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1. Introduction (extended)

In the paper, K is a field of arbitrary characteristic (not necessarily algebraically closed); module means 

a left module; for a commutative algebra A, D(A) is the algebra of differential operators on A and DerK(A)

is the left A-module of K-derivations of A.

Simplicity criteria for the algebra D(A) of differential operators on the algebra A which is a domain of 

essentially finite type. Theorem 1.1 and Theorem 1.3 are simplicity criteria for the algebra D(A) where A

is a domain of essentially finite type over a perfect field (Theorem 1.1) and a commutative algebra over an 

arbitrary field (Theorem 1.3), respectively.

The aim of the paper is to generalize the above results for a large class of algebras – the Δ-locally 

nilpotent algebras – which includes the algebra D(A) of differential operators on a commutative algebra A

and all its subalgebras that contain the algebra A. The last class of algebras contains many exotic algebras 

(non-Noetherial and not finitely generated).

Theorem 1.1. ([8, Theorem 1.1]) Let a K-algebra A be a commutative domain of essentially finite type over 

a perfect field K and ar be its Jacobial ideal. The following statements are equivalent:

1. The algebra D(A) of differential operators on A is a simple algebra.

2. For all i ≥ 1, D(A)ai
rD(A) = D(A).

3. For all k ≥ 1, i ∈ Ir and j ∈ Jr, D(A)Δ(i, j)kD(A) = D(A).

The elements Δ(i, j) are defined in Section 3 (they are the non-zero minors of maximal rank in the Jacobi 

matrix). Theorem 1.1 presents a short proof of an important old result in the area of differential operators. 

Namely, if the algebra A is a smooth then the algebra D(A) is simple: If the algebra A is smooth, i.e. ar = A

(the Jacobian Criterion of Regularity), then by the second condition of Theorem 1.1 the algebra D(A) is a 

simple algebra. Theorem 1.1 reveals the reason why for some singular algebras A their rings of differential 

operators are simple algebras. For example, this is the case for the cusp.

Theorem 1.2. Let a K-algebra A be a commutative domain of essentially finite type over a perfect field K

and ar be its Jacobian ideal. The following statements are equivalent:

1. The algebra D(A) of differential operators on A is a simple algebra.

2. For every maximal ideal m of A that contains the Jacobian ideal ar, the algebra D(A)m is a simple 

algebra.

The proof of Theorem 1.2 is given in Section 3.

Simplicity criterion for the algebra D(R) of differential operators on an arbitrary commutative algebra 

R. An ideal a of the algebra R is called DerK(R)-stable if δ(a) ⊆ a for all δ ∈ DerK(R). Theorem 1.3.(2) is 

a simplicity criterion for the algebra D(R) where R is an arbitrary commutative algebra. Theorem 1.3.(1) 

shows that every nonzero ideal of the algebra D(R) meets the subalgebra R of D(R). If, in addition, the 

algebra R = A is a domain of essentially finite type, Theorem 1.3.(3) shows that every nonzero ideal of the 

algebra D(R) contains a power of the Jacobian ideal of A.

Theorem 1.3. ([8, Theorem 1.2]) Let R be a commutative algebra over an arbitrary field K.



V.V. Bavula / Journal of Pure and Applied Algebra 229 (2025) 107861 3

1. Let I be a nonzero ideal the algebra D(R). Then the ideal I0 := I ∩ R is a nonzero DerK(R)-stable ideal 

of the algebra R such that D(R)I0D(R) ∩ R = I0. In particular, every nonzero ideal of the algebra D(R)

has nonzero intersection with R.

2. The ring D(R) is not simple iff there is a proper DerK(R)-stable ideal a of R such that D(R)aD(R)∩R =

a.

3. Suppose, in addition, that K is a perfect field and the algebra A = R is a domain of essentially finite 

type, ar be its Jacobian ideal, I be a nonzero ideal of D(A), and I0 = I ∩ A. Then ai
r ⊆ I0 for some 

i ≥ 1.

The Δ-locally nilpotent modules. The following notations will remain fixed in the paper: A is a K-algebra, 

M is an A-module, ∅ �= Δ ⊆ EndA(M) and Δi = Δ · · · Δ = {δ1 · · · δi | δ1, . . . , δi ∈ Δ} (i ≥ 1 times),

N(M) = NΔ(M) :=
⋃

i≥0

NΔ(M)i where N(M)i = NΔ(M)i := annM (Δi+1) = {m ∈ M | Δi+1m = 0}

and N(M)−1 := 0. Clearly, N(M)−1 ⊆ N(M)0 ⊆ · · · ⊆ N(M)n ⊆ · · · is an ascending chain of A-

submodules of M such that

ΔN(M)i ⊆ N(M)i−1 for all i ≥ 0.

Definition. The A-module NΔ(M) is called the Δ-locally nilpotent A-submodule of M . The A-module M

is called the Δ-locally nilpotent A-module if M = NΔ(M).

In general situation, the A-submodule NΔ(M) of M is a Δ′-locally nilpotent A-module where Δ′ =

{δ′ | δ ∈ Δ} and δ′ is the restriction of the A-homomorphism δ to NΔ(M). Abusing the language, we call 

the A-module NΔ(M) the Δ-locally nilpotent A-module.

A map f ∈ EndA(M) is called a locally nilpotent map if M =
⋃

i≥0 kerM (f i+1). If M is a Δ-locally 

nilpotent A-module then every map δ ∈ Δ is a locally nilpotent map but not vice versa, in general, see the 

example below.

Example. Let M =
⊕n

i=1 Aei be a free A-module of rank n ≥ 2 where the set {e1, . . . , en} is a free basis 

for M ; Δ = {δ+, δ−} ⊆ EndA(M) where δ±(ei) = ei±1 for i = 1, . . . , n and e0 = en+1 = 0. Clearly, δn
± = 0, 

the maps E+ = δ+δ− and E− = δ−δ+ are nonzero idempotents such that E+(ei) = ei for i = 2, . . . , n and 

E+(e1) = 0, E−(ei) = ei for i = 1, . . . , n − 1 and E−(en) = 0. Therefore, the A-module M is not Δ-locally 

nilpotent. In fact, NΔ(M) = 0.

Lemma 1.4. If Δ is a finite set of commuting A-homomorphism of an A-module M . Then the A-module is 

Δ-locally nilpotent iff all the maps in Δ are locally nilpotent maps.

Proof. Straightforward. �

The Δ-locally nilpotent algebras NΔ(E) where Δ ⊆ DerA(E). Suppose, in addition, that A is a subalgebra 

of an algebra E and Δ ⊆ DerA(E), the set of A-derivations of the algebra E (δ ∈ DerA(E) if δ is a derivation 

of the algebra E and an A-homomorphism; in particular, δ(A) = 0). Then EΔ :=
⋂

δ∈Δ kerE(δ) is the algebra 

of Δ-constants, and A ⊆ EΔ.

Proposition 1.5. Let A be a subalgebra of an algebra E and Δ ⊆ DerA(E). Then:
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1. The A-module NΔ(E) =
⋃

i≥0 NΔ(E)i is a subalgebra of E such that A ⊆ NΔ(E)0 = EΔ, 

NΔ(E)iNΔ(E)j ⊆ NΔ(E)i+j for all i, j ≥ 0, i.e. the set {NΔ(E)i}i≥0 is an ascending filtration of 

the algebra NΔ(E) elements of which are A-modules.

2. For all i ≥ 0, ΔNΔ(E)i ⊆ NΔ(E)i−1.

Definition. The algebra NΔ(E) is called the Δ-locally nilpotent algebra and the filtration {NΔ(E)i}i≥0 is 

called the order filtration on the algebra NΔ(E). We say that an element a ∈ NΔ(E)i\NΔ(E)i−1 has order

i which is denoted by ord(a) = i.

The Δ-locally nilpotent algebras are the main object of study of the paper. We clarify their ideal structure 

and give several simplicity criteria for them. Below are examples of several large classes of Δ-locally nilpotent 

algebras.

Example (The algebras of differential operators). Let A be a commutative K-algebra, E :=

EndK(A) ⊇ EndA(A) ≃ A and Δ = {ada | a ∈ A} where ada : E → E, f �→ [a, f ] := af − fa is the

inner derivation of the algebra E determined by the element a. By the very definition, Δ ⊆ DerK(E) and

NΔ(E) = D(A) (1)

is the algebra of differential operators on the algebra A and the filtration {NΔ(E) = D(A)i}i≥0 is the order 

filtration on the algebra D(A), see Section 3 for details.

Example (Subalgebras of differential operators D(A) that contain A). A subalgebra R of the 

algebra D(A) of differential operators on a commutative algebra A that contains the algebra A is a Δ-locally 

nilpotent algebra w.r.t. Δ = {ada | a ∈ A} and the induced filtration {Ri := R ∩ D(A)i}i≥0 is the Δ-order 

filtration on R. See Proposition 2.4 for examples.

Example. Suppose that the algebra E admits a set of generators {ai | i ∈ I} such that the algebra E is a 

Δ-locally nilpotent algebra where Δ = {adai
| i ∈ I} ⊆ DerA(E) and A = Z(E) is the centre of the algebra 

E.

Example. The Weyl algebra

An = K〈x1, . . . , xn∂1, . . . , ∂n | [∂i, xj ] = δij , xixj = xjxi, ∂i∂j = ∂j∂i, 1 ≤ i, j ≤ n〉

is a Δ-locally nilpotent algebra where Δ = {adxi
, ad∂i

| i = 1, . . . , n} where [a, b] := ab − ba and δij is the 

Kronecker delta. If the field K has characteristic zero then Z(An) = K and the Δ-order filtration {An,i}i≥0

coincides with the standard filtration on An with respect to the canonical generators x1, . . . , xn, ∂1, . . . , ∂n

of the algebra An. Namely,

An,i =
∑

|α|+|β|≤i

Kxα∂β

where α, β ∈ N
n and |α| = α1 + · · · + αn for α = (α1, . . . , αn). For all i ≥ 0, dimK(An,i) < ∞. The 

Weyl algebra An is a simple algebra if the field K has characteristic zero. The Weyl algebra An is also a 

Δ-locally nilpotent algebra where Δ = {adxi
| i = 1, . . . , n} or Δ = {ad∂i

| i = 1, . . . , n} but in these cases 

the components of the Δ-order filtrations are infinite dimensional.

Example. Let n be a nilpotent Lie algebra. Then its universal enveloping algebra U = U(n) is a Δ-locally 

nilpotent algebra where Δ = {adx | x ∈ n} ⊆ DerA(U) and A = Z(U) = UΔ is the centre of the algebra U .
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Example. Let s be a solvable Lie algebra. Then n = [s, s] is a nilpotent Lie algebra and the universal 

enveloping algebra U = U(s) is a Δ-locally nilpotent algebra where Δ = {adx | x ∈ n} ⊆ DerA(U) and 

A = UΔ is the centralizer of n in the algebra U .

Example. Let G be a semi-simple Lie algebra and G = n− ⊕ H ⊕ n+ be its triangular decomposition where 

H is a Cartan subalgebra of G. Then the universal enveloping algebra U = U(G) is a Δ+-locally nilpotent 

(resp., Δ−-locally nilpotent) algebra where Δ+ = {adx | x ∈ n+} ⊆ DerA+
(U) (resp., Δ− = {adx | x ∈

n−} ⊆ DerA−
(U)) and A+ = UΔ+ (resp., A− = UΔ−).

Example (The Poisson universal enveloping algebra of a Poisson algebra). Let P be a Poisson 

algebra. In [9], for each Poisson algebra P explicit sets of (associative) algebra generators and defining 

relations are given for its Poisson universal enveloping algebra U(P). It follows at once from this result that 

the Poisson universal enveloping algebra U(P) is a Δ-locally nilpotent algebra w.r.t. Δ = {ada | a ∈ P}.

Example (The algebra of Poisson differential operators). Let (P, {·, ·}) be a Poisson algebra. In 

[9], the algebra of Poisson differential operators PD(P) was introduced and studied. Since P ⊆ PD(P) ⊆

D(P), the algebra PD(P) is a Δ-nilpotent algebra where Δ = {adp | p ∈ P}.

Example. Let A be a commutative algebra and {δ1, . . . , δn} be a set of commuting K-derivations of the 

algebra A, R = A[x1, . . . , xn; δ1, . . . , δn] be an iterated Ore extension. The algebra R is generated by the 

algebra A and elements x1, . . . , xn subject to the defining relations:

xixj = xjxi (i �= j) and xia = axi + δi(a) (a ∈ A, 1 ≤ i ≤ n).

The algebra R =
⊕

α∈Nn Aδα =
⊕

α∈Nn δαA is a free left and right A-module with free basis {δα}α∈Nn

where δα = δα1

1 · · · δαn
n and α = (α1, . . . , αn). In particular, the algebra A is a subalgebra of R. The 

algebra R is a Δ-locally nilpotent algebra where Δ = {ada | a ∈ A} ⊆ DerA(R). Let {Ri} be the Δ-order 

filtration on R. Then R0 = RΔ = CR(A) is the centralizer of the algebra A in R. In particular, A ⊆ R0

and A +
∑n

i=1 Axi = A +
∑n

i=1 xiA ⊆ R0 +
∑n

i=1 R0xi = R0 +
∑n

i=1 xiR0 (since [xi, R0] ⊆ R0 for all 

i = 1, . . . , n).

Example. Certain generalized Weyl algebras of rank n are Δ-locally nilpotent algebras, see Lemma 2.3 for 

details.

The ideal structure of Δ-stable ideals of Δ-locally nilpotent algebras. An ideal a of an algebra E is called 

Δ-stable if Δa ⊆ a (δ(a) ⊆ a for all δ ∈ Δ) where Δ ⊆ DerA(E). Theorem 1.6 describes the ideal structure 

of Δ-stable ideals of Δ-locally nilpotent algebras. This theorem is used in many proofs of the paper.

Theorem 1.6. Let A be a subalgebra of an algebra E, Δ ⊆ DerA(E), a be a nonzero Δ-stable ideal of the 

algebra NΔ(E) and a0 := a ∩ NΔ(E)0 = a ∩ EΔ. Then:

1. The ideal a0 �= 0 is a nonzero ideal of the algebra NΔ(E)0, the ideal a′ = NΔ(E)a0NΔ(E) is a nonzero 

ideal of the algebra NΔ(E) such that a′ ⊆ a and a′ ∩ NΔ(E)0 = a0.

2. If, in addition, the algebra NΔ(E)0 is a commutative algebra then [NΔ(E)1, a0] ⊆ a0.

The ideal structure of the Δ-locally nilpotent algebras NΔ(E) where A is a commutative algebra. For a 

subset A′ of the algebra A, CA(A′) := {a ∈ A | aa′ = a′a for all a ∈ A′} is the centralizer of the set A′ in A. 

The centralizer CA(A′) is a subalgebra of A.
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Theorem 1.7. Let A be a commutative subalgebra of an algebra E, Δ = {ada | a ∈ A′} where A′ is a non-

empty subset of A (e.g., A′ = A), a be a nonzero ideal of the algebra NΔ(E) and a0 := a∩NΔ(E)0 = a∩EΔ. 

Then:

1. a0 �= 0 is a nonzero ideal of the algebra NΔ(E)0 = EΔ = CE(A′). The ideal a′ = NΔ(E)a0NΔ(E) of 

NΔ(E) is a nonzero ideal such that a′ ∩ NΔ(E) = a0.

2. If, in addition, the algebra NΔ(E)0 is a commutative algebra then [NΔ(E)1, a0] ⊆ a0.

Using Theorem 1.7, we clarify the ideal structure of subalgebras of D(A) that contain A, Theorem 1.8. 

This result is a generalization of Theorem 1.3.

Theorem 1.8. Let A be a commutative algebra, D(A) be the algebra of differential operators on A, R be a 

subalgebra of D(A) such that A ⊆ R (e.g., R = D(A)), and Ri = R ∩ D(A)i for i ≥ 0. If a is a nonzero 

ideal of the algebra R then a0 := a ∩ A �= 0 is a nonzero ideal of the algebra A such that [R1, a0] ⊆ a0 and 

Ra0R ∩ A = a0. The condition that [R1, a0] ⊆ a0 is equivalent to the condition that [DR, a0] ⊆ a0 where 

DR := R1 ∩ DerK(A) (if R = D(A) then DR = DerK(A)).

The proofs of Theorem 1.6, Theorem 1.7 and Theorem 1.8 are given in Section 2.

Corollary 1.9. Let A be an algebra that admits a set of generators {ai | i ∈ I} such that the algebra A is a 

Δ-locally nilpotent algebra where Δ = {adai
| i ∈ I} ⊆ DerZ(A)(A) (e.g., the universal enveloping algebra 

U(n) of a nilpotent algebra). Then every nonzero ideal of A meets the centre Z(A) of A.

Proof. The zero term of the Δ-order filtration of the algebra A is AΔ = Z(A) the centre of the algebra A. 

Now, the statement follows from Theorem 1.7.(1). �

Simplicity criteria for subalgebras R of D(A) that contains A. The algebras R are a very wide class of 

algebras and they are important examples of Δ-locally nilpotent algebras. Even in the case of the polynomial 

algebra A = K[x] over a field of characteristic zero, the structure of the algebras R ⊆ D(K[x]) is not yet 

completely understood as there are exotic algebras (not finitely generated and not Noetherian). Some 

examples of such algebras are considered in Proposition 2.4. In particular, their prime spectra are classified. 

A submodule of a module is called an essential submodule if it meets all the nonzero submodules.

Theorem 1.10. Let A be a commutative domain of essentially finite type over a perfect field, ar be its Jacobian 

ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A and is an 

essential A-submodule of D(A), and Ri = R ∩ D(A)i for i ≥ 0. For each i ≥ 1, let bi := l.annA(D(A)i/Ri)

and ci := r.annA(D(A)i/Ri). Then bi �= 0, ci �= 0, bi+1
i ⊆ ci and ci+1

i ⊆ bi for all i ≥ 0 and the following 

statements are equivalent:

1. The algebra R is a simple algebra.

2. For all integers i ≥ 1, D(A)ai
rD(A) = D(A) and RbiciR = R.

3. The algebra D(A) a simple algebra and RbiciR = R for all i ≥ 1.

4. For all integers i ≥ 1, D(A)ai
rD(A) = D(A), Rb2

1R = R and Rb1 · · · bi−1b
2
i R = R.

5. The algebra D(A) a simple algebra, Rb2
1R = R and Rb1 · · · bi−1b

2
i R = R for all i ≥ 2.

6. For all integers i ≥ 1, D(A)ai
rD(A) = D(A), Rc2

1R = R and Rc1 · · · ci−1c
2
i R = R.

7. The algebra D(A) a simple algebra, Rc2
1R = R and Rc1 · · · ci−1c

2
i R = R for all i ≥ 2.

The proof of Theorem 1.10 is given in Section 3. Using Theorem 1.10, we obtain Theorem 1.11 which is 

another simplicity criterion for the algebra R.
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Theorem 1.11. Let A be a commutative domain of essentially finite type over a perfect field, ar be its Jacobian 

ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A, and 

S−1R = S−1D(A) for some multiplicative subset S of A. Fix elements si, ti ∈ S such that si ∈ bi and 

ti ∈ ci for i ≥ 1 (see Theorem 1.10 for the definition of the ideals bi and ci). Then the following statements 

are equivalent:

1. The algebra R is a simple algebra.

2. For all integers i ≥ 1, D(A)ai
rD(A) = D(A) and RsitiR = R.

3. The algebra D(A) a simple algebra and RsitiR = R for all i ≥ 1.

4. For all integers i ≥ 1, D(A)ai
rD(A) = D(A), Rs2

1R = R and Rs1 · · · si−1s2
i R = R.

5. The algebra D(A) a simple algebra, Rs2
1R = R and Rs1 · · · si−1s2

i R = R for all i ≥ 2.

6. For all integers i ≥ 1, D(A)ai
rD(A) = D(A), Rt2

1R = R and Rt1 · · · ti−1t2
i R = R.

7. The algebra D(A) a simple algebra, Rt2
1R = R and Rt1 · · · ti−1t2

i R = R for all i ≥ 2.

The proof of Theorem 1.11 is given in Section 3.

Theorem 1.12. Let A be a commutative domain of essentially finite type over a perfect field, ar be its Jacobian 

ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A and is 

an essential A-submodule of D(A), and Ri = R∩D(A)i for i ≥ 0. For each i ≥ 1, let bi = l.annA(D(A)i/Ri)

and ci = r.annA(D(A)i/Ri). Then the following statements are equivalent:

1. The algebra R is a simple algebra.

2. The algebra D(A) is a simple algebra and for every maximal ideal m of A that contains one of the ideals 

bi (i ≥ 1), the algebra Rm is a simple algebra.

3. For every maximal ideal n of A that contains the Jacobian ideal ar, the algebra D(A)n is a simple algebra 

and for every maximal ideal m of A that contains one of the ideals bi (i ≥ 1), the algebra Rm is a simple 

algebra.

4. The algebra D(A) is a simple algebra and for every maximal ideal m of A that contains one of the ideals 

ci (i ≥ 1), the algebra Rm is a simple algebra.

5. For every maximal ideal n of A that contains the Jacobian ideal ar, the algebra D(A)n is a simple algebra 

and for every maximal ideal m of A that contains one of the ideals ci (i ≥ 1), the algebra Rm is a simple 

algebra.

The proof of Theorem 1.12 is given in Section 3.

2. Simplicity criteria of ∆-locally nilpotent algebras: proofs

In this section proofs of Theorem 1.5, Theorem 1.6, Theorem 1.7 and Theorem 1.8 are given. A class 

of generalized Weyl algebras that are Δ-locally nilpotent algebras are considered (Lemma 2.3). In Proposi-

tion 2.4, the prime spectra of three Δ-locally nilpotent subalgebras of the Weyl algebra A1 are described. 

Proposition 2.5 shows that NΔ(S−1E) ≃ S−1NΔ(E) for all regular left Ore sets S that are contained in 

the zero component NΔ(E)0 of the Δ-order filtration. Similar results hold in more general situation but 

under additional condition (Proposition 2.6). We study properties of denominator sets that are generated by 

ad-locally nilpotent elements (Proposition 2.7). In particular, localizations at such denominator sets respect 

ideals (which is not true for arbitrary localization).

If δ is a derivation of an algebra E then for all elements a, b ∈ E,

δn(ab) =
n 

∑

i=0 

(

n

i 

)

δi(a)δn−i(b). (2)
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Proof of Proposition 1.5. 1. By the definition, the set {N(E)i}i≥0 is an ascending filtration of A-modules 

on the algebra N(E), and A ⊆ N(E)0 = EΔ. By (2), for all i, j ≥ 0,

Δi+j+1(N(E)iN(E)j) ⊆
∑

s+t=i+j+1

Δs(N(E)i)Δ
t(N(E)j)) = 0.

Therefore, N(E)iN(E)j ⊆ N(E)i+j .

2. Statement 2 is obvious. �

Proof of Theorem 1.6. 1. Let N = NΔ(E), Ni = NΔ(E)i and ai = a ∩ Ni = {a ∈ a | Δi+1a = 0} where 

i ≥ 0. Then

a =
⋃

i≥0

ai.

(i) a0 �= 0 is a nonzero ideal of the algebra N0 (such that Δa0 = 0): Since a �= 0 and a =
⋃

i≥0 ai, we 

must have an �= an−1 for some n ≥ 0, e.g. n = min{i ≥ 0 | ai �= 0}. Then

0 �= Δnan ⊆ ΔnNn ∩ a ⊆ Nn−n ∩ a = N0 ∩ a = a0.

(ii) a′ ∩ N0 = a0: Notice that a′ ⊆ a. Then

a0 ⊆ a′ ∩ N0 ⊆ a ∩ N0 = a0,

and the statement (ii) follows.

2. Δ[N1, a0] ⊆ [ΔN1, a0] + [N1, Δa0] ⊆ [N1−1, a0] + [N1, 0] = [N0, a0] = 0 since the algebra N0 is a 

commutative algebra. �

Proof of Theorem 1.7. Since the algebra A is a commutative algebra, we have that Δ ⊆ DerA(E), A ⊆

NΔ(E)0, and every ideal of the algebra NΔ(E) is Δ-stable (by the choice of Δ). Now, the theorem follows 

from Theorem 1.6. �

Corollary 2.1. Let A be a commutative subalgebra of an algebra E, Δ = {ada | a ∈ A′} where A′ is a 

non-empty subset of A (e.g., A′ = A), and R be a subalgebra of NΔ(E) such that A ⊆ R. Then:

1. The algebra R is a Δ-locally nilpotent algebra and {Ri := R ∩ NΔ(E)i}i≥0 is its Δ-order filtration.

2. If a is a nonzero ideal of the algebra R then a0 := a ∩ R0 = a ∩ RΔ is a nonzero ideal of the algebra 

R0 = RΔ ⊇ A such that Ra0R ∩ R0 = a0.

3. If, in addition, the algebra R0 = RΔ is a commutative algebra then [R1, a0] ⊆ a0.

Proof. The corollary follows from Theorem 1.7. �

Proof of Theorem 1.8. The algebra R is a Δ-locally nilpotent algebra where Δ = {ada | a ∈ A} such that 

R0 = R ∩ D(A)0 = R ∩ A = A is a commutative algebra and {Ri}i≥0 is the Δ-order filtration on R. Now, 

the theorem follows from Corollary 2.1. �

Corollary 2.2. Let A be a commutative algebra, D(A) be the algebra of differential operators on A, R be a 

subalgebra of D(A) that is generated by the algebra A and a non-empty subset Ξ of DerK(A). Then R is a 

simple algebra iff the algebra A is Ξ-simple (i.e. 0 and A are the only Ξ-stable ideals of the algebra A). In 

particular, the algebra A is a domain provided it is a Noetherian algebra.
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Proof. (i) The algebra R is not simple ⇒ the algebra A is not Ξ-simple: The algebra R is a subalgebra of 

D(A) such that A ⊆ R. Suppose that I is a proper ideal of R. Then, by Theorem 1.8, I ∩ A is a proper 

Γ-stable ideal of A where Γ = R ∩ DerK(R) ⊇ Ξ. So, the intersection I ∩ A is a proper Ξ-stable ideal of A, 

i.e. the algebra A is not Ξ-simple.

(ii) The algebra A is not Ξ-simple ⇒ the algebra R is not a simple algebra: If J is a proper Ξ-stable ideal 

of A then JR is a proper ideal of R (since Ξ(J) ⊆ J).

Since for Noetherian algebra the minimal primes are derivation-stable, the algebra A must be a domain. 

So, the corollary follows. �

Generalized Weyl algebras, [2–4]. Let D be a ring, σ = (σ1, ..., σn) be an n-tuple of commuting automor-

phisms of D, a = (a1, ..., an) be an n-tuple of elements of the centre Z(D) of D such that σi(aj) = aj for 

all i �= j. The generalized Weyl algebra A = D[X, Y ; σ, a] (GWA) of rank n is a ring generated by D and 

2n indeterminates X1, ..., Xn, Y1, ..., Yn subject to the defining relations:

YiXi = ai, XiYi = σi(ai), Xid = σi(d)Xi, Yid = σ−1
i (d)Yi (d ∈ D),

[Xi, Xj ] = [Xi, Yj ] = [Yi, Yj ] = 0, for all i �= j,

where [x, y] = xy − yx. We say that a and σ are the sets of defining elements and automorphisms of the 

GWA A, respectively.

The GWA A =
⊕

α∈Zn Dvα is a Z-graded algebra (Dvα · Dvβ ⊆ Dvα+β for all α, β ∈ Z
n) where 

vα = vαi
(1) · · · vαn

(n) and vαi
(i) = Xαi

i if αi ≥ 0 and vαi
(i) = Y −αi

i if αi ≤ 0.

The Weyl algebra An is a generalized Weyl algebra A = D[X, Y ; σ; a] of rank n where D = K[H1, ..., Hn]

is a polynomial ring in n variables with coefficients in K, σ = (σ1, . . . , σn) where σi(Hj) = Hj − δij and 

a = (H1, . . . , Hn). The map

An → A, Xi �→ Xi, Yi �→ Yi, i = 1, . . . , n,

is an algebra isomorphism (notice that YiXi �→ Hi).

Many quantum algebras of small Gelfand-Kirillov dimension are GWAs (e.g., U(sl2), Uq(sl2), the quantum 

Weyl algebra, the quantum plane, the Heisenberg algebra and its quantum analogues, the quantum sphere, 

and many others).

In case of GWAs of rank 1 we drop the lower index ‘1’. So, a GWA of rank 1 A = D[x, y; σ, a] is generated 

by the algebra D, x and y subject to the defining relations:

yx = a, xy = σ(a), xd = σ(d)x and yd = σ−1(d)y (d ∈ D).

The algebra A =
⊕

i∈Z
Dvi is a Z-graded algebra (DviDvj ⊆ Dvi+j for all i, j ∈ Z) where v0 = 1, vi = xi

and v−i = yi for i ≥ 1. In particular, the (first) Weyl algebra

A1 = K〈x, ∂ | ∂x − x∂ = 1〉 ≃ K[h][x, ∂; σ, a = h + 1]

is a GWA where h = x∂ and σ(h) = h − 1 (since a = ∂x = x∂ + 1 = h + 1 and xh = xx∂ = x(∂x + [x, ∂]) =

(h − 1)x).

Let A = D[X, Y ; σ, a] be a GWA of rank n where D is a K-algebra. The algebra A contains two polynomial 

subalgebras Pn = K[X1, . . . , Xn] and P ′
n = K[Y1, . . . , Yn] in n variables. Recall that σ = (σ1, . . . , σn) where 
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σi are commuting automorphisms of the algebra D. Notice that σ±1
i − 1 is a σ±1

i -derivation of the algebra 

D. A K-linear map δ : D → D is called a σi-derivation if

δ(ab) = δ(a)b + σi(a)δ(b) for all elements a, b ∈ D.

The set Δ = {adX1
, . . . , adXn

} (resp., Δ′ = {adY1
, . . . , adYn

}) consists of commuting Pn-derivations (resp., 

P ′
n-derivations) of A. Since (σ−1

i − 1)m = (−1)mσ−m
i (σi − 1)m for all m ≥ 1, the map σi − 1 is a locally 

nilpotent map on D iff so is the map σ−1
i − 1.

Lemma 2.3. Let A = D[X, Y ; σ, a] be a GWA of rank n where D is a K-algebra, Δ = {adX1
, . . . , adXn

} and 

Δ′ = {adY1
, . . . , adYn

}. Then:

1. The algebra A is a Δ-locally nilpotent algebra iff the maps σ1 − 1, . . . , σn − 1 are locally nilpotent maps 

on D.

2. The algebra A is a Δ′-locally nilpotent algebra iff the maps σ−1
1 − 1, . . . , σ−1

n − 1 are locally nilpotent 

maps on D.

Proof. 1. (⇒) The implication follows from the equality adm
Xi

(d) = (σi − 1)m(d)Xm
i for all i = 1, . . . , n and 

d ∈ D and the fact that the algebra A is a Z-graded algebra.

(⇐) Given an element dvα ∈ Dvα, where d ∈ D and α = (α1, . . . , αn) ∈ Z
n, we have to show that 

adβ
Xi

(dvα) = 0 for some element β ≥ 1, by Lemma 1.4. Using the Z-grading of the GWA A, we may assume 

that αi ∈ N (since adβ
Xi

(DY α
i ) ∈ DXβ+αi

i for all β ≥ 1 such that β ≥ −αi). Then

adβ
Xi

(dXα) = adβ
Xi

(d)Xα = (σi − 1)β(d)Xβ
i Xα

and the result follows since the map σi − 1 is a locally nilpotent map on D.

2. Statement 2 can be proven in a similar way as statement 1. �

An element r of a ring R is called a normal element if rR = Rr, i.e. (r) = rR = Rr is an ideal of R. 

Given an element s ∈ R. If the set Ss = {si | i ≥ 0} is a left denominator set of the ring R then we denote 

by Rs the localization S−1
s R of the ring R at the powers of the element s.

Proposition 2.4 is about properties of three Δ-locally nilpotent subalgebras, Ri (i = 0, 1, 2), of the Weyl 

algebra Ai. These algebras are not simple and have very different ideal structure.

Proposition 2.4. Let A1 = K〈x, ∂〉 be the Weyl algebra over a field K of characteristic zero and K[x] ⊂ R0 ⊂

R1 ⊂ R2 ⊂ A1 be subalgebras of A1 where R0 = K〈h = x∂, x〉, R1 = K〈h∂, h, x〉, and R2 = K〈h∂2, h∂, h, x〉. 

Then:

1. The algebras R0, R1, and R2 are non-simple, Δ-locally nilpotent algebras where Δ = {ada | a ∈ K[x]}.

2. The algebra R0 = K[h][x; σ] is a skew polynomial ring where σ ∈ AutK(K[x]) and σ(h) = h − 1; the 

element x of R0 is a normal element; Spec(R0) = {0, (x), (x, p) | p ∈ Irr1(K[h])} where Irr1(K[h]) is the 

set of monic irreducible polynomials of K[h] (monic means that the leading coefficient of the polynomial 

is 1).

3. The algebra R1 = K[h][x, y = h∂; σ, a = h(h+1)] is a GWA where σ(h) = h−1. The ideal m1 = (y, h, x)

is the only proper ideal of the algebra R1, R1 = K ⊕ m1, R1/m1 = K, the ideal m1 is a maximal ideal 

of R1 such that m2
1 = m1, and Spec(R1) = {0,m1}.

4. The algebra R2 =
⊕

i≥1 K[h]h∂i ⊕ R0 is a maximal subalgebra of the Weyl algebra A1. The ideal 

m2 = (h) =
⊕

i≥1 K[h]h∂i⊕hK[h]⊕
⊕

i≥1 K[h]xi is the only proper ideal of the algebra R2, R2 = K⊕m2, 

R2/m2 = K, the ideal m2 is a maximal ideal of R2 such that m2
2 = m2, and Spec(R2) = {0,m2}.
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Proof. By the very definition, the algebras R0, R1 and R2 are homogeneous subalgebras of the Weyl algebra 

A1 (with respect to the Z-grading of A1 as a GWA).

1. Since A1 ≃ D(K[x]) and K[x] ⊆ R0 ⊆ R1 ⊆ R2 ⊆ A1, statement 1 follows.

2. It is obvious that R0 = K[h][x; σ] =
⊕

i≥0 K[h]xi is a skew polynomial ring, where σ ∈ AutK(K[x])

and σ(h) = h − 1, and the element x is a normal element of R0 such that R0/(x) ≃ K[h]. In particular, the 

ideal (x) is a proper, prime ideal of R0. The Δ-order filtration on R0 is {R0,i =
⊕i

j=0 K[x]hj}i≥0 since the 

algebra

R0 = K[x]

[

h; x
d 

dx

]

=
⋃

i≥0

R0,i

is an Ore extension. In particular, R0,1 = K[x] ⊕ K[x]h and for all polynomials p ∈ K[x], [h, p] = x dp 
dx

. The 

derivation x d 
dx

is a semi-simple derivation of the polynomial algebra K[x] =
⊕

i≥0 Kxi since x dxi

dx = ixi

for all i ≥ 0. Therefore, {xiK[x] | i ≥ 0} is the set of x d 
dx

-stable ideals of the polynomial algebra K[x]. The 

algebra

R0,x ≃ A1,x

is a simple algebra. Hence, if I is a nonzero ideal of the algebra R0 then xiK[x] ⊆ I for some i ≥ 0. If p is 

a nonzero prime ideal of R0 then p ⊇ (xi) = (x)i since x is a normal element of R0. Hence,

(x) ⊆ p.

If (x) �= p then p = (x, p) for some element p ∈ Irr1(K[h]) since R0/(x) = K[h]. Hence Spec(R0) =

{0, (x), (x, p) | p ∈ Irr1(K[h])} since R0 is a domain.

3. Since yx = a, xy = σ(a), xd = σ(d)x and yd = σ−1(d)y for all d ∈ D, there is an algebra epimorphism

K[h][x, y; σ, a] → R1, h �→ h, x �→ x, y �→ h∂

which is an isomorphism since R1 =
⊕

i≥1 K[h]yi ⊕
⊕

j≥0 K[h]xj . By [1, Theorem 5] or [1, Proposition 6], 

the ideal n1 is the only proper ideal of the algebra R1 and n2
1 = m1. Clearly, R1 = k ⊕ m1 and R1/m1 = K, 

and so Spec(R1) = {0,m1}.

4. (i) R2 =
⊕

i≥1 K[h]h∂i ⊕ R0: Notice that

A1 =
⊕

i≥1 
K[h]∂i ⊕

⊕

i≥0 
K[h]xi =

⊕

i≥1 
K[h]∂i ⊕ R0

and [h∂i, h∂j ] = (i − j)h∂i+j for all i, j ≥ 0. Since h∂, h∂2 ∈ R2 we have that [h∂2, h∂] = h∂3 ∈ R2. Now, 

using induction on i ≥ 0 and the equalities

[h∂i, h∂] = (i − 1)h∂i+1,

we see that h∂i ∈ R2 for all i ≥ 0. Hence, the algebra R2 contains the direct sum, say R′
2, from the statement 

(i). The direct sum R′
2 is a subalgebra of A1 which is generated by the elements x and h∂i where i ≥ 0, i.e. 

R′
2 = R2.

(iii) The algebra R2 is a maximal subalgebra of the Weyl algebra A1: Suppose that A be a subalgebra of 

A1 that properly contains the algebra R2. We have to show that A = A1. The Weyl algebra

A1 =
⊕

i≥1 
K[h]∂i ⊕

⊕

i≥0 
K[h]xi
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is a direct sum of distinct eigen-spaces for the inner derivation adh of A1 (since [h, xi] = ixi and [h, ∂i] = −i∂i

for all i ≥ 0 and char(K)=0). Since h ∈ R2 ⊆ A, the algebra A is an adh-stable ([h, A] ⊆ A). So, the algebra 

A is a homogeneous subalgebra of the Weyl algebra A1. Since

A1 =
⊕

i≥1 
K[h]∂i ⊕ R0 ⊇ R2 =

⊕

i≥1 
K[h]h∂i ⊕ R0 and K[h] = K ⊕ hK[h],

we must have ∂i ∈ A for some i ≥ 1. Then

∂ =
1 

i!
(−adx)i−1(∂i) ∈ A,

and so A = A1 since x, ∂ ∈ A.

(iii) m2 = (h) =
⊕

i≥1 K[h]h∂i ⊕ hK[h] ⊕
⊕

i≥1 K[h]xi: The statement (iii) follows from the statement 

(i) and the equalities [h, xi] = ixi and [h, ∂i] = −i∂i for all i ≥ 0.

By the statement (iii), R2 = K ⊕ m2 and R2/m2 = K.

(iv) The set Sx = {xi | i ≥ 0} is a left and right denominator set of the domains R0, R1, R2, and A1

such that R0,x = R1,x = R2,x = A1,x: By the statement (iii),

m2 = (h) = (x, h, h∂, . . . , h∂i, . . .) =
⊕

i≥1 
K[h]h∂i ⊕ hK[h] ⊕

⊕

i≥1 
K[h]xi,

since [h, h∂i] = −ih∂i for all i ≥ 1. Hence, R2 = K ⊕ m2 and R2/m2 = K, and so m2 is a maximal ideal of 

the algebra R2.

The set Sx = {xi | i ≥ 0} is a left and right Ore set of the domains R0 ⊆ R1 ⊆ R2 ⊆ A1 (use the Z-gradings 

of the algebras). Since ∂ = x−1x∂ ∈ R0,x, we see that R0,x = A1,x. Then the inclusions R0 ⊆ R1 ⊆ R2 ⊆ A1

yield the equalities R0,x = R1,x = R2,x = A1,x.

(v) The ideal m2 is the only proper ideal of R2: Let I be a proper ideal I of R2 we have to show that 

I = m2. By the statement (iv), R1 ⊂ R2 ⊂ R1,x = R2,x, and so the algebra R1 is an essential left R1-

submodule of R2. Hence I ∩ R1 = m1 is the only proper ideal of the algebra R1, by statement 3. Since 

h∂ ∈ m1 ⊆ m2 and

I ∋ [h∂i, h∂] = (i − 1)h∂i+1 for all i ≥ 2,

we have that I ⊇ (x, h, h∂, . . . , h∂i, . . .) = m2, i.e. I = m2, by the maximality of the ideal m2.

The algebra R2 is a domain, hence m2
2 = m2, by the statement (v). Now, Spec(R2) = {0,m2}. �

Localizations and the algebras NΔ(E). An element of a ring R is called a regular element if it is not a 

zero divisor. Let CR be the set of all regular elements of the ring R. Every regular left Ore set of a ring 

R is a regular left denominator set, and vice versa. The set of all regular left Ore sets of R is denoted by 

Denl(R, 0). Proposition 2.5 shows that the algebra NΔ(E) is well-behaved under localizations at regular left 

Ore sets that are contained in the zero component NΔ(E)0 of the Δ-order filtration.

Proposition 2.5. Let A be a subalgebra of an algebra E, Δ ⊆ DerA(E), and S ∈ Denl(E, 0) with S ⊆ NΔ(E)0. 

Then:

1. A ⊆ E ⊆ S−1E and Δ ⊆ DerA(S−1E).

2. S ∈ Denl(NΔ(E), 0).

3. NΔ(S−1E) ≃ S−1NΔ(E).

4. For all integers i ≥ 0, NΔ(S−1E)i ≃ S−1NΔ(E)i.
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Proof. Let N = NΔ(E) and Ni = NΔ(E)i for i ≥ 0.

1. Statement 1 is obvious (for all elements δ ∈ Δ, s ∈ S and e ∈ E, δ(s−1e) = s−1δ(e) since δ(s) = 0).

2. Clearly, S ⊆ N0 ⊆ N . We have to show that the set S is a left Ore set of N . Given elements s ∈ S

and n ∈ N , i.e. Δin = 0 for some i ≥ 1. Then ns−1 = t−1e for some elements t ∈ S and e ∈ E. Then

0 = Δi(n)s−1 = Δi(ns−1) = Δi(t−1e) = t−1Δi(e),

and so Δi(e) = 0, that is e ∈ N . Therefore, tn = es. This means that the set S is a left Ore set in N .

4. Clearly, S−1N ⊆ NΔ(S−1E). Given an element s−1n ∈ NΔ(S−1E). Then 0 = Δi(s−1n) = s−1Δi(n)

iff Δi(n) = 0, and statement 4 follows.

3. Statement 3 follows from statement 4. �

Let I be an ideal of a ring E. We denote by Denl(E, I) the set of left denominator sets of E with 

I = assE(S) := {e ∈ E | se = 0 for some element s ∈}. In the case when S ∈ Denl(E, I) and I �= 0, we have 

to impose an additional condition that |Δ| < ∞ (the set Δ is a finite set) in order to have similar results as 

in Proposition 2.5, see Proposition 2.6.

Proposition 2.6. Let A be a subalgebra of an algebra E, Δ ⊆ DerA(E), S ∈ Denl(E, I) with S ⊆ NΔ(E)0, 

E = E/I, A = A/I ′ where I ′ = A ∩ I, Δ = {δ | δ ∈ Δ} ⊆ DerA(E) and δ(e + I) = δ(e) + I for all elements 

e ∈ E (see statement 1). Then:

1. The ideal I is Δ-stable (ΔI ⊆ I).

2. S ∈ Denl(NΔ(E), NΔ(E) ∩ I) provided |Δ| < ∞.

3. NΔ(S−1E) ≃ S−1NΔ(E) provided |Δ| < ∞.

4. For all integers i ≥ 0, NΔ(S−1E)i ≃ S−1NΔ(E)i provided |Δ| < ∞.

5. S = {s + I | s ∈ S}, S
−1

E ≃ S−1E, S
−1

NΔ(E) ≃ NΔ(S
−1

E) ≃ NΔ(S−1E), and S
−1

NΔ(E)i ≃

NΔ(S
−1

E)i ≃ NΔ(S−1E)i for all i ≥ 0.

Proof. Let N = NΔ(E) and Ni = NΔ(E)i for i ≥ 0.

1. Given elements δ ∈ Δ and a ∈ I. Then sa = 0 for some element s ∈ S, and so 0 = δ(sa) = sδ(a) (since 

S ⊆ NΔ(E)0). This implies that δ(a) ∈ I, and statement 1 follows.

2. (i) S is a left Ore set of N : Given elements s ∈ S and n ∈ N , we have to show that s1n = n1s for 

some elements s1 ∈ S and n1 ∈ N . Since S is a left Ore set of E, tn = es for some elements t ∈ S and 

e ∈ E. Since n ∈ N , Δin = 0 for some i ≥ 1. Then

0 = tΔin = Δi(tn) = Δi(es) = Δi(e)s,

and so Δi(e) ⊆ I (since S ∈ Denl(E, I)). The set Δ is a finite set hence so is the set Δi(e). We can fix an 

element s′ ∈ S such that 0 = s′Δi(e) = Δi(s′e), i.e. n1 := s′e ∈ Ni−1. Now, it suffices to take s1 = s′t since

s1n = s′tn = s′es = n1s.

(ii) S ∈ Denl(N, N ∩ I): Since assE(S) = I, we have that assN (S) = N ∩ I. If ns = 0 for some elements 

n ∈ N and s ∈ S. Then n ∈ N ∩ I, and the statement (ii) follows from the statement (i).

4. (i) S−1Ni ⊆ N(S−1E)i for all i ≥ 0: Given elements s ∈ S and n ∈ Ni. Then Δi+1n = 0 and

Δi+1(s−1n) = s−1Δi+1n = 0,

and so s−1n ∈ N(S−1E)i.
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(ii) N(S−1E)i ⊆ S−1Ni for all i ≥ 0: Given an element t−1e ∈ N(S−1E)i where t ∈ S and e ∈ E. Then

0 = Δi+1(t−1e) = t−1Δi+1(e),

and so the set Δi+1(e) is a finite subset of I (since |Δ| < ∞). Hence, there exists an element t1 ∈ S such 

that 0 = t1Δi+1(e) = Δi+1(t1e), i.e. t1e ∈ Ni. Now, t−1e = (t1t)−1t1e ∈ S−1Ni, and the statement (ii) 

follows.

3. Statement 3 follows from statement 4.

5. Statement 5 follows from Proposition 2.5. �

Monoids that are generated by ad-locally nilpotent elements are denominator sets. Let R be a ring and 

s, r ∈ R. Then

smr =
m 

∑

i=0 

(

m

i 

)

adi
s(r)sm−i for all m ≥ 1, (3)

rsm =

m 
∑

i=0 

(

m

i 

)

sm−i(−ads)i(r) for all m ≥ 1. (4)

Suppose that rs = 0 (resp., sr = 0) then by (3) (resp., (4)) for all n ≥ 1,

snr = adn
s (r) (resp., rsn = (−ads)n(r)). (5)

Let R be a ring and S ∈ Denl(R, a). A (left) ideal I of R is called an S-saturated ideal if the inclusion 

sr ∈ I (where s ∈ S and r ∈ R) implies the inclusion r ∈ I, i.e.

torS(R/I) := {a ∈ R/I | sa = 0 for some s ∈ S} = 0,

the R-module R/I is S-torsionfree. In general, if I is an ideal of R the localization S−1I (which is a left 

ideal of the ring S−1R) is not an ideal of S−1R. Proposition 2.7.(2) gives a class of denominator sets S of 

an arbitrary ring R such that S−1I is always an ideal of S−1R. We denote by I(R) and I(R, S − sat.) the 

sets of ideals and S-saturated ideals of the ring R, respectively.

Proposition 2.7. Let R be a ring and S be a multiplicative subset of R. Suppose that the monoid S is generated 

by a set of ad-locally nilpotent elements, say S = 〈sλ | λ ∈ Λ〉 (the inner derivations {adsλ
| λ ∈ Λ} of R are 

locally nilpotent). Then:

1. S ∈ Den(R, a).

2. If I is an ideal of the ring R then S−1I = IS−1 is an ideal of the ring S−1R ≃ RS−1.

3. The map I(R, S − sat.) → I(S−1R), I �→ S−1I is a bijection with the inverse J �→ σ−1(J) where 

σ : R → S−1R, r �→ r
1 .

Proof. 1. (i) S is an Ore set of R: To prove the statement (i) it suffices to show that the left (resp., right) 

Ore condition holds for the generators {sλ} of the monoid S. Since the maps adsλ
are locally nilpotent, this 

follows from Eq. (3) (resp., Eq. (4)).

(ii) S ∈ Den(R, a): If rsλ = 0 (resp., sλr = 0) for some λ ∈ Λ and r ∈ R then, by Eq. (5), s
n(λ)
λ r = 0

(resp., rs
n(λ)
λ = 0) for some natural number n(λ). Using this fact we see that if rsλ · · · sμ = 0 (resp., 

sλ · · · sμr = 0) then s
n(λ)
λ · · · s

n(μ)
μ r = 0 (resp., rs

n(λ)
λ · · · s

n(μ)
μ = 0) and the statement (ii) follows (recall that 

every element s ∈ S is a product s = sλ · · · sμ),
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2. Let I be an ideal of the ring R. By statement 1, S−1I (resp., IS−1) is a left (resp., right) ideal 

of the ring S−1R (resp., RS−1). Since S ∈ Den(R), S−1R = RS−1. The inclusion S−1I ⊆ IS−1 (resp., 

IS−1 ⊆ S−1I) follows from the equality: For all elements sλ and r ∈ R,

s−1
λ r = s−1

λ (rsn
λ)s−n

λ = s−1
λ

( n 
∑

i=0 

(

n

i 

)

si
λ(−adsλ

)n−i(r)

)

s−n
λ ∈ IS−1 for all n ≫ 0,

(resp., rs−1
λ = s−n

λ (sn
λr)s−1

λ = s−n
λ

( n 
∑

i=0 

(

n

i 

)

adi
sλ

(r)sn−i
λ

)

s−1
λ ∈ S−1I for all n ≫ 0).

3. By statement 2, the map I(R, S − sat.) → I(S−1R), I �→ S−1I is well-defined. By the very definition, 

the map I(S−1R) → I(R, S − sat.), J �→ σ−1(J) is well-defined. Since S−1σ−1(J) = J and σ−1(S−1I) = I, 

statement 3 follows. �

3. Simplicity criteria for subalgebras of D(A) that contain A

The aim of the section is to prove Theorem 1.2, Theorem 1.10, Theorem 1.11, and Theorem 1.12. Each 

commutative algebra A is a left D(A)-module and its submodule structure is described in Proposition 3.4. 

Theorem 3.7 gives the canonical form for each differential operator on arbitrary commutative algebra.

The following notation will remain fixed throughout the section (if it is not stated otherwise): K is a field 

of arbitrary characteristic (not necessarily algebraically closed), Pn = K[x1, . . . , xn] is a polynomial algebra 

over K, ∂1 := ∂
∂x1

, . . . , ∂n := ∂
∂xn

∈ DerK(Pn), I :=
∑m

i=1 Pnfi is a prime but not a maximal ideal of the 

polynomial algebra Pn with a set of generators f1, . . . , fm, the algebra A := Pn/I which is a domain with 

the field of fractions Q := Frac(A), the epimorphism π : Pn → A, p �→ p := p + I, to make notation simpler 

we sometime write xi for xi (if it does not lead to confusion), the Jacobi m × n matrices

J =

(

∂fi

∂xj

)

∈ Mm,n(Pn)

and J =

(

∂fi

∂xj

)

∈ Mm,n(A) ⊆ Mm,n(Q), r := rkQ(J) is the rank of the Jacobi matrix J over the field Q, 

ar is the Jacobian ideal of the algebra A which is (by definition) generated by all the r × r minors of the 

Jacobi matrix J .

For i = (i1, . . . , ir) such that 1 ≤ i1 < · · · < ir ≤ m and j = (j1, . . . , jr) such that 1 ≤ j1 < · · · < jr ≤ n, 

Δ(i, j) denotes the corresponding minor of the Jacobi matrix J = (J ij), that is det(J iν ,jμ
), ν, μ = 1, . . . , r, 

and the element i (resp., j) is called non-singular if Δ(i, j′) �= 0 (resp., Δ(i′, j) �= 0) for some j′ (resp., i′). 

We denote by Ir (resp., Jr) the set of all the non-singular r-tuples i (resp., j).

Since r is the rank of the Jacobi matrix J , it is easy to show that Δ(i, j) �= 0 iff i ∈ Ir and j ∈ Jr, [6, 

Lemma 2.1].

A localization of an affine algebra is called an algebra of essentially finite type. Let A := S−1A be a 

localization of the algebra A = Pn/I at a multiplicatively closed subset S of A. Suppose that K is a perfect 

field. Then the algebra A is regular iff ar = A where ar is the Jacobian ideal of A (the Jacobian criterion of 

regularity, [10, Theorem 16.19]). For any regular algebra A over a perfect field, explicit sets of generators 

and defining relations for the algebra D(A) are given in [6] (char(K)=0) and [7] (char(K) > 0).

Let R be a commutative K-algebra. The ring of (K-linear) differential operators D(R) on R is defined 

as a union of R-modules D(R) =
⋃∞

i=0 D(R)i where

D(R)i = {u ∈ EndK(R) | [r, u] := ru − ur ∈ D(R)i−1 for all r ∈ R}, i ≥ 0, D(R)−1 := 0.
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In particular, D(R)0 = EndR(R) ≃ R, (x �→ bx) ↔ b. The set of R-bimodules {D(R)i}i≥0 is the order 

filtration for the algebra D(R):

D(R)0 ⊆ D(R)1 ⊆ · · · ⊆ D(R)i ⊆ · · · and D(R)iD(R)j ⊆ D(R)i+j for all i, j ≥ 0.

The subalgebra Δ(R) of D(R) which is generated by R ≡ EndR(R) and the set DerK(R) of all K-

derivations of R is called the derivation ring of R.

Suppose that R is a regular affine domain of Krull dimension n ≥ 1 and char(K)=0. In geometric terms, 

R is the coordinate ring O(X) of a smooth irreducible affine algebraic variety X of dimension n. Then

• DerK(R) is a finitely generated projective R-module of rank n,

• D(R) = Δ(R),

• D(R) is a simple (left and right) Noetherian domain of Gelfand-Kirillov dimension GK D(R) = 2n

(n = GK (R) = Kdim(R)).

For the proofs of the statements above the reader is referred to [11], Chapter 15. So, the domain D(R)

is a simple finitely generated infinite dimensional Noetherian algebra ([11], Chapter 15).

If char(K) > 0 then D(R) �= Δ(R) and the algebra D(R) is not finitely generated and neither left nor 

right Noetherian but analogues of the results above hold but the Gelfand-Kirillov dimension has to be 

replaced by a new dimension introduced in [5].

Lemma 3.1. Let A be a commutative algebra of essentially finite type, D(A) be the algebra of differential 

operators on A, R be a subalgebra of D(A) that contains A. Then, for every i ≥ 0, the left and right 

A-module Ri = R ∩ D(A)i is finitely generated and Noetherian.

Proof. For each i ≥ 0, the left and right A-module D(A)i is finitely generated, hence Noetherian since the 

algebra A is Noetherian. Since Ri is a left and right A-submodule of D(A)i, it is also finitely generated and 

Noetherian. �

The next obvious lemma is a criterion for a subalgebra of D(A) that contains A being an essential left 

or right A-submodule of D(A).

Lemma 3.2. Let A be a commutative domain of essentially finite type over a field of characteristic zero and Q

be its field of fractions, R be a subalgebra of D(A) that contains A, DR := R∩DerK(A) and Ri = R∩D(A)i

where i ≥ 0. Then A\{0} ⊆ CD(A) and the following statements are equivalent:

1. Q ⊗A R = Q ⊗A D(A) (⇔ the left A-module R is an essential A-submodule of D(A)).

2. R ⊗A Q = D(A) ⊗A Q (⇔ the right A-module R is an essential A-submodule of D(A)).

3. dimQ(Q ⊗A R) = dimQ(Q ⊗A D(A)).

4. dimQ(R ⊗A Q) = dimQ(D(A) ⊗A Q).

5. dimQ(QDR) = dimQ(QDerK(A)).

6. DR is an essential left A-submodule of DerK(A).

7. R1 is an essential left A-submodule of D(A)1.

8. R1 is an essential right A-submodule of D(A)1.

9. There is an natural number i ≥ 1 such that Ri is an essential left A-submodule of D(A)i.

10. There is an natural number i ≥ 1 such that Ri is an essential right A-submodule of D(A)i.

Proof. Straightforward. �
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Lemma 3.3. Let A be a commutative domain of essentially finite type over a field of arbitrary characteristic, 

R be a subalgebra of D(A) that contains A, and S be a multiplicative subset of A\{0}. Then S ∈ Den(R, 0), 

S−1A ⊆ S−1R ⊆ S−1D(A) ≃ D(S−1A). If, in addition, S−1R = S−1D(A) then the algebra R is an 

essential left and right R-submodule of the algebra D(A).

Proof. The lemma follows from Proposition 2.7 and the fact that A is a domain. In more detail, by Propo-

sition 2.7.(2), S ∈ Den(R, a) and S ∈ Den(D(A), b). Clearly, a ⊆ b.

(i) a = b = 0: Since a ⊆ b, it suffices to show that b = 0. Suppose that b �= 0. Let

m := min{i ∈ N | b ∩ D(A)i �= 0}.

The algebra A = D(A)0 is a domain. Therefore, m ≥ 1. Let δ ∈ b ∩ D(A)m. Then there is an element 

a ∈ A such that δ′ := ada(δ) ∈ D(A)m−1\{0}. By the minimality of m, δ′ �∈ b. Since δ ∈ b, sδ = 0 for some 

element s ∈ S. Now,

0 �= sδ′ = s · ada(δ) = ada(sδ) = ada(0) = 0,

a contradiction. Therefore, b = 0.

(ii) S−1A ⊆ S−1R ⊆ S−1D(A) ≃ D(S−1A): The statement (ii) follows from the statement (i).

(iii) If S−1R = S−1D(A) then the algebra R is an essential left and right R-submodule of the algebra 

D(A): The statement (ii) follows from the statement (i). �

Proof of Theorem 1.10. By the assumption, the A-submodule R of D(A) is an essential submodule. Since 

the A-submodule Ri of D(A)i is an essential submodule (Lemma 3.2) and the A-module D(A)i is finitely 

generated (by [6, Proposition 5.3.(2)] and [7, Proposition 3.3.(2)]), bi �= 0.

Let us show that bi+1
i ⊆ ci and ci+1

i ⊆ bi for all i ≥ 0. If i = 0 then b0 = l.annA(D(A)0/R0) =

l.annA(A/A) = A and c0 = r.annA(D(A)0/R0) = l.annA(A/A) = A, i.e. b0 = c0 = A.

Suppose that i ≥ 1. Let Di = D(A)i. Then

Dib
i+1
i ⊆ (biDi + [Di, bi])b

i
i ⊆ (Ri + Di−1)bi

i

⊆ Ri + Di−1b
i
i

⊆ Ri + (biDi−1 + [Di−1, bi])b
i−1
i ⊆ Ri + (Ri + Di−2)bi−1

i

⊆ Ri + Di−2b
i−1
i

· · ·

⊆ Ri + D0bi = Ri + Abi = Ri + A = Ri,

ci+1
i Di ⊆ ci

i(Dici + [ci, Di]) ⊆ ci
i(Ri + Di−1)

⊆ Ri + ci
iDi−1

⊆ Ri + ci−1
i (Di−1ci + [ci, Di−1]) ⊆ Ri + ci−1

i (Ri + Di−2)

⊆ Ri + ci−1
i Di−2

· · ·

⊆ Ri + ciD0 = Ri + ciA = Ri + A = Ri.

Therefore, bi+1
i ⊆ ci and ci+1

i ⊆ bi for all i ≥ 0.

Since bi �= 0 and the algebra A is a domain, we have that 0 �= bi+1
i ⊆ ci, and so ci �= 0.

(4 ⇔ 5) Theorem 1.1.
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(1 ⇒ 5) (i) The algebra D(A) is simple: Otherwise, for each proper ideal I of the algebra D(A), the 

intersection R ∩ I is a proper ideal of the algebra R since the algebra R is an essential R-submodule of 

D(A), this contradicts the simplicity of the algebra R.

(ii) Rb2
1R = R and Rb1 · · · bi−1b

2
i R = R for i ≥ 2:

Since the ideals bi (i ≥ 1) of the domain A are non-zero, so are their products b2
1 and b1 · · · bi−1b

2
i , and 

the statement (ii) follows from the simplicity of the algebra R.

(5 ⇒ 1) By Theorem 1.8, it suffices to show that for every nonzero ideal a of the algebra A such that 

[R1, a] ⊆ a, the ideal RaR is equal to R. Since the algebra D(A) is a simple algebra, 1 ∈ D(A)aD(A), i.e. 

1 ∈ D(A)iaD(A)i for some i ≥ 0. If i = 0 then 1 ∈ AaA = a and there is nothing to prove.

So, we assume that i ≥ 1. If i = 1 then

b2
1 = b1 · 1 · b1 ⊆ b1 · D(A)1aD(A)1 · b1 ⊆ R1a

(

[D(A)1, b1] + b1D(A)1

)

⊆ R1a(A + R1) = R1aR1,

and so R = Rb2
1R ⊆ RR1aR1R = RaR ⊆ R, i.e. RaR = R. If i ≥ 2 then

b2
i bi−1 · · · b1 = bi · 1 · bibi−1 · · · b1 ⊆ bi · D(A)iaD(A)i · bibi−1 · · · b1

⊆ Ria
(

[D(A)i, bi] + biD(A)i

)

bi−1 · · · b1

⊆ RiaRi + Ria
(

D(A)i−1 + Ri

)

bi−1 · · · b1

⊆ RiaRi + Ria
(

[D(A)i−1, bi−1] + bi−1D(A)i−1

)

bi−2 · · · b1

⊆ RiaRi + Ria(D(A)i−2 + Ri−1)bi−2 · · · b1

⊆ · · · ⊆ RiaRi + Ria(D(A)0 + R0) = RiaRi + RiaA

⊆ RiaRi.

Hence, R = R(b2
i bi−1 · · · b1)R ⊆ RaR ⊆ R, i.e. R = RaR, as required.

(6 ⇔ 7) Theorem 1.1.

(5 ⇒ 7) (resp., (7 ⇒ 5)) Repeat the proofs of the implication (1 ⇒ 5) (resp., (5 ⇒ 1)) replacing the 

ideals bi by ci and using right modules instead the left ones.

(2 ⇔ 3) Theorem 1.1.

(1 ⇒ 3) (i) The algebra D(A) is simple: See the proof of the statement (i) in the proof of the implication 

(1 ⇒ 5).

(ii) RbiciR = R for all i ≥ 1: Since the ideals bi and ci (i ≥ 1) of the domain A are non-zero, so are their 

products bici, and the statement (ii) follows from the simplicity of the algebra R.

(3 ⇒ 1) By Theorem 1.8, we have to show that for every nonzero ideal a of the algebra A such that 

[R1, a] ⊆ a, the ideal RaR is equal to R. Since the algebra D(A) is a simple algebra, 1 ∈ D(A)aD(A), i.e. 

1 ∈ D(A)iaD(A)i for some i ≥ 0. Then

bici = bi · 1 · ci ⊆ biD(A)iaD(A)ici ⊆ RiaRi,

and so R = RbiciR ⊆ RRiaRiR ⊆ RaR ⊆ R, i.e. RaR = R. �

Proof of Theorem 1.11. Notice that the algebra R is an essential left and right A-submodule of D(A) and 

the theorem follows from Theorem 1.10. Let us give more details.

The equivalences (2 ⇔ 3), (4 ⇔ 5) and (6 ⇔ 7) follow from Theorem 1.1.

(1 ⇒ 3, 1 ⇒ 5, 1 ⇒ 7) The implications follow from the fact that the algebra D(A) is a simple algebra 

and that siti �= 0 for all i ≥ 1 (since the algebra A is a domain).
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(3 ⇒ 1, 5 ⇒ 1, 7 ⇒ 1) Since si ∈ bi and ti ∈ ci for all i ≥ 1, the implications follow from Theorem 1.10. �

Proof of Theorem 1.2. (1 ⇒ 2) If the algebra D(A) is a simple algebra then so is the algebra D(A)m for all 

maximal ideals m of the algebra A that contain the Jacobian ideal ar, by Proposition 2.7.(2).

(2 ⇒ 1) Suppose that I is a proper ideal of the algebra D(A), we seek a contradiction. Then there is a 

maximal ideal m of the algebra A such that Im is a proper ideal of the algebra D(A)m, by Proposition 2.7.(2) 

and since A\{0} ⊆ CD(A) (as the algebra A is a domain). Since D(A)m ≃ D(Am), we must have that ar ⊆ m

(by Theorem 1.1), a contradiction. �

Proof of Theorem 1.12. (1 ⇒ 2, 4) If the algebra R is a simple algebra then, by Proposition 2.7.(2), so is the 

algebra Rm for all maximal ideals m of the algebra A. Since the algebra R is an essential left R-submodule 

of the algebra D(A), the algebra D(A) must be simple (since R is simple).

(2 ⇒ 1) Suppose that the algebra R is not a simple algebra, we seek a contradiction. By Theorem 1.10.(5), 

one of the ideals, say I, in the set {Rb2
1R, Rb1 · · · bi−1b

2
i R | i ≥ 2} is not equal to R. Then the ideal a = I ∩A

of the algebra A is a proper ideal that contains either the ideal b2
1 or b1 · · · bi−1b

2
i . Then there is a maximal 

ideal m of A that contains a and such that the ideal Im is a proper ideal of the algebra Rm. Clearly, the 

ideal m contains one of the ideals bi, a contradiction.

(2 ⇔ 3), (4 ⇔ 5) These implications follow from Theorem 1.2.

(4 ⇒ 1) Suppose that the algebra R is not a simple algebra, we seek a contradiction. By Theorem 1.10.(5), 

one of the ideals, say I, in the set {Rc2
1R, Rc1 · · · ci−1c

2
i R | i ≥ 2} is not equal to R. Then the ideal a = I ∩ A

of the algebra A is a proper ideal that contains either the ideal c2
1 or c1 · · · ci−1c

2
i . Then there is a maximal 

ideal m of A that contains a and such that the ideal Im is a proper ideal of the algebra Rm. Clearly, the 

ideal m contains one of the ideals ci, a contradiction. �

The D(A)-module structure of the algebra A and its simplicity criterion. Let A be an arbitrary commu-

tative algebra and D(A) be the algebra of differential operators on A. By the definition of the algebra D(A), 

the algebra A is a faithful left D(A)-module (since D(A) ⊆ EndK(A)). The action of elements δ ∈ D(A) on 

the elements a ∈ A is denoted either by δ(a) or δ ∗ a. Since A ⊆ D(A),

A = D(A) ∗ 1 ≃ D(A)/D(A)[0] where D(A)[0] := {δ ∈ D(A) | δ ∗ 1 = 0}

is the annihilator of the element 1 of the D(A)-module A. By the definition, D(A)[0] is a left ideal of the 

algebra D(A) such that

D(A) = A ⊕ D(A)[0] (6)

is a direct sum of left A-modules. Clearly, DerK(A) ⊆ D(A)[0]. Notice that

D(A)D(A)[0]D(A) = D(A) ∗ A ⊕ D(A)[0] (7)

since

D(A)D(A)[0]D(A) = D(A)[0]D(A) = D(A)[0](A + D(A)[0])

= D(A) ∗ A + D(A)[0]
Eq. (6)

= D(A) ∗ A ⊕ D(A)[0].

We denote by SubD(A)(A) the set of all left D(A)-submodules of the D(A)-module A. Let I(A, D(A) − st.)

(resp., I(A, D(A)− st., D(A)∗A)) be the set of all D(A)-stable ideals of A (resp., and that contain the ideal 

D(A)∗A of the algebra A). By (6), an ideal a of A is D(A)-stable iff it is D(A)[0]-stable (D(A)[0] ∗a ⊆ a). Let 
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I(D(A), D(A)[0]) be the set of ideals of the algebra D(A) that contain D(A)[0]. Proposition 3.4.(3) presents 

a bijection between the sets I(A, D(A) − st., D(A) ∗ A) and I(D(A), D(A)[0]).

Proposition 3.4. Let A be an algebra. Then:

1. SubD(A)(A) = I(A, D(A) − st.).

2. (Simplicity criterion for the module D(A)A) The D(A)-module A is simple iff there is no proper 

D(A)-stable ideal of A.

3. (The set I(D(A), D(A)[0])) The map

I(A, D(A) − st., D(A) ∗ A) → I(D(A), D(A)[0]), a �→ a + D(A)[0]

is a bijection with the inverse I �→ I ∩ A. The ideal D(A)D(A)[0]D(A) = D(A) ∗ A + D(A)[0] is the least 

ideal of the set I(D(A), D(A)[0]), and the ideal D(A) ∗ A = A ∩ D(A)D(A)[0]D(A) is a D(A)-stable ideal 

of A.

Proof. 1. Statement 1 is obvious.

2. Statement 2 follows from statement 1.

3. Let D = D(A), D[0] = D(A)[0] and b = D[0] ∗ A.

(i) If I is an ideal of D that contains D[0] then I = a+ D[0] where a = I ∩ A is a D-stable ideal of A such 

that b ⊆ a: By (6),

I = I ∩ D = I ∩ (A + D[0]) = I ∩ A + D[0] = a + D[0].

The left D-module I/D[0] = a is a submodule of the left D-module A. By statement 1, the ideal a of A is a 

D-stable ideal. Since I ⊇ DD[0]D = b + D[0], a ⊇ b.

(ii) If a is a D-stable ideal of A that contains b then a + D[0] is an ideal of D that contains D[0]:

D(a + D[0])D = Da + DD[0]D = Da + b + D[0] = D ∗ a + b + D[0] ⊆ a + D[0].

Now, statement 3 follows from the statements (i) and (ii). �

Clearly, 0 = D(A)0 ∗ A ⊆ D(A)1 ∗ A = DerK(A) ∗ A ⊆ D(A)2 ∗ A ⊆ · · · ⊆ D(A)i ∗ A ⊆ · · · is an ascending 

chain of ideals of the algebra A such that

CDA*A

D(A) ∗ A =
⋃

i≥0

D(A)i ∗ A. (8)

Definition 3.5. The element degD(A)(A) := min{i ∈ N ∪ {∞} | D(A)i ∗ A = D(A)j ∗ A for all j ≥ i} is 

called the differential operator degree of the algebra A.

If algebras A and A′ are isomorphic then

degD(A)(A) = degD(A′)(A
′),

i.e. degD(A)(A) is an isomorphism invariant of the algebra A. If the algebra A is a Noetherian algebra then

degD(A)(A) < ∞.
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Proposition 3.6 shows that if the algebra A = A is a domain of essentially finite type over a perfect field 

then the ideal D(A) ∗ A contains a power of the Jacobian ideal of the algebra A.

Example. Let A be a regular domain of essentially finite type over a perfect field K. Then the algebra D(A)

is generated by D(A)1 = A ⊕ DerK(A) and D(A)1 ∗ A = DerK(A) ∗ A = A (since the algebra D(A) is a 

simple algebra). Therefore, D(A)i ∗ A = DerK(A) ∗ A = A for all i ≥ 1, i.e.

degD(A)(A) = 1.

Proposition 3.6. Let A be a domain of essentially finite type over a perfect field K and ar be the Jacobian 

ideal of A. Then ai
r ⊆ D(A)∗A for some i ≥ 0, and so the subvariety Spec(A/D(A)∗A) of Spec(A) consists 

of singular points of Spec(A).

Proof. Let D = D(A), D[0] = D(A)[0] and b = D[0] ∗ A. By Proposition 2.5.(3), the ideal (D[0]) of D is equal 

to b+D[0] and b = A∩(D[0]). By Theorem 1.3.(3), ai
r ⊆ (D[0]) for some i ≥ 0, and so b ⊇ A∩(D[0]) ⊇ ai

r. �

If A = K[x, y]/(y2 − x3) is the algebra of regular functions on the cusp y2 − x3 over a field K of 

characteristic zero then the algebra D(A) is simple, [8, Lemma 2.2.(2)]. Therefore, D(A) ∗ A = A.

The canonical form of a differential operator. For a finite set Λ, we denote by NΛ the direct product 

of Λ copies of the set of natural numbers N. For an element α = (αλ) of N
Λ, let |α| :=

∑

λ∈Λ αλ and 

(−1)α := (−1)|α|. For elements α, β ∈ N
Λ, we write β ≤ α if βλ ≤ αλ for all λ ∈ Λ. If β ≤ α then 

(

α
β

)

:=
∏

λ∈Λ

(

αλ

βλ

)

.

Theorem 3.7. Let A be a finitely generated commutative algebra, G = {xλ}λ∈Λ be a finite set of generators 

of A, D(A) be the algebra of differential operators on A, and {D(A)i}i≥0 be the order filtration on D(A). 

Then:

1. Each differential operator δ ∈ D(A)i of order i is uniquely determined by the elements {adα(δ) ∗ 1 | α ∈

N
Λ, |α| ≤ i} where adα =

∏

λ∈Λ adαλ

xλ
for α = (αλ) ∈ N

Λ.

2. For all elements α ∈ N
Λ and δ ∈ D(A)i,

δ(xα) =
∑

β≤α,|β|≤i

(−1)β

(

α

β

)

adβ(δ) ∗ 1 · xα−β

where xα−β =
∏

λ∈Λ xαλ−βλ

λ .

Proof. 2. For the element xλ, we denote by lxλ
and rxλ

the left and right multiplication maps by the element 

xλ, respectively. Now,

δ(xα) = δxα ∗ 1 = δ
∏

λ∈Λ

xαλ

λ ∗ 1 =

(

∏

λ∈Λ

rαλ
xλ

δ

)

∗ 1 =

(

∏

λ∈Λ

(lxλ
− adxλ

)αλδ

)

∗ 1

=
∑

β≤α,|β|≤i

(−1)β

(

α

β

)

adβ(δ) ∗ 1 · xα−β .

1. Statement 1 follows from statement 2: Let δ, δ′ ∈ D(A)i. If δ = δ′ then adα(δ) ∗ 1 = adα(δ′) ∗ 1 for all 

elements α such that |α| ≤ i. The converse follows from statement 2. �
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