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1. Introduction (extended)

In the paper, K is a field of arbitrary characteristic (not necessarily algebraically closed); module means
a left module; for a commutative algebra A, D(A) is the algebra of differential operators on A and Derg (A)
is the left A-module of K-derivations of A.

Simplicity criteria for the algebra D(A) of differential operators on the algebra .4 which is a domain of
essentially finite type. Theorem 1.1 and Theorem 1.3 are simplicity criteria for the algebra D(A) where A
is a domain of essentially finite type over a perfect field (Theorem 1.1) and a commutative algebra over an
arbitrary field (Theorem 1.3), respectively.

The aim of the paper is to generalize the above results for a large class of algebras — the A-locally
nilpotent algebras — which includes the algebra D(A) of differential operators on a commutative algebra A
and all its subalgebras that contain the algebra A. The last class of algebras contains many exotic algebras
(non-Noetherial and not finitely generated).

Theorem 1.1. (/8, Theorem 1.1]) Let a K-algebra A be a commutative domain of essentially finite type over
a perfect field K and a, be its Jacobial ideal. The following statements are equivalent:

1. The algebra D(A) of differential operators on A is a simple algebra.
2. For alli>1, D(A)aiD(A) = D(A).
3. Forallk>1,i€1, andj€ J,, D(A)A(®1,j)*D(A) = D(A).

The elements A(i, j) are defined in Section 3 (they are the non-zero minors of maximal rank in the Jacobi
matrix). Theorem 1.1 presents a short proof of an important old result in the area of differential operators.
Namely, if the algebra A is a smooth then the algebra D(A) is simple: If the algebra A is smooth, i.e. a, = A
(the Jacobian Criterion of Regularity), then by the second condition of Theorem 1.1 the algebra D(A) is a
simple algebra. Theorem 1.1 reveals the reason why for some singular algebras A their rings of differential
operators are simple algebras. For example, this is the case for the cusp.

Theorem 1.2. Let a K-algebra A be a commutative domain of essentially finite type over a perfect field K
and a, be its Jacobian ideal. The following statements are equivalent:

1. The algebra D(A) of differential operators on A is a simple algebra.
2. For every maximal ideal m of A that contains the Jacobian ideal a,, the algebra D(A)y is a simple
algebra.

The proof of Theorem 1.2 is given in Section 3.

Simplicity criterion for the algebra D(R) of differential operators on an arbitrary commutative algebra
R. An ideal a of the algebra R is called Derg (R)-stable if 6(a) C a for all § € Derg (R). Theorem 1.3.(2) is
a simplicity criterion for the algebra D(R) where R is an arbitrary commutative algebra. Theorem 1.3.(1)
shows that every nonzero ideal of the algebra D(R) meets the subalgebra R of D(R). If, in addition, the
algebra R = A is a domain of essentially finite type, Theorem 1.3.(3) shows that every nonzero ideal of the
algebra D(R) contains a power of the Jacobian ideal of A.

Theorem 1.3. ([8, Theorem 1.2]) Let R be a commutative algebra over an arbitrary field K.
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1. Let I be a nonzero ideal the algebra D(R). Then the ideal Iy := I N R is a nonzero Derk (R)-stable ideal
of the algebra R such that D(R)IoD(R)N R = Iy. In particular, every nonzero ideal of the algebra D(R)
has nonzero intersection with R.

2. The ring D(R) is not simple iff there is a proper Der (R)-stable ideal a of R such that D(R)aD(R)NR =
a.

3. Suppose, in addition, that K is a perfect field and the algebra A = R is a domain of essentially finite
type, a, be its Jacobian ideal, I be a nonzero ideal of D(A), and Iy = I N A. Then a%. C Iy for some
i>1.

The A-locally nilpotent modules. The following notations will remain fixed in the paper: A is a K-algebra,
M is an A-module, 0 # A C Ends(M) and A =A---A= {88 |61,...,6; € A} (i > 1 times),

N(M) = Na(M) := U Na(M); where N(M); = Na(M); := annp (A™) = {m e M| AT m =0}
i>0

and N(M)_; := 0. Clearly, N(M)_; € N(M)y € --- C N(M),, C --- is an ascending chain of A-
submodules of M such that

AN(M); CN(M);—; forall i>0.

Definition. The A-module Na (M) is called the A-locally nilpotent A-submodule of M. The A-module M
is called the A-locally nilpotent A-module if M = N (M).

In general situation, the A-submodule Na (M) of M is a A’-locally nilpotent A-module where A’ =
{69 € A} and ¢’ is the restriction of the A-homomorphism 0 to Na(M). Abusing the language, we call
the A-module Na (M) the A-locally nilpotent A-module.

A map f € Enda(M) is called a locally nilpotent map if M = |J,~, keras(f©1). If M is a A-locally
nilpotent A-module then every map 6 € A is a locally nilpotent map but not vice versa, in general, see the
example below.

Example. Let M = @, Ae; be a free A-module of rank n > 2 where the set {eq,...,e,} is a free basis
for M; A ={64,0_} C Enda(M) where 04 (e;) = e;41 fori=1,...,n and eg = e,,11 = 0. Clearly, 6% =0,
the maps F; = 6.6_ and E_ = §_J; are nonzero idempotents such that E, (e;) =e; for i =2,...,n and
Ei(e1)=0,E_(e;) =e; fori=1,...,n—1and E_(e,) = 0. Therefore, the A-module M is not A-locally
nilpotent. In fact, Na (M) = 0.

Lemma 1.4. If A is a finite set of commuting A-homomorphism of an A-module M. Then the A-module is
A-locally nilpotent iff all the maps in A are locally nilpotent maps.

Proof. Straightforward. 0O

The A-locally nilpotent algebras Na (F) where A C Der 4 (E). Suppose, in addition, that A is a subalgebra
of an algebra E and A C Der4(E), the set of A-derivations of the algebra E (6 € Der4(F) if ¢ is a derivation
of the algebra E and an A-homomorphism; in particular, §(4) = 0). Then E® := ;o kerg () is the algebra

of A-constants, and A C E2.

Proposition 1.5. Let A be a subalgebra of an algebra E and A C Der(F). Then:
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L. The A-module Na(E) = U;»oNa(E)i is a subalgebra of E such that A C Na(E)y = EA,
NA(E)iNA(E); € Na(E)itj for all i,5 > 0, i.e. the set {Na(E);}i>0 s an ascending filtration of

the algebra Na(E) elements of which are A-modules.
2. For alli Z 0, ANA(E)Z Q NA(E)i—l-

Definition. The algebra Na(E) is called the A-locally nilpotent algebra and the filtration {Na(E);}i>0 is
called the order filtration on the algebra Na(E). We say that an element a € Na(E);\Na(F);—1 has order
i which is denoted by ord(a) = 1.

The A-locally nilpotent algebras are the main object of study of the paper. We clarify their ideal structure
and give several simplicity criteria for them. Below are examples of several large classes of A-locally nilpotent
algebras.

Example (THE ALGEBRAS OF DIFFERENTIAL OPERATORS). Let A be a commutative K-algebra, E =
Endg(A) 2 Enda(A) ~ A and A = {ad,|a € A} where ad, : E — E, f — [a,f] :== af — fa is the
inner derivation of the algebra E determined by the element a. By the very definition, A C Derg (F) and

Na(E) =D(4) (1)

is the algebra of differential operators on the algebra A and the filtration {Na(E) = D(A);}i>0 is the order
filtration on the algebra D(A), see Section 3 for details.

Example (SUBALGEBRAS OF DIFFERENTIAL OPERATORS D(A) THAT CONTAIN A). A subalgebra R of the
algebra D(A) of differential operators on a commutative algebra A that contains the algebra A is a A-locally
nilpotent algebra w.r.t. A = {ad, |a € A} and the induced filtration {R; := R ND(A);}i>0 is the A-order
filtration on R. See Proposition 2.4 for examples.

Example. Suppose that the algebra F admits a set of generators {a;|i € I} such that the algebra E is a
A-locally nilpotent algebra where A = {ad,, |7 € I} C Ders(F) and A = Z(FE) is the centre of the algebra
E.

Example. The Weyl algebra
An = K<J}1, ‘e ,],‘nal, N .,8n | [8i,xj] = 51']', Tilj = T4, 3L3J = 8j8i, 1 S i,j S ’/l>

is a A-locally nilpotent algebra where A = {ad,,,adg, |¢ = 1,...,n} where [a,b] := ab — ba and §;; is the
Kronecker delta. If the field K has characteristic zero then Z(A,) = K and the A-order filtration {A, ;}i>0
coincides with the standard filtration on A,, with respect to the canonical generators x1,...,2y,,01,...,0,
of the algebra A,. Namely,

Api= Y Kaz°0°
la|+[B]<i

where o, € N" and |a|] = aq + -+ + o, for & = (aq,...,a,). For all i > 0, dimg (A, ;) < oo. The
Weyl algebra A,, is a simple algebra if the field K has characteristic zero. The Weyl algebra A, is also a
A-locally nilpotent algebra where A = {ad,, |i = 1,...,n} or A ={ady, |i = 1,...,n} but in these cases
the components of the A-order filtrations are infinite dimensional.

Example. Let n be a nilpotent Lie algebra. Then its universal enveloping algebra U = U(n) is a A-locally
nilpotent algebra where A = {ad, |z € n} C Ders(U) and A = Z(U) = U is the centre of the algebra U.
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Example. Let s be a solvable Lie algebra. Then n = [s,s] is a nilpotent Lie algebra and the universal
enveloping algebra U = U(s) is a A-locally nilpotent algebra where A = {ad, |z € n} C Ders(U) and
A = U? is the centralizer of n in the algebra U.

Example. Let G be a semi-simple Lie algebra and G = n_ @ H @ n, be its triangular decomposition where
H is a Cartan subalgebra of G. Then the universal enveloping algebra U = U(G) is a A -locally nilpotent
(resp., A_-locally nilpotent) algebra where Ay = {ad, |z € ny} C Derg, (U) (vesp., A_ = {ad, |z €
n_} CDery (U))and A, = UA+ (resp., A_ = U»-).

Example (THE POISSON UNIVERSAL ENVELOPING ALGEBRA OF A POISSON ALGEBRA). Let P be a Poisson
algebra. In [9], for each Poisson algebra P explicit sets of (associative) algebra generators and defining
relations are given for its Poisson universal enveloping algebra U(P). It follows at once from this result that
the Poisson universal enveloping algebra U/ (P) is a A-locally nilpotent algebra w.r.t. A = {ad, |a € P}.

Example (THE ALGEBRA OF POISSON DIFFERENTIAL OPERATORS). Let (P,{,-}) be a Poisson algebra. In
[9], the algebra of Poisson differential operators PD(P) was introduced and studied. Since P C PD(P) C
D(P), the algebra PD(P) is a A-nilpotent algebra where A = {ad, |p € P}.

Example. Let A be a commutative algebra and {d1,...,0,} be a set of commuting K-derivations of the
algebra A, R = Alx1,...,%n;01,...,0,] be an iterated Ore extension. The algebra R is generated by the
algebra A and elements x1,...,x, subject to the defining relations:

vix; =xjx; (1#7) and ;0 =ax; +6;(a) (a€ A, 1<i<n).

The algebra R = @ cnn A0* = P, enn 0“A is a free left and right A-module with free basis {0}qenn
where 6% = 6" --- 0% and o = (aq,...,q,). In particular, the algebra A is a subalgebra of R. The
algebra R is a A-locally nilpotent algebra where A = {ad, |a € A} C Dera(R). Let {R;} be the A-order
filtration on R. Then Ry = R® = Cr(A) is the centralizer of the algebra A in R. In particular, A C Ry
and A+ Y0 Az, = A+ 3" ;A C Ry+ Y i Rowi = Ro + Y.y xRy (since [z;, Ro] C Ry for all
i=1,...,n).

Example. Certain generalized Weyl algebras of rank n are A-locally nilpotent algebras, see Lemma 2.3 for
details.

The ideal structure of A-stable ideals of A-locally nilpotent algebras. An ideal a of an algebra F is called
A-stable if Aa C a (6(a) C afor all 6 € A) where A C Der4(F). Theorem 1.6 describes the ideal structure
of A-stable ideals of A-locally nilpotent algebras. This theorem is used in many proofs of the paper.

Theorem 1.6. Let A be a subalgebra of an algebra E, A C Dera(E), a be a nonzero A-stable ideal of the
algebra Na(E) and ag := aN Na(E)o = an EA. Then:

1. The ideal ag # 0 is a nonzero ideal of the algebra Na(E)o, the ideal a’ = Na(E)agNa(E) is a nonzero
ideal of the algebra Na(FE) such that @’ C a and ¢ N Na(E)o = ap.
2. If, in addition, the algebra Na(E)o is a commutative algebra then [Na(E)1,a0] C dap.

The ideal structure of the A-locally nilpotent algebras Na(F) where A is a commutative algebra. For a
subset A’ of the algebra A, C4(A’) := {a € A|aa’ = d’a for all a € A’} is the centralizer of the set A’ in A.
The centralizer C'4(A’) is a subalgebra of A.
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Theorem 1.7. Let A be a commutative subalgebra of an algebra E, A = {ad,|a € A’} where A’ is a non-
empty subset of A (e.g., A’ = A), a be a nonzero ideal of the algebra Na(E) and ag := aNNa(E)g = anEA.
Then:

1. ag # 0 is a nonzero ideal of the algebra Na(E)g = E® = Cg(A’). The ideal o = Na(E)agNa(E) of
NA(E) is a nonzero ideal such that o/ N Na(E) = ay.
2. If, in addition, the algebra Na(E)o is a commutative algebra then [Na(E)1,a0] C ag.

Using Theorem 1.7, we clarify the ideal structure of subalgebras of D(A) that contain A, Theorem 1.8.
This result is a generalization of Theorem 1.3.

Theorem 1.8. Let A be a commutative algebra, D(A) be the algebra of differential operators on A, R be a
subalgebra of D(A) such that A C R (e.g., R = D(A)), and R; = RND(A); fori > 0. If a is a nonzero
ideal of the algebra R then ag := aN A # 0 is a nonzero ideal of the algebra A such that [Ry,a9] C ag and
RagRN A = ag. The condition that [Ry,a9] C ag is equivalent to the condition that [Dg,ag] C ag where
Dp := Ry NDerk(A) (if R =D(A) then Dr = Derg (A)).

The proofs of Theorem 1.6, Theorem 1.7 and Theorem 1.8 are given in Section 2.

Corollary 1.9. Let A be an algebra that admits a set of generators {a;|i € I} such that the algebra A is a
A-locally nilpotent algebra where A = {ad,, |i € I} C Dergz(ay(A) (e.g., the universal enveloping algebra
U(n) of a nilpotent algebra). Then every nonzero ideal of A meets the centre Z(A) of A.

Proof. The zero term of the A-order filtration of the algebra A is A® = Z(A) the centre of the algebra A.
Now, the statement follows from Theorem 1.7.(1). O

Simplicity criteria for subalgebras R of D(.A) that contains .A. The algebras R are a very wide class of
algebras and they are important examples of A-locally nilpotent algebras. Even in the case of the polynomial
algebra A = K|[z] over a field of characteristic zero, the structure of the algebras R C D(K[x]) is not yet
completely understood as there are exotic algebras (not finitely generated and not Noetherian). Some
examples of such algebras are considered in Proposition 2.4. In particular, their prime spectra are classified.
A submodule of a module is called an essential submodule if it meets all the nonzero submodules.

Theorem 1.10. Let A be a commutative domain of essentially finite type over a perfect field, a,. be its Jacobian
ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A and is an
essential A-submodule of D(A), and R; = RND(A); fori>0. For each i > 1, let b; := lann 4(D(A);/R;)
and ¢; := r.anng(D(A)i/R;). Then b; # 0, ¢; # 0, b1 C ¢; and ¢ C b; for alli > 0 and the following
statements are equivalent:

The algebra R is a simple algebra.

For all integers i > 1, D(A)atD(A) = D(A) and Rb;c;R = R.

The algebra D(A) a simple algebra and Rb;c;R = R for all i > 1.

For all integers i > 1, D(A)aD(A) = D(A), Rb3R = R and Rb; ---b;_1b?R = R.
The algebra D(A) a simple algebra, Rb3R = R and Rby---b;_167R = R for all i > 2.
For all integers i > 1, D(A)atD(A) = D(A), R3R =R and Rey -+ ¢;_1¢2R = R.

The algebra D(A) a simple algebra, Re3R = R and Rey -+ ¢;—1¢2R = R for all i > 2.

NS e LN

The proof of Theorem 1.10 is given in Section 3. Using Theorem 1.10, we obtain Theorem 1.11 which is
another simplicity criterion for the algebra R.
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Theorem 1.11. Let A be a commutative domain of essentially finite type over a perfect field, a, be its Jacobian
ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A, and
STIR = STID(A) for some multiplicative subset S of A. Fix elements s;,t; € S such that s; € b; and
t; € ¢; fori > 1 (see Theorem 1.10 for the definition of the ideals b; and ¢;). Then the following statements
are equivalent:

The algebra R is a simple algebra.

For all integers i > 1, D(A)atD(A) = D(A) and Rs;t;R = R.

The algebra D(A) a simple algebra and Rs;t;R = R for all i > 1.

For all integers i > 1, D(A)alD(A) = D(A), Rs?R =R and Rs;---s;—15?R = R.
The algebra D(A) a simple algebra, Rs1R = R and Rsy---s;_15?R = R for all i > 2.
For all integers i > 1, D(A)atD(A) = D(A), Rt2R =R and Rty ---t;_1t?R = R.
The algebra D(A) a simple algebra, Rt3R = R and Rty ---t;_112R = R for all i > 2.

N otE W

The proof of Theorem 1.11 is given in Section 3.

Theorem 1.12. Let A be a commutative domain of essentially finite type over a perfect field, a, be its Jacobian
ideal, D(A) be the algebra of differential operators on A, R be a subalgebra of D(A) that contains A and is
an essential A-submodule of D(A), and R; = RND(A); fori > 0. For eachi > 1, let b; = Lann4(D(A);/R;)
and ¢; = r.ann4(D(A);/R;). Then the following statements are equivalent:

1. The algebra R is a simple algebra.

2. The algebra D(A) is a simple algebra and for every mazimal ideal m of A that contains one of the ideals
b; (i > 1), the algebra Ry, is a simple algebra.

3. For every mazimal ideal n of A that contains the Jacobian ideal a,, the algebra D(A), is a simple algebra
and for every mazimal ideal m of A that contains one of the ideals b; (i > 1), the algebra Ry, is a simple
algebra.

4. The algebra D(A) is a simple algebra and for every mazimal ideal m of A that contains one of the ideals
¢; (i >1), the algebra Ry is a simple algebra.

5. For every mazimal ideal n of A that contains the Jacobian ideal a,, the algebra D(A), is a simple algebra
and for every mazimal ideal m of A that contains one of the ideals ¢; (i > 1), the algebra Ry, is a simple
algebra.

The proof of Theorem 1.12 is given in Section 3.

2. Simplicity criteria of A-locally nilpotent algebras: proofs

In this section proofs of Theorem 1.5, Theorem 1.6, Theorem 1.7 and Theorem 1.8 are given. A class
of generalized Weyl algebras that are A-locally nilpotent algebras are considered (Lemma 2.3). In Proposi-
tion 2.4, the prime spectra of three A-locally nilpotent subalgebras of the Weyl algebra A; are described.
Proposition 2.5 shows that Na(S™!E) ~ STI!NA(E) for all regular left Ore sets S that are contained in
the zero component Na(E)o of the A-order filtration. Similar results hold in more general situation but
under additional condition (Proposition 2.6). We study properties of denominator sets that are generated by
ad-locally nilpotent elements (Proposition 2.7). In particular, localizations at such denominator sets respect
ideals (which is not true for arbitrary localization).

If § is a derivation of an algebra E then for all elements a,b € F,

5™ (ab) = Zn: <”> §i(a)omi(b). (2)

- 1
=0
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Proof of Proposition 1.5. 1. By the definition, the set {N(E);};>0 is an ascending filtration of A-modules
on the algebra N(FE), and A C N(E)o = E®. By (2), for all 4,5 > 0,

ATTUN(ERN(E)) S Y, AYN(ERA(N(E);) = 0.
sHt=i4+j+1

Therefore, N(E);N(E); € N(E);4;.
2. Statement 2 is obvious. 0O

Proof of Theorem 1.6. 1. Let N = NA(E), N; = Na(E); and a; = an N; = {a € a|A""ta = 0} where
7 > 0. Then

Cl:Uﬂi.

>0

(1) a0 # 0 is a nonzero ideal of the algebra Ny (such that Aag = 0): Since a # 0 and a = [J;54a;, we
must have a,, # a,,_; for some n > 0, e.g. n = min{i > 0|a; # 0}. Then

0# A", CA"N,NaC N,_,Na=NgNa=adqp.
(i) @’ N Ny = ag: Notice that a’ C a. Then
aoga'ﬁNogaﬂNo:ao,

and the statement (ii) follows.
2. A[Ny,a0] € [ANy,a0] + [N1,Aag] C [N1-1,0a0] + [N1,0] = [No,a9] = 0 since the algebra Ny is a

commutative algebra. O

Proof of Theorem 1.7. Since the algebra A is a commutative algebra, we have that A C Dery(E), A C
NA(E)o, and every ideal of the algebra Na(FE) is A-stable (by the choice of A). Now, the theorem follows
from Theorem 1.6. 0O

Corollary 2.1. Let A be a commutative subalgebra of an algebra E, A = {ad,|a € A’} where A’ is a
non-empty subset of A (e.g., A’ = A), and R be a subalgebra of Na(E) such that A C R. Then:

1. The algebra R is a A-locally nilpotent algebra and {R; := RN Na(E);}i>o0 is its A-order filtration.

2. If a is a nonzero ideal of the algebra R then ag := aN Ry = a N R? is a nonzero ideal of the algebra
Ry = R® D A such that RagRN Ry = ap.

3. If, in addition, the algebra Ry = R® is a commutative algebra then [Ry,a] C ag.

Proof. The corollary follows from Theorem 1.7. O

Proof of Theorem 1.8. The algebra R is a A-locally nilpotent algebra where A = {ad, |a € A} such that
Ry =RND(A)y=RNA=Ais acommutative algebra and {R;};>¢ is the A-order filtration on R. Now,
the theorem follows from Corollary 2.1. 0O

Corollary 2.2. Let A be a commutative algebra, D(A) be the algebra of differential operators on A, R be a
subalgebra of D(A) that is generated by the algebra A and a non-empty subset = of Derg (A). Then R is a
simple algebra iff the algebra A is E-simple (i.e. 0 and A are the only ZE-stable ideals of the algebra A). In
particular, the algebra A is a domain provided it is a Noetherian algebra.
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Proof. (i) The algebra R is not simple = the algebra A is not Z-simple: The algebra R is a subalgebra of
D(A) such that A C R. Suppose that I is a proper ideal of R. Then, by Theorem 1.8, I N A is a proper
I-stable ideal of A where I' = RN Derg(R) 2 =. So, the intersection I N A is a proper E-stable ideal of A,
i.e. the algebra A is not Z-simple.

(ii) The algebra A is not E-simple = the algebra R is not a simple algebra: If J is a proper E-stable ideal
of A then JR is a proper ideal of R (since Z(J) C J).

Since for Noetherian algebra the minimal primes are derivation-stable, the algebra A must be a domain.
So, the corollary follows. 0O

Generalized Weyl algebras, [2-4]. Let D be a ring, ¢ = (071, ..., 0,) be an n-tuple of commuting automor-
phisms of D, a = (a1, ..., a,) be an n-tuple of elements of the centre Z(D) of D such that o;(a;) = a; for
all i # j. The generalized Weyl algebra A = D[X,Y’;0,a] (GWA) of rank n is a ring generated by D and
2n indeterminates X, ..., X,,, Y7, ..., Y, subject to the defining relations:

YiX; = ai, X;Vi=o0i(a;), Xid=o0i(d)X;, Yid=0;'(d)Y; (de D),

[Xian] = [leyvj] = D/MYH =0, forall i# j,

where [z,y] = zy — yz. We say that a and o are the sets of defining elements and automorphisms of the
GWA A, respectively.

The GWA A = @ cz» Dva is a Z-graded algebra (Dv, - Dvg € Duvayp for all o, 3 € Z™) where
Vo = Vg, (1) -+ - Vo, (n) and vg, (1) = X7 if o > 0 and v, (1) = Y, if ; <0.

The Weyl algebra A,, is a generalized Weyl algebra A = D[X,Y; 0;a| of rank n where D = K[Hy, ..., H,]
is a polynomial ring in n variables with coefficients in K, ¢ = (o1,...,0,) where 0;(H;) = H; — 6;; and
a=(Hy,...,Hp,). The map

A, A X;—= X, YimY, i=1,...,n,

is an algebra isomorphism (notice that YV; X; — H;).

Many quantum algebras of small Gelfand-Kirillov dimension are GWAs (e.g., U(slz), Ug(sl2), the quantum
Weyl algebra, the quantum plane, the Heisenberg algebra and its quantum analogues, the quantum sphere,
and many others).

In case of GWAS of rank 1 we drop the lower index ‘1’. So, a GWA of rank 1 A = D[z, y; 0, a] is generated
by the algebra D, x and y subject to the defining relations:

yr=a, vy=o(a), xd=o(d)z and yd =o' (d)y (d € D).

The algebra A = @, 5 Dv; is a Z-graded algebra (Dv;Dv; C Dv;; for all i,j € Z) where vg = 1, v; = x
and v_; = ' for i > 1. In particular, the (first) Weyl algebra

Ay = K(2,0|0x — 20 = 1) ~ KI[h|[z,0;0,a = h+ 1]

is a GWA where h = 20 and o(h) = h—1 (since a =9z =20+ 1=h+1 and zh = 220 = z(0x + [z, 0]) =
(h—1)z).

Let A = D[X,Y’; 0,a] be a GWA of rank n where D is a K-algebra. The algebra A contains two polynomial
subalgebras P, = K[X1,...,X,] and P, = K[Y1,...,Y,] in n variables. Recall that o = (01,...,0,) where
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o; are commuting automorphisms of the algebra D. Notice that aiil —1lisa Uiﬂ—derivation of the algebra
D. A K-linear map 0 : D — D is called a o;-derivation if

d(ab) = d(a)b + o;(a)d(b) for all elements a,b € D.

The set A = {adx,,...,adx,} (resp., A’ = {ady,,...,ady, }) consists of commuting P,-derivations (resp.,
P!-derivations) of A. Since (o; ' —1)™ = (=1)™a; ™ (o; — 1)™ for all m > 1, the map o; — 1 is a locally
nilpotent map on D iff so is the map 0;1 —1.

Lemma 2.3. Let A= D[X,Y;0,a] be a GWA of rank n where D is a K-algebra, A = {adx,,...,adx, } and
A" ={ady,,...,ady, }. Then:

1. The algebra A is a A-locally nilpotent algebra iff the maps o1 — 1,...,0, — 1 are locally nilpotent maps
on D.

2. The algebra A is a A’-locally nilpotent algebra iff the maps Ufl —1,...,0,;Y — 1 are locally nilpotent
maps on D.

Proof. 1. (=) The implication follows from the equality ad'y,(d) = (0; —1)™(d) X" for alli =1,...,n and
d € D and the fact that the algebra A is a Z-graded algebra.

(<) Given an element dv, € Duv,, where d € D and a = (ai,...,a,) € Z™, we have to show that
adii (dvg) = 0 for some element 8 > 1, by Lemma 1.4. Using the Z-grading of the GWA A, we may assume

that o; € N (since adii (DY) € DXiﬁJrai for all 8 > 1 such that 5 > —a;). Then

ad%, (dX®) = ad%, (d) X = (o; — 1)?(d) X[ X~
and the result follows since the map o; — 1 is a locally nilpotent map on D.
2. Statement 2 can be proven in a similar way as statement 1. 0O

An element r of a ring R is called a normal element if rR = Rr, i.e. (r) = rR = Rr is an ideal of R.
Given an element s € R. If the set S; = {s°|i > 0} is a left denominator set of the ring R then we denote
by R, the localization S; R of the ring R at the powers of the element s.

Proposition 2.4 is about properties of three A-locally nilpotent subalgebras, R; (i = 0, 1,2), of the Weyl
algebra A;. These algebras are not simple and have very different ideal structure.

Proposition 2.4. Let A; = K{(x, ) be the Weyl algebra over a field K of characteristic zero and K[z] C Ry C
Ry C Ry C Ay be subalgebras of Ay where Ry = K(h = 20, z), Ry = K(hd,h,z), and Ry = K{(h0?* ho, h,x).
Then:

1. The algebras Ry, Ry, and Ry are non-simple, A-locally nilpotent algebras where A = {ad, |a € K|x]}.

2. The algebra Ry = K[h][x;0] is a skew polynomial ring where o € Autg (K|z]) and o(h) = h —1; the
element x of Ry is a normal element; Spec(Ry) = {0, (z), (z,p) |p € Irr1 (K [h])} where Irri(Kh]) is the
set of monic irreducible polynomials of K[h] (monic means that the leading coefficient of the polynomial
is 1).

3. The algebra Ry = Kh][z,y = h0;0,a = h(h+1)] is a GWA where o(h) = h—1. The ideal my = (y, h, x)
is the only proper ideal of the algebra R1, Ry = K ® my, Ri/my = K, the ideal m; is a mazimal ideal
of Ry such that m? =my, and Spec(R1) = {0, m}.

4. The algebra Ry = @,~, K[h]hd' & Ry is a mazimal subalgebra of the Weyl algebra Ay. The ideal
my = (h) = @,~, K[hWhd'ShK R @@, K[h|z' is the only proper ideal of the algebra Ry, Ry = K ®ms,
Ro/my =K, the ideal mo is a mazimal ideal of Ry such that m3 = my, and Spec(Rz) = {0, ma}.
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Proof. By the very definition, the algebras Ry, R; and Ry are homogeneous subalgebras of the Weyl algebra
Ay (with respect to the Z-grading of A; as a GWA).

1. Since Ay ~ D(K|[x]) and K[z] C Ry C Ry C Ry C Ay, statement 1 follows.

2. It is obvious that Ry = K[h][z;0] = @,~, K[h]z" is a skew polynomial ring, where o € Auty (K|[z])
and o(h) = h — 1, and the element x is a normal element of Ry such that Ro/(z) ~ K[h]. In particular, the
ideal (z) is a proper, prime ideal of Rg. The A-order filtration on Ry is {Ry; = @;ZO K[z]h'};>0 since the
algebra

d
RO = K[.CC] |:h,l‘%:| = EJORQJ'

is an Ore extension. In particular, Ry 1 = K[z] @ K[z]h and for all polynomials p € K|z], [h,p] = xg—i. The

derivation Jc% is a semi-simple derivation of the polynomial algebra K[z] = 692'20 Kax' since xcél—f: = ir
for all i > 0. Therefore, {z’K[z]|i > 0} is the set of z-L-stable ideals of the polynomial algebra K|[z]. The

algebra

7

RO,z =~ Al,z

is a simple algebra. Hence, if I is a nonzero ideal of the algebra Ry then x'K[x] C I for some i > 0. If p is
a nonzero prime ideal of Ry then p D (2%) = (x)? since x is a normal element of Ry. Hence,

(z) Cp.

If () # p then p = (z,p) for some element p € Irry(K[h]) since Ry/(z) = K[h]. Hence Spec(Ry) =
{0, (z), (z,p) | p € Irr1 (K [h])} since Ry is a domain.
3. Since yx = a, xy = o(a), vd = o(d)x and yd = o~ (d)y for all d € D, there is an algebra epimorphism

K[h]lz,y;0,a] = Ry, h—h, z+—x, y— hd

which is an isomorphism since Ry = @, K[h]y' © @, K[h]z?. By [1, Theorem 5] or [1, Proposition 6],
the ideal n; is the only proper ideal of the algebra R; and n? = m;. Clearly, Ry = k®m; and R;/m; = K,
and so Spec(R;) = {0, my }.

4. (i) Re = @,~, K[h|hd' ® Ry: Notice that

Ay = P K[ho' o @ K[hlz' = P K[ho' @ Ry
i>1 i>0 i>1

and [hd?, hd7] = (i — j)hO™7 for all i,5 > 0. Since hd, hd? € Ry we have that [hd?, hd] = hd*> € Ry. Now,
using induction on ¢ > 0 and the equalities

[h0', hd] = (i — 1)hd"™,

we see that hd" € Ry for all i > 0. Hence, the algebra Ry contains the direct sum, say Rj, from the statement
(i). The direct sum R} is a subalgebra of A; which is generated by the elements x and hd* where i > 0, i.e.
R, = R,.

(iii) The algebra Rs is a mazximal subalgebra of the Weyl algebra A;: Suppose that A be a subalgebra of
Ay that properly contains the algebra Ro. We have to show that A = A;. The Weyl algebra

A =P KR o P K(hla!

i>1 i>0
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is a direct sum of distinct eigen-spaces for the inner derivation ady, of A; (since [h, 2] = iz? and [h, %] = —id"
for all ¢ > 0 and char(K)=0). Since h € Ry C A, the algebra A is an ady-stable ([h, A] C A). So, the algebra
A is a homogeneous subalgebra of the Weyl algebra A;. Since

Ay =P K[hO' @ Ry 2 Ry = P K[h]hd' & Ry and K[h] = K & hK[h],

i>1 i>1

we must have 8 € A for some ¢ > 1. Then

d= %(—adm)i_l(ai) €A,
and so A = A; since z,0 € A.

(iii) mo = (h) = @, K[h]hd" ® hK[h] & @, K[h]z': The statement (iii) follows from the statement
(i) and the equalities [k, 27] = iz’ and [h, '] = —id" for all i > 0.

By the statement (iii), Ry = K ® mg and Ry/my = K.

(iv) The set S, = {x'|i > 0} is a left and right denominator set of the domains Rgy, R1, R, and A;
such that Ry, = R145 = Ro, = A1, By the statement (iii),

my = (h) = (2,h,h0,....hd",...) = @ K[h]hd" & hK[h] & P K [h]a",

i>1 i>1

since [h, hd] = —ihd for all i > 1. Hence, Ry = K ® my and Ry/my = K, and so my is a maximal ideal of
the algebra Rs.

The set S, = {2 |i > 0} is a left and right Ore set of the domains Ry C Ry C Ry C A; (use the Z-gradings
of the algebras). Since & = x~1z0 € Ry, we see that Ry, = A; . Then the inclusions Ry € Ry C Ry C A4
yield the equalities Ry, = R1 s = Raz = A1 5.

(v) The ideal my is the only proper ideal of Ry: Let I be a proper ideal I of Ry we have to show that
I = my. By the statement (iv), By C Ry C Ry, = Ra,, and so the algebra R; is an essential left Rq-
submodule of Ry. Hence I N Ry = my is the only proper ideal of the algebra R;, by statement 3. Since
ho € my C my and

I > [h0',hd] = (i — 1)hd"™ forall i > 2,

we have that I D (z,h, hd, ..., hd",...) = my, i.e. [ =my, by the maximality of the ideal ms.
The algebra Ry is a domain, hence m3 = my, by the statement (v). Now, Spec(Ry) = {0,m2}. O

Localizations and the algebras Na(E). An element of a ring R is called a regular element if it is not a
zero divisor. Let Cr be the set of all regular elements of the ring R. Every regular left Ore set of a ring
R is a regular left denominator set, and vice versa. The set of all regular left Ore sets of R is denoted by
Den;(R,0). Proposition 2.5 shows that the algebra Na(F) is well-behaved under localizations at regular left
Ore sets that are contained in the zero component Na(E)q of the A-order filtration.

Proposition 2.5. Let A be a subalgebra of an algebra E, A C Der4(E), and S € Den;(E,0) with S C Na(E)y.
Then:

.ACECS™E and A CDers(S7'E).

. Se Denl(NA(E),O).

. NA(SilE) ~ SilNA(E).

. For all integers i > 0, NA(STYE); ~ STINA(E);.

=W N
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Proof. Let N = Na(F) and N; = Na(E); for i > 0.
1. Statement 1 is obvious (for all elements § € A, s € S and e € E, (s~ te) = s71(e) since §(s) = 0).
2. Clearly, S € Ny C N. We have to show that the set S is a left Ore set of N. Given elements s € S
and n € N, i.e. A'n =0 for some ¢ > 1. Then ns~! =t~ e for some elements ¢t € S and e € E. Then

0= Ai(n)s_l _ Ai(ns—l) — Az‘(t—le) _ t—lAi(e)7

and so Af(e) = 0, that is e € N. Therefore, tn = es. This means that the set S is a left Ore set in N.

4. Clearly, SN C Na(S7'E). Given an element s~ 'n € NA(S7!E). Then 0 = Ai(s71n) = s71Al(n)
iff A%(n) =0, and statement 4 follows.

3. Statement 3 follows from statement 4. O

Let I be an ideal of a ring E. We denote by Den;(FE,I) the set of left denominator sets of E with
I =assg(S) := {e € E|se =0 for some element s €}. In the case when S € Den;(F,I) and I # 0, we have
to impose an additional condition that |A| < co (the set A is a finite set) in order to have similar results as
in Proposition 2.5, see Proposition 2.6.

Proposition 2.6. Let A be a subalgebra of an algebra E, A C Dera(E), S € Deny(E,I) with S C Na(E)o,
E=E/I, A= A/I' where I' = ANI, A={5|5 € A} C Derx(E) and 6(e +I) = d(e) + I for all elements
e € E (see statement 1). Then:

The ideal I is A-stable (AI C1).

S € Deny(Na(E), Na(E)NI) provided |A| < co.

NA(S7IE) ~ STINA(E) provided |A] < .

For all integers i > 0, NA(STIE); ~ STINA(E); provided |A| < oo.

S={s+I|se8}, S 'E~S'E S NgE) ~ Nc(S 'E) ~ Na(S7'E), and S~ Nx(E); ~

Nx(gilﬁ)i ~ NA(S7YE); for alli > 0.

AN B .

Proof. Let N = Na(F) and N; = Na(E); for i > 0.

1. Given elements 6 € A and a € I. Then sa = 0 for some element s € S, and so 0 = d(sa) = sd(a) (since
S C Na(E)p). This implies that §(a) € I, and statement 1 follows.

2. (i) S is a left Ore set of N: Given elements s € S and n € N, we have to show that s;n = n;s for
some elements s; € S and n; € N. Since S is a left Ore set of E, tn = es for some elements t € S and
e € E. Since n € N, Ain =0 for some ¢ > 1. Then

0 =tAn = A'(tn) = A'(es) = A'(e)s,

and so Af(e) C I (since S € Den;(E,I)). The set A is a finite set hence so is the set A?(e). We can fix an
element s’ € S such that 0 = s’A?(e) = Ai(s’e), i.e. ny := s’e € N;_1. Now, it suffices to take s; = st since

sin=s'tn = s'es = nys.
(ii) S € Den;(N, N N I): Since assg(S) = I, we have that assy(S) = NN I. If ns = 0 for some elements
n € N and s € S. Then n € N NI, and the statement (ii) follows from the statement (i).
4. (i) STIN; C N(S7E); for all i > 0: Given elements s € S and n € N;. Then A**!n =0 and

Al (s7in) = sT1AT Iy = 0,

and so s7in € N(STLE);.
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(i) N(S7'E); € S7IN; for all i > 0: Given an element t~le € N(S7'E); where t € S and e € E. Then

0=A"(t7te) =t LA (e),
and so the set A™*1(e) is a finite subset of I (since |A| < co). Hence, there exists an element ¢; € S such
that 0 = t; AT (e) = ATl(t1e), ie. tie € N;. Now, t7le = (t1t) " 1tie € S7IN;, and the statement (ii)
follows.

3. Statement 3 follows from statement 4.

5. Statement 5 follows from Proposition 2.5. O

Monoids that are generated by ad-locally nilpotent elements are denominator sets. Let R be a ring and
s, € R. Then

( )adl ™" forall m > 1, (3)

MS »;Ms

) ad,)’(r) forall m > 1. (4)

O

i=

Suppose that rs = 0 (resp., sr = 0) then by (3) (resp., (4)) for all n > 1,
s"r=adj(r) (resp., rs" = (—ads)"(r)). (5)

Let R be a ring and S € Den;(R,a). A (left) ideal I of R is called an S-saturated ideal if the inclusion
sr € I (where s € S and r € R) implies the inclusion r € I, i.e.

torg(R/I):={a € R/I|sa=0 forsome s€ S} =0,

the R-module R/I is S-torsionfree. In general, if I is an ideal of R the localization S~!I (which is a left
ideal of the ring S™!'R) is not an ideal of S~ R. Proposition 2.7.(2) gives a class of denominator sets S of
an arbitrary ring R such that S=1I is always an ideal of S~'R. We denote by Z(R) and Z(R, S — sat.) the
sets of ideals and S-saturated ideals of the ring R, respectively.

Proposition 2.7. Let R be a ring and S be a multiplicative subset of R. Suppose that the monoid S is generated
by a set of ad-locally nilpotent elements, say S = (sx | A € A) (the inner derivations {ads, | A € A} of R are
locally nilpotent). Then:

1. S € Den(R,qa).

2. If I is an ideal of the ring R then S™'I = IS~! is an ideal of the ring ST'R ~ RS~!.

3. The map Z(R,S — sat.) — Z(S7'R), I — S™I is a bijection with the inverse J — o~ 1(J) where
oc:R— SR, T T

Proof. 1. (i) S is an Ore set of R: To prove the statement (i) it suffices to show that the left (resp., right)
Ore condition holds for the generators {s)} of the monoid S. Since the maps ad;, are locally nilpotent, this
follows from Eq. (3) (resp., Eq. (4)).

(ii) S € Den(R,a): If rsy = 0 (resp., sxr = 0) for some A € A and r € R then, by Eq. (5), sz()‘)r =0
resp., rs"™ = 0) for some natural number n . Using this fact we see that if rsy---s, = 0 (resp.,
A M

n(A) () "SZ(M):O

sx+++s,r = 0) then s spp =0 (vesp., Sy ) and the statement (ii) follows (recall that

every element s € S is a product s = sy - -+ 5,),
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2. Let I be an ideal of the ring R. By statement 1, S=!I (resp., IS™!) is a left (resp., right) ideal
of the ring S™'R (resp., RS™!). Since S € Den(R), S~'R = RS™!. The inclusion S~ C IS~ (resp.,
I1S—1 C S~1I) follows from the equality: For all elements sy and r € R,

7

sytr =8y (rsh)sy" = sy (Z (n) sg\(—adsx)"_i(r)> sy €187 forall n>>0,
i=0

n

(resp., rsy ' = sy " (shr)sy! = sl\"(z (?) adix(r)s’;i>s>\l € S~ forall n>>0).
=0

3. By statement 2, the map Z(R, S — sat.) — Z(S™'R), I — S~!I is well-defined. By the very definition,
the map Z(S~'R) — Z(R, S —sat.), J — o~ 1(J) is well-defined. Since S~'o=1(J) = J and o= }(S~11) = I,
statement 3 follows. O

3. Simplicity criteria for subalgebras of D(.A) that contain A

The aim of the section is to prove Theorem 1.2, Theorem 1.10, Theorem 1.11, and Theorem 1.12. Each
commutative algebra A is a left D(A)-module and its submodule structure is described in Proposition 3.4.
Theorem 3.7 gives the canonical form for each differential operator on arbitrary commutative algebra.

The following notation will remain fixed throughout the section (if it is not stated otherwise): K is a field
of arbitrary characteristic (not necessarily algebraically closed), P, = K|z, ..., ;] is a polynomial algebra
over K, 01 := %, ceeyOp = % € Derg(P,), I := > i", P,fi is a prime but not a maximal ideal of the
polynomial algebra P,, with a set of generators fi,..., fim, the algebra A := P, /I which is a domain with
the field of fractions @ := Frac(A), the epimorphism 7 : P,, = A, p — D := p+ I, to make notation simpler
we sometime write x; for T; (if it does not lead to confusion), the Jacobi m x n matrices

_(9fi
J = <8xj) € My n(Pp)

and J = <§:f:;> € Myn(A) € My n(Q), 7 :=rkg(J) is the rank of the Jacobi matrix J over the field Q,

a, is the Jacobian ideal of the algebra A which is (by definition) generated by all the r X r minors of the
Jacobi matrix J.

For i = (é1,...,4,) such that 1 <4y < --- < i, <mand j= (j1,...,4r) such that 1 < j; <--- < j,. <n,
A(i,j) denotes the corresponding minor of the Jacobi matrix J = (J;;), that is det(J;, ;,), v,u=1,...,7,
and the element i (resp., j) is called non-singular if A(i,j) # 0 (resp., A(i’,j) # 0) for some j' (resp., i’).
We denote by I,. (resp., J,) the set of all the non-singular r-tuples i (resp., j).

Since 7 is the rank of the Jacobi matrix J, it is easy to show that A(i,j) # 0 iff i € I, and j € J,., [6,
Lemma 2.1].

A localization of an affine algebra is called an algebra of essentially finite type. Let A := S~'A4 be a
localization of the algebra A = P, /I at a multiplicatively closed subset S of A. Suppose that K is a perfect
field. Then the algebra A is regular iff a, = A where qa,. is the Jacobian ideal of A (the Jacobian criterion of
regularity, [10, Theorem 16.19]). For any regular algebra A over a perfect field, explicit sets of generators
and defining relations for the algebra D(A) are given in [6] (char(K)=0) and [7] (char(K) > 0).

Let R be a commutative K-algebra. The ring of (K-linear) differential operators D(R) on R is defined
as a union of R-modules D(R) = |J;=, D(R); where

D(R); = {u € Endg(R) |[r,u] :=ru —ur € D(R);_; forall r € R}, i >0, D(R)_;:=0.
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In particular, D(R)g = Endg(R) ~ R, (x — bx) <> b. The set of R-bimodules {D(R);};>0 is the order
filtration for the algebra D(R):

D(R)o C D(R); C

The subalgebra A(R) of D(R) which is generated by R = Endg(R) and the set Derg(R) of all K-
derivations of R is called the derivation ring of R.

Suppose that R is a regular affine domain of Krull dimension n > 1 and char(K)=0. In geometric terms,
R is the coordinate ring O(X) of a smooth irreducible affine algebraic variety X of dimension n. Then

e Derg(R) is a finitely generated projective R-module of rank n,

e« D(R)=A(R),

e D(R) is a simple (left and right) Noetherian domain of Gelfand-Kirillov dimension GK D(R) = 2n
(n = GK(R) = Kdim(R)).

For the proofs of the statements above the reader is referred to [11], Chapter 15. So, the domain D(R)
is a simple finitely generated infinite dimensional Noetherian algebra ([11], Chapter 15).

If char(K) > 0 then D(R) # A(R) and the algebra D(R) is not finitely generated and neither left nor
right Noetherian but analogues of the results above hold but the Gelfand-Kirillov dimension has to be
replaced by a new dimension introduced in [5].

Lemma 3.1. Let A be a commutative algebra of essentially finite type, D(A) be the algebra of differential
operators on A, R be a subalgebra of D(A) that contains A. Then, for every i > 0, the left and right
A-module R; = RND(A); is finitely generated and Noetherian.

Proof. For each ¢ > 0, the left and right A-module D(A); is finitely generated, hence Noetherian since the
algebra A is Noetherian. Since R; is a left and right A-submodule of D(A),, it is also finitely generated and
Noetherian. O

The next obvious lemma is a criterion for a subalgebra of D(A) that contains A being an essential left
or right A-submodule of D(A).

Lemma 3.2. Let A be a commutative domain of essentially finite type over a field of characteristic zero and Q
be its field of fractions, R be a subalgebra of D(A) that contains A, D := RNDerg(A) and R; = RND(A);
where i > 0. Then A\{0} C Cp(ay and the following statements are equivalent:

Q®aR=0Q®aD(A) (& the left A-module R is an essential A-submodule of D(A)).
R®4Q=D(A) ®4 Q (& the right A-module R is an essential A-submodule of D(A)).
dimg(Q ®4 R) = dimg(Q ®4 D(A)).

dim (R @4 Q) = dimg(D(A) @4 Q).

dimg(QDgr) = dimg(QDerg (A)).

Drg is an essential left A-submodule of Derg (A).

Ry is an essential left A-submodule of D(A);.

Ry is an essential right A-submodule of D(A);.

© 0 NSOk Wy

There is an natural number i > 1 such that R; is an essential left A-submodule of D(A);.

H
e

There is an natural number i > 1 such that R; is an essential right A-submodule of D(A);.

Proof. Straightforward. O
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Lemma 3.3. Let A be a commutative domain of essentially finite type over a field of arbitrary characteristic,
R be a subalgebra of D(A) that contains A, and S be a multiplicative subset of A\{0}. Then S € Den(R,0),
S7'A C S7IR C STID(A) ~ D(STA). If, in addition, ST'R = ST'D(A) then the algebra R is an
essential left and right R-submodule of the algebra D(A).

Proof. The lemma follows from Proposition 2.7 and the fact that A is a domain. In more detail, by Propo-
sition 2.7.(2), S € Den(R, a) and S € Den(D(A), b). Clearly, a C b.
(i) a = b = 0: Since a C b, it suffices to show that b = 0. Suppose that b # 0. Let

m :=min{i € N |bND(A); # 0}.

The algebra A = D(A)p is a domain. Therefore, m > 1. Let 6 € b N D(A),,. Then there is an element
a € A such that ¢’ := adq(d) € D(A)p—1\{0}. By the minimality of m, ¢’ € b. Since § € b, s6 = 0 for some
element s € S. Now,

0# 88 =s-ad,(d) = ady(sd) = ad,(0) = 0,

a contradiction. Therefore, b = 0.

(i) STLAC SR C S7ID(A) ~ D(S71A): The statement (ii) follows from the statement (i).

(iii) If ST'R = S™'D(A) then the algebra R is an essential left and right R-submodule of the algebra
D(A): The statement (ii) follows from the statement (i). O

Proof of Theorem 1.10. By the assumption, the A-submodule R of D(A) is an essential submodule. Since
the A-submodule R; of D(A); is an essential submodule (Lemma 3.2) and the A-module D(A); is finitely
generated (by [6, Proposition 5.3.(2)] and [7, Proposition 3.3.(2)]), b; # 0.

Let us show that bj“ C ¢ and CZ+1 C b; for all @ > 0. If ¢ = 0 then by = Lann(D(A)o/Ro) =
lLann4(A/A) = A and ¢g = r.anny(D(A)o/Ro) = lann4(A/A) = A, ie. bg = ¢g = A.

Suppose that ¢ > 1. Let D; = D(A);. Then

Db C (b;D; + [D;, b;])bE C (R; + D;_1)bL
R; +D;_,b!

Ri+ (6;Di—1 + [Di—1,b:))b, "' € R + (R; + Di—2)b, "
R +D;_obi™!

N 1N

N

R; +Dob; = R; + Ab; = R; + A= R;,

¢H(Dsci + [¢i, Di]) C ¢;(R; + Di—1)

R; + céDi_l

Ri+ ¢ Y (Disyei + [6i, Dim1]) € Ri + ¢ (R + Do)
R; + cé_lDi_g

i1
Cz Dz

N 1NN

N

N

R;+¢Dy=R; +¢;A=R;, + A= R;.

Therefore, bﬁ“ C¢; and cﬁ“ C b; for all i > 0.
Since b; # 0 and the algebra A is a domain, we have that 0 £ bﬁ“ C ¢;, and so ¢; # 0.
(4 & 5) Theorem 1.1.
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(1 = 5) (i) The algebra D(A) is simple: Otherwise, for each proper ideal I of the algebra D(A), the
intersection R N I is a proper ideal of the algebra R since the algebra R is an essential R-submodule of
D(A), this contradicts the simplicity of the algebra R.

(i) RbR = R and Rby---b;_1b7R =R for i > 2:

Since the ideals b; (i > 1) of the domain A are non-zero, so are their products b% and by --- bi,lb?, and
the statement (ii) follows from the simplicity of the algebra R.

(5 = 1) By Theorem 1.8, it suffices to show that for every nonzero ideal a of the algebra A such that
[R1,a] C a, the ideal RaR is equal to R. Since the algebra D(.A) is a simple algebra, 1 € D(A)aD(A), i.e.
1 € D(A);aD(A); for some ¢ > 0. If i = 0 then 1 € AaA = a and there is nothing to prove.

So, we assume that ¢ > 1. If i = 1 then

b3 = b1 1-b1 C by - D(A)aD(A); - by € Ria([D(A)r,bi] + 0D(A) ) € Ria(A+ Ry) = RiaRy,
and so R = Rbe C RRiaR{R = RaR C R, i.e. RaR = R. If i > 2 then

626,y ---by =b; - 1-b;b;_y by C b; - D(A);aD(A); - b;b;_1 by

C R a([ (A);, b:] + b; D(A)Z>bi_1 by
C RiaR, +Ra(D 1+R)b by
C R;aR; —|—Ra( A)iz1,b,21] +b;,21D(A),;— )bzz by
C RiaR; + Ria(D(A)i_s + Ri_1)bj_s -+ by
-C RjaR; + Riu(D(A)o + Ro) = R;aR; + R;aA

Hence, R = R(b?b;_1---b1)R C RaR C R, i.e. R = RaR, as required.

(6 & 7) Theorem 1.1.

(5 = 7) (resp., (7 = 5)) Repeat the proofs of the implication (1 = 5) (resp., (5 = 1)) replacing the
ideals b; by ¢; and using right modules instead the left ones.

(2 & 3) Theorem 1.1.

(1 = 3) (i) The algebra D(A) is simple: See the proof of the statement (i) in the proof of the implication
(1=75).

(ii) Rb;¢;R = R for all i > 1: Since the ideals b; and ¢; (¢ > 1) of the domain A are non-zero, so are their
products b;c;, and the statement (ii) follows from the simplicity of the algebra R.

(3 = 1) By Theorem 1.8, we have to show that for every nonzero ideal a of the algebra A such that
[R1,a] C a, the ideal RaR is equal to R. Since the algebra D(A) is a simple algebra, 1 € D(A)aD(A), i.e
1 € D(A);aD(A); for some i > 0. Then

and so R = Rb;¢;R C RR;aR;,RC RaRC R,i.e. RaR=R. O

Proof of Theorem 1.11. Notice that the algebra R is an essential left and right A-submodule of D(A) and
the theorem follows from Theorem 1.10. Let us give more details.

The equivalences (2 < 3), (4 < 5) and (6 < 7) follow from Theorem 1.1.

(1 =3,1=5,1=7) The implications follow from the fact that the algebra D(A) is a simple algebra
and that s;t; # 0 for all ¢ > 1 (since the algebra A is a domain).
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(3=1,5=1,7= 1) Since s; € b; and t; € ¢; for all i > 1, the implications follow from Theorem 1.10. O

Proof of Theorem 1.2. (1 = 2) If the algebra D(A) is a simple algebra then so is the algebra D(A)y, for all
maximal ideals m of the algebra .4 that contain the Jacobian ideal a,., by Proposition 2.7.(2).

(2 = 1) Suppose that I is a proper ideal of the algebra D(A), we seek a contradiction. Then there is a
maximal ideal m of the algebra A such that I, is a proper ideal of the algebra D(A)y, by Proposition 2.7.(2)
and since A\{0} C Cp(.4) (as the algebra A is a domain). Since D(A)n >~ D(An), we must have that a, C m
(by Theorem 1.1), a contradiction. 0O

Proof of Theorem 1.12. (1 = 2,4) If the algebra R is a simple algebra then, by Proposition 2.7.(2), so is the
algebra Ry, for all maximal ideals m of the algebra A. Since the algebra R is an essential left R-submodule
of the algebra D(A), the algebra D(A) must be simple (since R is simple).

(2 = 1) Suppose that the algebra R is not a simple algebra, we seek a contradiction. By Theorem 1.10.(5),
one of the ideals, say I, in the set {Rb?R, Rby - --b;_1b62R|i > 2} is not equal to R. Then the ideal a = INA
of the algebra A is a proper ideal that contains either the ideal b3 or by - - - b;_1b?. Then there is a maximal
ideal m of A that contains a and such that the ideal I, is a proper ideal of the algebra R,,. Clearly, the
ideal m contains one of the ideals b;, a contradiction.

(2 < 3), (4 < 5) These implications follow from Theorem 1.2.

(4 = 1) Suppose that the algebra R is not a simple algebra, we seek a contradiction. By Theorem 1.10.(5),
one of the ideals, say I, in the set {R¢R, Req -+ - ¢;_1¢?R|i > 2} is not equal to R. Then the ideal a = I'NA
of the algebra A is a proper ideal that contains either the ideal ¢ or ¢; - - - ¢;_1¢?. Then there is a maximal
ideal m of A that contains a and such that the ideal I, is a proper ideal of the algebra R,,. Clearly, the
ideal m contains one of the ideals ¢;, a contradiction. O

The D(A)-module structure of the algebra A and its simplicity criterion. Let A be an arbitrary commu-
tative algebra and D(A) be the algebra of differential operators on A. By the definition of the algebra D(A),
the algebra A is a faithful left D(A)-module (since D(A) C Endg (A)). The action of elements ¢ € D(A) on
the elements a € A is denoted either by d(a) or 0 * a. Since A C D(A),

A=D(A)x1~=D(A)/D(A) where D(A)jg :=1{0 € D(A)[d*1=0}

is the annihilator of the element 1 of the D(A)-module A. By the definition, D(A)[o is a left ideal of the
algebra D(A) such that

D(A) = A® D(A)(q (6)
is a direct sum of left A-modules. Clearly, Derg (A) € D(A)g. Notice that
D(A)D(A)gD(A) = D(A) x A® D(A)g (7)
since
D(A)D(A)jgD(A) = D(A)0)D(A) = D(A) (o) (A + D(A)q])
= D(A) + A+ D(A) g "= D(A) « As D(A)).
We denote by Subp4)(A) the set of all left D(A)-submodules of the D(A)-module A. Let Z(A,D(A) — st.)

(resp., Z(A, D(A) —st., D(A) x A)) be the set of all D(A)-stable ideals of A (resp., and that contain the ideal
D(A)* A of the algebra A). By (6), an ideal a of A is D(A)-stable iff it is D(A))-stable (D(A)p*a C a). Let
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I(D(A), D(A)jo)) be the set of ideals of the algebra D(A) that contain D(A)jy). Proposition 3.4.(3) presents
a bijection between the sets Z(A, D(A) —st., D(A) * A) and Z(D(A), D(A)[0))-

Proposition 3.4. Let A be an algebra. Then:

1. Subp(ay(A) =Z(A,D(A) —st.).

2. (SIMPLICITY CRITERION FOR THE MODULE p(a)A) The D(A)-module A is simple iff there is no proper
D(A)-stable ideal of A.

3. (THE SET Z(D(A), D(A)[0))) The map

I(A,D(A) —st.,D(A) * A) = Z(D(A),D(A)[0)), a~ a+D(A)q
is a bijection with the inverse I — I'NA. The ideal D(A)D(A)jD(A) = D(A) x A+ D(A)q) is the least

ideal of the set Z(D(A), D(A)[q]), and the ideal D(A)x A = AND(A)D(A)q)D(A) is a D(A)-stable ideal
of A.

Proof. 1. Statement 1 is obvious.

2. Statement 2 follows from statement 1.

3. Let D = D(A), D[O} = D(A)[O] and b = D[O] x A.

(i) If I is an ideal of D that contains Dy then I = a+ Dy where a = 1N A is a D-stable ideal of A such
that b C a: By (6),

I:IQ'DZIQ(A—F'D[O]) ZIQA-FD[O] :a+D[0].

The left D-module I/Djg) = a is a submodule of the left D-module A. By statement 1, the ideal a of A is a
D-stable ideal. Since I D DDgD =b+Dj,a2b.

(ii) If a is a D-stable ideal of A that contains b then a+ Do) is an ideal of D that contains Dy

D(a+D[0])D = Da+DD[O]D =Da+b +D[0] =Dxa+0b +D[0] - a+D[0].

Now, statement 3 follows from the statements (i) and (ii). O

Clearly, 0 = D(A)o*x A CD(A); * A =Derg(A)« ACD(A)2x AC--- CD(A);* A C --- is an ascending
chain of ideals of the algebra A such that

CDA*A

D(A)x A= D(A); x A. (8)

i>0

Definition 3.5. The element degp4)(A) := min{i € N U {oc} |D(A); x A = D(A); * A forall j > i} is
called the differential operator degree of the algebra A.

If algebras A and A’ are isomorphic then
degp(4)(A) = degp(a(4'),
i.e. degp(a)(A) is an isomorphism invariant of the algebra A. If the algebra A is a Noetherian algebra then
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Proposition 3.6 shows that if the algebra A = A is a domain of essentially finite type over a perfect field
then the ideal D(A) * A contains a power of the Jacobian ideal of the algebra A.

Example. Let A be a regular domain of essentially finite type over a perfect field K. Then the algebra D(A)
is generated by D(A); = A® Derg(A) and D(A); * A = Derg(A) * A = A (since the algebra D(A) is a
simple algebra). Therefore, D(A); * A = Derg(A) x A = A for all i > 1, i.e.

Proposition 3.6. Let A be a domain of essentially finite type over a perfect field K and a, be the Jacobian
ideal of A. Then al. C D(A)*A for somei > 0, and so the subvariety Spec(A/D(A)*A) of Spec(A) consists
of singular points of Spec(A).

Proof. Let D = D(A), Djo) = D(A)[) and b = Djg) * A. By Proposition 2.5.(3), the ideal (D)) of D is equal
to b+Djg and b = AN(Djg}). By Theorem 1.3.(3), a’. C (D)) for some i > 0, and so b 2 AN(Djg)) 2 al.. O

If A= Klx,y]/(y?> — 2®) is the algebra of regular functions on the cusp y?> — 2® over a field K of
characteristic zero then the algebra D(A) is simple, [8, Lemma 2.2.(2)]. Therefore, D(A) x A = A.

The canonical form of a differential operator. For a finite set A, we denote by N# the direct product
of A copies of the set of natural numbers N. For an element v = (ay) of N2, let |a| := Y ., o\ and
(=1)* := (=1)l*l. For elements a, f € N, we write § < «a if By < ay for all A\ € A. If 8 < a then

(9) = TThen (3). )

Theorem 3.7. Let A be a finitely generated commutative algebra, G = {x}ren be a finite set of generators
of A, D(A) be the algebra of differential operators on A, and {D(A);}i>o0 be the order filtration on D(A).
Then:

1. Each differential operator § € D(A); of order i is uniquely determined by the elements {ad®(d) *1|a €
N4 |af < i} where ad® =[], adg) for o = (o)) € N4,
2. For all elements o € N» and § € D(A);,

5z = Y (_1)B<O‘)adﬁ(5)*1-xaﬂ

B<a,|Bl<i h

a—B _ ax—Px
where x =Lea 23 .

Proof. 2. For the element z, we denote by [, and r,, the left and right multiplication maps by the element
Ty, respectively. Now,

5(x°‘)5a¢a*1(5nxi\“*l(

AEA

I1 7’2‘:5) x1= <H(l,m adm)m5> 1

A€A AEA

= 2 (‘Uﬂ(g)adﬁ(é)*l.xa—ﬁ_

B<a,|Bl<i

1. Statement 1 follows from statement 2: Let d,6" € D(A);. If § = ¢’ then ad®(d) x 1 = ad*(d’) = 1 for all
elements « such that || < i. The converse follows from statement 2. 0O
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