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Abstract 
Alternative splicing is crucial in gene regulation, with significant 
implications in clinical settings and biotechnology. This review article 
compiles bioinformatics RNA-seq tools for investigating differential 
splicing; offering a detailed examination of their statistical methods, 
case applications, and benefits. A total of 22 tools are categorised by 
their statistical family (parametric, non-parametric, and probabilistic) 
and level of analysis (transcript, exon, and event). The central 
challenges in quantifying alternative splicing include correct splice site 
identification and accurate isoform deconvolution of transcripts. 
Benchmarking studies show no consensus on tool performance, 
revealing considerable variability across different scenarios. Tools with 
high citation frequency and continued developer maintenance, such 
as DEXSeq and rMATS, are recommended for prospective researchers. 
To aid in tool selection, a guide schematic is proposed based on 
variations in data input and the required level of analysis. Additionally, 
advancements in long-read RNA sequencing are expected to drive the 
evolution of differential splicing tools, reducing the need for isoform 
deconvolution and prompting further innovation.
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Introduction
Alternative splicing (AS) can be best described as fine-tuning gene expression by rearranging exons and introns in

pre-mRNA. With 90-95% of human multi-exon genes estimated to possess some form of alternative splicing, it is a

widespread regulatory process in cellular biology.1 The cell utilises a large ribonucleoprotein (RBP) complex known as

the spliceosome which is guided to target sites through the interaction of sequence elements (splice sites, enhancers &

silencers and the polypyrimidine tract) and/or splicing factors. Pre-mRNA splicing can also occur without the splicesome

as in the case of self-splicing group I & II introns, tRNA splicing and trans-splicing.2 This ultimately results in genome-

wide transcript diversity and subsequently, measurable changes to protein functionality.

Previous research has uncovered the phenotypic consequences of alternative splicing in disease. In humans, clinical

research has shown alternative splicing (AS) as a key instigator in several forms of cancer and neurodegenerative

disorders.3–5One notable discovery inMicrotubule-associated protein tau’s (MAPT) possession of mis-spliced isoforms

causing abnormal TAU accumulation progressing to Alzheimer’s disease.6 In cancer, numerous mis-spliced variants of

tumour suppressors, apoptotic and angiogenic proteins have been discovered to contribute to tumour progression.7,8

Beyond clinical research, the utility of alternative transcripts for bioengineering purposes has been explored. For

example, an alternatively spliced version of the transcription factor X-box binding protein 1 (XBP1) coexpressed in

production cell lines has been shown to increase productivity in the biomanufacturing of recombinant proteins.9–11 In bio-

agriculture, the CRISPR-mediated directed evolution of SF3B1 mutants (a spliceosomal component) in rice has

improved crop traits through better resistance to splicing inhibitors.12 Increasingly, the value of AS in both clinical

and biotechnology applications has been recognised; highlighting the need for robust bioinformatics pipelines to identify

variants.

For prospective researchers to investigate AS, the transcriptomic data is usually generated using next-generation

sequencing. Short-read RNAseq is the most commonly used experimental technique to interrogate a transcriptome

owing to its versatility and cost-effectiveness.13,14 It involves sequencing short fragments of RNA molecules, providing

insights into the respective expression levels of genomic features assembled from reference genomes. These features may

be coding sequences, genes, transcripts, exons, introns, codons or even untranslated regions. A typical RNAseq pre-

processing pipeline will consist of quality control (QC), read alignment&quantification before statistical analysis begins.

QC assesses the quality of the raw fragmented reads using a standardised tool such as FastQC and trims low-quality reads

or adaptor sequences.15 Then for alignment, a reference genome/transcriptome arranges the subsequent sequences into

feature bins such as genes, transcripts, exons and coding sequences using software such as STAR or HISAT.16,17

Alignment files (usually in the form of Sequence Alignment Maps: SAMs) can then be quantified to these features using

a quantification tool such as HTSeq, Salmon or featureCounts usually normalising for library size and sequencing

depth.18–20 Depending on the purpose of analysis, normalisation may be scaled by total number of reads (CPM: Counts

per Million), per length of transcript (TPM: Transcripts per Million), by paired-end fragments (RPKM: Fragments Per

Kilobase of Transcript) or by using a median of ratios (DESeq2’s method).21 Commonly, a differential expression

analysis will be performed at the gene or transcript level between groups of samples to identify statistically significant

changes in expression. The pre-processing steps for RNA-seq have been extensively researched over many years, and

there is a consensus within the community regarding the gold-standard set of tools. Projects like nf-core enable the

execution of RNA-seq pre-processing pipelines with minimal intervention and limited bioinformatics expertise.22

However, these tend to be focused on the use-case of conventional differential expression rather than the more bespoke

AS pipelines as discussed here.

A growing repertoire of tools now annotate and quantify changes to splicing events. Quantification of features such as

splice sites, and exon/intron junctions found in alignment files are commonly used to annotate splicing events. Although

the true repertoire of splicing events is difficult to capture, conventional processes can be categorised into distinct groups.

The most common events are exon skipping, retained introns, mutually exclusive exons, alternative 50 and 30 splice sites.

More complex regulatory events involve genomic features beyond exons and introns, such as alternative promoter and

polyadenylation sites, which result in varying mRNA 50 and 30 UTR ends. However, these events are seldom included in

most bioinformatics analyses, tools such as CAGER (Cap Analysis of Gene Expression) and DaPars (Dynamic Analysis

of Alternative PolyAdenylation from RNA-Seq) are available for niche research.23,24 Visualisation of AS is predicated

upon the level of detail required in the analysis. If a highly detailed analysis of individual gene structure is needed, splice

graphs, sashimi plots and junction maps are commonly used.25,26 To visualize changes to groups of transcripts, typically

MA and Volcano plots are used much the same way as in differential expression level analysis.21

Current statistical methods for differential splicing
Commonly, researchers are interested in comparisons of two or more groups of samples known as differential analyses.

Differential gene/transcript expression (DGE/DTE) of genes or transcripts involves taking raw read count data,

normalizing or scaling it, and calculating whether the changes in expression levels between different biological groups
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are statistically significant. Differential transcript/exon usage (DTU/DEU), however, uses gene-level group modelling to

assess whether the proportional use of the feature (exon or transcript) is statistically significant. Differential splicing

events (DSE) on the other hand use a diverse array of statistical methods to quantify and infer splicing events. A

comprehensive summary of differential splicing tools is described in the supplementary table (Supplementary Table 1)

and in the following sections.

Parametric & mixed methods
Differential expression analysis tools began in the early 2000s coinciding with the development of high throughput

technologies such as microarrays. An early example was LIMMA (Linear Models for Microarray Data), developed by

Gordon Smyth and colleagues in 2003, which utilises a linear regression framework and empirical Bayes techniques to

identify differentially expressed genes.27Whilst initially only utilised for microarrays, the functionality thus extended to

RNASeq data and has been one of the most cited RNASeq methods. As the field shifted from microarray technology to

RNASeq, methods were developed such as DESeq (Differential Expression Analysis for Sequence Count Data) and

edgeR to capture the nature of count data better and improve modelling.21,27,28 Amajor change incorporated in DESeq2

was empirical Bayes-based shrinkage to improve gene-wise variance estimation enhancing accuracy (Figure 1).

Secondly, GLMs (Generalized Linear Models) replaced the simple linear models as these were shown to adapt well

to non-normally distributed count-based data.21 The flexibility of GLMs allowed algorithms to effectively deal with

issues such as overdispersion, shrinkage, heteroscedasticity and covariates. To date, GLMs are usually fitted to the NB

(Negative Binomial) distribution which confers some strong advantages. The NB distribution effectively captures

overdispersion (the empirical variability of counts) and can handle a large excess of zero values commonly seen in

transcript or exon-level count data. However, limma, DESeq2 and edgeR were not developed to specifically address the

challenges of identifying AS.

In 2014, DEXSeq was introduced by Michael Love and colleagues, a framework based on DESeq2’s GLM NB model

becoming the de-facto tool for parametric splicing-based analysis. Instead of analysing gene-level differential expression,

DEXSeq identifies exons within genes that exhibit significant changes in their usage across conditions. This is

particularly useful for studying the exonic composition of alternatively spliced transcripts. The development of tools

such as DSGseq, rDiff-parametric, JunctionSeq and SeqGSEA has expanded the functionality of the GLMNB family of

differential splicing tools.29–32DSGseq utilises a holistic approach considering splicing events not as individual elements

but as comprehensive gene-wise splice graphs that more accurately reflect complex splicing dependencies.29 The tool

rDiff-parametric on the other hand utilises isoform-specific loci such as restricted exonic regions to identify significant

differences in isoform composition.30 The proposed advantage of this approach is in the smaller exonic regions rather

than full isoform deconvolution. Assigning reads to isoforms is challenging because these transcripts are practically

identical, making it difficult to definitively attribute a read from an overlapping region to a particular region without

supplementary data. Therefore, full isoform deconvolution is significantly biased against genes with many isoform

variants.33

A few newer methods such as DRIMSeq and DTUrtle have progressed onto non-parametric or mixed Dirichlet

Multinomial Models (DMM) which have been argued to capture better the complex variability of count data and better

estimate isoform abundance34,35 (Figure 1 & Supplementary Table 1). Other methods such as IsoformSwitchAnalyzeR

and some custom DEXSeq workflows now incorporate modularity allowing users a selection of bioinformatics tools for

filtering, hypothesis testing and posterior calculations.36,37 An example of the usage of parametric analysis was in the

discovery of a chimeric fusion transcript of PRKACA and DNAJB1 in a rare liver tumour FL-HCC (fibrolamellar

hepatocellular carcinoma) using DEXSeq’s differential exon usage framework.38 The discovery of differential exon

usage of PRKACA’s exons 2-10 and subsequent decreased usage of DNAJB1’s exons 2-3 led the researchers to identify a

chimeric transcript in FL-HCC patients. This demonstrated the utility of smaller exon-based analysis in identifying

differences in transcript structure which would not be detected in larger gene or transcript-based analysis alone.

Probabilistic & non-parametric methods
Non-parametric or probabilistic techniques such as MAJIQ, SUPPA, WHIPPET and rMATS frequently utilize

Bayesian inference and/or probabilistic methodologies.26,39–41 By avoiding assumptions about the data’s underlying

distribution, these methods enable more sophisticated modelling. Consequently, in contrast to the predominantly

standardized parametric exon/transcript-based techniques, event-based methods often showcase a broader array of

statistical approaches (Figure 1). A few common features can be identified, however. Often the targets for event

annotations are not labelled in gene-transfer format such as splice sites, exon/intron junctions and splicing quantitative

trait loci (QTLs) which must be calculated. This then allows the “Percent spliced in” (PSI) to be calculated per exon,

representing the ratio of the number of transcripts containing an alternative exon versus the total number of transcripts per

any given splice site. By comparing PSI values, different splicing events can then be identified and explored through
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splice graphs and sashimi plots. An example of non-parametric tool usagewas in themapping of splicing events in the rice

(Oryza sativa) transcriptome, revealing prevalent AS under deprived nutrient conditions.42 Importantly, this study

utilised rMATs to reveal the underlying exon-intron structure of key nutrient transporter genes.

Some tools possess features for specific utility in certain scenarios. NOISeq is a non-parametric differential expression

tool that is specifically designed to handle smaller numbers of biological replicates through its noise model.43 For

more complex modelling, tools such as GLiMMPs (Generalized Linear MixedModel for Pedigree Data with Population

Substructure) employ mixed-effects models to account for both fixed and random effects such as genetic family

substructure.44 Beyond splicing, the modular tool IsoformSwitchAnalyzeR facilitates analysis on spliced transcript

quality such as Nonsense Mediated Decay (NMD) sensitivity, Intrinsically Disordered Regions (IDR) and protein

domains.36 Increasingly, deep learning-based approaches are being utilised to improve the accuracy of differential

splicing predictions leveraging publicly available RNASeq data such as with DARTs and Bisbee.45,46

Figure 1. Timelineof statisticalmethods indifferential splicing tool development.Methods are categorized into
parametric and non-parametric approaches, grouped bymethodological families. The classification is based on the
underlying statistical procedures used for modelling or hypothesis testing, as detailed in Supplementary Table 1.
Note that some methods incorporate elements of both parametric and non-parametric frameworks, resulting in
overlapping features.
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Popularity & developer maintenance of methods
To assess the academic popularity of tools, a citation and developer engagement analysis of original research

articles within the Web of Science (WoS) domain and the respective GitHub website domains (if applicable). The

assessment spanned from 2010 to 2024 and encompassed 19 original papers on various differential splicing tools.

Notably, the citation counts for these splicing tools were considerably lower compared to conventional RNA-Seq

differential expression analysis tools. For instance, while the general purpose DGE/DTE tool DESeq2 amassed a total of

35,887 citations during the same period, citations for differential splicing tools ranged from 7 to 1300 (Figure 2). This

discrepancy may pose challenges for researchers seeking resources and workflows specific to differential splicing

analysis. Additionally, the importance of developer support cannot be understated, as it directly influences the usability

and longevity of software tools. Notably, differential splicing tools such as DEXSeq, EBSeq, rMATS, SUPPA2, and

MAJIQ26,39,40,47,48 have shown increasing usage and ongoing developer engagement, as evidenced by their growing

citation counts and sustained support (Figure 3; Figure 4). One possible explanation for the lower citation rates observed

in exon/transcript-based methodologies could be the broader adoption of general-purpose differential expression work-

flows, like DESeq2 that can employ DTE.21Researchers may prefer more explicit splicing event-based tools for targeted

splicing analyses and defer to DTE for transcript-based analyses.While the nuances between DTU andDTEmay not be a

primary focus for many researchers, it is a distinction worth noting in the context of differential splicing analysis.

The decision between exon/transcript-level (typically parametric) and event-level (typically non-parametric) analyses

hinges on several factors, including the particular scientific inquiry, data accessibility, and the level of granularity

required to address the research goal. In certain scenarios, integrating both methodologies could offer a more holistic

understanding of splicing control mechanisms and their biological significance.

Figure2. Citationcountsof differential splicing tools (2010–2024) fromWebof Science (WoS)Data.Total citation
counts for surveyed differential splicing tools (2010–2024) from the Web of Science Data Portal (WoS). Tools are
categorized by analysis level: event, exon, or transcript. DRIMSeq’s original paper was excluded from the citation
frequency analysis as it was not indexed in WoS. Certain data included herein are derived from Clarivate Web of
Science. © Copyright Clarivate 2023. All rights reserved.Total citation counts for surveyed differential splicing tools
(2010–2024) from the Web of Science Data Portal (WoS). Tools are categorized by analysis level: event, exon, or
transcript. DRIMSeq’s original paper was excluded from the citation frequency analysis as it was not indexed inWoS.
Certain data included herein are derived from Clarivate Web of Science. © Copyright Clarivate 2023. All rights
reserved.
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Benchmarking of methods is difficult
To evaluate the quality of differential splicing bioinformatics tools, several benchmarks have been conducted to date.

Benchmarking either the scientific accuracy or the computational power of methods can be challenging due to several

factors. The main issue is the lack of ground truth to set as a reference to compare measurements to. Commonly, a

small subset of experimentally validated splicing events is used as a gold standard to compare against. This was

demonstrated in a recent systematic evaluation of 10 differential splicing tools in 2019, where a total of 62 qPCR-

validated differentially spliced genes were tested.49 The results from this benchmark revealed weak consensus over tool

quality as the performance was markedly different across the 4 human and mouse cancer datasets. This demonstrates

another issue with these evaluations: inherent heterogeneity in RNASeq data. Often, the performance of methods will

depend on the upstream RNASeq pre-processing steps such as in library size, sequence depth, positional bias and

annotation quality. To mitigate these issues, some papers use simulated data to i) increase the number of differentially

spliced genes to reference and ii) achieve finer control over ground truth and variability within the data.50–52 One such

benchmark used RSEM-based simulated data based on a human prostate cancer dataset (GSE2226053).51 Another

comparison utilised a combination of experimental and simulated Arabidopsis heat shock RNASeq datasets using the

Flux Simulator tool.54However, it is important to note that simulated data lacks the complexity of typical biological data.

Confounding factors such as outliers, and technical/procedural biases cannot be modelled in current simulations.

The consensus drawn from these three benchmarks is that the performance of differential splicing tools exhibits

considerable variability depending on the outlined factors. The ongoing evolution and upkeep of tools by developers

introduce a time-dependent aspect to benchmarking. Community-led maintenance efforts consistently enhance the

Figure 3. Citation trends of differential splicing tools (2010–2024) from Web of Science (WoS) Data. Annual
citation frequency for current differential splicing tools (2010–2024) from Web of Science (WoS). Tools are catego-
rized by analysis level: event, exon, or transcript. DRIMSeq’s original paper is excluded as it is not indexed in WoS.
Certain data included herein are derived from Clarivate Web of Science. © Copyright Clarivate 2023. All rights
reserved.
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functionality and reliability of tools over time. Rather than aiming for a singular optimal tool for differential splicing

analysis, researchers should contemplate employing a suite of tools tailored to address specific inquiries.

Method recommendations
A diagram outlining optimal tool selection is provided to guide prospective alternative splicing (AS) researchers

(Figure 5). Initially, researchers should evaluate the scope and objectives of their analysis. For instance, if the aim is

to identify known transcripts, it is advisable to opt for a parametric transcript-based tool like DEXSeq or DRIMSeq and

execute a DTU study following Michael Love’s protocol.37 Nonetheless, variations in experimental parameters such as

sample size or covariate inclusion may necessitate alternative approaches.

If the objective is to uncover novel transcripts, an exon-based parametric approach might be better suited. This choice

circumvents the challenges associated with isoform deconvolution and the breadth of transcript annotation, given the

smaller exonic regions. For general-purpose differential exon usage (DEU) analysis, DEXSeq remains the preferred

protocol due to its robust and flexible statistical methods, as well as its actively maintained software.21 However, again

intricacies within the data may prompt the usage of more specialised alternatives. Transcript and exon-based methods

offer top-down visualizations such as MA/Volcano plots, heatmaps and proportional transcript/exon graphs. If the

analysis aims to visualise the movement of exons/introns and splice sites, then an event-based protocol would be more

appropriate. Generally, tools such as rMATs, SUPPA2 and MISO offer comprehensive and detailed splicing event

analysis.39,40,55

Commonly, sashimi plots are the best method to visualise splice junctions from aligned data with events annotated,

although this can also be plotted separately in IGV.56 For user-friendly visualization, MAJIQ offers a summative

Figure4.Developermaintenanceof differential splicing tools.AnnualGitHub repository commits (2010–2024) by
category, highlighting community-ledmaintenanceof differential splicing tools. ToolswithoutGitHubpages (MAJIQ,
MISO, DSGseq, and dSpliceType) were excluded from the analysis.
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HTML-based visualizer for complex events such as exitrons or orphan junctions.26 Another factor to consider is the

annotation quality of the organism/tissue being studied. If researchers are not confident in the quality of annotations and

would like annotation-free analysis, methods such as LeafCutter are a good alternative to conventional methods.57,58

Overall, event-based methods are more suited to advanced programmers owing to their use of command-line tools over

interpreters that use IDEs (Integrated development environments). For most analyses, however, a DEU or DTU-based

analysis is recommended for simple interpretability and robustness. Optional steps for AS-specific analyses can also be

performed to enhance the data quality. For example, Portcullis enables the accurate filtering of false splice junctions that

are often incorrectly characterized by common aligners.59

Discussion
While the repertoire of tools to accommodate differential splicing analysis has grown in the past two decades, they are

ultimately limited by the capabilities of the RNASeq technology available to date. Since 2010 however, the development

of nanopore sequencing technology such as Oxford Nanopore Technologies (ONT) and PacBio’s single-molecule real-

time (SMRT) has facilitated the development of long-read RNAseq.60–62Long read lengths typically fall within the range

of 10kb to 100kb, with ultra-long read lengths now up to 1-2Mb.63Themain benefit this technology confers is the ability

to bypass the aforementioned deconvolution issue stemming frommultiplemapping and reconstruct full-length transcript

isoforms in a single read. This can not only more accurately identify known transcripts but also novel or splice variants as

well as fusion genes. Most current parametric DS tools can therefore be utilised in long-read-based analyses. A recent

study utilized IsoformSwitchAnalyzeR’s DEXSeq-based DTU workflow on ONT long reads, demonstrating the

capability of current long-standing methods on long-read data.21,36,64 This was facilitated through long-read custom

annotation of the transcriptome using TALON to identify novel transcripts.65 Additionally, specific novel technologies

such as LIQA have been developed to analyse long reads.66

Long-read RNAseq still possess notable disadvantages, however. Early on, long-read RNASeq possessed error rates of

10-20%.67,68 The development of HiFi sequencing by PacBio using circular consensus sequencing has since reduced the

error rate to a reported 0.5%.69While the development of deep-learning algorithms such as DeepConsensus has sought to

Figure 5. Guideline for differential splicing tool selection based on experimental parameters.Decision tree for
differential splicing analysis, categorized by threebranches basedon the level of analysis. Transcript-basedmethods
are represented in blue, exon-based methods in pink, and event-based methods in yellow.
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push HiFi accuracy further bringing it on par to short read.70 However, this is still highly dependent on the depth of

sequencing. The most efficient error correction method involves hybridising the analysis with short-read RNAseq

methods.71 This ultimately means that while accuracy can now be brought to close to 99.5%, error correction drives the

cost of long-read RNAseq methods up significantly. The field is progressing towards optimal error correction and is now

focusing on lowering costs which is currently the largest hurdle for practical use for common research.

As interest in alternative splicing grows, researchers have access to an expanding array of tools. Advances in statistical

methods and longer RNA sequencing read lengths are overcoming technical limitations. This leads to more precise

transcript alignment and reduces the need for complex computational steps. With workflows becoming streamlined and

modular, platforms like Nextflow enable researchers to create tailored pipelines for their specific goals and data types.72

These developments promise a brighter future for alternative splicing analysis, facilitating a deeper exploration of

transcriptomic regulation and its functional significance.
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The article by Draper and colleagues presents a well-researched and well-organised overview of 
differential splicing analysis tools for short-read RNA sequencing, which will be valuable for many 
researchers. The practical focus is excellent, I especially like the section on developer maintenance 
of tooling, which is often neglected in software review articles. The decision tree in Figure 5 is also 
a great framework for navigating this crowded space and I’m sure will be useful to many.  
 
Despite this, in many places the use of language is imprecise: words are missing or used 
incorrectly, sentences are too vague—perhaps from being over-simplified in an attempt to make 
the text more understandable. I also find some of the recommendations are not adequately 
supported by evidence. Please find some comments that I hope will be helpful, below:  
 
Major comments

The method benchmarking section needs some attention. ‘Scientific accuracy’ should be 
replaced by just ‘accuracy’. ‘Computational power’ should be specified, presumably you 
mean performance characteristics such as memory usage and run time. “Lack of ground 
truth to set as a reference to compare to..” is unnecessary, just say a lack of ground truth 
splicing quantifications. Library size and sequencing depth are the same thing? Library size 
and positional bias are qualities of the RNA-seq data itself, not the bioinformatic pre-
processing steps. Annotation quality is not a ‘pre-processing’ step - this is a feature of the 
organism under study. “Achieve finer control over the ground truth” could be rephrased to 
something more meaningful like ‘to explore the impact of increasing variability between 
replicates, changing replicate numbers, sequencing depth’…..etc. “The consensus drawn 
from these three benchmarks is that the performance of differential splicing tools exhibits 
considerable variability depending on the outlined factors.” This seems weak, perhaps a 
more nuanced conclusion can be drawn - when data is very good, deep sequencing, low 
variability, which tool performs best? Which tools have the lowest run times, compute 
requirements .etc. I don’t think it’s sufficient to simply say its complicated - please dive more 
into the details here. “The ongoing evolution and upkeep of tools by developers introduce a 
time-dependent aspect to benchmarking. Community-led maintenance efforts consistently 

○
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enhance the functionality and reliability of tools over time.” I’m not sure what this means, 
please clarify. 
The discussion brings in developments in long read sequencing and is quite nice - I would 
suggest making this a section of its own and expanding on what is already written. 
Alternatively, I would consider cutting it back a bit and changing the title of the article to 
reflect a focus on short-read sequencing data. Perhaps one point for the discussion is that 
whilst new methods are developing, there remains hundreds of thousands of publicly 
available short read RNA sequencing datasets through which novel biological insights can 
still be made.

○

In the section of recommendations - “For instance, if the aim is to identify known 
transcripts, it is advisable to opt for a parametric transcript-based tool like DEXSeq or 
DRIMSeq and execute a DTU study following Michael Love’s protocol.37” The citation does 
not support the statement - why shouldn’t researchers opt for an exon-based approach 
when the transcriptomic annotations are good? Also in this section, DEXSeq is 
recommended for DEU analysis, when rMATs is the most highly cited splicing tool and 
provides accurate quantifications of exon usage. “Overall, event-based methods are more 
suited to advanced programmers owing to their use of command-line tools over 
interpreters that use IDEs (Integrated development environments). For most analyses, 
however, a DEU or DTU-based analysis is recommended for simple interpretability and 
robustness.” I don’t understand, how is DEX-Seq easier to use than rMATs (for example), or 
MAJIQ which has extensive graphical reporting? Are you saying this because DEX-Seq is an R 
package so you can use RStudio?  - this doesn’t seem like a particularly helpful argument - I 
can run rMATs or MAJIQ or any of these using a bash script in Visual Studio Code which is 
also an IDE…

○

Minor comments
Alternative splicing (AS) abbreviation is given several times throughout text and sometimes 
used, sometimes not - please be consistent.

○

“The proposed advantage of this approach is in the smaller exonic regions rather than full 
isoform deconvolution.” Rephrase for clarity, presumably you mean by focusing on regions 
unique to distinct isoforms the tool avoids the issue of assigning ambiguous reads to 
isoforms.

○

"A few newer methods such as DRIMSeq and DTUrtle have progressed onto non-parametric 
or mixed Dirichlet Multinomial Models (DMM)" ‘progression’ suggests there is some kind of 
hierarchy, you can just say that these models ‘use’ other distributions 

○

“More complex regulatory events involve genomic features beyond exons and introns, such 
as alternative promoter and polyadenylation sites, which result in varying mRNA 5′ and 3′ 
UTR ends. However, these events are seldom included in most bioinformatics analyses, 
tools such as CAGER (Cap Analysis of Gene Expression) and DaPars (Dynamic Analysis of 
Alternative PolyAdenylation from RNA-Seq) are available for niche research” I wouldn’t say 
these events are more complex from a biological standpoint. The issue in analysis of 
alternative TSS use and APA is that short read sequencing with typical library preparation 
methods (e.g. random hexamer priming) won’t have good coverage of exact transcript 5’ 
and 3’ ends. Therefore typically library preparations with mRNA cap capture (CAGE) or 3’ end 
sequencing (eg. Quantseq) are used when this is the analysis goal. Also, to be a pedant, 
3’UTRs and 5’UTRs are exons.

○

The discussion mentions Nextflow, and nf-core is mentioned earlier, but it might be nice to 
specifically mention the efforts of nf-core/rnasplice. As you know, one of the benefits of 
these pipelines is that everything is containerised so you don’t have to mess about installing 

○

 
Page 14 of 18

F1000Research 2025, 14:47 Last updated: 18 AUG 2025



everything. Generally speaking, one of the barriers to using tools can be installation - of the 
presented tools there is quite a range of levels of developer investment in making the tools 
easy to install. Some are in bioconda or bioconductor and have containers, others you have 
to contact the authors to get permission to download (MAJIQ!) - this might be related to the 
amount of citations that tools get. It would be nice (but not necessary) to address this too.

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Partly

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics, splicing, RNA biology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 21 May 2025
Ben Draper 

Dear Dr. Capitanchik, 
 
Thank you for your thorough and insightful review of our manuscript. Your comments on 
the benchmarking, recommendations, long-read discussion, and minor edits have 
significantly improved the manuscript’s clarity and accuracy. We have incorporated minimal 
changes to address your concerns, ensuring the revisions align with your suggestions while 
maintaining the manuscript’s focus. 
 
For the benchmarking section, we corrected terminology (“accuracy” instead of “scientific 
accuracy,” “computational performance” instead of “computational power”), clarified that 
library size, positional bias, and annotation quality are dataset characteristics, not pre-
processing steps, and rephrased vague terms (e.g., “lack of ground truth” to “lack of 
comprehensive ground truth splicing quantifications”). We added specific examples drawn 
from the benchmarks (e.g., DEXSeq, rMATS, NOISEQ) to strengthen the conclusions. 
 
In the recommendations section, we clarified our positions on programming environments, 
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developer and community support, making sure not to discriminate harshly against 
command line-based tools. We believe this is still worth mentioning, however, as in our 
experience, the programming platform matters for accessibility. 
 
In the discussion, we opted for shortening the long-read section for brevity and making the 
article more focused towards short-read. We have added a few minor points in agreement 
with Dr. Donega. We agree with all the minor edits (e.g., consistent AS acronym usage, 
clarified rDiff-parametric, revised TSS/APA) that were made as requested. 
 
We believe these changes should address your concerns effectively. 
 
Best wishes 
 
Ben J. Draper 
University of Sheffield  
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Stefano Donega   
National Institute on Aging, Bethesda, USA 

In this review, Dr. Draper, Dunning, and James provide a very good comprehensive and well-
written summary of the tools applied to the investigation of alternative splicing, with a thorough 
literature perspective and a detailed guide to choosing the most appropriate statistical methods 
and software. While I really appreciated and enjoyed reading the manuscript, I would like to 
provide a few comments that I believe would enhance and elevate the quality of the work:

In general, the entire manuscript discusses methods that directly apply to short-read 
platforms. Therefore, I think this should be better highlighted both in the manuscript title 
and throughout the whole review.

○

The long-read platforms appear only in the discussion section. I recommend the authors 
dedicate a separate paragraph to them, independent of the discussion, while keeping the 
discussion to connect together the main findings investigated in the main text.

○

Now, I will provide some minor comments:
In a recent Nature Aging paper, Ferrucci et al. 2022 (Ref 1) discussed the "energy-splicing 
axis hypothesis on aging," which is worthy of mentioning in the introductory paragraph on 

○
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the importance of splicing.
There have been efforts to clarify modern nomenclature in gene expression studies, and 
guidelines were recently proposed to increase precision and clarity when communicating 
about gene expression, most notably to reserve 'gene' for the DNA template and 'transcript' 
for the RNA transcribed from that gene (Cunningham ASG, et al., 2024 [Ref 2]). I suggest 
authors consider aligning some definitions found in the manuscript with these guidelines.

○

There is no mention of the possibility of combining short- and long-read sequencing to 
enhance quantity and quality of results. I strongly suggest the authors include in their 
review a section on "StringTie" which utilizes both short and long RNA-seq reads for 
transcript assembly to generate a hybrid strategy (Shumate A, et al., 2022 [Ref 3]).

○

After these improvements, I am confident this article will be highly cited in the field. 
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Is the topic of the review discussed comprehensively in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
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Are the conclusions drawn appropriate in the context of the current research literature?
Partly
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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First of all, thank you for reviewing the article. I appreciate the time you took and the 
constructive feedback you gave me to improve this work.  
 
The title was revised to “Selecting Differential Splicing Methods: Practical Considerations for 
Short-Read RNA Sequencing” to emphasise short-read platforms, and the abstract and 
introduction now explicitly state this focus. I am hesitant to expand and write a full section 
on long-read technology, as this isn't really my field of expertise. Therefore, we decided to 
streamline this section in line with Dr Capitanchik's recommendations while weaving in the 
hybridised approaches of current short-read technologies. 
 
I agree with the minor points and have addressed these by including the recommended 
citations in the introduction and discussion.  
 
These changes align the manuscript with your recommendations, maintaining its 
comprehensive scope while clarifying its primary focus on short-read RNA-seq.  
 
Sincerely, 
 
Ben J. Draper 
University of Sheffield  
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