
This is a repository copy of IWAVE—an adaptive filter approach to phase lock and the 
dynamic characterization of pseudo-harmonic waves.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/230678/

Version: Published Version

Article:

Daw, E.J. orcid.org/0000-0002-3780-5430, Hollows, I.J. orcid.org/0000-0002-3404-6459, 
Jones, E.L. et al. (5 more authors) (2022) IWAVE—an adaptive filter approach to phase 
lock and the dynamic characterization of pseudo-harmonic waves. Review of Scientific 
Instruments, 93 (4). 044502. ISSN: 0034-6748

https://doi.org/10.1063/5.0070394

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1063/5.0070394
https://eprints.whiterose.ac.uk/id/eprint/230678/
https://eprints.whiterose.ac.uk/



View

Online


Export
Citation

RESEARCH ARTICLE |  APRIL 19 2022

IWAVE—An adaptive filter approach to phase lock and the
dynamic characterization of pseudo-harmonic waves
E. J. Daw   ; I. J. Hollows  ; E. L. Jones; R. Kennedy; T. Mistry; T. B. Edo; M. Fays; L. Sun 

Rev. Sci. Instrum. 93, 044502 (2022)
https://doi.org/10.1063/5.0070394

Articles You May Be Interested In

Four-quadrant bidirectional AC-DC converter for plug-in electric vehicle charger with grid reactive power
support

AIP Conf. Proc. (February 2020)

Hybrid quantum singular spectrum decomposition for time series analysis

AVS Quantum Sci. (May 2023)

Frequency estimation techniques in capacitance-to-frequency conversion measurement

Rev. Sci. Instrum. (January 2020)

 2
2
 A

u
g
u
s
t 2

0
2
5
 1

1
:0

1
:3

6

https://pubs.aip.org/aip/rsi/article/93/4/044502/2849023/IWAVE-An-adaptive-filter-approach-to-phase-lock
https://pubs.aip.org/aip/rsi/article/93/4/044502/2849023/IWAVE-An-adaptive-filter-approach-to-phase-lock?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-3780-5430
javascript:;
https://orcid.org/0000-0002-3404-6459
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://orcid.org/0000-0001-7959-892X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0070394&domain=pdf&date_stamp=2022-04-19
https://doi.org/10.1063/5.0070394
https://pubs.aip.org/aip/acp/article/2207/1/040005/972899/Four-quadrant-bidirectional-AC-DC-converter-for
https://pubs.aip.org/avs/aqs/article/5/2/023803/2893316/Hybrid-quantum-singular-spectrum-decomposition-for
https://pubs.aip.org/aip/rsi/article/91/1/015005/1021665/Frequency-estimation-techniques-in-capacitance-to
https://e-11492.adzerk.net/r?e=&s=USQNNNmMxFPsoFLdLUS0Kxc3s1s


Review of

Scientific Instruments
ARTICLE scitation.org/journal/rsi

IWAVEÐAn adaptive filter approach to phase
lock and the dynamic characterization
of pseudo-harmonic waves

Cite as: Rev. Sci. Instrum. 93, 044502 (2022); doi: 10.1063/5.0070394
Submitted: 6 September 2021 • Accepted: 30 March 2022 •

Published Online: 19 April 2022

E. J. Daw,1,a) I. J. Hollows,1 E. L. Jones,1 R. Kennedy,1 T. Mistry,1 T. B. Edo,1 ,2 M. Fays,3 and L. Sun2 ,4

AFFILIATIONS

1Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United

Kingdom
2LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA
3Department of Astrophysics, Geophysics and Oceanography (GEO), Space sciences, Technologies and Astophysics Research

(STAR), Université de Liège, allée du six Auot 19, 4000 Liège, Belgium
4OzGrav-ANU, Centre for Gravitational Astrophysics, College of Science, The Australian National University, ACT 2601, Australia

a)Author to whom correspondence should be addressed: e.daw@sheffield.ac.uk

ABSTRACT

We present a novel adaptive filtering approach to the dynamic characterization of waves of varying frequencies and amplitudes embedded in
arbitrary noise backgrounds. This method, known as IWAVE (Iterative Wave Action angle Variable Estimator), possesses critical advantages
over conventional techniques, making it a useful new tool in the dynamic characterization of a wide range of data containing embedded
oscillating signals. After a review of existing techniques, we present the IWAVE algorithm, derive its key characteristics, and provide tests of
its performance using simulated and real world data.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070394

I. INTRODUCTION

The co-inventor of themaser,1 Arthur Schawlow, is said to have
advised his students ªNevermeasure anything but frequency!º There
exist a great variety of techniques for measuring the frequencies of
pseudo-harmonic waves, broadly addressing two different classes of
problems.

In the first class, the average wave characteristics are esti-
mated across a measurement interval under the implicit assumption
that the wave properties are essentially static or when changes in
these properties over the measurement interval are not of interest.
This problem is addressed by a wide variety of methods, includ-
ing Welch’s method using discrete Fourier transforms (DFTs),2,3

Pisarenko’s method,4 MUSIC,5 and ESPRIT.6

In the second class, the oscillator is constantly evolving, and
we seek a time-evolving best estimate of oscillator parameters. This
problem is most often solved using phase locked loops (PLLs)7

or their hardware realization, lock-in amplifiers.8 The myriad

applications of PLLs in science and engineering include, for exam-
ple, a recent proposal for digital PLLs as an alternative technology for
the readout of the photodiode clusters used to stabilize the alignment
of mirrors in the future gravitational wave detectors.9

In searches for almost continuous wave (CW) signals in gravi-
tational wave detectors, the evolving oscillation of continuous wave
(CW) signals is at a very low signal-to-noise ratio (SNR), and so,
the frequency evolution of such signals in ground based gravita-
tional wave interferometers cannot be inferred from the raw data as
is necessary for successful tracking with a conventional PLL. Instead,
coherent matched filtering techniques, such as theF-statistic used in
CW searches,10,11 are able to achieve higher sensitivity to these weak
signals at the price of substantially greater computational burden.
Stack-slide-based semi-coherent algorithms expedite the compu-
tation to some extent at the cost of sensitivity by summing the
signal power in multiple coherent segments after sliding the seg-
ments in the frequency domain to account for the signal phase
evolution.12±15 More efficient semi-coherent methods, e.g., signal
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tracking algorithms based on hiddenMarkovmodels,16±19 have been
developed to tackle the computational challenge as well as to allow
for some uncertainties in the signal evolution model.20±22

Several other techniques beyond the conventional PLL have
been developed for a range of applications outside the field of grav-
itational wave research although these algorithms are not adapted
for the detection of the very weak CW signals expected from gravi-
tational wave sources. One example is the second order generalized
integrator (SOGI-PLL).23 Developed for the problem of character-
izing the characteristics of AC voltages in power lines, SOGI was
one of the first methods to successfully address the problem of effi-
cient generation of a copy of an input sinusoid that is out of phase
(the so-called quadrature or Q phase) with the input signal. Other
more recent papers, for example,24±27 have developed the SOGI algo-
rithm for a range of practical applications. A second example is the
enhanced PLL (EPLL),28,29 which solves the problem of tracking the
amplitude of a harmonic wave in addition to its frequency. Further
PLL developments are well summarized in Ref. 30.

The IWAVE (Iterative Wave Action-angle Variable Estimator)
technique described in this paper is a new type of PLL addressing
the dynamic characterization of evolving pseudo-sinusoidal signals.
Unlike a conventional PLL, the adaptive element is a filter rather
than an oscillator or counter. IWAVE has certain advantages over
existing PLLs. First, IWAVE produces a benign output when the
PLL is unlocked. In the case where the output of the PLL is being
used to control something, for example, some parameter of a grav-
itational wave detector in a closed loop feedback system, then, in
colloquial terms, IWAVE does no harm when it is not working.
IWAVE naturally tracks the amplitude as well as frequency using
a single feedback loop, unlike EPLL, which requires two loops inter-
nally for the amplitude and the phase. IWAVE is initialized using a
small set of free parameters corresponding directly to physical oscil-
lator propertiesÐjust an initial frequency and a single time constant;
other PLL algorithms typically contain many control parameters
that do not have a clear physical meaning. IWAVE also has the
ability to characterize, simultaneously, multiple oscillations having
almost-degenerate frequencies using the cross-subtraction method
described in Sec. III C. This last advantage has led to detailed analysis
of almost-frequency-degenerate violin modes of fused silica suspen-
sion wires in advanced LIGO.31 Comparisons of IWAVE with the
SOGI and EPLL algorithms are given in the Appendix.

As we discuss in Sec. III B, IWAVE as currently implemented is
not sensitive to signals where the ratio of the amplitude of the target
wave to the root mean square (rms) of the noise background is less
than about 0.3. When applied to broadband gravitational wave data,
therefore, IWAVE cannot be expected to detect gravitational wave
CW signals at the strengths anticipated for sources described in the
literature. However, preprocessing steps to divide the data into nar-
rower frequency bands, thereby significantly reducing the rms of the
noise, may yield promising search methods. Studies of these ideas
are under investigation and will form the subject of future papers.
The potential advantage is that by using the data itself to track the
evolving frequency of the oscillation, IWAVE may be significantly
less reliant on banks of templates for wave evolution and hence may
require significantly less computational resources than existing CW
search methods. For now, however, IWAVE represents a simple,
well-characterized, and useful technique for analyzing quite complex
spaces of evolving oscillators at relatively low computational burden,

which is already being applied to studies of important background
oscillations in gravitational wave data. This, then, is a method paper
describing how IWAVEworks and how it performs and giving some
examples of that performance on gravitational wave data.

The IWAVE algorithm has many potential applications beyond
gravitational wave science. In the control of brushless electric
motors, IWAVE could out-perform standard vector control meth-
ods at low rotation rates where the back-emf in the motor windings
is weak.32 In radio communications, IWAVEmight be used to sepa-
rate closely spaced channels with frequency evolution and multipath
splitting.33 In heart magnetometry, IWAVE could be used to esti-
mate Fourier coefficients of the cardio-magnetic signal using an
electrocardiograph signal to modify the phase evolution as the heart-
beat rate evolves.34 In physics, IWAVE could be applied to atomic
force microscopy35 or as part of an optical squeezing scheme for
the readout of interferometers.36 The authors look forward with
anticipation to seeing what other applications we have not noticed.

This paper consists of a description of the IWAVE method in
Sec. II, a discussion of the limits of applicability of IWAVE in Sec. III,
and an overview of certain other PLL methods in the Appendix.
Space constraints have led us to leave outmanymathematical steps; a
full treatment of the mathematics can be found at Ref. 37. A software
library implementing IWAVE in C with wrappers into MATLAB
and Python/NumPY is available on a public git repository here.38

II. THE IWAVE METHOD

A. The core algorithm

Before writing down the IWAVE core algorithm, we consider as
a starting point theZ-transform39 of a regularly sampled time series,
xp,

Zn(Ω) ≙ n

∑
p=−∞

xpe
(p−n)Ω, (1)

where p increases with time and Ω ≙ w − iΔ has the real part w the
reciprocal of one e-folding for the weighting of previous samples
and the imaginary part Δ equal to the frequency of the Z-transform
component in radians per sample.

Zn(Ω) obeys an iteration equation,

Zn(Ω) ≙ e−ΩZn−1(Ω) + xn. (2)

An unit amplitude phasor input, xn ≙ e
inΔ, to Eq. (2) results

in the output Zn ≙ e
inΔ/(1 − e−w), which has zero phase shift with

respect to the input and a larger amplitude dependent on w. Scaling
the input by a factor of 1 − e−w leads to an iteration algorithm, which
passes phasors at frequency Δ with unit gain and zero phase shift,

yn ≙ e
−w

e
iΔ
yn−1 + (1 − e−w)xn. (3)

This iteration algorithm is the core of IWAVE. As we shall see,
it responds resonantly at frequency Δ. In the language of signal pro-
cessing, Eq. (3) is an infinite impulse response (IIR) filter because
it generates its nth output using the current input xn, the previous
output yn−1, and a two-input, two-output, multi-input, multi-output
(MIMO) filter; yn and xn are, in general, complex variables. We
will also need the real representation of the transfer function for
IWAVE derived from Eq. (3) by writing xn ≙ x

R
n + ix

I
n, yn ≙ y

R
n + iy

I
n,
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and yn−1 ≙ z
−1yn, where z−1 is the sample delay operator. In these

terms, Eq. (3) can be re-written as

⎛⎜⎝
y
R
n

y
I
n

⎞⎟⎠ ≙
⎡⎢⎢⎢⎢⎢⎣
H11(z−1) H12(z−1)
H21(z−1) H22(z−1)

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎝
x
R
n

x
I
n

⎞⎟⎠, (4)

where the elements of the transfer function matrix are

H(z−1) ≙
⎡⎢⎢⎢⎢⎢⎣
1 − e−wz−1 cosΔ −e

−w

z
−1 sinΔ

+e
−w

z
−1 sinΔ 1 − e−wz−1 cosΔ

⎤⎥⎥⎥⎥⎥⎦( 1−2e−wz−1 cosΔ+e−2wz−2

1−e−w ) . (5)

In this form, the transfer function is seen to be second order
in sample delay. We determine the response of the core algorithm
to an input consisting of a phasor of arbitrary frequency Θ radi-
ans per sample by substituting xn ≙ e

inΘ into Eq. (3). The response

is also a phasor, yn ≙ Ae
i(nΘ+Φ), where A(Θ) and Φ(Θ) are the fre-

quency dependent magnitude and phase lag of the output phasor
with respect to the input given by

A(Θ) ≙ 1 − e−w√
1 − 2e−w cos(Δ −Θ) + e−2w ,

Φ(Θ) ≙ arctan( e−w sin(Δ −Θ)
1 − e−w cos(Δ −Θ)).

(6)

Thus, phasors of arbitrary frequency are eigenfunctions of the core
algorithm with eigenvalues AeiΦ. The resonant character of the
eigenvalues at frequencyΔ can be seen in the denominator of Eq. (5),
which is identical to the resonant denominator in the SOGI filter.23

Figure 1 shows A and Φ as a function of Θ for Δ ≙ 1.257 and four
values of w: 1, 0.1, 0.01, and 0.001.

Starting from Eq. (6) and writing δ ≙ (Δ −Θ)≪ 1 and w ≪ 1
so that we are in a limit where the frequency is in the vicinity
of a narrow resonance, the magnitude of the filter output can be
approximated as

A(δ) ≃ 1√
1 + δ2

w
2

(7)

so that the peak is approximately Lorentzian in shape with full width
at half maximum (FWHM) of 2w radians per sample. Using the
sampling rate, fs, in Hz, we give other properties of narrow reso-
nances occurring when w ≪ 1 in Table I, where τs is the sampling
period in seconds, τ is the response time in seconds, and Δ0 is the
resonant frequency in radians per sample.

B. Application of IWAVE to a real sinusoidal input

We next discuss the usual case where the input data are a real
oscillation at the IWAVE resonant frequency, xn ≙ cos(nΔ). We
decompose xn into two phasors, xn ≙ xf + xb, where xf ≙ e

+inΔ/2 and
xb ≙ e

−inΔ/2, each of which is an eigenfunction of the core algorithm.
Substituting the frequencies ±Δ into Eq. (6) and rearranging, we
obtain the response

yn ≙ e
iϕ

2 ((1 + a)
2

cos(nΔ − ϕ

2
) + i(1 − a)

2
sin(nΔ − ϕ

2
)), (8)

FIG. 1. Magnitude (a) and phase (b) of the response of IWAVE to the phasor input
as a function of the phasor frequency in radians per sample for different values of
w and Δ ≙ 1.257. A smaller w results in a sharper resonant peak.

TABLE I. Properties of narrow resonances of the IWAVE core algorithm in the limit
where w ≪ 1.

Quantity Symbol Formula Units

Full width at half maximum FWHM or Γ w fs
π
≙

1
πτ

Hz
Quality factor Qf

Δ0
2w ≙

Δ0τ
2τs

⋅ ⋅ ⋅

Resonant frequency f0
Δ0 fs
2π Hz

Response time τ

1

w fs
τs

w

s

where

a ≙
1 − e−w√

1 − 2e−w cos(2Δ) + e−2w ,

ϕ ≙ arctan( e−w sin(2Δ)
1 − e−w cos(2Δ)).

(9)

By inspection, the locus of yn is an ellipse in the complex plane
having semi-major and semi-minor axes 1 + a and 1 − a. Figure 2
shows the result of driving the IWAVE core algorithm with an input
xn ≙ cos nΔ for n ≥ 0. The output starts at the origin, spiraling out-
ward toward a limiting ellipse in the steady state. Notice that the
argument of the output yn is always the same as the phase, nΔ, of the
input sinusoid.
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FIG. 2. Output of the IWAVE core algorithm for an input xn ≙ cos nΔ for
Δ ≙ 0.3068, 0 ≤ n < 27, and w ≙ 0.3. The points are the individual outputs yn,
and the solid line is the limiting ellipse discussed in Sec. II B.

Input sinusoids at frequencies other than Δ also result in
an elliptical steady state output although with different inclina-
tion angles and eccentricities and with smaller overall areas due
to the falloff in the magnitude of the response for phasors having
frequencies far from Δ.

A matrix transformation can be used to transform the ellipti-
cal locus into a circular one with the real part of this circular locus
being a sinusoid in-phase with the input wave and the imaginary
part having the same amplitude but lagging the input wave by 90○.
We refer to these in-phase and out-of-phase components as the D
and Q phases, respectively. This transformation can be expressed as
a sequence of three elementary operations on the vector whose ele-
ments are the real and imaginary parts of yn: a rotation through an

angle of ϕ
2 about the origin; shears parallel to the real and imaginary

axes by factors of 2
1+a and 2

1−a , respectively; and finally a rotation

through an angle of −ϕ2 about the origin. These three matrices can be
combined into a single transformation,

⎛⎜⎝
Dn

Qn

⎞⎟⎠ ≙
⎛⎜⎜⎜⎝
1 + e−w

e−w − 1

tanΔ
e−w − 1

tanΔ
e
−w((ew − 1)2

sin2Δ
− 1) + 3

⎞⎟⎟⎟⎠
⎛⎜⎝
y
R
n

y
I
n

⎞⎟⎠. (10)

The IWAVE core algorithm followed by this matrix transfor-
mation results in the output of both D phase and Q phase copies
of the input drive. Thus, IWAVE is an example of what is referred
to in signal processing parlance as an orthogonal state generator.
Our convention follows other papers in the field in that the D (Q)
phase output is in (out of) phase with the input at resonance. As
we shall see, the Q phase quadrature can be used to generate an
error signal to detect changes in frequency, allowing IWAVE to be

FIG. 3. Symbols for IWAVE acting on two-component phasor or real inputs. The
parameters w and Δ may be adjusted to reflect changes in the state of the drive.

used in place of a reference oscillator in a PLL. The sum in quadra-

ture of the two phases, An ≙

√
D2

n +Q
2
n, is an estimate of the input

signal amplitude. We will use the symbols in Fig. 3 to denote the
application of IWAVE either to complex phasor or real sinusoidal
inputs.

We next consider the transfer functions from a real sinu-
soidal drive, an example of which is shown in Fig. 4. Note that
the dependence on frequency off-resonance is different for the D
and Q outputs. The D transfer function rises linearly in frequency
below the resonance and falls linearly in frequency above it, hav-
ing a phase lead of 90○ below the resonance and a phase lag of
90○ above it. The Q transfer function has a flat frequency response
below the resonance but falls as f −2 above it and is in phase with
the drive below the resonance but 180○ out of phase with the drive
above it.

FIG. 4. An example of the transfer functions between a real sinusoidal input and
the D and Q phase outputs. Here, the sampling rate was 256 Hz, the resonant
frequency was 1 Hz, and the filter quality factor Q was set to 12.3. Notice that
the low frequency attenuation in the Q phase output is about 0.08, which is 1/Q.
Subfigures (a) and (c) [(b) and (d)] are the magnitude and phase of the D phase
(Q phase) output.
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FIG. 5. An example of the response of IWAVE to amplitude modulated signals.
The carrier frequency was 60 Hz, and the modulation depth was 10%. Modulation
frequencies in the range 33 mHz ≤ fAM < 33 Hz were used, and results are shown
for five different values of τ. The 3 dB point for turnover between flat response and
proportionality to 1/ fAM is f 3dB

AM
≙ 1/(2πτ) in each case. Subfigures (a) and (b)

are the magnitudes and phases of the responses, respectively.

This behavior is similar to that of a driven series RLC tank
circuit, where the transfer functions from the input voltage to the
voltage across the capacitor and resistor are similar to those between
the input and theQ andD phase outputs, respectively. The relatively
light suppression of low frequency off-resonance signals in the Q
phase output can be important, particularly in cases where the qual-
ity factor Q f of the circuit is set low by using a relatively large w

coefficient. As in the resonant circuit, the ratio of the resonant to
low frequency response is Q f.

Changes in the amplitude of the incoming wave at the res-
onance result in a corresponding change in the quadrature sum,

An ≙

√
D2

n +Q
2
n, but with a response time τ ≙ τs/w leading to a sin-

gle pole in the response to amplitude changes at s ≙ −1/τ. Figure 5
shows the response at IWAVE’s resonance frequency to an input
having a sinusoidally modulated amplitude for a variety of response
times.

C. An IWAVE-based phase locked loop

In order to phase lock with IWAVE, we need a measure of
departures in the frequency from the frequency Δ of the harmonic
wave at the input. We achieve this by exploiting the response time
τ of the IWAVE algorithm. Consider a harmonic wave initially
at frequency Δ. IWAVE yields both a Dn phase and a Qn phase
copy of this wave at its output. The product of the out-of-phase
copy and the input wave, A2 cos(nΔ) sin(nΔ) ≙ (A2/2) sin(2nΔ),
is a pure harmonic signal at frequency 2Δ. Now, consider an input
signal where the wave develops anomalous phase and amplitude dis-
turbances, δ and ε, respectively, so that xn ≙ A(1 + ε)cos(nΔ + δ).
For elapsed times significantly less than τ following the onset of
these disturbances, the outputs Dn ≙ A cos nΔ and Qn ≙ A sin nΔ
are unaffected by them. Physically, where the oscillator has an
unchanged frequency and amplitude, its complex plane representa-
tion precesses in a circle about the origin, and the current IWAVE
filter output therefore provides a predictor of the point where such
a static oscillator will land the next sample. If the frequency or
amplitude evolves, then the combinations En ≙ (xn −Dn)Qn and Fn
≙ xnDn +Q

2
n − A

2
n are estimates of the departure of the actual evo-

lution of the complex coordinate of the oscillator state from this
static model. These combinations can be written in a matrix form as
follows:

⎛⎜⎝
En

Fn

⎞⎟⎠ ≙
A2

2

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎝
−δ

ε

⎞⎟⎠ +
⎛⎜⎝
cos(2nΔ) sin(2nΔ)
− sin(2nΔ) cos(2nΔ)

⎞⎟⎠
⎛⎜⎝
δ

ε

⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦
. (11)

This equation shows that En and Fn each consists of a static
offset plus upper sidebands of frequency 2Δ, linear in the phase

FIG. 6. A schematic of the IWAVE PLL. The error signal after upper sideband filtering is δϕn. The switch closes the feedback loop to adjust Δ and 2Δ for the two IWAVE
instances. The use of the complex input IWAVE for attenuation of the 2Δ component in the error signal reduces the computational load compared with the use of a real
input IWAVE on the En signal alone.
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and amplitude offsets, respectively. The upper sidebands, however,
appear as components of a rotating phasor in the space spanned by
the En and Fn signals. We remove them using the complex carrier
version of IWAVE, subtracting its outputs from its inputs. We have
determined experimentally that using twice the w factor in the 2Δ
IWAVE filter yields an acceptable error signal for the detection of
phase departures.

Figure 6 is a schematic for the full IWAVE-based phase and
amplitude detector. We have only considered here the case where
the input data are real and we are tracking harmonic waves. The case
where the input data are two-component rotating phasors is simpler
as it can be shown that the combination E′n ≙ x

R
nQn − x

I
nDn contains

a pure DC signal in-phase offset with no upper sideband contam-
ination. In addition, shown is the feedback path from the filtered
error signal, δϕn, back to Δ through an integrator, discussed in the
following.

The response of IWAVE to modulation of the frequency of the
carrier is shown in Fig. 7. Knowing the analytic form of the fre-
quency response, we can analyze the closed loop IWAVE PLL to
determine an appropriate choice of feedback gain, G. A schematic
for the feedback controller is shown in Fig. 8. Any difference
between the incoming wave frequency and the IWAVE filter central

FIG. 7. The transfer function of IWAVE from frequency modulation of the input
carrier to the response in δϕn with the feedback loop open for four different values
of τ. The output is insensitive at DC because a step in frequency without feedback
moves the input carrier off the IWAVE resonant frequency Δ0. Sensitivity increases
toward high frequencies because the homodyne detector relies on beats between
the Q phase IWAVE output and the carrier, which appear so long as IWAVE has
not had the adjustment time, τ, necessary for its outputs to respond to changes in
the input signal. Between these two regimes, there is a single pole at frequency
1/(2πτ) Hz, which, combined with zero at DC, makes the frequency modulated
(FM) response a highpass filter having the same 3 dB point as the lowpass filter
associated with the AM response. In each case, the carrier frequency is 60 Hz
and the sampling rate is 16 384 Hz. Subfigures (a) and (b) are the magnitude and
phase of the transfer function, respectively.

FIG. 8. An s-plane model of the IWAVE PLL.

frequency results in an accumulating phase shift in the homodyne
detector. This accumulation of phase is represented by the fac-
tor of 2π/s, where s ≙ 2πif with f being the signal’s frequency.
The response of IWAVE to phase, confirmed by the measurements
underlying Fig. 7, acts on the accumulated phase to produce the
error signal. As shown in Fig. 8, the feedback path from the error
signal to a correction in the central frequency of IWAVE consists of
an adjustable gain, G, an addition of the gain boosted error signal to
the previous value of the phase shift per sample, and a scale factor
to convert from radians per sample to frequency in Hz. The closed
loop gain is calculated by the usual consistency argument around the
loop,

fout ≙ fin
2π

s

sτ

1 + sτ
G

1

sτs

1

2πτs
− fout

2π

s

sτ

1 + sτ
G

1

sτs

1

2πτs
(12)

from which we obtain the closed loop transfer function,

H(s) ≙ fout

fin
≙

G
τ2s

s2 + s
τ
+

G
τ2s

. (13)

This is the transfer function of a driven damped harmonic oscillator.
We want a critically damped response since the control signal will be
used to measure the oscillator frequency. For critical damping, we
require two coincident real poles, which is achieved if G ≙ τ2s /(4τ2).
The closed loop transfer function then takes the simpler form

H(s) ≙ ( 1
2τ

s + 1
2τ

)2. (14)

The response to frequency or phase modulation is therefore flat
below the knee frequency of 1/(4πτ)Hz, where due to the two poles
it has rolled off to −6 dB and drops as 1/ f 2 above that frequency.
Larger values of G result in sharper turnover or a resonant peak,
corresponding to the underdamped case.

III. LIMITS OF APPLICABILITY OF IWAVE

The time constant, τ, determines the responsiveness of IWAVE
to changes in wave frequency and amplitude as well as the noise
bandwidth of the filter. Decreasing τ results in a faster response
and better ability to stay locked on waves whose frequencies are
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changing but also increases the bandwidth of IWAVE to input noise,
resulting in a noisier error signal. The optimal τ is small enough
so that IWAVE stays locked when the frequency changes but not
so small that excessive background noise is admitted by the filter.
Section III A is on frequency tracking, and Sec. III B discusses lock-
ing in the presence of additive noise and the character of the error
signal.

A. Frequency tracking

Consider a wave whose displacement at time t is h(t) ≙ A
cos(2π f (t)t) so that the frequency of the wave is changing. The abil-
ity of IWAVE to track the evolving wave depends on the value of the
response time parameter, τ. Figure 9 shows the results of running
IWAVE on a swept sinusoidal wave starting at 20 Hz and increas-
ing linearly in frequency at a variety of rates. At each sweep rate, a
variety of values of τ were used. The sum of the squares of the devi-
ation between the actual frequency and the frequency reconstructed
by IWAVE over a time interval of 20 s, here referred to as χ2, was
calculated as a measure of the accuracy of frequency reconstruction.

FIG. 9. Measured χ2 as defined in the Sec. III A from a simulation where an input
swept sinusoid plus additive white Gaussian noise was fed into IWAVE. A range of
sweep rates from 0.1 to 2.5 Hz s−1 were used. For each injected wave, IWAVE was
run with a range of τ between 0.01 and 5 s. In addition, overlaid are three curves
in bold. The curve labeled ªmeasuredº is the minimum of χ2(τ) for each df/dt.

The curve labeled ªtheoryº is the calculated prediction for the minimum of χ2(τ)
from Eq. (15). The curve labeled U.L. is the predicted upper limit on τ above which
loss of lock is predicted as discussed in the final paragraph of Sec. III A, given
by Eq. (16), vs the measured χ2 at that τ. The thick black line follows the values

of τ where IWAVE loses lock, as demonstrated by the onset of noise in χ2, over
simulations having a variety of df/dt values.

The value of χ2 is seen to be a function of τ with a pronounced
minimum that is a function of the sweep rate. The χ2 statistic also
becomes noisy at both ends of the range of values of τ. Here, we
explain the smooth descent and ascent in χ2 on either side of the
minimum and obtain a formula for the optimum value of τ. We also
explain the onset of noise at either end of the range of τ.

Starting at theminimum, χ2 rises with τ because of the response
time of the closed loop transfer function of the servo from Eq. (14).
This transfer function is that of two RC lowpass filters in series, each
having an exponentially decaying impulse response of timescale 2τ.
The response time of the entire transfer function is therefore the
time duration of the autocorrelation of this exponentially decaying
function. This autocorrelation initially rises linearly in time after the
impulse before reaching a maximum at time 2τ and then decaying
exponentially. The time between the impulse and the point where
the exponential decay reaches 1/e of its maximum value is 6τ. This
causes the frequency tracking of IWAVE to lag behind that of the
input swept sine wave, leading to a frequency discrepancy at any
given time of Δ f1 ≙ 6τ(df /dt).

Below the minimum of χ2(τ), the rise in χ2 with decreasing
τ is explained by the frequency response of the core IWAVE algo-
rithm and is best understood by the analogy between the IWAVE
algorithm and the characteristics of a damped harmonic oscillator
discussed in Sec. II B. At higher values of damping, the frequency
response is maximal at a frequency f below the natural frequency
of the undamped oscillator, f0 by an amount given by the relation-

ship f0 ≙
√

f 2 + 1/(2π2τ2). This causes a systematic offset between
the frequency, f , returned by IWAVE, and the frequency, f0, of the
input signal. The square of this frequency difference is an additional
contribution to the χ2 statistic.

By squaring and adding the frequency discrepancies arising
from these two effects and minimizing with respect to τ, making the
assumption that 2π2τ2(df /dt)2 ≫ 1, we arrive at a value of τ that
minimizes the χ2 statistic for frequency tracking,

τopt ≙
1

6

√
288π4 f 2( df

dt
)2 . (15)

Figure 9 shows in bold red the values of τopt corresponding to
the measured minimum τ and χ2 across each of the χ2 curves vs the
measured χ2 at that minimum along with in bold blue the value of
τopt vs the value of χ

2 at τopt. There is good agreement between the
theoretical τopt and the value determined from simulations within
29% for the largest value of df /dt studied and within 13% for the
smallest one. At larger values of df /dt, τopt is smaller, so there is
more broadband noise in the error signal, and a more sophisticated
optimization on τ would lead to a larger optimal value than that
predicted by Eq. (15).

We next discuss the breakdown of IWAVE at high values of τ,
where the χ2(τ) curves become noisy, indicating loss of lock. The
following argument leads to successful prediction of the value of
τ where this breakdown occurs. Consider a wave whose displace-
ment at time t is h(t) ≙ A cos(2π f (t)t) so that the frequency of the
wave is changing. Assume that IWAVE is locked at time t so that the
IWAVE output is m(t) and is equal to h(t). At time t + τ, the wave
displacement has evolved to h(t + τ) ≙ A cos(2π( f + df )(t + τ)).
In the time interval ∥t, t + τ∥, the IWAVE output has not had time
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to respond to the frequency shift df and therefore takes the form
m(t + τ) ≙ A cos(2π f (t + τ)). The phase shift between the wave
and the IWAVE output at time t + τ is Δϕ ≃ 2πτ df . The error sig-
nal for IWAVE is approximated by the integral ∫ h(t′)m(t′)dt′ over
time interval ∥t, t + τ∥. If the phase shift between the incoming wave
and the IWAVE output over this time interval is greater than π, the
error signal will undergo a sign change causing loss of lock. There-
fore, a condition for IWAVE to remain locked is that Δϕ < π or
τΔ f < 1/2. Writing df ≙ τ × df (t)/dt, we arrive at the upper bound
that τ should obey

τ < 1/√2df /dt (16)

for IWAVE to remain locked. This line is drawn on the χ2 curves in
Fig. 9 in bold black, labeled U.L., vs the measured value of χ2 at that
value of τ in each simulation. The limit tracks the onset of lock loss
as demonstrated by large excursions in χ2 well across different trial
values of df /dt.
B. Response to noise

The error signal for the IWAVE PLL is derived from the prod-
uct of the input data stream and the Q phase output of the IWAVE
filter minus the product DQ of the two IWAVE outputs. Where the
wave frequency is static, this subtraction removes the upper side-
band component at frequency 2 f . When the frequency changes, this
causes an additional transient upper sideband component, which
is removed using a second IWAVE filter at frequency 2 f having
a response time half that of the primary IWAVE filter. Finally, we
divide by the square of the wave amplitude because both the ampli-
tude of the incoming wave and the amplitudes of both IWAVE
outputs scale linearly with the wave amplitude. We need to divide
this scale out; otherwise, the PLL loop gain will be dependent on the
wave amplitude.

This is a form of homodyne detector. Because the error signal
incorporates the unfiltered wideband input, the error signal incor-
porates the broadband noise of the incoming data. The distribution
of the error signal therefore reflects the spectral characteristics of the
input data over the full Nyquist band. If, for example, the incoming
data includes a time domain transient with a broad spectral distri-
bution, this transient will be reflected in the time history of the error
signal from IWAVE. If the out of band noise is sufficiently large in
amplitude, then IWAVE will lose lock.

We have determined experimentally that at the optimal choice
of response time, τopt given in Eq. (15), then IWAVE will stay locked
when the ratio of the wave peak amplitude to the root mean square
noise amplitude exceeds 0.3. Future work to improve the perfor-
mance of IWAVE at lower signal-to-noise ratios could involve, for
example, prefiltering the input data to focus on a narrower frequency
band about the frequency of interest for the waves under study. The
noise content of the error signal, which leads to noise also in the
estimate of the IWAVE frequency, is greater at smaller values of τ
where the bandwidth of the IWAVE filter resonance is larger. At suf-
ficiently small values of τ, the incursion of noise leads again to loss
of lock. This can be seen in Fig. 9 for τ < 0.02. The optimal value of
τ is affected by higher noise levels with larger values than that given
in Eq. (15) becoming optimal.

The exact value of τ where lock loss occurs and the effects of
noise on the optimal value of τ could be determined by a detailed
stochastic differential equation analysis and is beyond the scope of
this paper. However, a simple scaling argument can be made. Noise
in the error signal leads to a random component being added to the
phase shift per sample. This means that the reconstructed frequency,
which also forms the servo control signal, contains a component that
undergoes a random walk and hence grows with the square root of
the number of samples. This means that you might expect the onset
of loss of lock to occur at τ, which scales as one over the square of
the signal-to-noise ratio, so that IWAVE works at τ above a lower
limit that goes down by a factor of two when the signal-to-noise ratio
is enhanced by a factor of

√
2. This was verified by injecting addi-

tive white Gaussian noise on top of the swept sine wave and noting
that the threshold for lock loss at low τ reproduced this predicted
behavior.

In terms of noise in the error signal, the most significant source
is the product of noise in the input data since this noise enters the
error signal without bandpassing through the IWAVE filter. How-
ever, this broadband noise has an rms amplitude independent of the
amplitude of the tracked wave. If the tracked wave drops in ampli-
tude but the rms of the broadband noise at the input does not, then
the noise component of the error signal will scale inversely propor-
tional to the amplitude of the line. This is exactly what is seen when
IWAVE is run, in practice, on real data. The normalization of the
error signal with the amplitude squared is necessary to ensure that
the feedback loop gain is independent of the wave amplitude.

The other function of the error signal is to provide an indica-
tion of whether or not the PLL is locked. With a non-stationary rms,
this is difficult. However, if we scale the error signal by multiplying
it by the amplitude of the wave being tracked, this stabilizes the rms
of the error signal noise at the level of the line amplitude. If we fur-
ther divide by the long-term rms of the input data, we then obtain a
statistic that has a stable rms of order unity when the servo is locked.
Departures from lockmanifest themselves as large transient spikes of
amplitude greater than ten. This effect will be seen in the discussion
of performance on gravitational wave data in Sec. IV. In particular,
in Fig. 11, the error signal plotted for each of the four harmonics in
the study has been scaled in this way.

C. Use of multiple IWAVE filters in parallel

Multiple IWAVE filters can be applied to multiple harmonic
waves in a single data stream. However, when those harmonics are
frequencies spaced closely together, this causes crosstalk between the
different filters. All harmonics present in the data will enter every
IWAVE instance through the error signal. To mitigate this effect, we
employ a cross-subtraction scheme, as illustrated in Fig. 10.

The schematic shows only two IWAVE instances, but the tech-
nique generalizes to any number of filters. Assume that the two
IWAVE filters are locked on line frequencies f1 and f2. The D
and Q phase outputs from each IWAVE instance are fed into a
phase shifter, which estimates the wave signal one sample in the
future at the frequency of the wave tracked by the filter. This wave
sample is stored until the next input data sample when it is sub-
tracted from the input data to the other filter. In this way, the
input data to each IWAVE filter is purged of the harmonic being
followed by the other filter. This technique has been determined
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FIG. 10. A schematic showing the cross-subtraction technique for two parallel
IWAVE filters. The feedback loop components are omitted for clarity; each IWAVE
filter is separately instrumented as shown in Fig. 6.

to successfully lock multiplets of up to 20 filters, leaving the fre-
quency estimates from each filter free of oscillations at the difference
between frequencies in themultiplet, the effect seen in the absence of
the cross-subtraction technique. The technique works with IWAVE
because the two quadrature outputs can be used to generate an out-
put shifted through an arbitrary phase shift and because the outputs
are at the same amplitude as the input wave onto which IWAVE is
locked.

IV. PERFORMANCE OF IWAVE ON REAL WORLD DATA

We present an example of the application of IWAVE to a set of
harmonic noise components of gravitational wave data taken from
the LIGO open data center web site.40 The data were acquired by the
LIGOHanford interferometer on November 30th, 2016 and consists
of 800 s of calibrated strain data from the Hanford interferome-
ter during an 800 s lock stretch. The data were preprocessed with
a fourth order Butterworth highpass filter at 30 Hz, followed by
four third order Chebyshev type 2 bandpass filters between 5 and
300 Hz, applied in series. Finally, a fine adjustment to the spectrum
was made using a single real pole at 10 Hz. The resulting data are
dominated by the 20±80 Hz band and are approximately white in
that range. It is not a requirement that the input data to IWAVE
be whitened, but if a spectral feature is to be successfully tracked by
IWAVE, its peak should rise above the noise floor in the surrounding
background; whitening ensures that this is the case. Eight harmonic
features were identified from a broad power spectrum and were
tracked using eight parallel IWAVE instances. These originate from
various instrumental sources present in the Hanford instrument at
the time when the data were acquired. Violin mode harmonics have
been studied in detail by Cumming et al.31

The results at four of the identified frequencies are shown in
Fig. 11. For each harmonic, the frequency, amplitude, and scaled
error signal (as described in Sec. III B) are displayed. Ampli-
tudes are in dimensionless strain units, so one represents the 4
km length of the LIGO detector arms. Although the lines are in
some cases almost degenerate in frequency, there is no evidence
of beats between the reconstructed frequencies. The error signal

FIG. 11. The results of IWAVE frequency tracking on four pseudo-harmonics
present in data from the LIGO Hanford detector. Subfigures (a)±(c), (d)±(f), (g)±(i),
and (h)±(l) pertain to harmonics at the nominal frequencies displayed at the top
of each group of three sub-plots. At each frequency, the reconstructed frequency,
amplitude, and scaled error are plotted. Refer to the discussion in Sec. III B for a
description of error signal scaling. Some of the harmonics have frequencies that
exhibit significant time evolution; others are more static. In a few cases, IWAVE
can be seen to have lost and re-acquired lock. In the case of the 36.7 Hz wave,
at about 350 s, a lock loss can be seen in frequency and also via a spike in the
scaled error; similarly at about 50 s in the 37.3 Hz wave and at about 680 s in the
46.1 Hz wave.

is roughly static with approximately unit rms although the distri-
bution is non-Gaussian because of the modulation of the input
noise by the sinusoidal IWAVE output. A non-statistical tran-
sient fluctuation in the modified error signal in the 36.7 Hz line
at around 360 s corresponds to a jump in the IWAVE recon-
structed frequency, indicating that IWAVE momentarily lost lock
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when either the frequency of this sinusoid shifted rapidly or IWAVE
jumped between two almost-degenerate harmonics. A second loss
of lock can be seen in the 37.3 Hz data at around 30 s accompa-
nying a sudden drop in the amplitude of the harmonic. The eight
IWAVE instances all successfully tracked their target harmonics
with the reconstructed error signal providing a useful performance
indicator.

V. SUMMARY AND FUTURE WORK

We have described IWAVE, a novel orthogonal state gen-
erator, resonant filter, and phase locked loop for the dynamic
tracking of harmonic waves. The method has a single input para-
meter, its response time. The algorithm has a low computational
load so that many harmonics can be tracked in real time using
a single central processing unit (CPU) core. The ability to track
multiple closely spaced harmonics means that the method lends
itself well to applications where there are dense ªforestsº of har-
monics, such as in LIGO violin mode clusters and communication
applications. IWAVE has been applied to LIGO strain data and
used to study the character of violin modes in ultralow loss fused
silica suspensions. There are many possible applications of the
IWAVE method. It is complementary to existing PLL algorithms
that we have described in the Appendix. We have supplied soft-
ware implementations of IWAVE in C with MATLAB and Python
wrappers to encourage the community to find other applications
and uses.38

The authors can see several directions in which IWAVE could
be improved. The error signal is susceptible to broadband noise
contamination, and a narrower band alternative would be of ben-
efit in applications with very weak signals although narrowbanding
will reduce the responsiveness of the method to frequency changes.
There are also applications where feedback is not important, for
example, the use of IWAVE for novel resonators that is promis-
ing for resonant detectors of weak signals in physics, such as
those of dark matter axions.41 We look forward to seeing what the
community finds to do with our harmonic tracking algorithm.
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APPENDIX: OVERVIEW OF OTHER PLL METHODS

1. SOGI-PLL

The now often-used Generalized Integrator-Based PLL, SOGI-
PLL, was introduced in 2006.23 SOGI is an orthogonal state gener-
ator, producing in-phase and quadrature-phase copies of the input
wave analogous to the IWAVE D and Q outputs. These outputs are
mixed with two quadratures from a reference oscillator, leading to
an error signal in the quadrature-phase output that indicates fre-
quency differences between the SOGI output and the reference. The
error signal is fed to a proportional/integral filter. The filter out-
put is added to a frequency offset input ωn, and the result is used
to adjust the coefficients of the SOGI filter to reflect the frequency
change as well as to control the reference oscillator. Essentially, the
SOGI algorithm is coupled to a conventional phase locked loop with
a reference oscillator.

The SOGI algorithm was developed for the field of power grid
monitoring, where frequency changes are a small fraction of a nom-
inal constant value, commonly 50, 60 Hz, or harmonics of these. It
is not designed for large departures from the frequency set at the ωn

input. The SOGI orthogonal state generator is designed using two
s-plane integration stages, shown in the tan SOGI block. These s-
plane filters are transformed to the digital domain by, for example,
using a Tustin algorithm. The SOGI method does not track the wave
amplitude although this can be done in a separate circuit, assum-
ing the frequency of the wave is known, using homodyne detection,
for example. The SOGI orthogonal state generator does not have the
same transfer functions as the IWAVE one, and this is not surprising
given the different methods by which they are obtained although the
denominators of the two transfer functions are identical as they both
represent a resonant response to a harmonic drive.
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2. EPLL

The EPLL although apparently seeming to differ from quadra-
ture signal generation-based PLLs, such as SOGI-PLL, is closely
related thereto.28 A conventional PLL is embedded within a second
feedback servo that uses the integral of the quadrature phase of the
PLL output, multiplied by the unintegrated quadrature phase to syn-
thesize a 2ω signal, which can then be subtracted from the input
data, compensating for the 2ω component of the phase detector out-
put inside the PLL. Furthermore, the common amplitudes are also
equal to half the amplitude of the sinusoid in the input data. In the
EPLL structure, the input data are normalized to the PLL by this
amplitude, thereby removing the amplitude dependence of the phase
detector.42

Unlike IWAVE, there is a necessity for two servos to be locked
at once and several numerical parameters that must be adjusted,
including parameters necessary to implement the s-plane design
digitally. EPLL is susceptible to interference from other waves
present in the input and to DC offsets. The latter two issues are
addressed by prefiltering the input to the EPLL. EPLL has been
widely implemented because of its comparative simplicity, ability to
track wave amplitude, and the availability of the code implementing
the method.43
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