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Abstract

Let 𝜋 be a cuspidal automorphic representation of

GSp4(𝐀𝐐), whose archimedean component is a holo-

morphic discrete series or limit of discrete series repre-

sentation. If 𝜋 is not CAP or endoscopic, then we show

that its associated 𝓁-adic Galois representations are irre-

ducible and crystalline for 100% of primes 𝓁. If, more-

over, 𝜋 is neither an automorphic induction nor a sym-

metric cube lift, then we show that, for 100% of primes

𝓁, the image of its mod 𝓁 Galois representation contains

Sp4(𝐅𝓁).

MSC ( 2020 )

11F80 (primary), 11F46, 11S37 (secondary)

1 INTRODUCTION

Under the Langlands correspondence, where automorphic representations of GL𝑛 should cor-
respond to 𝑛-dimensional Galois representations, cuspidal automorphic representations should
correspond to irreducibleGalois representations. More generally, one expects that the image of an
automorphic Galois representation should be as large as possible, unless there is an automorphic
reason for it to be small.
In this paper, we study the images of Galois representations attached to low weight, genus 2

Siegel modular forms. These automorphic forms are the genus 2 analogues of weight 1 modular
forms, and are of particular interest due to their conjectural relationship with abelian surfaces.
Our main result is the following theorem:

Theorem 1.1. Let 𝜋 be a cuspidal automorphic representation ofGSp4(𝐀𝐐) such that 𝜋∞ is a holo-

morphic discrete series or limit of discrete series representation. Assume that the weak functorial lift
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of 𝜋 toGL4 exists and is cuspidal. Let 𝐸 be the coefficient field of 𝜋. For each prime 𝜆 of 𝐸, of residue
characteristic 𝓁, let

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GSp4(𝐸𝜆)

be the 𝜆-adic Galois representation associated to 𝜋. Then:

(i) If 𝜌𝜆|𝐐𝓁
is de Rham, and if 𝓁 ⩾ 5, then 𝜌𝜆 is irreducible.

(ii) 𝜌𝜆|𝐐𝓁
is crystalline for all 𝜆 ∣ 𝓁 for a set of primes 𝓁 of Dirichlet density 1.

In particular, 𝜌𝜆 is irreducible for all 𝜆 ∣ 𝓁 for a set of primes 𝓁 of Dirichlet density 1.

The automorphic representations 𝜋 in the statement of the theorem are exactly those that arise
from classical genus 2 vector-valued Siegel modular forms. The assumption that the functorial
lift is cuspidal amounts to demanding that 𝜋 arises from a Siegel modular form that is not CAP
or endoscopic; in these cases, the associated Galois representation is known to be reducible. In
general, the existence of this lift follows from Arthur’s classification [2]; see Section 2.4 for fur-
ther discussion.
Beyond irreducibility, we also prove a big image theorem for the images of the mod 𝜆 represen-

tations attached to 𝜋:

Theorem 1.2. Let 𝜋 be a cuspidal automorphic representation ofGSp4(𝐀𝐐) such that 𝜋∞ is a holo-

morphic discrete series or limit of discrete series representation. Assume that the weak functorial lift

of 𝜋 to GL4 exists and is cuspidal. Let 𝐸 be the coefficient field of 𝜋. For each prime 𝜆 of 𝐸, of residue
characteristic 𝓁, let 𝐅𝜆 = 𝐸∕𝜆 and let

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GSp4(𝐅𝜆)

be the mod 𝜆 Galois representation associated to 𝜋. Let  be the set of primes 𝜆 of 𝐸 for which 𝜌𝜆|𝐐𝓁

is crystalline. Then,

(i) for all but finitely many primes 𝜆 ∈ , 𝜌𝜆 is irreducible;
(ii) if𝜋 is neither an automorphic induction nor a symmetric cube lift, then, for all but finitely many

primes 𝜆 ∈ , the image of 𝜌𝜆 contains Sp4(𝐅𝓁).

The corresponding results for elliptic modular forms were proven by Deligne–Serre, Ribet and
Momose [12, 32, 39, 41]. For high weight Siegel modular forms, irreducibility for all but finitely
many primes follows from the work of Ramakrishnan [38], while the analogue of Theorem 1.2
follows from [5, Prop. 5.3.2] and from the work of Dieulefait–Zenteno [16], but only for a set of
primes 𝜆 of residual Dirichlet density 1. Conjecturally, 𝜌𝜆 should be irreducible for all primes 𝜆,
and 𝜌𝜆 should be irreducible for all but finitely many primes 𝜆. Since, in the high weight case, the
set contains all but finitely many primes, Theorem 1.2 gives an improvement on existing results
even in the cohomological case.
These previous results depend crucially on the facts that the associated Galois representations

are geometric, satisfy the Ramanujan conjectures and, in the high weight Siegel modular form
case, are Hodge–Tate regular. All other recent results proving the irreducibility of automorphic
Galois representations rely on these inputs [5, 9, 35, 38, 53].
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The novelty of this paper is that we prove a big image theorem in a situation where these key
inputs are not available. In the case of low weight Siegel modular forms, the Hodge–Tate–Sen
weights of 𝜌𝜆 are irregular, purity is an open problem and, a priori, crystallinity is not known.
Indeed, a priori, we do not even know that 𝜌𝜆 is Hodge–Tate.

1.1 Methods

Our proof of Theorem 1.1 proceeds in two steps. First, in Theorem 4.1, we prove, with no assump-
tions on the prime 𝜆, that either 𝜌𝜆 is irreducible or it decomposes as a direct sum of two irre-
ducible two-dimensional representations that are Hodge–Tate regular and odd. Our key input is
Theorem 4.2, which demonstrates that, in many cases, the Jacquet–Shalika bounds [24], can be
used to rule out the existence of certain subrepresentations. These bounds are weaker than those
predicted by the generalised Ramanujan conjecture, and are known in general for cuspidal auto-
morphic representations of GL𝑛,
If these two-dimensional subrepresentations of 𝜌𝜆 were modular, then a routine 𝐿-functions

argument would lead to a contradiction. By recent work of Pan [33], these representations are
modular if they are de Rham and if 𝓁 ⩾ 5, but, a priori, these representations need not even be
Hodge–Tate. On the other hand, a criterion of Jorza [25] shows that, if 𝜋 is unramified at 𝓁 and if
𝜆 ∣ 𝓁, then 𝜌𝜆 is crystalline if the four Satake parameters of 𝜋𝓁 are distinct.
Our second step is to observe that Jorza’s criterion can be translated into a condition on the

image of 𝜌𝜆 for a single prime 𝜆. Indeed, for all unramified primes 𝑝 ≠ 𝓁, the Satake parameters
of 𝜋𝑝 are (up to normalisation) exactly the eigenvalues 𝜌𝜆(Frob𝑝). Combining work of Rajan [37]
with the restrictions on the decomposition of 𝜌𝜆 proven in Theorem 4.1, we prove that the char-
acteristic polynomial of 𝜌𝜆(Frob𝑝) has distinct roots for a set of primes 𝑝 of Dirichlet density 1.
Thus, 𝜌𝜆 is crystalline for all 𝜆 ∣ 𝓁 for a set of primes 𝓁 of Dirichlet density 1, and we can apply
Pan’s result to reach a contradiction.
This distinctness of Satake parameters is a key input in the proof of Theorem 1.2. Indeed, in

Lemma 7.3, we use it to prove that 𝜌𝜆 cannot have an even two-dimensional subrepresentation
for infinitely many 𝜆 ∈ . In the cohomological case, this argument allows us to strengthen the
result of [16] to apply to all but finitely many primes, rather than just a density 1 set of primes.

1.2 The structure of this paper

In Section 2, we review key properties of automorphic representations ofGSp4(𝐀𝐐). In particular,
we define holomorphic (limit of) discrete series representations in terms of their 𝐿-parameters,
and we discuss the transfer map from GSp4 to GL4. In Section 3, we survey existing results on the
construction of Galois representations associated to Siegel modular forms. In addition, we prove
that, for low weight forms, the Galois representations are symplectic.
In Section 4, we prove Theorem 4.1 and the key input Theorem 4.2. In Section 5, we use the

results of Section 4 to prove that the Satake parameters of 𝜋𝑝 are distinct for a set of primes 𝑝
of Dirichlet density 1. Applying a theorem of Jorza [25], we deduce that 𝜌𝜆 is crystalline for all
primes 𝜆 ∣ 𝓁 for a set of primes 𝓁 of Dirichlet density 1. Using this result, in Section 6, we apply
a recent result of Pan [33] to complete the proof of Theorem 1.1. Finally, in Section 7, we prove
Theorem 1.2.
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2 AUTOMORPHIC REPRESENTATIONS OF 𝐆𝐒𝐩𝟒(𝐀𝐐)

In this section, we review aspects of the local and global theory of automorphic representations
of GSp4(𝐀𝐐).

Definition 2.1. For a ring 𝑅, let

GSp4(𝑅) =
{
𝛾 ∈ GL4(𝑅) ∶ 𝛾

𝑡𝐽𝛾 = 𝜈𝐽, 𝜈 ∈ 𝑅×
}
,

where

𝐽 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎟⎠
.

For 𝛾 ∈ GSp4(𝑅), the constant 𝜈 is called the similitude of 𝛾 and is denoted sim(𝛾). Let Sp4(𝑅) be
the subgroup of elements for which sim(𝛾) = 1.

2.1 Archimedean 𝑳-parameters

If 𝜋 is a cuspidal automorphic representation of GSp4(𝐀𝐐), then 𝜋 can be decomposed as a
restricted tensor product 𝜋 = ⊗′𝑝𝜋𝑝, with each 𝜋𝑝 an admissible representation of GSp4(𝐐𝑝).
Throughout this paper, 𝜋will denote a unitary cuspidal automorphic representation ofGSp4(𝐀𝐐)
whose archimedean component 𝜋∞ is a holomorphic discrete series or limit of discrete series rep-
resentation. In this subsection, we define these representations via their associated 𝐿-parameters.
Our exposition follows [31, § 3.1].
Let𝑊𝐂 = 𝐂

× denote the Weil group of 𝐂 and let𝑊𝐑 be the Weil group of 𝐑. Then

𝑊𝐑 = 𝐂
× ⊔ 𝐂×𝑗,

where 𝑗2 = −1 and 𝑗𝑧𝑗−1 = 𝑧 for 𝑧 ∈ 𝐂×. We define a map

| ⋅ |∶ 𝑊𝐑 → 𝐑×

by sending 𝑧 ∈ 𝐂× to 𝑧𝑧 = |𝑧|2 and 𝑗 ↦ −1. This map induces an isomorphism𝑊𝑎𝑏𝐑 ≅ 𝐑×.

2.1.1 𝐿-parameters for GL2(𝐑)

We begin by defining the 𝐿-parameters that correspond to the discrete series and limit of discrete
series representations ofGL2(𝐑). Let𝑤, 𝑛 be integers, with 𝑛 ⩾ 0 and 𝑛 ≡ 𝑤 + 1 (mod 2). Define

𝜙(𝑤; 𝑛) ∶ 𝑊𝐑 → GL2(𝐂)
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𝑧 ↦ |𝑧|−𝑤
(
(𝑧∕𝑧)𝑛∕2

(𝑧∕𝑧)−𝑛∕2

)
for 𝑧 ∈ 𝐂×

𝑗 ↦
(
1(−1)𝑛

)
.

Here, if 𝑧 = 𝑟𝑒𝑖𝜃 ∈ 𝐂×, then we let (𝑧∕𝑧)𝑛∕2 = 𝑒𝑖𝑛𝜃. When 𝑛 ⩾ 1, 𝜙(𝑤; 𝑛) corresponds to the
weight 𝑛 + 1 discrete series representation ofGL2(𝐑)with central character 𝑎 ↦ 𝑎

−𝑤, for 𝑎 ∈ 𝐑×.
When 𝑛 = 0, 𝜙(𝑤; 𝑛) corresponds to the limit of discrete series representation of GL2(𝐑) with
central character 𝑎 ↦ 𝑎−𝑤. The parity condition on 𝑤 ensures that, in both cases, 𝜙(𝑤; 𝑛) is the
archimedean 𝐿-parameter attached to a classical modular form of weight 𝑛 + 1.

2.1.2 𝐿-parameters for GSp4(𝐑)

Next, we define the 𝐿-parameters whose 𝐿-packets contain the (limit of) discrete series represen-
tations ofGSp4(𝐑). For integers𝑤,𝑚1, 𝑚2, with𝑚1 > 𝑚2 ⩾ 0 and𝑚1 +𝑚2 ≡ 𝑤 + 1 (mod 2), we
define an 𝐿-parameter

𝜙(𝑤;𝑚1,𝑚2) ∶ 𝑊𝐑 → GSp4(𝐂)

by

𝑧 ↦ |𝑧|−𝑤
⎛
⎜⎜⎜⎜⎝

(𝑧∕𝑧)(𝑚1+𝑚2)∕2

(𝑧∕𝑧)(𝑚1−𝑚2)∕2

(𝑧∕𝑧)−(𝑚1−𝑚2)∕2

(𝑧∕𝑧)−(𝑚1+𝑚2)∕2

⎞
⎟⎟⎟⎟⎠

for 𝑧 ∈ 𝐂×, and

𝑗 ↦

⎛⎜⎜⎜⎜⎝

1
1

(−1)𝑚1+𝑚2

(−1)𝑚1+𝑚2

⎞⎟⎟⎟⎟⎠
.

The image of 𝜙(𝑤;𝑚1,𝑚2) lies in GSp4(𝐂) and has similitude character given by

𝑧 ↦ |𝑧|−2𝑤

𝑗 ↦ (−1)𝑤 = (−1)𝑚1+𝑚2+1.

If we compose 𝜙(𝑤;𝑚1,𝑚2) with the inclusion GSp4(𝐂) ↪ GL4(𝐂), the resulting representation of
𝑊𝐑 is isomorphic to the direct sum 𝜙(𝑤;𝑚1+𝑚2) ⊕ 𝜙(𝑤;𝑚1−𝑚2) of parameters of discrete series rep-
resentations of GL2(𝐑).
The 𝐿-packet corresponding to 𝜙(𝑤;𝑚1,𝑚2) has two elements:

{
𝜋𝐻
(𝑤;𝑚1,𝑚2)

, 𝜋𝑊
(𝑤;𝑚1,𝑚2)

}
.
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Both 𝜋𝐻
(𝑤;𝑚1,𝑚2)

and 𝜋𝑊
(𝑤;𝑚1,𝑚2)

have a central character given by 𝑎 ↦ 𝑎−𝑤 for 𝑎 ∈ 𝐑×. When𝑚2 ⩾

1 they are (up to twist) discrete series representations: 𝜋𝐻
(𝑤;𝑚1,𝑚2)

is a holomorphic discrete series

and𝜋𝑊
(𝑤;𝑚1,𝑚2)

is a generic discrete series representation.When𝑚2 = 0,𝜋
𝐻
(𝑤;𝑚1,0)

is a holomorphic

limit of discrete series and 𝜋𝑊
(𝑤;𝑚1,0)

is a generic limit of discrete series representation.

2.2 The ‘weight’ of a holomorphic (limit of) discrete series
representation

The Blattner parameter (𝑘1, 𝑘2) of the holomorphic (limit of) discrete series representation
𝜋𝐻
(𝑤;𝑚1,𝑚2)

is defined to be

𝑘1 = 𝑚1 + 1, 𝑘2 = 𝑚2 + 2.

If 𝜋 is the automorphic representation corresponding to a classical Siegel modular form of weight
(𝑘1, 𝑘2)— that is, a vector-valued Siegel modular form with weight Sym𝑘1−𝑘2 det𝑘2 — then 𝜋∞ is
a holomorphic (limit of) discrete series representation with Blattner parameter (𝑘1, 𝑘2). Hence, if
𝜋 is a cuspidal automorphic representation ofGSp4(𝐀𝐐) such that 𝜋∞ is a holomorphic (limit of)
discrete series representation, then we refer to the Blattner parameter (𝑘1, 𝑘2) of 𝜋∞ as the weight
of 𝜋.
We say that 𝜋 is cohomological or has high weight if 𝑘2 ⩾ 3. If 𝑘2 = 2, then we say that 𝜋 is non-

cohomological or has low weight. Cohomological automorphic representations can be realised in
the étale cohomology of a local system on a suitable Shimura variety, while non-cohomological
automorphic representations can only be realised in coherent cohomology.

2.3 Other non-degenerate limits of discrete series for 𝐆𝐒𝐩𝟒(𝐑)

Finally, for completeness, we note that there is another 𝐿-packet of non-degenerate limits of dis-
crete series. Following [42], if𝑚 is a positive integer, then this 𝐿-packet corresponds, up to twist,
to the 𝐿-parameter𝑊𝐑 → GSp4(𝐂) that sends

𝑧 ↦

⎛⎜⎜⎜⎜⎝

(𝑧∕𝑧)𝑚∕2

1
1

(𝑧∕𝑧)−𝑚∕2

⎞⎟⎟⎟⎟⎠
, 𝑗 ↦

⎛⎜⎜⎜⎜⎝

1
1

1
1

⎞⎟⎟⎟⎟⎠
.

If 𝜋 is a cuspidal automorphic representation of GSp4(𝐀𝐹), whose archimedean components
are all either discrete series or non-degenerate limits of discrete series, then, by [20, Thm. 10.5.1],
we can attach Galois representations to 𝜋. Assuming local–global compatibility results for these
Galois representations as in Theorem 3.3, it is likely that the arguments of this paper can be
extended to prove a big image theorem for these Galois representations.
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2.4 The transfer map

The principle of Langlands functoriality predicts that there is a global transfermap from automor-
phic representations of GSp4 to automorphic representations of GL4. Indeed,

𝐿GSp4 = GSp4(𝐂)
and 𝐿GL4 = GL4(𝐂), and the existence of the embedding GSp4(𝐂) ↪ GL4(𝐂) of 𝐿-groups means
that there should be a corresponding lifting of automorphic representations. This lifting should
be compatible with the local Langlands correspondence: if an automorphic representation 𝜋 of
GSp4(𝐀𝐐) lifts to an automorphic representationΠ ofGL4(𝐀𝐐), then, for almost all primes 𝑝, the
Weil–Deligne representation

𝑊𝐐𝑝 × SL2(𝐂) → GL4(𝐂)

corresponding toΠ𝑝 via the local Langlands correspondence forGL4 should be isomorphic to the
Weil–Deligne representation

𝑊𝐐𝑝 × SL2(𝐂) → GSp4(𝐂) ↪ GL4(𝐂)

corresponding to 𝜋𝑝 via the local Langlands correspondence forGSp4. Moreover, an automorphic
representationΠ should be in the image of this lifting if and only if it is of symplectic type, that is, if
there is a Hecke character 𝜒 such thatΠ ≅ Π∨ ⊗𝜒 and the partial 𝐿-function 𝐿∗(

⋀2Π⊗ 𝜒−1, 𝑠)
(which exists by [27]) has a pole at 𝑠 = 1.
This lifting has been achieved for globally generic cuspidal automorphic representations of

GSp4(𝐀𝐐) by Asgari–Shahidi [4]. However, the automorphic representations that correspond to
Siegel modular forms are not globally generic: their archimedean components are holomorphic
(limit of) discrete series representations, which are not generic.
If 𝜋 is cohomological, then Weissauer [52, Thm. 1.1] has shown that 𝜋 is weakly equivalent to

a globally generic automorphic representation ofGSp4(𝐀𝐐). Combined with the result of Asgari–
Shahidi, we obtain a weak lift of 𝜋 to GL4. In particular, the results of this paper apply uncondi-
tionally to cohomological Siegel modular forms.
More generally, the existence of a lift to GL4 follows from Arthur’s endoscopic classification

[2]. Indeed, the case of PGSp4, that is, where 𝜋 has trivial central character, has been spelled
out in detail in [1], and this work has been generalised by Gee–Taïbi [19] to cover all automorphic
representations ofGSp4. However, these works are all dependent on several papers that have been
announced, but have yet to appear: see the discussions in [19, p. 3] and in [31, p. 527].

3 GALOIS REPRESENTATIONS ASSOCIATED TO SIEGEL
MODULAR FORMS

In this section, we review the construction of Galois representations associated to Siegel modular
forms. In Sections 3.1 and 3.2, we discuss the construction of Galois representations in the coho-
mological and non-cohomological cases. In Section 3.3, we prove that, in the non-cohomological
case, the Galois representations are symplectic.
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3.1 The case of cohomological weight

We review the construction of Galois representations attached to high weight Siegel modular
forms.

Theorem 3.1. Let 𝜋 be a cuspidal automorphic representation ofGSp4(𝐀𝐐) of weight (𝑘1, 𝑘2), 𝑘1 ⩾
𝑘2 ⩾ 3. Let 𝑆 denote the set of primes at which 𝜋 is ramified. Let 𝐸 denote the coefficient field of
𝜋. Then, for every place 𝜆 of 𝐸, of residue characteristic 𝓁, there exists a continuous, semisimple,
symplectic Galois representation

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GSp4(𝐸𝜆)

that satisfies the following properties:

(i) The representation is unramified at all primes 𝑝 ∉ 𝑆 ∪ {𝓁}.
(ii) The similitude character sim𝜌𝜆 is odd and 𝜌𝜆 ≃ 𝜌

∨
𝜆
⊗ sim𝜌𝜆, where 𝜌

∨
𝜆
is the dual represen-

tation.

(iii) The representation 𝜌𝜆|𝐐𝓁
is de Rham for all primes 𝜆, and crystalline if 𝓁 ∉ 𝑆.

(iv) Local–global compatibility is satisfied up to semisimplification: for any prime 𝑝 ≠ 𝓁,

WD(𝜌𝜆|𝐐𝑝 )𝑠𝑠 ≅ rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 )
𝑠𝑠
,

where rec𝑝 denotes the local Langlands reciprocity map [18].
(v) The set of Hodge–Tate weights of 𝜌𝜆|𝐐𝓁

is {0, 𝑘2 − 2, 𝑘1 − 1, 𝑘1 + 𝑘2 − 3}.
Moreover, if 𝜋 is not CAP (that is, of Saito–Kurokawa type), then 𝜌𝜆 satisfies the following
stronger properties:

(vii) Local–global compatibility is satisfied up to Frobenius semisimplification: for any prime 𝑝 ≠

𝓁,

WD(𝜌𝜆|𝐐𝑝 )𝐹-𝑠𝑠 ≅ rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 ).

(viii) The representation 𝜌𝜆 is pure of weight 𝑘1 + 𝑘2 − 3. In particular, if 𝑝 ∉ 𝑆 ∪ {𝓁} and if 𝛼 ∈ 𝐂

is a root of the characteristic polynomial of 𝜌𝜆(Frob𝑝), then |𝛼| = 𝑝 𝑘1+𝑘2−32 .

Finally, if 𝜋 is neither CAP nor endoscopic and if 𝓁 ⩾ 5, then 𝜌𝜆 is irreducible.

Remark 3.2. If 𝑝 ∉ 𝑆 ∪ {𝓁}, 𝑎𝑝 is the (suitably normalised) eigenvalue of the Hecke operator 𝑇𝑝
and 𝜒 is the Galois character associated to the central character of 𝜋, then condition (𝑖𝑣) implies
that

Tr 𝜌𝜆(Frob𝑝) = 𝑎𝑝, sim𝜌𝜆 = 𝜒𝜖
𝑘1+𝑘2−3
𝓁

,

where 𝜖𝓁 is the 𝓁-adic cyclotomic character.

Proof. When 𝜋 is CAP or endoscopic, the construction of 𝜌𝜆 follows from the construction of
Galois representations for elliptic modular forms. A discussion of these cases is given in [31, pp.
537–538]. In these cases, 𝜌𝜆 is reducible.
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366 WEISS

When𝜋 is of general type (type (G) in the notation of [43]), there are two different constructions
of the compatible system of 𝜆-adic Galois representations attached to 𝜋:

∙ The original construction, due to Laumon [29] and Weissauer [51], builds on previous work
of Taylor [46], and works directly with a symplectic Shimura variety. The Galois representa-
tions are constructed from the étale cohomology of Siegel threefolds. The fact that the Galois
representations are valued in GSp4 was proven by Weissauer in [52].

∙ The second construction, due to Sorensen [44], utilises the transfer map from GSp4 to GL4 in
combination with Harris–Taylor’s construction of Galois representations for automorphic rep-
resentations of GL4, which uses unitary Shimura varieties [21]. Sorensen’s costruction works
in the more general setting of automorphic representations 𝜋 of GSp4(𝐀𝐹), with 𝐹 totally real,
so long as there exists a weak functorial lift of 𝜋 to GL4. For cohomological automorphic rep-
resentations of GSp4(𝐀𝐐), the existence of this lift is due to Weissauer [52, Thm. 1]. Using this
construction, Mok [31, Thm. 3.5] proves local–global compatibility at ramified primes.

Irreducibility when 𝓁 is sufficiently large is [38, Thm. B]. Using [33, Thm. 1.0.4] in place of [48]
in Ramakrishnan’s proof, the condition on 𝓁 can be taken to be 𝓁 ⩾ 5. □

3.2 The case of non-cohomological weight

The situation for low weight automorphic representations is much less comprehensive. Since the
automorphic representations are non-cohomological, the associated Galois representations can-
not be constructed directly from the étale cohomology of symplectic or unitary Shimura varieties.
Instead, they are constructed as limits of cohomological Galois representations. The process of
taking a limit of Galois representations loses information, in particular about local–global com-
patibility and geometricity at 𝓁.

Theorem3.3. Let𝜋 be a cuspidal automorphic representation ofGSp4(𝐀𝐐) ofweight (𝑘, 2). Suppose
that𝜋 is not CAP or endoscopic. Let 𝑆 denote the set of primes at which𝜋 is ramified. Let𝐸 denote the
coefficient field of𝜋. Then, for every place 𝜆 of𝐸, of residue characteristic 𝓁, there exists a continuous,
semisimple, symplectic Galois representation

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GSp4(𝐸𝜆)

that satisfies the following properties:

(i) The representation is unramified at all primes 𝑝 ∉ 𝑆 ∪ {𝓁}.
(ii) If 𝑝 ∉ 𝑆 ∪ {𝓁}, 𝑎𝑝 is the (suitably normalised) eigenvalue of the Hecke operator 𝑇𝑝 and 𝜒 is the

Galois character associated to the central character of 𝜋, then

Tr 𝜌𝜆(Frob𝑝) = 𝑎𝑝, sim𝜌𝜆 = 𝜒𝜖
𝑘1+𝑘2−3
𝓁

,

where 𝜖𝓁 is the 𝓁-adic cyclotomic character.
(iii) The similitude character sim𝜌𝜆 is odd and 𝜌𝜆 ≃ 𝜌

∨
𝜆
⊗ sim𝜌𝜆.

(iv) Local–global compatibility is satisfied up to semisimplification: for any prime 𝑝 ≠ 𝓁,

WD(𝜌𝜆|𝐐𝑝 )𝑠𝑠 ≅ rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 )
𝑠𝑠
.
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ON THE IMAGES OF GALOIS REPRESENTATIONS 367

(v) TheHodge–Tate–Sen weights (that is, the eigenvalues of the Sen operator) of 𝜌𝜆|𝐐𝓁
are {0, 0, 𝑘 −

1, 𝑘 − 1}.
(vi) If 𝓁 ∉ 𝑆 and the roots of the 𝓁-th Hecke polynomial of 𝜋 are pairwise distinct, then 𝜌𝜆|𝐐𝓁

is

crystalline.

Proof. As in the cohomological case, there are two different constructions of the compatible sys-
tem of 𝜆-adic Galois representations attached to 𝜋. In both cases, 𝜌𝜆 is constructed, via its pseu-
dorepresentation, as a limit of cohomological Galois representations.

∙ The original construction, due to Taylor [45], uses the Hasse invariant to find congruences
between the Hecke eigenvalue system of 𝜋 and mod 𝓁𝑛 cohomological eigenforms 𝜋𝑛. The
associated Galois pseudorepresentation is constructed as a limit of the Galois pseudorepresen-
tations attached to the𝜋𝑛. This construction is sufficient to prove the existence of the compatible
system of Galois representations and parts (i)–(iii) of the theorem.

∙ A second construction, due to Mok [31], extends the work of Sorensen [44] and constructs an
eigencurve for GSp4. As in the cohomological case, this construction generalises to automor-
phic representations ofGSp4 over totally real fields. However, the construction only requires the
existence of a functorial lift from GSp4 to GL4 for cohomological forms, so the construction is
still unconditional for automorphic representations ofGSp4(𝐀𝐐). Using this construction,Mok
[31, Thm. 3.5] proves local–global compatibility at ramified primes up to semisimplification.

Part (vi) is due to Jorza [25, Thm. 4.1]. Finally, the fact that the Galois representations are valued
in GSp4(𝐸𝜆) is Theorem 3.6. □

Remark 3.4. While it should always be true that 𝜌𝜆|𝐐𝓁
is crystalline when 𝓁 ∉ 𝑆, without the

condition in part (vi), we do not even know that 𝜌𝜆|𝐐𝓁
is Hodge–Tate.

Corollary 3.5. Let 𝜋 be a cuspidal automorphic representation ofGSp4(𝐀𝐐) of weight (𝑘, 2), which
is not CAP or endoscopic. Then there exists an integer 𝑁 such that, for all primes 𝜆 of 𝐸, the Serre
conductor of 𝜌𝜆 divides𝑁.

Proof. Fix a prime 𝜆, and let𝑁𝜌 be the Serre conductor of𝜌𝜆, where𝜌𝜆 is viewed as a representation
valued in GL4. Let 𝑆 be the set of primes at which 𝜋 is ramified and let

𝑁𝜋 =
∏
𝑝∈𝑆

cond(rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 ))

be the conductor of the transfer of 𝜋 to GL4. Since 𝑆 is finite, we can assume, without loss of
generality, that 𝓁 ∉ 𝑆. By definition,

𝑁𝜌 =
∏
𝑝∈𝑆

cond(WD(𝜌𝜆|𝐐𝑝 )𝐹-𝑠𝑠).

AWeil–Deligne representation (𝑉, 𝜌,𝑁) of𝑊ℚ𝑝 has conductor

cond(𝜌)𝑝dim(𝑉
𝐼)−dim(𝑉𝐼𝑁),
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368 WEISS

where 𝑉𝐼 is the subspace of 𝑉 fixed by the inertia group and 𝑉𝐼𝑁 = ker(𝑁)
𝐼 . If (𝑉, 𝜌,𝑁) is a Weil–

Deligne representation, then, by definition, (𝑉, 𝜌,𝑁)𝑠𝑠 = 𝜌𝑠𝑠. If, moreover, (𝑉, 𝜌,𝑁) is Frobenius
semisimple then 𝜌𝑠𝑠 = 𝜌, and it follows that

cond(𝑉, 𝜌,𝑁) ∣ cond(𝜌)𝑝dim(𝜌).

Hence, 𝑁𝜌 divides
∏
𝑝∈𝑆 cond(WD(𝜌𝜆|𝐐𝑝 )𝑠𝑠)𝑝4. By part (iv) of Theorem 3.3,

∏
𝑝∈𝑆

cond (WD(𝜌𝜆|𝐐𝑝 )𝑠𝑠)𝑝4 =
∏
𝑝∈𝑆

cond (rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 )
𝑠𝑠
)𝑝4,

which divides

∏
𝑝∈𝑆

cond(rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 ))𝑝4.

Since

∏
𝑝∈𝑆

cond(rec𝑝(𝜋𝑝 ⊗ | sim |(3−𝑘1−𝑘2)∕2𝑝 ))𝑝4 = 𝑁𝜋
∏
𝑝∈𝑆

𝑝4,

we deduce that 𝑁𝜌 ∣ 𝑁𝜋
∏
𝑝∈𝑆 𝑝

4. □

3.3 Galois representations valued in 𝐆𝐒𝐩𝟒

The goal of this section is to prove the following theorem:

Theorem 3.6. Let 𝜋 be a cuspidal automorphic representation of GSp4(𝐀𝐐) of weight (𝑘, 2), with

associated 𝜆-adic Galois representation 𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GL4(𝐸𝜆). Then 𝜌𝜆 is isomorphic to a rep-
resentation that factors through GSp4(𝐸𝜆).

The idea of the proof is to reformulate Taylor’s original construction of 𝜌𝜆, using V. Lafforgue’s
𝐺-pseudorepresentations [28] in place of Taylor’s pseudorepresentations [45]. We are grateful to
B. Stroh for providing a broad outline of the proof. The details of the proof are tangential to the
remainder of the paper, so the reader should feel free to skip to the next section.

Remark 3.7. This theorem has long been known to experts, however, prior to the appearance
of this paper, no proof had appeared in the literature. Since the first appearance of this paper,
an ostensibly simpler proof of Theorem 3.6 was given in [8, Thm. 4.3.4]. Their proof is morally
equivalent to the one we provide: the key fact in both proofs is that a representation valued in
GSp4 is determined by its characteristic polynomial and its similitude. However, the argument
given here is more robust, and does not require the low weight Siegel modular form to be a 𝑝-adic
limit of cohomological eigenforms in characteristic 0. Moreover, we expect that the arguments
given here can be generalised to broader settings. For example, see [6] for a different application
of these ideas.
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3.3.1 Taylor’s construction and the limitations of pseudorepresentations

In [45], Taylor gives a blueprint for constructing Galois representations attached to low weight
Siegel modular forms by utilising congruences with Siegel modular forms of cohomological
weight. This subsection gives an overview of Taylor’s construction.
Recall that 𝜋 is the cuspidal automorphic representation of GSp4(𝐀𝐐) corresponding to a cus-

pidal Siegel modular eigenform of weight (𝑘, 2) and level Γ(𝑁). Let 𝐸 be the finite extension of 𝐐
spanned by theHecke eigenvalues of𝜋, and fix a prime𝜆 of𝐸with residue characteristic𝓁. Follow-
ing [45, p. 316], let𝑝 denote theHecke algebra ofGSp4(𝐙𝑝) bi-invariant functionsGSp4(𝐐𝑝) → 𝐙

that are supported inM4(𝐙𝑝), and let 
𝑁 =

⨂̂
𝑝∤𝑁𝑝. For each tuple 𝑘 = (𝑘1, 𝑘2) of weights, let

𝐓
𝑘
denote the quotient of 𝑁 acting on the space of cuspidal Siegel modular forms of weight 𝑘

and level 𝑁. Then 𝐓
𝑘
⊗𝐐 is a semisimple algebra.

Associated to 𝜋 is a character 𝜃∶ 𝑁 → 𝐓(𝑘,2) → 𝐸𝜆
. Moreover, for each integer 𝑖 ⩾ 1, the

automorphic analogue of multiplying a classical form by the Hasse invariant [45, Prop. 3] gives a
commutative diagram

where 𝑘𝑖 = (𝑘 + 𝑎𝓁𝓁
𝑖−1(𝓁 − 1), 2 + 𝑎𝓁𝓁

𝑖−1(𝓁 − 1)), with 𝑎𝓁 ∈ 𝐍 a constant depending on 𝓁. In
the classical language, for each 𝑖, 𝜋 is congruent to a mod 𝜆𝑖 eigenform of cohomological weight.
For every 𝑖, by Theorem 3.1 and the fact that 𝐓𝑘𝑖

⊗𝐐 is semisimple, there is a finite extension

𝐸𝑖∕𝐸𝜆 and a Galois representation

𝜌𝑖 ∶ Gal(𝐐∕𝐐) → GSp4(𝐓𝑘𝑖
⊗𝐙 𝐸𝑖)

such that Tr 𝜌𝑖(Frob𝑝) = 𝜃𝑖(𝑇𝑝) whenever 𝑝 ∉ 𝑆𝑖 , for some finite set of places 𝑆𝑖 .

If we could compose 𝜌𝑖 with 𝑟𝑖 to construct a representation 𝜌𝑖 ∶ Gal(𝐐∕𝐐) → GSp4(𝐸𝜆∕𝜆
𝑖),

then we would be able to construct 𝜌𝜆 as the limit lim←xx𝑖
𝜌𝑖 . However, while Tr 𝜌𝑖(Frob𝑝) ∈ 𝐓𝑘𝑖

⊗𝐙
𝐸𝑖

for all 𝑝 ∉ 𝑆𝑖 , it is not necessarily true that 𝜌𝑖 can be chosen to be valued in GSp4(𝐓𝑘𝑖
⊗𝐙

𝐸𝑖
). The solution to this problem is to work with pseudorepresentations. Associated to 𝜌𝑖 is a

pseudorepresentation

𝑇𝑖 = Tr 𝜌𝑖 ∶ Gal(𝐐∕𝐐) → 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖

and, since 𝑇𝑖(Frob𝑝) ∈ 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖 for all 𝑝 ∉ 𝑆𝑖 and since 𝐓𝑘𝑖

⊗𝐙 𝐸𝑖 is flat, it is clear that

𝑇𝑖 ∶ Gal(𝐐∕𝐐) → 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖

is valued in 𝐓
𝑘𝑖
⊗𝐙 𝐸𝑖 . Composing with 𝑟𝑖 , we obtain a pseudorepresentation

𝑇𝑖 ∶ Gal(𝐐∕𝐐) → 𝐸𝑖
∕𝜆𝑖 .
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A computation shows that each 𝑇𝑖 is in fact valued in 𝐸𝜆
∕𝜆𝑖 and that, for 𝑖 ⩾ 𝑚, 𝑇𝑚 ≡ 𝑇𝑖

(mod 𝜆𝑚). Hence, there is a pseudorepresentation

𝑇 = lim
←xx
𝑖

𝑇𝑖 ∶ Gal(𝐐∕𝐐) → 𝐸𝜆
⊂ 𝐸𝜆.

It follows from the theory of pseudorepresentations [45, Thm. 1] that there is a semisimple Galois
representation

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GL4(𝐸𝜆)

associated to 𝑇, which is, by construction, the Galois representation associated to 𝜋.
Taylor’s construction via pseudorepresentations shows that𝜌𝜆 is valued inGL4(𝐸𝜆), but is insuf-

ficient to show that the representation is isomorphic to one that is valued inGSp4(𝐸𝜆): taking the
trace of 𝜌𝑖 ‘forgets’ the fact that 𝜌𝑖 is symplectic. The proof of Theorem 3.6 follows the same struc-
ture as Taylor’s proof, replacing pseudorepresentationswithLafforgue’s𝐺-pseudorepresentations.

3.3.2 Lafforgue pseudorepresentations

In this subsection, we define Lafforgue pseudorepresentations and state their key properties.Most
of these are lifted directly from [28, Sec. 11] and [7, Sec. 4].
Let 𝐺 be a split reductive group over 𝐙, and let 𝐙[𝐺𝑛]𝐺 denote the ring of regular functions of

𝐺𝑛 that are invariant under conjugation by 𝐺.

Definition 3.8. Let 𝐴 be a topological ring, let Γ be a topological group and let 𝐶(Γ𝑛, 𝐴) denote
the algebra of continuous functions Γ𝑛 → 𝐴. A (continuous)𝐺-pseudorepresentationΘ = (Θ𝑛)𝑛⩾1
of Γ over 𝐴 is a collection of continuous algebra homomorphisms

Θ𝑛 ∶ 𝐙[𝐺
𝑛]𝐺 → 𝐶(Γ𝑛, 𝐴)

for each integer 𝑛 ⩾ 1, which are functorial in the following sense:

(i) If 𝑛,𝑚 ⩾ 1 are integers and if 𝜁 ∶ {1, … ,𝑚} → {1, … , 𝑛}, then, for every 𝑓 ∈ 𝐙[𝐺𝑚]𝐺 and
𝛾1, … , 𝛾𝑛 ∈ Γ, we have

Θ𝑛(𝑓
𝜁)(𝛾1, … , 𝛾𝑛) = Θ𝑚(𝑓)(𝛾𝜁(1), … , 𝛾𝜁(𝑚)),

where 𝑓𝜁(𝛾1, … , 𝛾𝑛) ∶= 𝑓(𝛾𝜁(1), … , 𝛾𝜁(𝑚)).
(ii) For every integer 𝑛 ⩾ 1, 𝑓 ∈ 𝐙[𝐺𝑛]𝐺 and 𝛾1, … , 𝛾𝑛+1 ∈ Γ, we have

Θ𝑛+1(𝑓)(𝛾1, … , 𝛾𝑛+1) = Θ𝑛(𝑓)(𝛾1, … , 𝛾𝑛−1, 𝛾𝑛𝛾𝑛+1),

where 𝑓(𝛾1, … , 𝛾𝑛+1) ∶= 𝑓(𝛾1, … , 𝛾𝑛−1, 𝛾𝑛𝛾𝑛+1).

For a category-theoretic interpretation of this definition, see [49].
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As with classical pseudorepresentations, we can change the ring 𝐴. The following facts are
immediate from the definitions:

Lemma 3.9. Let 𝐴,𝐴′ be topological rings.

(i) Ifℎ∶ 𝐴 → 𝐴′ is amorphismof topological rings and ifΘ = (Θ𝑛)𝑛⩾1 is a𝐺-pseudorepresentation
over 𝐴, then ℎ∗(Θ) = (ℎ◦Θ𝑛)𝑛⩾1 is a 𝐺-pseudorepresentation over 𝐴

′.

(ii) Let ℎ∶ 𝐴 ↪ 𝐴′ be an injection of topological rings and let Θ′ be a 𝐺-pseudorepresentation over
𝐴′. Suppose that, for every𝑓 ∈ 𝐙[𝐺𝑛]𝐺 ,Θ′𝑛(𝑓) = ℎ◦g for some g ∈ 𝐶(Γ

𝑛, 𝐴). Then the collection
Θ = (Θ𝑛)𝑛⩾1 given by Θ𝑛(𝑓) = g is a 𝐺-pseudorepresentation over 𝐴, and Θ′ = ℎ∗(Θ).

The connection between 𝐺-pseudorepresentations and 𝐺-valued representations is encapsu-
lated in the following lemma:

Lemma 3.10. Let 𝜌∶ Γ → 𝐺(𝐴) be a continuous homomorphism. For each integer 𝑛 ⩾ 1, let

Θ𝑛 ∶ 𝐙[𝐺
𝑛]𝐺 → 𝐶(Γ𝑛, 𝐴)

be given by

Θ(𝑓)(𝛾1, … , 𝛾𝑛) = 𝑓(𝜌(𝛾1), … , 𝜌(𝛾𝑛)).

Then the collection (Θ𝑛)𝑛⩾1 is a 𝐺-pseudorepresentation, which we denote by Tr 𝜌.

Remark 3.11. Fix an embedding 𝜄 ∶ 𝐺 ↪ GL𝑟 for some 𝑟, and let 𝜒 denote the composition of 𝜄
with the usual trace function. Then 𝜒 ∈ 𝐙[𝐺]𝐺 . Suppose that 𝜌∶ Γ → 𝐺(𝐴) is a representation
with corresponding 𝐺-pseudorepresenation Tr 𝜌 = (Θ𝑛)𝑛⩾1. Then Θ1(𝜒)∶ Γ → 𝐴 is the classical
pseudorepresentation associated to the representation 𝜄◦𝜌. Indeed, we have

Θ1(𝜒)(𝛾) = 𝜒(𝜌(𝛾)) = Tr(𝜄◦𝜌(𝛾)),

and the properties of this classical pseudorepresentation follow from the properties of Tr 𝜌 [28,
Rmk. 11.8].

As in the case of classical pseudorepresentations, if 𝐴 is in fact an algebraically closed field,
then every 𝐺-pseudorepresentation arises as the trace of a 𝐺-valued representation.

Theorem 3.12 [28, Prop. 11.7], [7, Thm. 4.5]. Let𝐴 be an algebraically closed field and letΘ be a𝐺-
pseudorepresentation of Γ over𝐴. Then there is a completely reducible representation 𝜌∶ Γ → 𝐺(𝐴)
such that Θ = Tr(𝜌).

Being completely reducible generalises the notion of a GL𝑛-representation being semisimple.
Since we will not use this notion, we refer the reader to [7, Def. 3.3] for the definition.
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3.3.3 Lafforgue pseudorepresentations and Galois representations

A key step in Taylor’s construction is to show that the pseudorepresentation 𝑇𝑖 is valued in𝐓𝑘𝑖
⊗𝐙

𝐸𝑖
. The following lemma will enable us to prove the analogue of this fact when using GSp4-

pseudorepresentations in place of pseudorepresentations.

Lemma 3.13. Let 𝜒1, … , 𝜒𝑟 ∈ 𝐙[𝐺]
𝐺 . Suppose that, for each integer 𝑛 ⩾ 1, 𝐙[𝐺𝑛]𝐺 is generated by

functions of the form

(𝛾1, … , 𝛾𝑛) ↦ 𝜒𝑗(𝛾
𝑎1
𝜁(1)
𝛾
𝑎2
𝜁(2)

⋯ 𝛾
𝑎𝑚
𝜁(𝑚)
),

where 1 ⩽ 𝑗 ⩽ 𝑟,𝑚 ⩾ 1, 𝜁 ∶ {1, … ,𝑚} → {1, … , 𝑛} and 𝑎𝑗 ∈ 𝐙. Let

𝜌∶ Γ → 𝐺(𝐴)

be a continuous representation. Then Θ = Tr 𝜌 is completely determined by Θ1(𝜒1), … ,Θ1(𝜒𝑟).

Proof. Let Θ be a 𝐺-pseudorepresentation, 𝑛 ⩾ 1 be an integer, 𝛾1, … , 𝛾𝑛 ∈ Γ and 𝑓 ∈ 𝐙[𝐺
𝑛]𝐺 .

Since each Θ𝑛 is an algebra homomorphism, we may assume that 𝑓 is of the form

𝑓∶ (𝛾1, … , 𝛾𝑛) ↦ 𝜒(𝛾
𝑎1
𝜁(1)
𝛾
𝑎2
𝜁(2)

⋯ 𝛾
𝑎𝑚
𝜁(𝑚)
),

where 𝜒 = 𝜒𝑗 for some 𝑗, 𝜁 ∶ {1, … ,𝑚} → {1, … , 𝑛} and 𝑎𝑗 ∈ 𝐙.

First note that 𝑓 = g
𝜁 where g ∈ 𝐙[𝐺𝑚]𝐺 is given by

g ∶ (𝛾1, … , 𝛾𝑚) ↦ 𝜒(𝛾
𝑎1
1 ⋯ 𝛾

𝑎𝑚
𝑚 ).

It follows that

Θ𝑛(𝑓)(𝛾1, … , 𝛾𝑛) = Θ𝑚(g)(𝛾𝜁(1), … , 𝛾𝜁(𝑚)).

Since Θ = Tr(𝜌), we observe that

Θ𝑚(g)(𝛾𝜁(1), … , 𝛾𝜁(𝑚)) = g
(
𝜌(𝛾𝜁(1)), … , 𝜌(𝛾𝜁(𝑚))

)

= 𝜒
(
𝜌(𝛾𝜁(1))

𝑎1⋯ 𝜌(𝛾𝜁(𝑚))
𝑎𝑚

)

= Θ𝑚(g
′)(𝛾

𝑎1
𝜁(1)
, … , 𝛾

𝑎𝑚
𝜁(𝑚)
),

where

g
′ ∶ (𝛾1, … , 𝛾𝑚) ↦ 𝜒(𝛾1⋯ 𝛾𝑚).

If𝑚 ⩾ 2, then g
′ = ℎ̂, where ℎ ∈ 𝐙[𝐺𝑚−1]𝐺 is given by

ℎ∶ (𝛾1, … , 𝛾𝑚−1) ↦ 𝜒(𝛾1⋯ 𝛾𝑚−1),
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so that

Θ𝑚(g
′)(𝛾

𝑎1
𝜁(1)
, … , 𝛾

𝑎𝑚
𝜁(𝑚)
) = Θ𝑚−1(ℎ)(𝛾

𝑎1
𝜁(1)
, … , 𝛾

𝑎𝑚−1
𝜁(𝑚−1)

𝛾
𝑎𝑚
𝜁(𝑚)
).

It follows by induction on𝑚 that

Θ𝑛(𝑓)(𝛾1, … , 𝛾𝑛) = Θ1(𝜒)(𝛾
𝑎1
𝜁(1)

⋯ 𝛾
𝑎𝑚
𝜁(𝑚)
). □

Example 3.14. If 𝐺 = GL𝑛, then by work of Processi [11, 36], the ring 𝐙[GL
𝑚
𝑛 ]
GL𝑛 is generated

by det−1 and the functions 𝑋 ↦ 𝑠𝑖(𝑋) that map 𝑋 ∈ GL𝑛 to the 𝑖-th coefficient of its characteris-
tic polynomial, and 𝐐[GL𝑚𝑛 ]

GL𝑛 is generated just by the trace map and by det−1. In particular, a
Lafforgue GL𝑛-pseudorepresentation over a characteristic 0 field is completely determined by its
associated Taylor pseudorepresentation (cf. [28, Rmk. 11.8]).

In order to prove Theorem 3.6, we show that GSp4 satisfies the conditions of Lemma 3.13:

Lemma 3.15. For an element 𝑋 ∈ GSp4, let 𝑡
4 +

∑4
𝑖=1(−1)

𝑖𝑠𝑖(𝑋)𝑡
4−𝑖 be its characteristic polyno-

mial. Then 𝐙[GSp𝑚4 ]
GSp4 is generated by sim±1 and the functions 𝑋 ↦ 𝑠𝑖(𝑋), 𝑖 = 1, 2, where 𝑠𝑖(𝑋) is

the 𝑖-th coefficient of the characteristic polynomial.

Proof. LetM4 denote the algebra of 4 × 4matrices. If 𝐾 is any infinite field, then, by [54, Thm. 1],
the ring 𝐾[M𝑚4 ]

Sp4 = 𝐾[M𝑚4 ]
GSp4 is generated by functions of the form

(𝑋1, … , 𝑋𝑚) ↦ 𝑠𝑖(𝑌𝑗1⋯𝑌𝑗𝑠 ),

where each matrix 𝑌𝑖 is either 𝑋𝑖 or its symplectic transpose 𝑋
𝑡
𝑖
. By [54, Prop. 3.2], the ring

𝐾[Sp𝑚4 ]
Sp4 is generated by the images of these functions under the canonical map 𝐾[M𝑚4 ] →

𝐾[Sp𝑚4 ]. If 𝑋 ∈ Sp4, then, by definition, 𝑋
𝑡 = 𝑋−1. It follows that 𝐾[Sp𝑚4 ]

Sp4 is generated by func-
tions of the form

(𝑋1, … , 𝑋𝑚) ↦ 𝑠𝑖(𝑌𝑗1⋯𝑌𝑗𝑠 ),

where each matrix 𝑌𝑖 is either 𝑋𝑖 or 𝑋
−1
𝑖
.

Now, the natural grading on 𝐙[M𝑚4 ] by multi-homogeneous degree restricts to a filtration on
𝐙[Sp𝑚4 ]

Sp4 , and each filtered piece is a finite𝐙-module. Hence, by the same argument as [11, 15.2.1],
it follows that 𝐙[Sp𝑚4 ]

Sp4 is generated by functions of the above form as well.
To conclude, we argue as in [54, p. 316]. The natural surjection Sp𝑚4 ×GL

𝑚
1 → GSp

𝑚
4 induces an

embedding

𝐙[GSp𝑚4 ]
GSp4 ↪ (𝐙[Sp𝑚4 ] ⊗ 𝐙[GL

𝑚
1 ])
Sp4 ×GL1 ≃ 𝐙[Sp𝑚4 ]

Sp4 ⊗𝐙[GL𝑚1 ].

But, by the above computations, every element of 𝐙[Sp𝑚4 ]
Sp4 extends to an element of

𝐙[GSp𝑚4 ]
GSp4 . Hence, the above map is surjective. It follows that 𝐙[GSp𝑚4 ]

GSp4 is generated by
sim±1 and by functions of the above form, as required. □
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3.3.4 Proof of Theorem 3.6

Proof of Theorem 3.6. We use the notation from the beginning of the section. Consider the GSp4-
pseudorepresentation Θ(𝑖) = Tr 𝜌𝑖 associated to

𝜌𝑖 ∶ Gal(𝐐∕𝐐) → GSp4(𝐓𝑘𝑖
⊗𝐙 𝐸𝑖).

By Lemmas 3.13 and 3.15, Tr 𝜌𝑖 is completely determined by

Θ(𝑖)1 (𝑠1) = 𝑇𝑖 ∶ Gal(𝐐∕𝐐) → 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖 ,

Θ(𝑖)1 (𝑠2)∶ Gal(𝐐∕𝐐) → 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖

and

Θ(𝑖)1 (sim
±1)∶ Gal(𝐐∕𝐐) → 𝐓

𝑘𝑖
⊗𝐙 𝐸𝑖 .

Since each of these maps factors through 𝐓
𝑘𝑖
⊗𝐙 𝐸𝑖 , it follows from Lemma 3.9(ii) that we can

view eachΘ(𝑖) as aGSp4-pseudorepresentation over𝐓𝑘𝑖
⊗𝐙 𝐸𝑖 . By Lemma3.9(i)wemay compose

Θ(𝑖) with the map 𝑟𝑖 ∶ 𝐓𝑘𝑖
⊗𝐙 𝐸𝑖 → 𝐸𝑖

∕𝜆𝑖 to produce a new GSp4-pseudorepresentation Θ
(𝑖)
of

Gal(𝐐∕𝐐) over𝐸𝑖∕𝜆
𝑖 . Since eachΘ(𝑖) is determined byΘ(𝑖)1 (𝑠𝑖), 𝑖 = 1, 2 andΘ

(𝑖)
1 (sim

±1), it follows

thatΘ
(𝑖)
is too. Hence, the arguments of Taylor summarised above show that these maps actually

land in𝐸𝜆
∕𝜆𝑖 , so that eachΘ

(𝑖)
is actually a GSp4-pseudorepresentation over𝐸𝜆∕𝜆

𝑖 . Therefore,
we can form a GSp4-pseudorepresentation

Θ = lim
←xx
𝑖

Θ
(𝑖)

of Gal(𝐐∕𝐐) over 𝐸𝜆 . Finally, viewing 𝐸𝜆
as a subalgebra of 𝐸𝜆, we may view Θ as a GSp4-

pseudorepresentation over 𝐸𝜆 and, by Theorem 3.12, there is a representation

𝜌∶ Gal(𝐐∕𝐐) → GSp4(𝐸𝜆),

such that Θ = Tr(𝜌). This is the Galois representation associated to 𝜋. Indeed,

Θ1(𝑠1) = 𝑇∶ Gal(𝐐∕𝐐) → 𝐸𝜆

is exactly the classical pseudorepresentation constructed by Taylor. □
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4 RESTRICTIONS ON THE DECOMPOSITION OF 𝝆𝝀

Recall that𝜋 is a cuspidal automorphic representation ofGSp4(𝐀𝐐) ofweight (𝑘, 2) in the notation
of Section 2.2, and that the weak functorial lift Π of 𝜋 to GL4 exists and is cuspidal. The goal of
this section is to prove the following theorem:

Theorem 4.1. Keep the assumptions of Theorem 1.1. For each prime 𝜆, either:

∙ 𝜌𝜆 is irreducible or
∙ 𝜌𝜆 decomposes as a direct sum 𝜏1 ⊕ 𝜏2 of distinct, irreducible, two-dimensional representations,
each with determinant sim𝜌𝜆. Moreover, for each 𝑖, 𝜏𝑖|𝐐𝓁

is Hodge–Tate with Hodge–Tate weights

{0, 𝑘 − 1}.

When 𝜋 is cohomological, Theorem 4.1 is due to Weissauer [51, Thm. II] and Ramakrishnan
[38, Thm. A]. In the cohomological case, since 𝜌𝜆 has distinct Hodge–Tate weights, the fact that
the two representations are distinct and Hodge–Tate regular is obvious.

4.1 Irreducibility without the Ramanujan bounds

The proof of [51, Thm. II] makes crucial use of the Ramanujan bounds, which are not available
in the non-cohomological case. In place of the Ramanujan bounds, we prove the following the-
orem, which requires only the Jacquet–Shalika bounds [24], which are known for all cuspidal
automorphic representations of GL𝑛.

Theorem 4.2. Let 𝜌∶ Gal(𝐐∕𝐐) → GL𝑛(𝐐𝓁) be a Galois representation. Assume that 𝜌 is auto-
morphic: there exists a unitary cuspidal automorphic representation Π of GL𝑛(𝐀𝐐) and an integer
𝑤 such that 𝐿∗(Π, 𝑠 − 𝑤

2
) = 𝐿∗(𝜌, 𝑠).

Let 𝜏 be an𝑚-dimensional subrepresentation of 𝜌, and suppose that det 𝜏|𝐐𝓁
is Hodge–Tate with

Hodge–Tate weight ℎ. Then

||||ℎ −
𝑚𝑤
2

|||| <
𝑚
2
.

Remark 4.3. The generalised Ramanujan conjecture would give ℎ = 𝑚𝑤
2
.

Proof. Fix an embedding 𝐐 ↪ 𝐂 as well as a prime 𝑝 ≠ 𝓁 at which both 𝜌 and Π are unrami-
fied. Let 𝛼1, … , 𝛼𝑛 ∈ 𝐂 be the Satake parameters of Π𝑝. Then, by assumption and via our fixed

embedding, the eigenvalues of 𝜌(Frob𝑝) are 𝛼1𝑝
𝑤
2 , … , 𝛼𝑛𝑝

𝑤
2 .

By [24, Cor. 2.5], for each 𝑖, we have

𝑝
𝑤−1
2 < |𝛼𝑖𝑝

𝑤
2 | < 𝑝 𝑤+12 .

Since 𝜏 is an𝑚-dimensional subrepresentation of 𝜌, it follows that det 𝜏(Frob𝑝) is a product of𝑚
of the eigenvalues of 𝜌(Frob𝑝). Thus

𝑝
𝑚(𝑤−1)
2 < | det 𝜏(Frob𝑝)| < 𝑝

𝑚(𝑤+1)
2 .
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376 WEISS

On the other hand, the assumption on the Hodge–Tate weight of det 𝜏|𝐐𝓁
means that det 𝜏 ≃

𝜒𝜖ℎ
𝓁
, where 𝜒 is a finite order character. Thus, | det 𝜏(Frob𝑝)| = 𝑝ℎ and hence, 𝑚(𝑤−1)

2
< ℎ <

𝑚(𝑤+1)
2

. □

4.2 Proof of Theorem 4.1

Lemma 4.4. Suppose thatΠ is an automorphic induction. Then 𝜌𝜆 is irreducible.

Proof. Suppose that Π is automorphically induced from an automorphic representation Π′ of
GL2(𝐀𝐹) for some quadratic extension 𝐹∕𝐐, and let 𝜌Π′,𝜆 ∶ Gal(𝐾∕𝐾) → GL2(𝐸𝜆) be the 𝜆-adic
Galois representation associated to Π′. It is well known that 𝜌Π′,𝜆 is irreducible: when 𝐹 is real
quadratic, this is due to Ribet [40], while if 𝐹 is imaginary quadratic, Taylor [47, Sec. 3] proved
irreducibility in many cases. See [50, Thm. 1.2.6] for a complete proof.
Since, by assumption, Π is cuspidal, we have Π′ ≇ (Π′)𝜎, where 𝜎 is the non-trivial element

of Gal(𝐹∕𝐐) [3]. By local–global compatibility and the strong multiplicity one theorem for GL𝑛,
𝜌𝜆 ≃ Ind

𝐐
𝐹 𝜌Π′,𝜆 and 𝜌Π′,𝜆 ≄ 𝜌

𝜎
Π′,𝜆

. It follows that 𝜌𝜆 is irreducible. □

Lemma 4.5. Suppose that 𝜏 is a proper subrepresentation of 𝜌𝜆. Then 𝜏 is two-dimensional and
𝜏|𝐐𝓁

is Hodge–Tate, with Hodge–Tate weights {0, 𝑘 − 1}.

Proof. If 𝜏 is three-dimensional, then 𝜌𝜆 also has a one-dimensional subrepresentation. Hence,
we can assume that 𝜏 is 𝑚-dimensional, with 𝑚 = 1 or 2. By Theorem 3.3, the Hodge–Tate–Sen
weights of 𝜌𝜆|𝐐𝓁

are {0, 0, 𝑘 − 1, 𝑘 − 1}. Thus, the Hodge–Tate–Sen weights 𝑎1, … , 𝑎𝑚 of 𝜏|𝐐𝓁
are

contained in {0, 0, 𝑘 − 1, 𝑘 − 1} and, by Theorem 4.2, 𝑎1 +⋯ + 𝑎𝑚 =
1
2
𝑚(𝑘 − 1). It follows that

𝑚 = 2 and that 𝜏|𝐐𝓁
has Hodge–Tate–Sen weights {0, 𝑘 − 1}. Since the Hodge–Tate–Sen weights

are distinct integers, it follows that the Sen operator is semisimple [31, Thm. 5.17], and hence that
𝜏|𝐐𝓁

is Hodge–Tate. □

Lemma 4.6. Suppose that 𝜌𝜆 ≃ 𝜏1 ⊕ 𝜏2, with 𝜏1, 𝜏2 irreducible and two-dimensional. Then there
does not exist a finite order character 𝜒 with 𝜏1 ≃ 𝜏2 ⊗𝜒.

Proof. Suppose that 𝜏1 ≃ 𝜏2 ⊗𝜒 for a finite order character 𝜒. Then 𝜒 cuts out a finite cyclic
extension 𝐾 of 𝐐, and 𝜌𝜆|𝐾 ≃ 𝜏1|𝐾 ⊕ 𝜏1|𝐾 . We have

⋀2
𝜌𝜆|𝐾 ≃ (𝜏1|𝐾 ⊗ 𝜏1|𝐾) ⊕ det 𝜏1|𝐾 ⊕ det 𝜏1|𝐾 ≃ Sym2 𝜏1|𝐾 + det 𝜏1|⊕3𝐾 .

Now, det 𝜏1|𝐾 is Hodge–Tate at all places above 𝓁 by Lemma 4.5, so, by class field theory,
𝐿(det 𝜏1|𝐾 , 𝑠) has meromorphic continuation to the whole of 𝐂. Since𝐾∕𝐐 is cyclic, by cyclic base
change [3] and by [27],

⋀2 𝜌𝜆|𝐾 is the Galois representation associated to an isobaric automorphic
representation ofGL6(𝐀𝐾). Thus, 𝐿(

⋀2 𝜌𝜆|𝐾 , 𝑠) has meromorphic continuation to the whole of𝐂.
It follows that 𝐿(Sym2 𝜏1|𝐾 , 𝑠) does too and, by twisting, so does 𝐿(Sym2 𝜏1 ⊗ det 𝜏−11 |𝐾 , 𝑠).
On the other hand,

𝜌𝜆|𝐾 ⊗ 𝜌𝜆|∨𝐾 ≃ (𝜏1 ⊗ 𝜏∨1 )⊕4 ≃ (Sym2 𝜏1 ⊗ det 𝜏−11 )⊕4 ⊕ 𝟏⊕4.
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Let Π be the transfer of 𝜋 to GL4(𝐀𝐐). By assumption, Π is cuspidal. Moreover, by Lemma 4.4,
we may assume that Π is not an automorphic induction. Hence, the cyclic base change Π𝐾 of Π
is also cuspidal [3, Thm. 4.2] and, by [23, Prop. 3.6], the 𝐿-function

𝐿∗(Π𝐾 ⊗Π
∨
𝐾 , 𝑠) = 𝐿

∗(𝜌𝜆|𝐾 ⊗ 𝜌𝜆|∨𝐾 , 𝑠)

has a simple pole at 𝑠 = 1. Since 𝐿(𝟏, 𝑠) = 𝜁(𝑠) also has a simple pole at 𝑠 = 1, it follows that

ord𝑠=1 𝐿(Sym
2 𝜏1 ⊗ det 𝜏

−1
1 |𝐾 , 𝑠)4 = 3.

But𝐿(Sym2 𝜏1 ⊗ det 𝜏
−1
1 |𝐾 , 𝑠) ismeromorphic, so its order of vanishing at 𝑠 = 1must be an integer.

This is a contradiction. □

Proof of Theorem 4.1. After Lemma 4.5, it remains to show that, if 𝜌𝜆 ≃ 𝜏1 ⊕ 𝜏2, with 𝜏1, 𝜏2 irre-
ducible and two-dimensional, then det 𝜏1 ≃ det 𝜏2 ≃ sim𝜌𝜆.
Let 𝜒 = det 𝜏−11 ⊗ sim𝜌𝜆. By Lemma 4.5, 𝜒|𝐐𝓁

has Hodge–Tate weight 0, that is, 𝜒 is a finite
order character. We need to show that 𝜒 is the trivial character. First, since

(sim𝜌𝜆)
2 ≃ det 𝜌𝜆 ≃ det 𝜏1 det 𝜏2,

it follows that 𝜒 ≃ det 𝜏2 ⊗ sim𝜌
−1
𝜆
. Moreover,

𝜏1 ⊕ 𝜏2 ≃ 𝜌𝜆 ≃ 𝜌
∨
𝜆
⊗ sim𝜌𝜆

≃
(
𝜏∨1 ⊗ sim𝜌𝜆

)
⊕

(
𝜏∨2 ⊗ sim𝜌𝜆

)

≃
(
𝜏1 ⊗ det 𝜏

−1
1 ⊗ sim𝜌𝜆

)
⊕

(
𝜏2 ⊗ det 𝜏

−1
2 ⊗ sim𝜌𝜆

)

≃ (𝜏1 ⊗𝜒) ⊕
(
𝜏2 ⊗𝜒

−1).

By Schur’s lemma and by Lemma 4.6, it follows that 𝜏𝑖 ⊗𝜒 ≃ 𝜏𝑖 for each 𝑖 = 1, 2. Thus, 𝜌𝜆 ⊗
𝜒 ≃ 𝜌𝜆. LetΠ be the transfer of𝜋 toGL4. By class field theory, wemay view𝜒 as aHecke character,
and it follows that Π and Π⊗ 𝜒 have the same Hecke polynomials at almost all primes. By the
strongmultiplicity one theorem forGL4, we haveΠ ≃ Π⊗ 𝜒. Hence, by [3, Thm. 4.2], if 𝜒 is non-
trivial, thenΠ is an automorphic induction, inwhich case, 𝜌𝜆 is already irreducible by Lemma 4.4.
Hence, 𝜒 must be trivial. □

5 CRYSTALLINITY AND DISTINCTNESS OF SATAKE
PARAMETERS

In the previous section, we proved that, if 𝜌𝜆 is reducible, then it decomposes as a direct sum 𝜏1 ⊕
𝜏2 of distinct, irreducible, odd, two-dimensional representations. In this section, we will apply
that result to prove the following theorem:
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Theorem 5.1. Keep the assumptions of Theorem 1.1, and assume that the transfer Π of 𝜋 to GL4 is
not an automorphic induction. For a set of primes 𝑝 of Dirichlet density 1, the roots of the 𝑝-th Hecke
polynomial of 𝜋 are pairwise distinct.

Applying part Theorem 3.3(vi), that is, [25, Thm. 4.1], we immediately deduce:

Corollary 5.2. The representation 𝜌𝜆|𝐐𝓁
is crystalline for all primes 𝜆 ∣ 𝓁 for a set of primes 𝓁 of

Dirichlet density 1.

Remark 5.3. IfΠ is automorphically induced from an automorphic representationΠ′ ofGL2(𝐀𝐹),
then Corollary 5.2 still holds for 𝜋. Indeed, let 𝜌Π′,𝜆 be the 𝜆-adic Galois representation attached

to Π′. Then 𝜌𝜆 ≃ Ind
𝐐
𝐹 𝜌Π′,𝜆. If 𝐹 is real quadratic, then Π

′ arises from a cohomological Hilbert
modular form. Hence, 𝜌Π′,𝜆 is crystalline, fromwhich it is clear that 𝜌𝜆 is too. If 𝐹∕𝐐 is imaginary
quadratic, then one can prove Corollary 5.2 by slightly amending the arguments of this section.
In both these cases, 𝜌𝜆 is irreducible by Lemma 4.4.

5.1 The Lie algebra of 𝝆𝝀

Fix a prime 𝜆, and let 𝐹∕𝐸𝜆 be a finite extension such that

𝜌𝜆 ∶ Gal(𝐐∕𝐐) → GSp4(𝐹)

is defined over 𝐹. Let 𝐺𝜆 be the Zariski closure of the image of 𝜌𝜆 in GSp4∕𝐹 , let 𝐺
◦
𝜆
be its identity

connected component and let 𝔤𝜆 be its Lie algebra. In this subsection,we determine the Lie algebra
𝔤𝜆 and the group 𝐺𝜆 when 𝜌𝜆 is irreducible.

Proposition 5.4. Assume that the weight of 𝜋 is not of the form (2𝑘 − 1, 𝑘 + 1) for some 𝑘 ⩾ 2. If
𝜌𝜆 is irreducible, then 𝔤𝜆 ≃ 𝔤𝔰𝔭4(𝐹).

Remark 5.5. If the weight of 𝜋 is of the form (2𝑘 − 1, 𝑘 + 1) for some 𝑘 ⩾ 2—so, in particular, 𝜋 is
cohomological — then we cannot rule out the case that 𝔤𝜆 ≃ Sym

3 𝔤𝔩2(𝐹) in complete generality.
However, when 𝜆 ∣ 𝓁 with 𝓁 ⩾ 5, then one can rule out this case by combining [10, Thm. 3.8] with
[33, Thm. 1.0.4].

Corollary 5.6. Assume that the weight of 𝜋 is not of the form (2𝑘 − 1, 𝑘 + 1) for some 𝑘 ⩾ 2. If 𝜌𝜆 is
irreducible, then 𝐺𝜆 ≃ GSp4(𝐹).

Proof. 𝐺𝜆 is a Zariski closed subgroup of GSp4(𝐹). Moreover, Lie(𝐺𝜆) = Lie(GSp4(𝐹)), so 𝐺𝜆 is
also a Zariski open subgroup ofGSp4(𝐹). SinceGSp4(𝐹) is Zariski-connected, it follows that 𝐺𝜆 =
GSp4(𝐹). □

Definition 5.7. Let 𝐺 be a group, and 𝑘 be a field. We say that a representation

𝜌∶ 𝐺 → GL𝑛(𝑘)

is Lie irreducible if 𝜌|𝐻 is irreducible for all finite index subgroups𝐻 ⩽ 𝐺.

 1
4
6
9
7
7
5
0
, 2

0
2
2
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1

2
/jlm

s.1
2

5
7

6
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
2

/0
8

/2
0

2
5

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



ON THE IMAGES OF GALOIS REPRESENTATIONS 379

Definition 5.8. Let 𝐺 be a group, and 𝑘 be a field. We say that a representation

𝜌∶ 𝐺 → GL𝑛(𝑘)

is imprimitive if it is absolutely irreducible, but there is a finite index subgroup 𝐻 of 𝐺 and a 𝑘-
representation 𝜏 of𝐻 such that 𝜌 ⊗ 𝑘 ≃ Ind𝐺𝐻 𝜏. Otherwise, we say that 𝜌 is primitive.

Lemma 5.9. If 𝜌𝜆 is irreducible, then it is Lie irreducible.

Proof. First suppose that 𝜌𝜆 ≃ Ind
𝐐
𝐾 𝜏 is imprimitive. We first note that we may assume that 𝐾∕𝐐

is quadratic. If not, then, by counting dimensions, [𝐾 ∶ 𝐐] = 4. If 𝐾 contains a quadratic subex-
tension 𝐾′, then 𝜌𝜆 = Ind

𝐐
𝐾′
(Ind𝐾𝐾′ 𝜏). If 𝐾 does not contain a quadratic subfield, the proof of [17,

Lem. 5.3] shows that 𝜌𝜆 is induced from a different quadratic extension. It follows from Clifford
theory that

𝜌𝜆 ≃ 𝜌𝜆 ⊗𝜒𝐾∕𝐐,

where 𝜒𝐾∕𝐐 is the quadratic character that cuts out the extension 𝐾∕𝐐. Let Π be the lift of 𝜋 to
GL4 and recall that, by assumption,Π is cuspidal and not an automorphic induction. By class field
theory, we may view 𝜒𝐾∕𝐐 as a Hecke character, and the above isomorphism implies that Π and
Π⊗ 𝜒𝐾∕𝐐 are weakly equivalent. Hence, by the strong multiplicity one theorem for GL4,

Π ≃ Π⊗ 𝜒𝐾∕𝐐.

By [3, Thm. 4.2], this isomorphism is equivalent to Π being an automorphic induction, a contra-
diction.
Hence, we may assume that 𝜌𝜆 is imprimitive. By [34, Prop. 3.4.1], we can write

𝜌𝜆 ≃ 𝜏 ⊗ 𝜔,

where 𝜏 is a Lie irreducible representation of dimension 𝑑with 𝑑 ∣ 4, and𝜔 is an Artin representa-
tion of dimension 4

𝑑
. The fact that the Hodge–Tate–Sen weights of 𝜌𝜆 are not all equal shows that

𝜌𝜆 is not a twist of an Artin representation. Hence, 𝑑 ≠ 1. Suppose that 𝑑 = 2. If 𝜔 is imprimitive
— say 𝜔 ≃ Ind𝐐𝐾 𝜒 for some quadratic extension 𝐾∕𝐐 and character 𝜒 of Gal(𝐐∕𝐾)— then

𝜌𝜆 ≃ Ind
𝐐
𝐾(𝜏|𝐾 ⊗𝜒)

is also imprimitve, a contradiction. Hence, we may assume that both 𝜏 and 𝜔 are primitive. It
follows that Sym2 𝜏 and Sym2 𝜔 are both irreducible. Taking exterior squares, we find that

⋀2
𝜌𝜆 ≃

⋀2
(𝜏 ⊗ 𝜔) ≃

(⋀2
𝜏 ⊗ Sym2 𝜔

)
⊕

(⋀2
𝜔 ⊗ Sym2 𝜏

)

does not contain a one-dimensional subrepresentation, contradicting the fact that 𝜌𝜋,𝓁 is sym-
plectic.
The only remaining possibility is that 𝑑 = 4, that is, that 𝜌𝜆 is Lie irreducible. □
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Proof of Proposition 5.4. Let 𝐺′
𝜆
be the commutator subgroup of 𝐺𝜆 and let 𝔤

′
𝜆
be its Lie algebra.

Since 𝜌𝜆 is a semisimple representation, it follows that𝐺𝜆 is a reductive group, that𝐺
′
𝜆
is semisim-

ple and, hence, that 𝔤′
𝜆
is a semisimple Lie subalgebra of 𝔰𝔭4(𝐹). Moreover, since the similitude

of 𝜌𝜆 does not have finite image, we have 𝔤𝜆 ≃ 𝔤
′
𝜆
⊕ 𝔤𝔩1.

Fix an embedding 𝐹 ↪ 𝐐𝓁 . Then, by the classification of semisimple algebras, the Lie algebra
𝔤′
𝜆
⊗𝐹 𝐐𝓁 is one of the following Lie algebras [22, 9.3.1]:

(i) 𝔰𝔭4(𝐐𝓁);
(ii) 𝔰𝔩2(𝐐𝓁) × 𝔰𝔩2(𝐐𝓁);
(iii) 𝔰𝔩2(𝐐𝓁) embedded in a Klingen parabolic subalgebra;
(iv) 𝔰𝔩2(𝐐𝓁) embedded in a Siegel parabolic subalgebra;
(v) 𝔰𝔩2(𝐐𝓁) embedded via the symmetric cube representation SL2 → Sp4;
(vi) {1}.

Let 𝑑𝜌𝜆 ∶ 𝔤𝜆 → 𝔤𝔰𝔭4(𝐹) be the Lie algebra representation associated to the map 𝐺𝜆 ↪ GSp4(𝐹)
We need to show that 𝔤′

𝜆
≃ 𝔰𝔭4(𝐹). Since 𝜌𝜆 is irreducible, by Lemma 5.9, 𝜌𝜆 is Lie irreducible,

which exactly says that 𝑑𝜌𝜆 is irreducible. Moreover, since 𝔤𝜆 is semisimple, we can write 𝔤 =
𝔤′ ⊕ 𝔞, where 𝔞 is abelian. It follows that 𝑑𝜌𝜆 is irreducible if and only its restriction ot 𝔤′

𝜆
is.

Thus, 𝔤′
𝜆
⊗𝐹 𝐐𝓁 cannot be as in cases (ii), (iii), (iv) or (vi).

Suppose that 𝔤′
𝜆
⊗𝐹 𝐐𝓁 is as in case (v), that is, that 𝔤

′
𝜆
⊗𝐹 𝐐𝓁 ≃ Sym

3 𝔰𝔩2(𝐐𝓁). Then (𝐺
◦
𝜆
)′ ×𝐹

𝐐𝓁 ≃ Sym
3 SL2(𝐐𝓁). Since the similitude of 𝜌𝜆 does not have finite image, it follows that 𝐺

◦ ×𝐹
𝐐𝓁 ≃ Sym

3 GL2(𝐐𝓁). There is a finite Galois extension 𝐾∕𝐐 such that 𝜌𝜆(Gal(𝐐∕𝐾)) ⊆ 𝐺
◦. It

follows that 𝜌𝜆|𝐾 ≃ Sym3 𝜏 for some two-dimensional representation 𝜏. If the Hodge–Tate–Sen
weights of 𝜏 at any place 𝑣 ∣ ∞ are {𝑎, 𝑏}, then the Hodge–Tate–Sen weights of 𝜌𝜆|𝐾 at 𝑣 are
{3𝑎, 2𝑎 + 𝑏, 𝑎 + 2𝑏, 3𝑏}, which contradicts the assumption on the weights of 𝜋.
It follows that 𝔤′

𝜆
⊗𝐹 𝐐𝓁 ≃ 𝔰𝔭4(𝐐𝓁). Now, 𝔤

′
𝜆
is a vector subspace of 𝔰𝔭4(𝐹). The fact that 𝔤

′
𝜆
⊗𝐹

𝐐𝓁 ≃ 𝔰𝔭4(𝐹) ⊗𝐹 𝐐𝓁 shows that 𝔤
′
𝜆
and𝔰𝔭4(𝐹)have the samedimension, andhence are equal. □

5.2 Distinctness of Satake parameters

We recall the following theorem, due to Rajan:

Theorem5.10 [37, Thm. 3]. Let𝐹 be a finite extension of𝐐𝓁 and let𝒢 be an algebraic group defined

over 𝐹. Let 𝑋 be an algebraic subscheme of𝒢, defined over 𝐹, that is stable under the adjoint action
of𝒢. Let

𝜌∶ Gal(𝐐∕𝐐) → 𝒢(𝐹)

be a Galois representation, and let

𝐶 = 𝑋(𝐹) ∩ 𝜌(Gal(𝐐∕𝐐)).

Let 𝐺 denote the Zariski closure of 𝜌(Gal(𝐐∕𝐐)) in𝒢∕𝐹 , with identity connected component 𝐺
◦ and

component groupΦ = 𝐺∕𝐺◦. For each𝜙 ∈ Φ, let𝐺𝜙 denote the corresponding connected component,
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and let

Ψ =
{
𝜙 ∈ Φ ∶ 𝐺𝜙 ⊆ 𝑋

}
.

Then the set of primes 𝑝 such that 𝜌(Frob𝑝) ∈ 𝐶 has Dirichlet density
|Ψ|
|Φ| .

Corollary 5.11. Suppose that 𝜌𝜆 is irreducible and not a symmetric cube lift. Then the roots of the
𝑝-th Hecke polynomial of 𝜋 are pairwise distinct for a set of primes 𝑝 of Dirichlet density 1.

Proof. Up to multiplication by a normalisation factor, if 𝜌𝜆 is unramified at 𝑝, then the roots of
the 𝑝-th Hecke polynomial are exactly the eigenvalues of 𝜌𝜆(Frob𝑝).
Let𝑋 ⊆ GSp4 be the set of elements g ∈ GSp4 whose characteristic polynomials have indistinct

eigenvalues. Then 𝑋 is a closed subscheme of GSp4 — it is the vanishing set of the discriminant
of the characteristic polynomial — that is stable under the conjugation action of GSp4. By Corol-
lary 5.6, the Zariski closure of 𝜌𝜆 is GSp4(𝐹), which is connected, and clearly is not contained in
𝑋. The result follows from Theorem 5.10. □

Lemma 5.12. Suppose that 𝜌𝜆 ≃ Sym
3 𝜏 is a symmetric cube lift from an irreducible two-

dimensional representation 𝜏. Then the roots of the 𝑝-th Hecke polynomial of 𝜋 are pairwise distinct
for a set of primes 𝑝 of Dirichlet density 1.

Proof. By Lemma 5.9, 𝜌𝜆 is Lie irreducible, and hence 𝜏 is as well. Arguing as in Proposition 5.4 (or
as in [41]), we see that the Zariski closure of the image of 𝜏 is GL2(𝐹). Thus, as in Corollary 5.11,
it follows that the eigenvalues 𝛼𝑝, 𝛽𝑝 of 𝜏(Frob𝑝) are distinct for a set of primes 𝑝 of Dirichlet
density 1. Moreover, by [34, Prop. 3.4.9], 𝛼𝑝 ≠ 𝛽𝑝 for a set of primes 𝑝 of Dirichlet density 1. Lastly,
if 𝛼𝑝 = 𝜁3𝛽𝑝, where 𝜁3 is a cube root of unity, then Tr Sym

2 𝜏(Frob𝑝) = 0. Thus, if 𝛼𝑝 = 𝜁3𝛽𝑝 for
a positive density of primes 𝑝, it follows from [34, Prop. 3.4.9] that Sym2 𝜏 is irreducible, but not
Lie irreducible. But if Sym2 𝜏|𝐾 is reducible, then 𝜏|𝐾 is induced from a quadratic extension 𝐿∕𝐾,
so 𝜏|𝐿 is reducible. Hence, 𝜌𝜆|𝐿 is reducible, contradicting Lemma 5.9.
It follows that the eigenvalues 𝛼3𝑝, 𝛼

2
𝑝𝛽𝑝, 𝛼𝑝𝛽

2
𝑝, 𝛽

3
𝑝 of 𝜌𝜆(Frob𝑝) are distinct for a set of primes 𝑝

of Dirichlet density 1. □

Lemma 5.13. Suppose that 𝜌𝜆 ≃ 𝜏1 ⊕ 𝜏2, with 𝜏1, 𝜏2 irreducible and two-dimensional. Then, up to
reordering, 𝜏1 is Lie irreducible.

Proof. Suppose that 𝜏1 and 𝜏2 are both irreducible, but not Lie irreducible. Then, for each 𝑖, there
exists a quadratic extension𝐾𝑖∕𝐐 such that 𝜏𝑖|𝐾𝑖 is reducible. Let𝐾 = 𝐾1 ⋅ 𝐾2. Then𝐾 is a solvable
extension of𝐐. Recall that there is a cuspidal automorphic representationΠ ofGL4(𝐀𝐐) associated
to 𝜋. By [3] and the assumption thatΠ is not an automorphic induction, the solvable base change
Π𝐾 ofΠ is cuspidal. On the other hand, 𝜌𝜆|𝐾 is a direct sum of four Hodge–Tate characters, 𝜒1 ⊕
𝜒2 ⊕𝜒3 ⊕𝜒4. By class field theory, we may view the characters 𝜒𝑖 as Hecke characters. By the
strong multiplicity one theorem for GL4, it follows that Π𝐾 is isomorphic to the isobaric sum of
four Hecke characters, contradicting the fact that Π𝐾 is cuspidal. □
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Proof of Theorem 5.1. After Theorem 4.1, Corollary 5.11 and Lemma 5.12, it remains to consider the
case that 𝜌𝜆 ≃ 𝜏1 ⊕ 𝜏2, with 𝜏1, 𝜏2 distinct, irreducible two-dimensional Hodge–Tate representa-
tions, each with Hodge–Tate weights {0, 𝑘 − 1} and with determinant sim𝜌𝜆.
For each 𝑖 = 1, 2 and for each prime 𝑝 at which 𝜌𝜆 is unramified, let 𝛼𝑝,𝑖 , 𝛽𝑝,𝑖 be the roots of the

characteristic polynomial of 𝜏𝑖(Frob𝑝). By Lemma 5.13, we may assume that 𝜏1 is Lie irreducible.
Hence, as in the proof of Lemma 5.12, we see that 𝛼𝑝,1 ≠ 𝛽𝑝,1 for a set of primes 𝑝 of Dirichlet
density 1.
If 𝜏2 is Lie irreducible, then the same argument shows that 𝛼𝑝,1 ≠ 𝛽𝑝,2 for a set of primes 𝑝 of

Dirichlet density 1. Otherwise, since 𝜏2 is not an Artin representation, it follows that there is a
quadratic extension 𝐾∕𝐐 and a character 𝜒 of Gal(𝐐∕𝐾) such that

𝜏2 ≃ Ind
𝐐
𝐾(𝜒).

If 𝑝 is a prime that is inert in 𝐾, then Tr 𝜏2(Frob𝑝) = 𝛼𝑝,1 + 𝛽𝑝,2 = 0, from which it follows that
𝛼𝑝,1 ≠ 𝛽𝑝,2. If 𝑝 splits as 𝑣𝑣

𝑐 in𝐾, then the eigenvalues of 𝜏2(Frob𝑝) are𝜒(Frob𝑣) and𝜒(Frob𝑣𝑐 ) =
𝜒𝑐(Frob𝑣), where 𝑐 is the non-trivial element of Gal(𝐾∕𝐐). Note that 𝜒 ≄ 𝜒

𝑐, since 𝜏2 is irre-
ducible. Moreover, since 𝜏2 is Hodge–Tate regular, it follows that 𝐾∕𝐐 is imaginary quadratic,
that 𝜒 and 𝜒𝑐 have infinite image and that they have different Hodge–Tate weights at the two
complex places. If 𝜒(Frob𝑣) = 𝜒

𝑐(Frob𝑣) for a positive density of primes 𝑝, then, by [37, Thm. 2],
there exists a finite order character 𝜔 such that 𝜒 ≃ 𝜒𝑐 ⊗𝜔, which contradicts the fact that 𝜒 and
𝜒𝑐 have distinct Hodge–Tate weights.
It follows that for a set of primes 𝑝 of Dirichlet density 1, we have 𝛼𝑝,𝑖 ≠ 𝛽𝑝,𝑖 for each 𝑖 = 1, 2. If

the eigenvalues of 𝜌𝜆(Frob𝑝) are indistinct for a positive density of primes 𝑝, relabelling, we may
assume that 𝛼𝑝,1 = 𝛼𝑝,2. Since det 𝜏1 ≃ det 𝜏2, it follows that 𝛽𝑝,1 = 𝛽𝑝,2 as well. Hence, for a set
of primes 𝑝 of positive density, we have Tr 𝜏1(Frob𝑝) = Tr 𝜏2(Frob𝑝). By [37, Thm. 2], there exists
a finite order character 𝜒 such that 𝜏1 ≃ 𝜏2 ⊗𝜒, contradicting Lemma 4.6. □

6 PROOF OF THEOREM 1.1

Proof of Theorem 1.1. After Corollary 5.2, it remains to show that, if 𝜆 ∣ 𝓁 with 𝓁 ⩾ 5 and if 𝜌𝜆|𝐐𝓁

is de Rham, then 𝜌𝜆 is irreducible.
Suppose that 𝜌𝜆 is reducible. Then, by Theorem 4.1, we can write 𝜌𝜆 ≃ 𝜏1 ⊕ 𝜏2 where the rep-

resentations 𝜏1, 𝜏2 are distinct, two-dimensional, irreducible, Hodge–Tate regular and odd. Since
𝜌𝜆|𝐐𝓁

is de Rham, so are 𝜏1|𝐐𝓁
and 𝜏2|𝐐𝓁

. Thus, since 𝓁 ⩾ 5, by [33, Thm. 1.0.4], there exist dis-
tinct cuspidal automoprhic representations𝜋1, 𝜋2 ofGL2(𝐀𝐐) such that, for each 𝑖, 𝜏𝑖 is the 𝜆-adic
Galois representation associated to 𝜋𝑖 .
Consider the representation

𝜌𝜆 ⊗ 𝜌
∨
𝜆
≃ (𝜏1 ⊗ 𝜏

∨
1 ) ⊕ (𝜏1 ⊗ 𝜏

∨
2 ) ⊕ (𝜏2 ⊗ 𝜏

∨
1 ) ⊕ (𝜏2 ⊗ 𝜏

∨
2 ).

Since 𝜌𝜆, 𝜏1 and 𝜏2 are automorphic, we obtain an equality of (partial) 𝐿-functions

𝐿∗(𝜋 ⊗ 𝜋∨, 𝑠) = 𝐿∗(𝜋1 ⊗𝜋
∨
1 , 𝑠)𝐿

∗(𝜋1 ⊗𝜋
∨
2 , 𝑠)𝐿

∗(𝜋2 ⊗𝜋
∨
1 , 𝑠)𝐿

∗(𝜋2 ⊗𝜋
∨
2 , 𝑠).
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Since the transfer of 𝜋 to GL4 is cuspidal, by [23, Prop. 3.6], the left-hand side has a simple pole
at 𝑠 = 1. Similarly, for each 𝑖 = 1, 2, ord𝑠=1 𝐿

∗(𝜋𝑖 ⊗𝜋
∨
𝑖
, 𝑠) = −1. However, by [23, Thm. 3.7], the

𝐿-functions 𝐿∗(𝜋1 ⊗𝜋
∨
2 , 𝑠) and 𝐿

∗(𝜋2 ⊗𝜋
∨
1 , 𝑠) are non-zero at 𝑠 = 1. It follows that the right-hand

side has a pole of order 2 at 𝑠 = 1, a contradiction. Hence, 𝜌𝜆 is irreducible. □

7 RESIDUAL IRREDUCIBILITY AND THE IMAGE OF GALOIS

In this section, we prove Theorem 1.2. Our arguments generalise those of [14–16] to the case that
𝜋 is non-cohomological. Moreover, Lemma 7.3 allows us to strengthen the results of [16] even in
the cohomological case (see [16, Rmk. 3.4]). Although the results in this section apply to auto-
morphic representations of arbitrary weight, for ease of notation, we will assume that 𝜋 has non-
cohomological weight (𝑘, 2), for some integer 𝑘 ⩾ 2.
Our key tool is following proposition, which is a simple consequence of Fontaine–Laffaille the-

ory. Recall that  is the set of primes 𝜆 for which 𝜌𝜆|𝐐𝓁
is crystalline. By Theorem 1.1,  contains

all primes 𝜆 ∣ 𝓁 for a set of rational primes 𝓁 of Dirichlet density 1.

Proposition 7.1. Suppose that 𝜆 ∈  has residue characteristic 𝓁 > 𝑘. Then we have the following
possibilities for the action of the inertia group 𝐼𝓁 at 𝓁 (cf. [13]):

⎛⎜⎜⎜⎜⎝

1 ∗ ∗ ∗

0 𝜖𝑘−1
𝓁

∗ ∗
0 0 1 ∗

0 0 0 𝜖𝑘−1
𝓁

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝

𝜓𝑘−12 0 ∗ ∗

0 𝜓𝓁(𝑘−1)2 ∗ ∗
0 0 1 ∗

0 0 0 𝜖𝑘−1
𝓁

⎞⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎝

𝜓𝑘−12 0 ∗ ∗

0 𝜓𝓁(𝑘−1)2 ∗ ∗

0 0 𝜓𝓁(𝑘−1)2 0
0 0 0 𝜓𝑘−12

⎞
⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎝

𝜓(𝓁+𝓁
2)(𝑘−1)

4 0 0 0

0 𝜓(𝓁
2+𝓁3)(𝑘−1)

4 0 0

0 0 𝜓(𝓁
3+1)(𝑘−1)

4 0

0 0 0 𝜓(1+𝓁)(𝑘−1)4

⎞
⎟⎟⎟⎟⎟⎠

,

where 𝜖𝓁 is the mod 𝓁 cyclotomic character, and 𝜓𝑖 is the fundamental character of level 𝑖.

Lemma 7.2. Suppose that, for infinitely many 𝜆 ∈ , 𝜌𝜆 contains a subrepresentation 𝜏𝜆. Then for

all but finitely many such 𝜆, 𝜏𝜆 is irreducible and two-dimensional, and det 𝜏𝜆|𝐼𝓁 = 𝜖
𝑘−1
𝓁

.

Proof. First suppose that, for infinitely many 𝜆 ∈ , 𝜏𝜆 is one-dimensional. By Proposition 7.1, it
follows that, for almost all such 𝜆, 𝜏𝜆 ≃ 𝜒𝜆𝜖

𝑛𝜆
𝓁
, where 𝜒𝜆 is unramified at 𝓁 and 𝑛𝜆 = 0 or 𝑘 − 1.

By Corollary 3.5, the conductor of 𝜒𝜆 is bounded independently of 𝜆. Since there are only finitely

many characters of bounded conductor, there exists a character 𝜒∶ Gal(𝐐∕𝐐) → 𝐐
×
such that,

for infinitely many 𝜆, 𝜏𝜆 = 𝜒𝜖
𝑛
𝓁
(mod 𝜆), where 𝑛 = 0 or 𝑘 − 1 is independent of 𝜆.

Fix a prime𝑝 atwhich𝜋 is unramified. Then, for infinitelymany 𝜆,𝜌𝜆(Frob𝑝)has an eigenvalue

𝛼𝑝 such that 𝛼𝑝 ≡ 𝜒𝜖
𝑛
𝓁
(Frob𝑝) = 𝜒(𝑝)𝑝

𝑛 (mod 𝜆). It follows that 𝛼𝑝 = 𝜒(𝑝)𝑝
𝑛. Since 𝑛 ≠ 𝑘−1

2
,

this contradicts the Jacquet–Shalika bounds [24, Cor. 2.5], as in Theorem 4.2.
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Hence, if 𝜌𝜆 contains a subrepresentation 𝜏𝜆 for infinitely many 𝜆 ∈ , then 𝜏𝜆 must be two-

dimensional for all but finitely many such 𝜆. If det 𝜏𝜆|𝐼𝓁 ≠ 𝜖𝑘−1
𝓁

, then, by Proposition 7.1, we must

have det 𝜏𝜆 = 𝜒𝜆𝜖
𝑛𝜆
𝓁
, where 𝜒𝜆 is unramified at 𝓁 and 𝑛𝜆 = 0 or 2(𝑘 − 1). As above, it follows that

for a fixed prime 𝑝, 𝜌𝜆(Frob𝑝) has two eigenvalues 𝛼𝑝, 𝛽𝑝 that satisfy |𝛼𝑝𝛽𝑝| = 𝑝𝑛 with 𝑛 = 0 or
2(𝑘 − 1), which contradicts the Jacquet–Shalika bounds. □

Lemma 7.3. Suppose that, for infinitely many 𝜆 ∈ , 𝜌𝜆 ≃ 𝜏𝜆 ⊕ 𝜏
′
𝜆, with 𝜏𝜆, 𝜏

′
𝜆 irreducible and

two-dimensional. Then for all but finitely many such 𝜆, 𝜏𝜆, 𝜏
′
𝜆 are odd.

Proof. Write 𝜒𝜆 = sim𝜌𝜆 ⊗ det 𝜏
−1
𝜆 and suppose that det 𝜏𝜆 is even. Since sim𝜌𝜆 is odd, it fol-

lows that 𝜒𝜆 is non-trivial. Moreover, since det 𝜌𝜆 ≃ (sim𝜌𝜆)
2 ≃ det 𝜏𝜆 det 𝜏

′
𝜆, it follows that 𝜒𝜆 =

det 𝜏′𝜆 sim𝜌
−1
𝜆 .

Now, by Lemma 7.2, we may assume that 𝜒𝜆 is unramified at 𝓁 and, by Corollary 3.5, the con-
ductor of 𝜒𝜆 is bounded independently of 𝜆. Hence, there exists a Dirichlet character 𝜒 such that
𝜒𝜆 = 𝜒 (mod 𝜆) for infinitely many 𝜆.
By duality, we see that

𝜏𝜆 ⊕ 𝜏
′
𝜆 ≃ 𝜌𝜆 ≃ 𝜌

∨
𝜆 ⊗ sim𝜌𝜆 ≃ (𝜏

∨
𝜆 ⊗ sim𝜌𝜆) ⊕ (𝜏

′
𝜆
∨ ⊗ sim𝜌𝜆) ≃ (𝜏𝜆 ⊗𝜒𝜆) ⊕ (𝜏

′
𝜆 ⊗𝜒

−1
𝜆 ).

By Schur’s lemma, it follows that either 𝜏𝜆 ≃ 𝜏𝜆 ⊗𝜒𝜆 and 𝜏
′
𝜆 ≃ 𝜏

′
𝜆 ⊗𝜒𝜆 or 𝜏

′
𝜆 ≃ 𝜏𝜆 ⊗𝜒𝜆.

In the first case, 𝜌𝜆 ⊗𝜒𝜆 ≃ 𝜌𝜆. If this case occurs for infinitelymany 𝜆, then 𝜌𝜆 ≃ 𝜌𝜆 ⊗𝜒. Thus,
𝜌𝜆 is not Lie irreducible, contradicting Lemma 5.9.

In the second case, 𝜌𝜆|ker 𝜒 ≃ 𝜏𝜆|⊕2ker 𝜒 . Thus, if𝑝 splits in the number field𝐐
ker 𝜒

, then the eigen-

values of 𝜌𝜆(Frob𝑝) are indistinct. If this case occurs for infinitely many 𝜆, then for the positive

density of primes 𝑝 that split in 𝐐
ker 𝜒

, the 𝑝-th Hecke polynomial has indistinct roots modulo 𝜆
for infinitely many 𝜆. Hence, for a positive density of primes 𝑝, the 𝑝-th Hecke polynomial has
indistinct roots in 𝐐, contradicting Theorem 5.1. □

Proof of Theorem 1.2. We first show that 𝜌𝜆 is irreducible for all but finitely many 𝓁 ∈ . After the
previous lemmas, it remains to consider the case that, for infinitely many 𝓁 ∈ , 𝜌𝜆 ≃ 𝜏𝜆 ⊕ 𝜏

′
𝜆,

with 𝜏𝜆, 𝜏
′
𝜆 irreducible, two-dimensional and odd. In this case, we can argue as in [14] and apply

Serre’s conjecture [26].
By Corollary 3.5, the conductors of 𝜏𝜆, 𝜏

′
𝜆 are bounded independently of 𝜆, and by Lemma 7.2,

they each have Serre weight 𝑘. Thus, there is an integer𝑁, independent of 𝜆, and modular forms
𝑓𝜆, 𝑓

′
𝜆
∈ 𝑆𝑘(Γ1(𝑁)) with associated residual representations 𝜏𝜆, 𝜏

′
𝜆.

If this case occurs for infinitely any 𝜆, then, since 𝑆𝑘(Γ1(𝑁)) is finite dimensional, there exist
fixed modular forms 𝑓, 𝑓′ ∈ 𝑆𝑘(Γ1(𝑁)) such that 𝑓 = 𝑓𝜆 and 𝑓

′ = 𝑓′
𝜆
for infinitely many 𝜆. Thus,

for infinitely many 𝜆 and for almost all 𝑝, Tr 𝜌𝜆(Frob𝑝) ≡ 𝑎𝑓(𝑝) + 𝑎𝑓′(𝑝) (mod 𝜆) and, since this
congruence holds for infinitely many 𝜆, it must be an equality. By the Chebotarev density theo-
rem and the fact that a semisimple representation in characteristic 0 is determined by its trace, it
follows that 𝜌𝜆 is reducible for all 𝜆, contradicting Theorem 1.1. Hence, 𝜌𝜆 is irreducible for all but
finitely many 𝜆 ∈ .
The remainder of the proof of Theorem 1.2 is exactly the same as for the cohomological case

[16, 3.2–3.5]. By the classification of the maximal subgroups of GSp4(𝐅𝓁𝑛 ) [30], if 𝜌𝜆 is irreducible
and does not contain Sp4(𝐅𝓁), then one of the following cases must hold:
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(i) the image contains a reducible index two subgroup, that is, 𝜌𝜆 is induced from a quadratic
extension;

(ii) 𝜌𝜆 is isomorphic to the symmetric cube of a two-dimensional representation;
(iii) the image is a small exceptional group.

By using the description of the image of inertia as in Proposition 7.1, Dieulefait–Zenteno show
that each of these cases can only occur for finitely many 𝓁 ∈ . □
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