy requirement.

High inflow rates affect the concentration of key wastewater constituents through dilution or loading (Henze et al., 2008). High inflow rates
can also affect scouring rates in some systems, again affecting concentrations (Xie et al., 2024).

The energy demand for wastewater treatment is closely linked to the removal of organic matter and nutrients. Therefore, the concentration of
these components has a direct causal link to the energy consumption (Hamawand, 2023).

Temperature affects biological processes and oxygen solubility, influencing the energy requirements (Metcalf et al., 1991).

Temperature can affect microbial activity, potentially influencing BOD (de Almeida Fernandes et al., 2018).

Temperature affects nitrification rates (Zhou and Xu, 2019).

Humidity may affect evaporation rates and potentially influence energy consumption. The two features have shown a correlation in previous

works and therefore this is considered a confounded relationship (Bagherzadeh et al., 2021).

Significant precipitation events result in higher inflows to wastewater treatment plants.

COD and BOD are related measures of organic matter. The relationship is confounded by the biodegradability of the organic matter present

(Dubber and Gray, 2010).

High COD can inhibit nitrification, affecting NH4-N removal, but this relationship is uncertain and confounded by factors like carbon-to-nitrogen

ratio and oxygen availability (Carrera et al., 2004).

Like COD, high BOD can affect nitrification, but this relationship is uncertain and confounded by factors such as oxygen competition between

heterotrophs and nitrifiers (Henze et al.,, 2008).

NH4N is a component of TN, but their relationship can be influenced by various factors in the treatment process. For example, nitrification

and denitrification can affect total nitrogen concentration without changing ammonia concentration (Henze et al., 2008).

Average temperature is a function of both the maximum and minimum temperatures.

Table 3

Shows hyperparameters for grid search. Bold values indicate

the final model hyperparameters.

Parameter Values
Number of Hidden Nodes (DisenConv) 8, 16, 32, 64
Size of period s (number of steps) 3,57

Size of period / (number of steps) 30, 45, 60
Number of neighborhood routing iterations 3, 5, 7
Number of Channels K 2,3, 4
Number of layers (LSTM) 2,3

Number of Hidden Nodes (RNNs) 16, 32, 64

where x, g represents the true value of the energy consumption at time

t, %, gc is the model predicted value, and x is the mean value of energy

consumption across the period.

10

Along with the coefficient of determination, we use root mean
squared error (RMSE) to measure the magnitude of the difference
between the predicted and actual values. Lower values of RMSE are
better. RMSE is calculated as follows:

T
1 .
RMSE = 4| - Z{ (x5c = R1p0) 13)

Mean absolute percentage error (MAPE) and mean absolute error
(MAE) are two common metrics used to assess how well a model
performs. MAPE expresses the difference between predicted and actual
values as a percentage, while MAE focuses on the average absolute
difference in their units. They are calculated as follows:

T
1 N
MAE = — r; IX.£c = Ecl, a4
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Table 4
Results comparison between other ML models used for EC prediction and the KEGD-EC framework. Bold results show the best performance.
Model RMSE R? MAE MAPE Source
GBM 26.78 -0.41 20.27 0.07 Bagherzadeh et al. (2021)
RF 26.06 -0.34 19.48 0.07 Torregrossa et al. (2018)
kNN 32.90 -1 26.67 0.1 Alali et al. (2023)
LSTM (RNN) 33.25 -0.74 24.39 0.09 Harrou et al. (2023)
ANN 29.27 -0.36 21.13 0.08 Picos-Benitez et al. (2020)
Transformer 29.14 -0.63 22.85 0.08 -
KEGD-EC (FCI) 14.23 0.65 10.91 0.04 -
KEGD-EC (Domain Knowledge) 10.50 0.81 7.52 0.03 -
MAPE 100 z X pc — X1 5C % 15) similar datasets. KEGD-EC, using either the domain knowledge graph
= — — | %. C .
T 4 e or the FCI graph, demonstrates significant improvement across all

5. Results & discussion

In this work, we assess the ability of the KEGD framework proposed
in Fig. 1 for forecasting the energy consumption of a wastewater
treatment plant in Melbourne, Australia. To evaluate our approach
comprehensively, we conducted comparisons against both traditional
machine learning methods and state-of-the-art deep learning architec-
tures. The traditional baseline models, identified as effective in recent
literature, include gradient-boosted machine (GBM), random forest
(RF), k-Nearest-Neighbors (kNN), LSTM, and ANN. To ensure com-
parison against current state-of-the-art approaches, we implemented
a Transformer model incorporating multi-head self-attention mecha-
nisms and positional encoding, which has shown remarkable success
in temporal modeling tasks (Farahani et al., 2024). This architecture
was specifically adapted for time-series forecasting through temporal
attention masking and specialized positional embeddings (Zhou et al.,
2022). Furthermore, the KEGD framework was trained separately us-
ing two different causal graph structures — one derived from expert
domain knowledge and another from Fast Causal Inference (FCI) - to
demonstrate the importance of graph structure selection on forecasting
accuracy.

Table 4 compares the model results from each model. All models
were trained, validated and tested on the same datasets for trans-
parency. The trained models were tested on three subsets of the testing
data and the results averaged between the results for each model to
get an understanding of the consistency of the model n. This ensures
that the results presented are consistently achieved across different
training data and not perchance results from a single testing set. The
models were all trained on the same system equipped with an AMD
Ryzen 7 5800H with Radeon Graphics, 3201 Mhz, 8 Cores, 16 Logical
Processors, 32 GB RAM, with access to an NVIDIA GeForce RTX 3080
16GBGDDR6 GPU.

5.1. Impact of disentanglement

In a previous ablation study, the authors examined the impact
of including the disentanglement mechanism in the graph convolu-
tion (Allen and Cordiner, 2024). Using a reduced network pairing
the different graph convolution methods to an LSTM architecture, the
authors showed that the inclusion of the disentanglement reduced
the RMSE on a subset of the energy consumption data by 61.5%.
These results underscore the importance of the overall disentangle-
ment approach in capturing complex relationships between process
variables. The study demonstrated that standard graph convolution
methods struggle to identify latent factors driving energy consumption.
The significant improvement suggests that the disentangled represen-
tation enables the model to better capture and separate the various
factors influencing WWTP energy consumption, such as operational
parameters, environmental conditions, and process dynamics.

5.2. Model comparison

Table 4 showcases the superior performance of our KEGD-EC model
compared to established models documented in the literature for
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relevant metrics. Most notably, the results demonstrate an average re-
duction in RMSE of 59.7% between KEGD-EC using domain knowledge
(10.50MWh), and the next best model (RF) (26.06 MWh). Furthermore,
KEGD-EC stands alone as the only model with a positive coefficient of
determination. This is a significant result, showing that the inclusion of
causal knowledge in machine learning facilitates better learning than
purely data-driven algorithms despite a relatively limited dataset. This
presents an opportunity for recently digitized industries that may not
have access to sufficient historical data to train larger models.

The method of knowledge graph construction significantly influ-
enced model performance in our study. The Knowledge-Enhanced
Graph Deep Learning (KEGD) model using domain knowledge outper-
formed the one utilizing Fast Causal Inference (FCI), highlighting the
value of domain expertise in constructing causal process graphs for
complex systems like WWTPs. However, both KEGD models surpassed
other machine learning approaches, with the FCI-based model offering
greater scalability.

While domain knowledge proved superior for our 12-node graph, its
time and expertise requirements could hinder implementation in larger
systems with hundreds or thousands of nodes. Future research should
therefore focus on hybrid approaches that combine FCI’s scalability
with targeted domain knowledge refinement. This strategy could yield
models that balance accuracy and scalability, making them suitable for
larger, more complex systems.

Fig. 3 visually corroborates KEGD-EC’s superiority by plotting pre-
dicted energy consumption against actual values (blue line). As evident,
the KEGD-EC with domain knowledge (KEGD-EC (DK)) predictions (or-
ange line) closely align with the actual trend, accurately capturing the
data’s shape and overall movement. In contrast, other models consis-
tently deviate, either overestimating or underestimating true consump-
tion. Such inconsistencies, with significant over- or under-predictions,
can lead to operational challenges due to unreliable estimates of energy
use, potentially resulting in inefficiencies and costly overconsumption.

An examination of Fig. 3 reveals a limitation in the model’s predic-
tive capability during periods of atypically high energy consumption.
Specifically, the model struggled to capture the shape of the data
between April 2018, when the energy consumption of the ETP was
unusually elevated. This sudden spike in energy usage suggests the
influence of external factors on the water treatment process. Upon
investigation of local events, we found that this anomalous increase in
energy consumption coincides with bushfires in the Thompson and Up-
per Yarra catchments of Melbourne. These fires, which began on March
1st, 2018, and were not contained until March 25th, 2018 (Thwaites
et al., 2018), likely contributed significantly to the observed spike. The
aftermath of such events can substantially impact water quality, as
rainfall washes ash and sediment into waterways, necessitating more
intensive treatment processes. Consequently, the production of clean
water requires more energy than usual, as evidenced by the increased
consumption shown in Fig. 3.

The model’s inability to predict this spike can be attributed to the
absence of relevant data in our dataset. Information about bushfire
occurrences or the quantity of solids in the water stream was not
included, leaving the model unable to account for these factors in its



L. Allen and J. Cordiner

oo
[
(==}

w
e
(==}

w
Do
(=}

o
fe=d
(=}

[N
[o3}
(==}

260 1

Energy Consumption, MWh/day
N R
BN
o

Computers and Chemical Engineering 194 (2025) 108982

—— True Data — RF
GBM ANN -
-—= KNN

Transformer

—— KEGD-EC (FCI)
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Fig. 3. Comparison of KEGD-EC prediction on testing data, with the FCI graph model shown in red and the domain knowledge-based model shown in orange, compared with
other model performance including GBM (olive), kNN (green), RF (brown), ANN (purple), Transformer (cyan) and LSTM (gray) with the true data plotted (blue).

predictions. This limitation underscores the importance of incorporat-
ing area-specific practitioner knowledge in the construction of causal
knowledge graphs. It is worth noting that the expert knowledge used
to construct Fig. 2(b) was based on experience managing WWTPs in
the UK. Consequently, the effects of bushfires, which are more common
in Australia, were not considered in the original model. This oversight
resulted in the model’s inability to anticipate this particular deviation in
energy consumption. Had there been consideration for region-specific
environmental factors such as bushfires in the causal graph, the model
might have been better equipped to predict or at least account for such
anomalies. This observation highlights the need for adaptable, region-
specific models that can incorporate local environmental factors and
potential extreme events in their predictive frameworks.

The inclusion of domain knowledge in the formation of the knowl-
edge graph is an important step for future work since an experienced
practitioner with knowledge of the local area would have been able to
highlight the effect of bushfires. Therefore, when creating the knowl-
edge graph a binary node to represent bushfires could have been
included, or the dataset could have been expanded to include reading
the percentage of solids in the water supply which would give the
model the context required to make accurate predictions.

5.3. Model robustness

Alongside performance metrics, a model applied to manufacturing
systems must demonstrate resilience to noisy data, as this is a hallmark
of industrial processes. In this work, the robustness of a model is tested
by adding increasing amounts of Gaussian noise to the testing dataset.
The performance is recorded for each model for each noise level and
plotted in Fig. 4. We add noise to each testing dataset using NumPy
where the noise has the same shape as the data, but the noise intensity
is increased by altering the standard deviation starting at ¢ = 0 (no
noise) through to ¢ = 10 (Harris et al., 2020).

What is clear is that the traditional ML methods struggle to cope
with increasing noise in the testing dataset. For the GBM, RF and
KNN models, the performance significantly decreases as o increases,
shown by the increase in RMSE, MAE and MAPE values, as well as
the decrease in the coefficient of determination. Deep learning models,
on the other hand, show a far greater resilience to the noise in the
testing data. The ANN, LSTM and Transformer-based models show little
change in performance as the noise increases, in some cases. This shows
the flexibility of these models to adapt to noise levels. Deep learning
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models have a far deeper structure compared to ML models and have a
larger number of parameters that allow them to capture complex non-
linearities providing them with greater flexibility to respond to noise.
In particular, we see the LSTM model, while initially exhibiting worse
performance than the ANN as per Table 4, responds better to increased
noise owing to its noted ability to handle temporal data.

Since KEGD-EC also makes use of RNN deep learning architectures
(LSTM, GRU) we see it maintains a far higher performance than other
models, even despite increased noise levels in the testing data. It is
interesting to note that KEGD-EC has a much higher performance than
traditional LSTM models despite integrating RNN architectures. This
improvement must be put down to the inclusion of causal knowledge.
Causal knowledge included in this away enables the model to go
beyond learning temporal information as with the tested RNN archi-
tectures, facilitating a deeper understanding of the cause-and-effect
relationships to gain a more accurate and meaningful prediction.

The KEGD-EC models, using both FCI and domain knowledge graphs,
demonstrate superior resilience to noise compared to other models.
While there is a slight difference in their performance under increasing
noise, both versions maintain high accuracy across all noise levels. The
FCI graph-based model shows more consistent performance, while the
domain knowledge graph version experiences a minor increase in error
around ¢ = 5 before improving again. This subtle difference could
be attributed to variations in graph structures stemming from data-
driven (FCI) versus expert-based (domain knowledge) approaches. For
instance, the domain knowledge graph might overemphasize certain
factors like precipitation, based on UK-centric expertise, which may
not perfectly align with Melbourne’s WWTP conditions. Despite this,
both KEGD-EC versions significantly outperform all other models across
all noise levels, highlighting the robustness gained from combining
causal knowledge with deep learning architectures in noisy industrial
environments.

6. Conclusions

In this study, we present KEGD-EC, a novel knowledge-enhanced
graph disentanglement network for predicting energy consumption in
wastewater treatment plants (WWTPs). Our approach leverages the
power of fast causal inference (FCI) to generate a knowledge graph,
extracting and encoding causal relationships between features like
hydraulics, water quality, and even meteorological conditions. By sepa-
rating the underlying cause-and-effect relationships from temporal data
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Fig. 4. Comparison of model robustness for each model. Plots show the change in performance for each metric with an increasing noise of the testing data where the x-axis
represents the standard deviation of the noise applied to the testing data. (a) RMSE, (b) MAE, (c¢) R?> Score, (d) MAPE.

patterns, we overcome challenges posed by noisy data streams and
highly correlated variables in these intricate systems.

The disentanglement proves crucial, leading to significant improve-
ments in prediction accuracy compared to other top-performing ma-
chine learning models, including deep learning architectures like ANNs
and RNNs and other graph-based methods using spectral convolutional
approaches. Notably, we achieved a 59.7% reduction in RMSE com-
pared to the next best model, demonstrating exceptional accuracy.
Moreover, KEGD effectively captures 81% of the variance in the energy
consumption data.

Interestingly, KEGD-EC outperforms even similar RNN architectures
like LSTMs. This success, despite limited training data, suggests that
the inclusion of causal knowledge and disentanglement mech-
anism together significantly reduce training data requirements.
This opens possibilities for newly digitized industries, where traditional
deep learning methods struggle with insufficient historical data.

The effectiveness of this architectural design is demonstrated
through ablation studies. Removing the disentanglement mechanism
results in a 61.5% increase in RMSE, while using a standard graph
structure without knowledge enhancement reduces model performance
by 26%. These results validate that each component makes a necessary
contribution to the framework’s overall performance.
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An improvement in EC prediction enables WWTPs to optimize their
operations through proactively adjusting treatment processes to mini-
mize energy consumption, effectively participating in demand response
programs to support grid stability, scheduling energy-intensive oper-
ations during off-peak hours, and strategically planning maintenance
activities. Accurate prediction also enables plants to better integrate
renewable energy sources, optimize hydraulic management, and make
informed long-term decisions on capacity planning and technology
investments, ultimately leading to substantial cost savings and im-
proved environmental sustainability. Future work should consider the
integration of process parameters into the dataset, allowing online
optimization of plant parameters in response to changing external
conditions that may affect energy consumption.

Importantly, our study revealed that while both data-driven (FCI)
and domain knowledge-based approaches outperformed traditional
methods, the model using domain expertise for graph construction
showed superior performance. This finding underscores the critical
importance of incorporating specific domain knowledge in modeling
complex systems like WWTPs. However, the FCI-based model still out-
performed other machine learning approaches, offering a more scalable
solution for larger systems where comprehensive domain expertise
might be challenging to obtain.
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The robustness of KEGD-EC was evident in its resilience to in-
creasing levels of noise in the testing data, with both versions sig-
nificantly outperforming other models across all noise levels. This
demonstrates the value of integrating causal knowledge with deep
learning architectures in noisy industrial environments.

Despite these advances, our model showed limitations in predicting
anomalous events, such as the energy consumption spike related to
bushfires. This highlights the need for incorporating more diverse data
sources and region-specific expertise in future iterations of the model.

Looking ahead, future research should explore hybrid approaches
that combine data-driven causal discovery with targeted domain knowl-
edge, potentially offering a balance between accuracy and scalability.
Expanding the dataset to include a greater range of operational scenar-
ios and external factors could enhance the model’s predictive accuracy
and generalizability. This includes consideration of the online deploy-
ment of a trained KEGD model in a real WWTP environment. Such
testing would validate the model’s performance, and give insights into
its long-term reliability.
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