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The weak saturation number wsat(n, F ) is the minimum 
number of edges in a graph on n vertices such that all the 
missing edges can be activated sequentially so that each new 
edge creates a copy of F . In contrast to previous algebraic 
approaches, we present a new combinatorial approach to prove 
lower bounds for weak saturation numbers that allows to 
establish worst-case tight (up to constant additive terms) 
general lower bounds as well as to get exact values of the weak 
saturation numbers for certain graph families. It is known 
(Alon, 1985) that, for every F , there exists cF such that 
wsat(n, F ) = cF n(1 + o(1)). Our lower bounds imply that 
all values in the interval 

[

δ

2
−

1 
δ+1

, δ − 1
]

with step size 1 
δ+1

are achievable by cF for graphs F with minimum degree δ

(while any value outside this interval is not achievable).
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1. Introduction

Given a graph F , an F -bootstrap percolation process is a sequence of graphs H0 ⊂

H1 ⊂ · · · ⊂ Hm such that, for i = 1, . . . , m, Hi is obtained from Hi−1 by adding an edge 

that belongs to a copy of F in Hi. The F -bootstrap percolation process was introduced 

by Bollobás [3] and can be seen as a special case of cellular automata. This notion 

is also related to the r-neighborhood bootstrap percolation model having applications 

in physics; see, for example, [1,6,12]. Given n ∈ N and a graph F , we call a graph 

H on [n] := {1, . . . , n} weakly F -saturated, if there exists an F -bootstrap percolation 

process H = H0 ⊂ H1 ⊂ · · · ⊂ Hm = Kn. The minimum number of edges in a weakly F -

saturated graph is called the weak F -saturation number and is denoted by wsat(n, F ). We 

also denote by wSAT(n, F ) the set of all weakly F -saturated graphs and by wSAT(n, F )

the set of those of them that have exactly wsat(n, F ) edges.

Throughout the paper we consider graphs F without isolated vertices since, obviously, 

for n ≥ |V (F )|, the value of wsat(n, F ) coincides with the weak saturation number of 

the graph that is obtained from F be removing the isolated vertices. Everywhere below, 

we denote by v, ℓ and δ the number of vertices in F , the number of edges in F , and the 

minimum degree of F respectively.

Note that a graph obtained from an H ∈ wSAT(v, F ) by drawing from every vertex of 

[n] \ [v] exactly δ − 1 edges to the vertices of H belongs to wSAT(n, F ). This observation 

immediately gives the upper bound (this bound was also observed in [5, Theorem 6])

wsat(n, F ) ≤ wsat(v, F ) + (n − v)(δ − 1) ≤

(

v

2 

)

− 1 + (n − v)(δ − 1). (1)

This bound is sharp since wsat(n, Kv) =
(

v
2 
)

−1+(n−v)(v−2) [11] (alternative proofs of 

this famous result have been obtained in [2,7–9]). Another example that shows optimality 

of the first inequality in (1) is a star graph F = K1,v−1 (see, e.g., [10]).

The best known general lower bound for wsat(n, F ) is due to Faudree, Gould and 

Jacobson [5]. They showed that for graphs F with minimum degree δ

wsat(n, F ) ≥

(

δ

2
−

1 

δ + 1

)

n (2)

for n sufficiently large. This bound is true (even for all n ≥ v). However, the argument in 

the form presented in the paper seems to be false. It is very short, and so, for convenience, 

we duplicate it in the Appendix as well as explain the issue in the proof.

In this paper, we prove (2) by giving a new general lower bound expressed in terms 

of an invariant of the graph F that equals to the vector (ei, i ∈ [v]), where

ei := min
S∈(V (F )

i )
|E(F ) \ E(F \ S)| − 1. (3)
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Hereinafter F \ S is a subgraph of F induced on |V (F )| \ S. Below, we state its more 

explicit corollary for certain graph families. In the worst case our bound is slightly 

stronger than (2). Also, it implies even better (and almost sharp) bounds for connected 

graphs H with δ > 1. Note that, from the upper bound (1), it immediately follows that 

wsat(n, F ) = O(1) if δ = 1 (also, the lower bound (2) becomes trivial). Therefore, we 

restrict ourselves with δ > 1.

Let us state the new lower bound. Recall that a graph is called k-edge-connected, if it 

remains connected whenever at most k − 1 edges are removed.

Theorem 1.1. Let F be a graph with v vertices, ℓ edges, and minimum degree δ > 1. 

Then, for all n ≥ v,

wsat(n, F ) ≥

(

δ

2
−

1 

δ + 1

)

(n − v) + ℓ − 1.

If δ is odd and F is connected, then, for all n ≥ v,

wsat(n, F ) ≥

(

δ

2
−

1 

2(δ + 2)

)

(n − v) + ℓ − 1.

If δ is even and F is connected, or δ is arbitrary and F is 2-edge-connected, then, for 

all n ≥ v,

wsat(n, F ) ≥
δ

2
(n − v) + ℓ − 1.

We also prove that all our bounds are sharp up to a constant additive term. Note 

that, since ℓ ≥ 1
2vδ, the first bound implies wsat(n, F ) ≥

(

δ
2 − 1 

δ+1

)

n + v
δ+1 − 1 which 

is better than (2). Indeed, v
δ+1 − 1 ≥ 0, and the equality holds only when F = Kv for 

which the upper bound is the answer.

It was observed by Alon [2] that, for every graph F , wsat(n, F ) = cF n(1 + o(1))

for some constant cF ≥ 0. Though the possible values of cF := limn→∞
wsat(n,F )

n are 

unknown, we have that, for all F with δ ≥ 2, δ
2 − 1 

δ+1 ≤ cF ≤ δ − 1, and both bounds 

are achievable. If δ = 1, then the only possible value of cF is 0. It is natural to ask, how 

are the values of cF distributed in this interval, if δ ≥ 2 is fixed? We have proved that 

they are not concentrated around the endpoints.

Theorem 1.2. For every integer δ ≥ 2, every k ∈ {0, 1, . . . , (δ/2 − 1)(δ + 1)}, and every 

integer N there exists a connected graph F with the minimum degree δ and |V (F )| ≥ N

such that

wsat(n, F ) =

(

δ

2
+

k

δ + 1

)

n + O(1).
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In other words, all values between δ
2 − 1 

δ+1 and δ − 1 with step size 1 
δ+1 are achievable 

by cF . In [13] Tuza conjectured that, for every graph F , wsat(n, F ) = cF n + O(1). 

The conjecture clearly holds for graphs with minimum degree δ = 1. The last part of 

Theorem 1.1 together with the upper bound (1) implies that the conjecture is also true 

for all connected graphs with δ = 2. In the paper, we suggest a set of possible values of 

the parameter cF and prove that the conjecture is true for cF = δ − 1.

Theorem 1.3. If a graph F with the minimum degree δ satisfies limn→∞
wsat(n,F )

n = δ−1, 

then wsat(n, F ) = (δ − 1)n + O(1). Moreover, if for some F , |wsat(n, F ) − cF n| is not 

bounded, then there exists an increasing sequence of positive integers {nk, k ∈ N} such 

that wsat(nk, F ) − cF nk → +∞ as k → ∞.

In [5], the authors also tried to go beyond F = Kv and considered Fv,δ obtained from 

Kv by removing (v −1−δ) edges adjacent to the same vertex. They conjectured that the 

upper bound is tight for these graphs, i.e. wsat(n, Fv,δ) =
(

v−1
2 

)

+ (n − v + 1)(δ − 1) and 

prove the conjecture only for v = 5 and δ = 3. In this paper, we prove the conjecture for 

all v and δ.

In the last section of the paper, we demonstrate that our method is very powerful for 

certain graph families, so that it allows to find exact values of weak saturation numbers. 

We make a deeper analysis of our techniques and refine our upper bounds that imply 

tightness of the bounds in Theorem 1.1. In particular, these refined bounds imply exact 

values of the weak saturation numbers for families of graphs F that are obtained from 

two cliques by drawing several edges between them. A motivation for considering these 

graphs is that these are, probably, the most straightforward examples of graphs having 

weak saturation numbers rather close to the lower bounds. Moreover, we show that the 

refined bounds imply the exact value of the weak saturation number for all connected 

graphs F that are not 4-edge-connected and satisfy wsat(v, F ) = ℓ − 1. These bounds 

also imply that wsat(n, K4) = 2n − 3 (though a combinatorial proof of this fact was 

known [3]). The formulations of all these results appear in Section 6.2 but not in the 

Introduction since we do not want to overload it with massive notations needed for that.

Organization of the paper In Section 2.1, we state and prove the new general lower 

bound on wsat(n, F ). We derive Theorem 1.1 from this bound in Section 3.1. Its tight-

ness is proven in Section 3.2. The proof is based on a general upper bound on the weak 

saturation number that we prove in Section 2.2. Theorem 1.2 is proven in Section 4. 

In Section 5, we prove Theorem 1.3. In Section 6.1, we prove the conjecture of Fau-

dree, Gould, and Jacobson. In Sections 6.3 and 6.4, we prove the refined bounds from 

Section 6.2.

Notations For a graph G and a set of vertices U ⊂ V (G), we denote by G|U the 

subgraph of G induced on the set U . For a set X and its subset Y , we denote by I(Y )

the characteristic function of Y , that is I(Y )(x) = 1 for all x ∈ Y and I(Y )(x) = 0 for 



150 N. Terekhov, M. Zhukovskii / J. Combin. Theory Ser. B 172 (2025) 146–167 

all x ∈ X \ Y . The domain set X is always clear from the context. In the paper, we 

usually describe set Y as the property of all elements that belong to it. For example, 

I(F is connected) is defined on the set of all graphs and equals 1 if and only if F is 

connected. Everywhere in the paper, we denote by v, ℓ and δ the number of vertices, 

the number of edges, and the minimum degree of a fixed graph F , which is always clear 

from the context.

2. General bounds

2.1. Lower bound

As was noted in [2], the existence of limn→∞
wsat(n,F )

n is immediate due to the fact 

that wsat(n, F ) + (v − 2)2 is subadditive. Indeed, divide [n] into parts [m] and [n] \ [m]

and draw two graphs isomorphic to some graphs from wSAT(m, F ) and wSAT(n−m, F )

on [m] and [n] \ [m] respectively. Then, draw all edges between fixed (v − 2)-sets in [m]

and [n] \ [m] to make the final graph weakly F -saturated. This implies

wsat(n, F ) ≤ wsat(m, F ) + wsat(n − m, F ) + (v − 2)2.

Therefore, it is natural to construct a lower bound in the form g(n) + O(1), where g(n)

is a subadditive function. We show that any such subadditive function is suitable unless, 

for some i ∈ {0, 1, . . . , v}, g(i) exceeds the value of ei defined in (3). Note that e1 = δ−1. 

Set e0 = 0.

Theorem 2.1. Let F be a graph with v vertices and ℓ edges. Let g : Z≥0 → R satisfy the 

following conditions:

• for every i, j ∈ Z≥0, g(i + j) ≤ g(i) + g(j);

• for every i ∈ {0, 1, . . . , v − 1}, g(i) ≤ ei,

where ei are defined in (3). Then, for every integer n ≥ v,

wsat(n, F ) ≥ g(n − v) + ℓ − 1.

Proof. Let n ≥ v. For i ≥ v, set f(i) = g(i − v) + ℓ − 1. Let H ∈ wSAT(n, F ). Let OH

be the set of all vectors (B1, . . . , Bk) such that

• for every κ ∈ [k], Bκ ⊂ [n],

• for κ1 �= κ2, Bκ1
∩ Bκ2

= ∅,

• for every κ ∈ [k], |E(H|Bκ
)| ≥ f(|Bκ|),

• |B1| ≥ |B2| ≥ . . . ≥ |Bk| ≥ v.
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Note that OH is non-empty. Indeed, consider the first edge added to H in an F -bootstrap 

percolation process. This edge creates a copy F̃ of F . Then, clearly, (V (F̃ )) ∈ OH . Indeed

∣

∣

∣
E(H|V (F̃ ))

∣

∣

∣
≥ |E(F̃ )| − 1 = |E(F )| − 1.

Also note that if, for every H, ([n]) ∈ OH , then we get the statement of Theo-

rem 2.1 immediately. For Bα = (Bα
1 , . . . , Bα

kα
) ∈ OH , α ∈ {1, 2}, set B1 ≤ B2, if 

(|B1
1 |, . . . , |B1

k1
|) ≤ (|B2

1 |, . . . , |B2
k2

|) in the lexicographical order. Let B∗ be a maximal 

element of OH . The following lemma concludes the proof of Theorem 2.1. �

Lemma 2.2. B∗ = ([n]).

Proof. Assume the contrary: let B∗ = (B1, . . . , Bk) �= ([n]). Take v / ∈ B1. If v is adjacent 

to all vertices in B1, then, due to the properties of g,

|E(H|B1∪{v})| = |E(H|B1
)| + |B1| ≥ f(|B1|) + v

= g(|B1| − v) + v + ℓ − 1

> g(|B1| − v) + e1 + ℓ − 1

≥ g(|B1| − v) + g(1) + ℓ − 1

≥ g(|B1| − v + 1) + ℓ − 1 = f(|B1| + 1) = f(|B1 ∪ {v}|).

Therefore (B1 ∪ {v}) ∈ OH — a contradiction with the maximality of B∗.

Therefore, there exists a pair of different vertices {u, v} / ∈ E(H) such that u and 

v do not belong to the same Bi. Let {u, v} be the first such edge in an F -bootstrap 

percolation process that starts on H. Let this edge, when added, create a copy F̃ of F . If 

F̃ does not meet any of Bκ, κ ∈ [k], then (B1, . . . , Bk, V (F̃ )) ∈ OH , that contradicts the 

maximality of B∗. Let I be the non-empty set of all κ ∈ [k] such that Bκ ∩ V (F̃ ) �= ∅. 

For every κ ∈ I, set Wκ = Bκ ∩V (F̃ ). Let B̃ =
⋃

κ∈I Bκ ∪V (F̃ ). Let κ∗ = min I. Let us 

prove that (B1, . . . , Bκ∗−1, B̃) ∈ OH and reach a contradiction with the maximality of 

B∗. Since all the edges of F̃ \ {u, v} that do not lie inside any of Bκ belong to the initial 

graph H, we get that there are

∣

∣

∣
E

(

H|V (F̃ )

)∣

∣

∣
−

∑

κ∈I

|E (H|Wκ
)| ≥ ℓ − 1 −

∑

κ∈I

|E(F̃ |Wκ
)| ≥ ℓ − 1 −

∑

κ∈I

(ℓ − (ev−|Wκ| + 1))

such edges. Therefore,

|E(H|B̃)| =
∑

κ∈I

|E (H|Bκ
)| +

[

∣

∣

∣
E

(

H|V (F̃ )

)∣

∣

∣
−

∑

κ∈I

|E (H|Wκ
)|

]

≥
∑

κ∈I

f(|Bκ|) +

[

ℓ − 1 −
∑

κ∈I

(ℓ − (ev−|Wκ| + 1))

]
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≥
∑

κ∈I

(f(|Bκ|) − ℓ + 1 + g(v − |Wκ|)) + ℓ − 1

=
∑

κ∈I

(g(|Bκ| − v) + g(v − |Wκ|)) + ℓ − 1

≥ g

(

∑

κ∈I

(|Bκ| − |Wκ|)

)

+ ℓ − 1 = g(|B̃| − v) + ℓ − 1 = f(|B̃|). �

Remark 2.3. If, for every i ∈ Z≥0, g∗(i) is defined as the supremum of g(i) over all g

satisfying the conditions of Theorem 2.1, then the function g∗ : Z≥0 → R satisfies these 

conditions as well. Therefore, g∗(n − v) + ℓ − 1 is the best possible bound that follows 

from Theorem 2.1. Let us show that it is not hard to define g∗ explicitly. Set

g∗(0) = 0, g∗(i) = min
s∈[i], 1≤i1,...,is≤v−1: i1+...+is=i

(ei1
+ . . . + eis

).

Obviously the conditions in Theorem 2.1 hold for g∗. Moreover, if g satisfies these 

conditions and, for some i, g(i) > g∗(i), then find s ∈ [i] and i1, . . . , is such that 

g∗(i) = ei1
+ . . . + eis

. Since g is subadditive, we get

g(i) ≤ g(i1) + . . . + g(is) ≤ ei1
+ . . . + eis

= g∗(i)

— a contradiction.

2.2. Upper bound

Here we prove an upper bound on the weak saturation number that we use in Sec-

tion 3.2 to prove tightness of the assertions in Theorem 1.1 as well as in Section 4 to 

prove Theorem 1.2.

Claim 2.4. Let F be a graph with v vertices, ℓ edges, and minimum degree δ. If 

wsat(v, F ) = ℓ − 1 and P ⊂ V (F ) is such that |V (F ) \ P | ≥ δ − 1, then

wsat(n, F ) ≤
ℓ − |E(F |V (F )\P )| − 1

|P | 
n + O(1).

Proof. Denote k = |P |. We are going to show by induction that, for every m ∈ Z≥0,

wsat(v + km, F ) ≤ (ℓ − |E(F |V (F )\P )| − 1)m + ℓ − 1. (4)

Note that (4) immediately implies the statement of Claim 2.4 since, if r is a remainder 

of the division of n − v by k, then (δ − 1)r = O(1) edges are sufficient to restore all edges 

of Kn from Kv+km.

The base of induction is straightforward. Let m be a positive integer and assume that 

(4) is proven for m − 1. Let H ∈ wSAT(v + k(m − 1), F ). Let G be obtained from H by 
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adding a copy of F |P to H (on a set of k vertices P̃ disjoint with V (H)), distinguishing 

a subset K ⊂ V (H) of v − k vertices, drawing edges between K and P̃ in the same way 

as they appear between V (F ) \ P and P , and deleting one of these edges. All missing 

edges between K and P̃ in G can be restored since wsat(v, F ) = ℓ − 1. After that, every 

vertex from P̃ has at least |K| ≥ δ − 1 neighbors in V (H). Therefore, all edges between 

P̃ and V (H) \ K can be restored as well. This finishes the proof. �

3. Lower bounds for graph families

In this section we prove Theorem 1.1 and, after that, show that the bounds are best 

possible, up to an additive constant.

3.1. Proof of Theorem 1.1

Recall that δ > 1.

We will use Theorem 2.1. Within the notations of Section 2.1, let γ = min1≤i≤v−1
ei

i . 

Set g(n) = γn. Clearly, g satisfies the conditions in Theorem 2.1. Therefore, wsat(n, F ) ≥

γ(n − v) + ℓ − 1. It remains to apply the claim stated below.

Claim 3.1. The following lower bounds on γ hold.

1. γ ≥ δ
2 − 1 

δ+1 .

2. If δ is even and F is connected, or δ is arbitrary and F is 2-edge-connected, then 

γ ≥ δ
2 .

3. If δ is odd and F is connected, then γ ≥ δ
2 − 1 

2(δ+2) .

Proof. Let i ∈ [v−1]. Since δ is the minimum degree of F , for S ∈
(

V (F )
i 

)

, the summation 

of degrees of all vertices from S is at least δi. On the other hand, it is exactly 2e[S] +

e[S, V (F ) \ S], where e[S] = |E(F |S)| is the number of edges inside S, and e[S, V (F ) \ S]

is the number of edges between the vertices of S and the vertices of V (F ) \ S. Therefore,

e[S] ≥

⌈

δi − e[S, V (F ) \ S]

2 

⌉

(5)

and

|E(F ) \ E(F \ S)| = e[S] + e[S, V (F ) \ S] ≥ δi − e[S] ≥ δi −

(

i 

2

)

. (6)

Let λ = I(F is connected) + I(F is 2-edge-connected). Clearly, e[S, V (F ) \ S] ≥ λ. From 

(5), we get

|E(F ) \ E(F \ S)| = e[S] + e[S, V (F ) \ S]
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≥
δi + λ

2 
I(δi − λ is even) +

δi + λ + 1

2 
I(δi − λ is odd). (7)

Combining (6) with (7), we get that

γ ≥ min

{

min
1≤i≤δ

[

δ −
i − 1

2 
−

1

i 

]

, min
δ+1≤i≤v−1

δi + λ − 2 + I(δi − λ is odd)

2i 

}

Therefore, for odd δ,

γ ≥ min

{

δ

2
+

1

2
−

1

δ
,

δ

2
+

[

−
I(λ = 0)

δ + 1 
−

I(λ = 1)

2(δ + 2) 

]}

=
δ

2
−

I(λ = 0)

δ + 1 
−

I(λ = 1)

2(δ + 2) 
.

For even δ,

γ ≥ min

{

δ

2
+

1

2
−

1

δ
,

δ

2
−

I(λ = 0)

δ + 1 

}

=
δ

2
−

I(λ = 0)

δ + 1 
. �

3.2. Optimality

Here we show that the bounds in Theorem 1.1 are optimal up to an additive constant 

term.

Theorem 3.2. There exists C > 0 such that, for every x ∈ Z≥0 and every integer δ ≥ 2,

1. there exists a graph F with minimum degree δ and at least x vertices such that

wsat(n, F ) ≤

(

δ

2
−

1 

δ + 1

)

n + C;

2. there exists a 2-edge-connected graph F with minimum degree δ and at least x vertices 

such that

wsat(n, F ) ≤
δ

2
n + C;

3. if δ is odd, then there exists a connected graph F with minimum degree δ and at least 

x vertices such that

wsat(n, F ) ≤

(

δ

2
−

1 

2(δ + 2)

)

n + C.

Proof. We construct the desired graph sequences for each item of Theorem 3.2 sepa-

rately. Each time, due to Claim 2.4, it is sufficient to find a sequence of graphs Fm

with vm vertices, ℓm edges, and minimum degree δ ≥ 2 such that vm → ∞ as m → ∞, 

wsat(vm, F ) = ℓm−1, and each Fm contains Pm ⊂ V (Fm) satisfying |V (Fm)\Pm| ≥ δ−1

with the value of (ℓm − |E(F |V (Fm)\Pm
)| − 1)/|Pm| required in the respective item in 

Theorem 3.2.
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1. Here, we find a sequence of graphs Fm as above so that

ℓm − |E(F |V (Fm)\Pm
)| − 1

|Pm| 
=

δ

2
−

1 

δ + 1
.

Consider a disjoint union of m ≥ 3 cliques Kδ+1. Fm is obtained by drawing one edge 

between one pair of these cliques. Clearly, Fm is the desired sequence with Pm chosen 

to be one of the disjoint cliques (that does not have an edge joining it with another 

clique). Indeed, |V (Fm) \ Pm| ≥ 2(δ + 1), ℓm = m δ(δ+1)
2 + 1, |E(F |V (Fm)\Pm

)| =

(m − 1) δ(δ+1)
2 + 1. It is also clear that wsat(vm = m(δ + 1), Fm) = ℓm − 1.

2. Here, we require

ℓm − |E(F |V (Fm)\Pm
)| − 1

|Pm| 
=

δ

2

and that all Fm are 2-edge connected. Consider a disjoint union of two (δ + 1)-cliques 

A1, A2 and an m-clique B, m ≥ δ + 5. Fm is obtained by drawing two disjoint edges 

{u1, w1} and {u2, w2} between A1 and B (u1, u2 are vertices of A1), two disjoint 

edges between A2 and B that also do not meet vertices w1, w2, and deleting the edge 

{u1, u2}. It is easy to verify that wsat(vm = m + 2(δ + 1), Fm) = ℓm − 1, where 

ℓm = m(m−1)
2 + δ(δ + 1) + 3. The desired set Pm is the set of vertices of A1. Indeed, 

|V (Fm) \ Pm| = m + δ + 1, |E(F |V (Fm)\Pm
)| = m(m−1)

2 + δ(δ+1)
2 + 2.

3. Finally, we construct connected Fm with odd δ ≥ 3 and Pm ⊂ V (Fm) satisfying

ℓm − |E(F |V (Fm)\Pm
)| − 1

|Pm| 
=

δ

2
−

1 

2(δ + 2)
.

Consider a disjoint union of two (δ + 1)-cliques A1, A2 and an m-clique B, m ≥ δ + 3, 

with distinguished vertices w1 �= w2. Fm is obtained by

• for every j ∈ {1, 2}, choosing a perfect matching in Aj arbitrarily and deleting it 

from Aj ,

• for every j ∈ {1, 2}, selecting a vertex uj ∈ V (Aj) and drawing an edge between 

uj and wj ,

• adding two vertices x1, x2 and drawing edges between x2 and all vertices of V (A2), 

between x1 and all vertices from V (A1) \ {u1}.

Note that wsat(vm = m+2(δ+1)+2, Fm) = ℓm −1, where ℓm = m(m−1)
2 +(δ+1)2 +1. 

Indeed, the missing edges can be added one by one, say, in the following order: start 

with missing {x1, u1}, then draw all edges between V (A1)∪V (A2) and V (B)\{w1, w2}, 

proceed with the missing matchings in A1, A2, then draw edges between {x1, x2} and 

V (B), draw all the remaining edges between V (A1) ∪ V (A2) and V (B), and, finally, 

restore the missing edges between V (A1) ∪ {x1} and V (A2) ∪ {x2}. It remains to 

set Pm = V (A1) ∪ {x1}. Indeed, |V (Fm) \ Pm| = m + δ + 2, |E(F |V (Fm)\Pm
)| =

m(m−1)
2 + (δ+1)2

2 + 1. �
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4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Proof. Let δ ≥ 2 and k ≤ (δ−2)(δ+1)
2 be a non-negative integer. The proof strategy is 

similar to the proof of Theorem 3.2. We are going to construct a sequence of graphs F

such that γ defined in Section 3.1 coincides with the minimum value of 
ℓ−|E(F |V (F )\P )|−1

|P | 
over all P satisfying the requirements in Claim 2.4, and this minimum value equals to 
δ
2 + k

δ+1 =: ρk. We start with constructing the desired graph sequence.

Fix a sequence of integers s1 ≤ s2 ≤ . . . ≤ sδ+1 such that s1 = s2 = 0, for every 

i ∈ [δ], si+1 − si ≤ 1, 
∑δ+1

i=1 si = k + 1. Such a sequence clearly exists. Let m ≥

max{2(k + 1), 2δ + 1} be an integer. Consider disjoint cliques A ∼ = Kδ+1 and B ∼ = Km. 

Let [δ+1] be the vertex set of A. Let M1, . . . , Mδ+1 be disjoint subsets of V (B) satisfying 

|Mi| = si, i ∈ [δ +1]. The graph Fm is obtained from A and B by drawing edges between 

the vertex i and every vertex from Mi for all i ∈ [δ + 1]. Let Pm := V (A). The graph 

Fm has vm = m + δ + 1 vertices and ℓm =
(

m
2 
)

+
(

δ+1
2 

)

+ k + 1 edges. Note that 

|V (Fm) \ Pm| = m ≥ 2δ + 1 and

ℓm − |E(Fm|V (Fm)\Pm
)| − 1

|Pm| 
=

(

δ+1
2 

)

+ k

δ + 1 
=

δ

2
+

k

δ + 1
= ρk.

Due to the definition of γ and its properties described in Section 3.1, by Theorem 2.1

and Claim 2.4, it remains to prove the following:

1. wsat(vm, Fm) = ℓm − 1;

2. for every Q ⊂ V (Fm), we have

ℓm − |E(Fm|V (Fm)\Pm
)| − 1

|Pm| 
≤

ℓm − |E(Fm|V (Fm)\Q)| − 1

|Q| 
. (8)

Indeed, on the one hand, (8) yields γ = ρk due to the definition of γ, and then 

wsat(n, F ) ≥ ρkn + O(1) by Theorem 2.1. On the other hand, due to Claim 2.4, we 

get wsat(n, F ) ≤ ρkn + O(1).

Verification of the requirements from Claim 2.4. The first condition holds since the 

missing edges of Kvm
can be added one by one, say, in the following order: first join 

vertices 1, 2 (note that these vertices do not have neighbors in B initially) with all the 

vertices of V (B) \ (∪iMi), then join all the other vertices of A with all the vertices of 

V (B) \ (∪iMi), and, finally, restore all the rest.

Now, fix Q ⊂ V (Fm), |Q| = x. Let us prove the inequality (8).
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Assume that Q ⊂ V (A). We have

ℓm − |E(Fm|V (Fm)\Q)| − 1

|Q| 
=

x(δ − x−1
2 ) +

∑

i∈Q si − 1

x 
≥

x(δ − x−1
2 ) +

∑x
i=1 si − 1

x 
,

(9)

while

ℓm − |E(Fm|V (Fm)\Pm
)| − 1

|Pm| 
=

(δ + 1)(δ − δ
2 ) +

∑δ+1
i=1 si − 1

δ + 1 
.

It remains to notice that the right hand part of (9) (we denote it by ξ(x)) decreases in 

x. Indeed,

[ξ(x+1)−ξ(x)]x(x+1) = −
x(x + 1)

2 
+1−

x 
∑

i=1 
si+xsx+1 =

x 
∑

i=1 
(sx+1−si)+1−

x(x + 1)

2 
≤ 0.

If Q ⊂ V (B), then

ℓm − |E(Fm|V (Fm)\Q)| − 1

|Q| 
≥

x m−1
2 − 1

x 
≥

m − 1

2 
− 1 ≥ δ − 1 ≥ ρk.

Finally, if Q has non-empty intersections both with A and B, then, letting W = Q∩V (A), 

we get

ℓm − |E(Fm|V (Fm)\Q)| − 1

|Q| 

≥ 
ℓm − |E(Fm|V (Fm)\W )| − 1 + (|Q| − |W |)m−1

2 
|Q| 

≥ 
|W |ρk + (|Q| − |W |)m−1

2 
|Q| 

>
|W |ρk + (|Q| − |W |)ρk

|Q| 
= ρk. �

5. On the conjecture of Tuza

Let us recall that Tuza conjectured that, for every graph F and some cF ≥ 0, 

wsat(n, F ) = cF n + O(1). In the proof of Theorem 1.1 we introduced the parameter 

γ that equals to the minimum value of γ(S) := (|E(F )| − |E(F \ S)| − 1)/|S| over all 

proper S ⊂ V (F ). Note that γ is exactly the constant in front of n in our lower bounds 

from Theorem 1.1 derived from Theorem 2.1 and Claim 3.1. It is natural to ask whether, 

for any F , there exists an S ⊂ V (F ) such that cF = γ(S). This turns out to be true for 

all F that we are familiar of. In particular, this is true not only for graphs with δ = 1, 

for connected graphs with δ = 2, and for cliques, but also for a (not necessarily disjoint) 

union of arbitrary number of cliques of sizes at least δ + 1 (see Remark 6.2).

Theorem 1.3 follows directly from the upper bound (1) and the lower bound given in 

the claim below.
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Claim 5.1. For every graph F , wsat(n, F ) ≥ cF (n − v) + ℓ − 1, where v and ℓ are the 

number of vertices and the number of edges in F respectively.

Proof. The assertion of the claim follows immediately from

• the fact that the function gF : Z≥0 → Z≥0 defined as gF (i) = wsat(v + i, F )− (ℓ−1)

is subadditive (see Claim 6.10 in Section 6.4), and

• the obvious bound g(i) ≥ (limx→∞ g(x)/x)i that holds for any subadditive function 

g : Z≥0 → R (indeed, if the opposite inequality holds for some i > 0, then g(ji)
ji ≤

g(i)
i < limx→∞

g(x)
x — a contradiction). �

6. Tight results for other graph families

6.1. The conjecture of Faudree, Gould and Jacobson

Here we prove the conjecture of Faudree, Gould and Jacobson [5]. Let Fv,δ be obtained 

from Kv by removing v − 1 − δ edges adjacent to the same vertex.

Theorem 6.1. For all integer v ≥ 3 and δ ∈ [v − 2],

wsat(n, Fv,δ) =

(

v − 1

2 

)

+ (n − v + 1)(δ − 1).

Proof. Recall that, for every graph F , wsat(n, F ) ≤ (δ − 1)(n − v) + wsat(v, F ) (see (1) 

in the Introduction). Since wsat(v, Fv,δ) = ℓ − 1 =
(

v
2 
)

− (v − δ), it immediately gives the 

upper bound.

Now we prove the lower bound. Let H ∈ wSAT(n, Fv,δ). Consider an Fv,δ-bootstrap 

percolation process that starts on H and stops on Kn. Note that every new edge in this 

process creates a copy of Fv,δ and thus creates a copy of Kδ+1. Let F0 be a copy of Fv,δ

that is created together with the first edge e added to H. Let x be the vertex of F0 of 

degree δ, and X be a (δ − 1)-subset in its neighborhood in F0 \ {e}. Delete from H all 

the edges of F0 \ {e} that have both vertices outside X. Clearly, the obtained graph is 

weakly Kδ+1-saturated in Kn. Therefore,

wsat(n, Kδ+1) ≤ wsat(n, Fv,δ) −

(

v − δ

2 

)

.

Then the equality wsat(n, Kδ+1) = n(δ −1)−
(

δ
2

)

(see [11]) immediately gives the desired 

lower bound. �

Remark 6.2. If F is an arbitrary (not necessarily disjoint) union of any number of cliques 

of size at least δ + 1, then the same argument as in the proof of Theorem 6.1 implies 

that wsat(n, F ) = n(δ − 1) + O(1) certifying the positive answer to the question about 
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possible values of cF asked in Section 5. We shall also note that Theorem 6.1 follows 

immediately from (1), Claim 5.1 and the inequality cF ≥ δ−1 that holds true since every 

edge appearing in an F -bootstrap percolation process creates a copy of Kδ+1. However, 

we decided to present the above proof since it shows another neat and quite general 

approach (a similar idea was used in [4, Theorem 2]). Moreover, Claim 5.1 also implies 

that the upper bound (1) is tight for all F being unions of cliques of size at least δ + 1

with wsat(v, F ) = ℓ − 1.

6.2. General tight bounds

In this section, we present an improvement of Theorem 2.1 that gives the exact value 

of the weak saturation number for a certain family of graphs F .

Everywhere in this section, F is a fixed graph with v vertices and ℓ edges. For r ∈ Z≥0, 

set

g∗
r (0) = 0, g∗

r (i) = min
s∈[i], 1≤i1,...,is≤v−r: i1+...+is=i

(ei1
+ . . . + eis

),

where ei are defined in (3). Thus, g∗ = g∗
1 . Note that, for every fixed i, g∗

r (i) is a 

nondecreasing function of r. The following improvement of Theorem 2.1 is valid when 

there is a small enough weakly F -saturated graph.

Theorem 6.3. If, for all n ≥ v, wsat(n, F ) ≤ g∗
2(n − v) + ℓ − 1, then, for all n ≥ v, 

wsat(n, F ) = g∗
2(n − v) + ℓ − 1.

We prove Theorem 6.3 in Section 6.3. Note that it immediately implies that 

wsat(n, K4) = 2n−3 (though a combinatorial proof of this fact was known [3]). A family 

of graphs F such that Theorem 6.3 gives an exact value of the weak saturation number 

can be distilled using Theorem 6.4 which we state below and prove in Section 6.4.

Consider the set K of all i ∈ [v] such that there are no positive integers i1, . . . , is, 

s ≥ 2, satisfying i1 + . . . + is = i and ei ≥ ei1
+ . . . + eis

. Let Kr = K ∩ [v − r] for 

r ∈ {0, 1, . . . , v − 1}. Let β = β(F ) be the minimum number of vertices that can be 

deleted from F in such a way that the remaining graph contains a cut-edge (i.e. its 

deletion increases the number of connected components).

Theorem 6.4. Let r ∈ {0, 1, . . . , v−1}. Then the following three properties are equivalent:

1. For every n ≥ v, wsat(n, F ) ≤ g∗
r (n − v) + ℓ − 1.

2. wsat(v, F ) = ℓ − 1, and the maximum element of Kr is at most v − β.

3. wsat(v, F ) = ℓ − 1, and, for every i ≥ 0, g∗
β(i) ≤ g∗

r (i).

Note that, in particular, if we let r = β, then we immediately get the following 

corollary.
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Corollary 6.5. If wsat(v, F ) = ℓ−1, then, for every n ≥ v, wsat(n, F ) ≤ g∗
β(n−v)+ℓ−1.

Let us stress that any other possible upper bound of the form g∗
r(n − v) + ℓ − 1 could 

not be better than the bound provided in Corollary 6.5. Moreover,

Corollary 6.6. If wsat(v, F ) = ℓ − 1 and the maximum element of K2 is at most v − β, 

then, for every n ≥ v, wsat(n, F ) = g∗
2(n − v) + ℓ − 1.

We immediately get that wsat(n, F ) = g∗
2(n − v) + ℓ − 1 for all connected graphs F

that are not 4-edge-connected and satisfy wsat(v, F ) = ℓ − 1, since for such graphs β ≤ 2

due to the following claim.

Claim 6.7. Let k be the edge-connectivity of F . Then β ≤ k − 1.

Proof. Let E be a set of k edges such that their deletion makes F disconnected. Let 

{a, b} ∈ E . Let us follow the edges of E \ {a, b} one by one and delete from F , at each 

step, a single vertex of the considered edge other than both a and b (if such a vertex is 

already deleted, then we just move to the next edge without any deletion). Eventually 

we get a graph with the cut-edge {a, b}. The number of vertices that were deleted is at 

most k − 1. �

We are also able to get the sharp value for a family of graphs F that are obtained by 

drawing several disjoint edges between two cliques. For positive integers 1 ≤ c ≤ a ≤ b, 

let Fa,b,c be obtained by drawing c disjoint edges between disjoint Ka and Kb. It is clear 

that wsat(v, F ) = ℓ − 1. Therefore, the exact value for c ≤ 3 follows from Corollary 6.6

and Claim 6.7: wsat(n, Fa,b,c) = g∗
2(n − v) + ℓ − 1, where g∗

2 can be easily computed 

directly. In particular, for i divisible by a, we get g∗
2(i) = i 

a

((

a
2 
)

+ c − 1
)

. It could be 

generalized to larger values of c.

Theorem 6.8. If a < b, then, for every n ≥ v, wsat(n, Fa,b,c) = g∗(n − v) + ℓ − 1. If 

a = b = 5, c = 4, then wsat(n, Fa,b,c) = g∗
2(n − v) + ℓ − 1.

Proof. First, let a < b. Due to Theorem 6.4, it is sufficient to prove that the maximum 

element of K1 is at most a, since a ≤ v − β. Assume the contrary: there exists i ∈

[a + 1, a + b − 1] such that i ∈ K1. Let ã ≤ a and b̃ ≤ b be such that the union of some ã

vertices from the Ka-part of Fa,b,c with some b̃ vertices from the Kb-part has exactly i

vertices and ei + 1 edges with endpoints in this union. Since ã + b̃ = i and ã ≤ a, we get 

b̃ > 0.

If b̃ < a, then

ei ≥ b̃(b − 1) −

(

b̃

2

)

+ eã = b̃

(

b − 1 −
b̃ − 1

2 

)

+ eã ≥ b̃

(

a −
b̃ − 1

2 

)

+ eã > eb̃ + eã

— a contradiction.
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If a ≤ b̃ < b, then consider integers s ≥ 1 and 0 ≤ r < a such that b̃ = sa + r. We 

shall prove that ei ≥ eã + sea + er. In the same way as above, it is sufficient to show 

that b̃(b − 1) −
(

b̃
2

)

≥ sea + er. Note that ea ≤
(

a
2 
)

+ a − 1, er ≤ ra −
(

r
2

)

. We get

b̃(b − 1) −

(

b̃

2

)

= (sa + r)

(

b −
b̃ + 1

2 

)

≥ (sa + r)
b̃ + 1

2 

≥ (sa + r)
a + r + 1

2 

≥ sea + s +
sar

2 
+ r

a + r + 1

2 
> sea + ar ≥ sea + er

as needed.

Finally, let b̃ = b. Then ã < a. We let b̃ + ã = sa + r, where s ≥ 1 and 0 ≤ r < a. Note 

that ea ≤
(

a
2 
)

+ c − 1 and er ≤ r(a − 1) −
(

r
2

)

+ min{r, c}. We get

ei =

(

b 

2

)

+ c + ã(a − 1) −

(

ã

2 

)

− 1

=
(sa + r − ã)(sa + r − ã − 1)

2 
+ c + ã(a − 1) −

(

ã

2 

)

− 1

≥ sea + er +
s2 − s

2 
a2 + s(ar − aã − c + 1) + r2 − r(a + ã) + aã + c − min{r, c} − 1.

If s = 1, then r = b̃ + ã − a ≥ ã + 1. In this case,

ei ≥ sea + er + r2 − ãr − min{r, c} ≥ sea + er + r − min{r, c} ≥ sea + er.

If s ≥ 2, then

ei ≥ sea + er + (s − 1)a2 + r2 + sar − (s − 1)aã − ãr − sc + s − ra + c − r − 1

≥ sea + er + (s − 1)a + r2 − sc + s + c − r − 1

≥ sea + er + r2 + s − r − 1 ≥ sea + er.

The first part of Theorem 6.8 follows.

Let a = b = 5, c = 4. Computing directly all ei, i ≤ 7, we get that the maximum 

element in K2 equals 5. Since β = 3, the second part of Theorem 6.8 follows from 

Theorem 6.4. �

Unfortunately, we can not generalize Theorem 6.8 to the case a = b > 5, c ≥ 4, 

or a = b = c = 5. Also, note that, when a < b, we get the upper bound g∗
1 , and not 

g∗
2 , as everywhere before in this section. Actually, g∗

1 = g∗
2 in this case since g∗

r is non-

decreasing. Indeed, if g∗
1(i) < g∗

2(i) for some i, then wsat(v + i, Fa,b,c) < g∗
2(i) + ℓ − 1

whereas wsat(n, Fa,b,c) ≤ g∗
2(n − v) + ℓ − 1 for all n, that contradicts Theorem 6.3.
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We shall conclude this section by noting that it is not always true that wsat(n, F ) =

g∗
β(n − v) + ℓ − 1 even when wsat(v, F ) = ℓ − 1. To see this, consider F obtained by 

the deletion of a maximal matching (consisting of 4 edges) from K9. It is obvious that 

wsat(v = 9, F ) = ℓ − 1 = 31, that β = 6 and that g∗
6(i) = 17

3 i + O(1). Let us now show 

that actually wsat(n, F ) ≤ 11
2 n + O(1) implying wsat(n, F ) < g∗

β(n − v) + ℓ − 1 for n

large enough.

Consider a 4-set P ⊂ V (F ) of single ends of all 4 edges of the missing matching in 

F . Clearly P induces a clique, and there are exactly 22 edges in F adjacent to P . Let 

us show that from any weakly saturated H we may get another weakly saturated graph 

H̃ by adding 4 vertices and 22 edges, that clearly implies the desired claim. Let H̃ be 

obtained from H by adding the 4-clique P together with the 16 edges going from P to 

some 5 vertices v1, . . . , v5 in H exactly as in F . Delete one of the edges with both ends 

in P , and add an edge from P to some v6 ∈ V (H) \ {v1, . . . , v5} instead. It is easy to 

see that the final graph H̃ is indeed weakly saturated. First of all, the deleted edge in P

and all missing edges between P and v1, . . . , v5 can be added since wsat(v, F ) = ℓ − 1. 

Secondly, we may add all edges from v6 to P , and then add all the other edges.

6.3. Proof of Theorem 6.3

The proof strategy is actually similar to those in the proof of Theorem 2.1, the main 

difference is that we will not force sets of vertices Bκ to be disjoint. However, instead we 

will require sets of edges induced by Bκ to be disjoint. That would actually imply that 

each pair of vertex sets has at most 1 vertex in common.

So, let n ≥ v. For i ≥ v, set f2(i) = g∗
2(i − v) + ℓ − 1. Let H ∈ wSAT(n, F ). Let OH

be the set of all vectors (B1, . . . , Bk) such that

• for every κ ∈ [k], Bκ ⊂ [n], |Bκ| ≥ v,

• for κ1 �= κ2, E(H|Bκ1
) ∩ E(H|Bκ2

) = ∅,

• for every κ ∈ [k], |E(H|Bκ
)| ≥ f2(|Bκ|),

• |B1| ≥ |B2| ≥ . . . ≥ |Bk|.

Note that the inequality |E(H|Bκ
)| ≥ f2(|Bκ|) immediately implies that |E(H|Bκ

)| =

f2(|Bκ|) since, by the assumption of Theorem 6.3, f2(|Bκ|) edges are enough to saturate 

a clique on Bκ. Moreover, for κ1 �= κ2, |Bκ1
∩ Bκ2

| ≤ 1, since otherwise we may find 

a weakly F -saturated H̃ in Kn with the number of edges less than in H. Indeed, since 

there are no edges in B := Bκ1
∩ Bκ2

, we may renew the f2(|Bκ1
|) edges induced by Bκ1

in such a way that at least 1 edge is entirely inside B, and the new set of edges on Bκ1

is weakly F -saturated in the clique K1 on Bκ1
. Next, in the same way, it is also possible 

to renew the set of f2(|Bκ2
|) edges induced by Bκ2

in such a way that at least 1 edge 

is entirely inside B, and this set of edges E2 is weakly F -saturated in the clique K2 on 

Bκ2
. Add to the constructed at the previous step graph all the edges from E2 that are 

not entirely in B. We get the graph with less than f2(|Bκ1
|) + f2(|Bκ2

|) edges which is 
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weakly F -saturated in K1 ∪ K2. In particular, this graph saturates all the edges of H in 

Bκ1
∪ Bκ2

with less number of edges than H has in this set — a contradiction with the 

minimality of H.

Let us also note that OH is obviously non-empty since we may take a single B which 

is the vertex set of the first copy of F that appears in the bootstrap percolation process 

that starts at H. We order OH lexicographically in the same way as in the proof of 

Theorem 2.1, and define B∗
H as a maximal element of OH . Thus, it remains to prove the 

following lemma.

Lemma 6.9. B∗ := maxH∈wSAT(n,F ) B∗
H = ([n]).

Proof. Assume the contrary. Let H be a weakly F -saturated subgraph of Kn such that 

B∗
H = B∗. Let us first prove that there exists a pair of non-adjacent in H vertices u and 

v that do not belong to any common Bκ from B∗. Let B := B1 be the first set in B∗. 

Due to the assumption, there exists a vertex v outside B. Assume that every u ∈ B is 

either adjacent to v in H, or belongs together with v to the same Bu from B∗. Take any 

u ∈ B non-adjacent to v and satisfying the second condition. As above, we may renew 

edges inside Bu in order to make u and v adjacent while keeping the same amount of 

edges inside Bu. Note that we have not changed adjacencies in all the other Bκ from 

B∗ since any two sets share at most 1 vertex. Thus, proceeding in this way, we may 

actually make v adjacent to all vertices of B. Denote the renewed graph by H̃. It is 

clear from the definition of g∗
2 that g∗

2(|B| + 1 − v) ≤ g∗
2(|B| − v) + |B| implying that 

f2(|B| + 1) ≤ f2(|B|) + |B|. Then, (B ∪ {v}) ∈ OH̃ — contradiction with the maximality 

of B∗.

We then take a pair of non-adjacent vertices u and v that do not belong to any common 

Bκ from B∗ and that is activated first in a bootstrap percolation process initiated at H. 

Let F̃ be a copy of F that appears together with {u, v} in this process. Consider the 

set S of all κ such that |Bκ ∩ V (F̃ )| ≥ 2. Note that S is non-empty since otherwise we 

may add V (F̃ ) to B∗ — contradiction with maximality. Let q ∈ S be such that |Bq|

is maximal. In the usual way, we may renew edges in every Bκ, κ ∈ S \ {q}, so that 

Bκ ∩ V (F̃ ) induces in H exactly the same graph as in F̃ . Thus, we may assume that all 

edges of F̃ other than {u, v} and those that belong to Bq initially belong to H. Note 

that the set of edges induced by B := Bq ∪ V (F̃ ) equals the union of the set of edges 

induced by Bq and E(F̃ ) \ {u, v} since otherwise there exists a graph on B which is 

weakly F -saturated and has less number of edges — contradiction with the minimality 

of H.

Let us show that the tuple B, composed of sets Bκ, κ / ∈ S, and B placed in the 

right order, belongs to OH , contradicting the maximality of B∗. The only not so trivial 

condition from the definition of OH is the third one (in particular, note that the second 

one holds since any of Bκ, κ / ∈ S, does not contain edges from E(F̃ ) \ {u, v}). It remains 

thus to verify this third condition. Denote i := v − |Bq ∩ V (F̃ )|. Then
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|E(H|B)| ≥ |E(H|Bq
)| + ei ≥ f2(|Bq|) + ei = g∗

2(|Bq| − v) + ei + ℓ − 1

≥ g∗
2(|Bq| + i − v) + ℓ − 1 = f2(|B|)

completing the proof. �

6.4. Proof of Theorem 6.4

We need several claims. First of all, let us prove that wsat(i + v, F ) − (ℓ − 1) is 

subadditive.

Claim 6.10. For every graph F and every i, j ∈ Z≥0, we have that

wsat(i + j + v, F ) − (ℓ − 1) ≤ [wsat(i + v, F ) − (ℓ − 1)] + [wsat(j + v, F ) − (ℓ − 1)].

Proof. Let A ∈ wSAT(v + i, F ), B ∈ wSAT(v + j, F ). Let U be a set of vertices in A

of size v, and let F̃ be the first copy of F that appears in an F -bootstrap percolation 

process initiated at B. Note that the number of edges in B|V (F̃ ) is at least ℓ − 1.

Consider the graph H on V (A) ∪ [V (B) \ V (F̃ )] constructed as follows. Add to A

disjointly the set of vertices W := V (B) \ V (F̃ ) and preserve those edges of B that have 

at least one end in W in the following way. The edges that are entirely inside W just 

remain the same, and the edges between W and V (F̃ ) are moved to form a bipartite 

graph between W and U : consider any bijection ϕ : V (F̃ ) → U , and draw an edge 

{x ∈ W, ϕ(y)} if and only if {x, y} ∈ E(B). It is obvious that H is a weakly F -saturated 

graph with at most wsat(i+v, F )+wsat(j+v, F )−(ℓ−1) edges, completing the proof. �

Next we claim that, for a subadditive function g(i) not to exceed g∗
r (i) for all i, it is 

sufficient to satisfy g(i) ≤ g∗
r (i) for i ∈ Kr.

Claim 6.11. Let g : Z≥0 → R be a subadditive function such that g(0) = 0. If g(i) ≤ g∗
r (i)

for all i ∈ Kr, then the same inequality holds true for all i ∈ Z≥0.

Proof. Note that g(0) = g∗
r (0) by the definition of g∗

r . Let us then take any i ∈ N, i / ∈ Kr. 

First of all, by the definition of g∗
r , there exist i1, . . . , ih ∈ [v−r] such that i1 +. . .+ih = i

and g∗
r (i) = ei1

+ . . . + eih
. Secondly, by the definition of Kr, for every j ∈ [h] such that 

ij / ∈ Kr, there exist ij
1, . . . , ij

sj
∈ Kr such that ij

1 + . . . + ij
s = ij and eij

≥ e
i

j
1

+ . . . + e
i

j
s
. 

We conclude that there exist i1, . . . , is ∈ Kr such that i = i1 + . . . + is and

g∗
r (i) ≥ ei1 + . . . + eis ≥ g∗

r (i1) + . . . + g∗
r (is) ≥ g(i1) + . . . + g(is) ≥ g(i),

as needed. �

Let r1, r2 ∈ [v − 1]. Assume that the maximum element of Kr1
is at most v − r2. 

It immediately implies that Kr1
⊆ Kr2

. Then, for all i ∈ Kr1
, g∗

r2
(i) = ei. Therefore, 
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for all i ∈ Z≥0, g∗
r2

(i) ≤ g∗
r1

(i) due to Claim 6.11. On the other hand, assuming that 

g∗
r2

(i) ≤ g∗
r1

(i) for all i ∈ Z≥0 and that i > v − r2 for some i ∈ Kr1
, we get that there 

exist i1, . . . , is ∈ [v − r2] satisfying i1 + . . . + is = i and g∗
r2

(i) = ei1
+ . . . + eis

. But 

then ei ≥ g∗
r1

(i) ≥ ei1
+ . . . + eis

contradicting the fact that i ∈ Kr1
. Setting r1 = r and 

r2 = β, we immediately get the equivalence of the second and the third properties in 

Theorem 6.4.

To prove the equivalence of the first and the second property, let us fix a graph 

F with wsat(v, F ) = ℓ − 1, and note that Claim 6.10 and Claim 6.11 imply that the 

inequality wsat(n, F ) ≤ g∗
r (n − v) + ℓ − 1 is true for every n if and only if the inequality 

wsat(i + v, F ) ≤ ei + (ℓ − 1) is true for ever i ∈ Kr. Then, the following lemma finishes 

the proof of Theorem 6.4.

Lemma 6.12. Let F be a graph such that wsat(v, F ) = ℓ − 1. Then Kβ = {i ∈ K :

wsat(i + v, F ) ≤ ei + (ℓ − 1)}.

Proof. Let us first proof Corollary 6.5 without relying on the statement of Theorem 6.4. 

It would imply Kβ ⊆ {i ∈ K : wsat(i + v, F ) ≤ ei + (ℓ − 1)}.

So, we fix n ≥ v and construct a weakly F -saturated graph H with g∗
β(n − v) + ℓ − 1

edges. First of all, let us find i1, . . . , is ∈ [v − β] such that i1 + . . . + is = n − v and 

g∗
β(n − v) = ei1

+ . . . + eis
. Then, we construct H as follows. Start from H0 which is 

a copy of F missing a single edge. Clearly, H0 is weakly F -saturated. Then, for every 

j = 1, . . . , s, assuming that a weakly F -saturated graph Hj−1 is constructed, set V (Hj) =

V (Hj−1) ⊔ Uj , where Uj has size ij , and E(Hj) = E(Hj−1) ⊔ Ej , where Ej has size eij
. 

The edges of Ej are drawn in the following way:

• let F̃j be a copy of F with Uj ⊂ V (F̃j) such that eij
+ 1 is exactly the number of 

edges in E(F̃j) \ E(F̃j \ Uj);

• Ej restricted on Uj coincides with E(F̃j |Uj
);

• take an arbitrary set Wj ⊂ V (Hj−1) of size |V (F̃j)| − |Uj | = v − ij and draw edges 

between Uj and Wj exactly in the same way as they appear between Uj and V (F̃j)\Uj

in F̃j ;

• remove a single edge from the final set of edges defined above.

It remains to prove that Hj is weakly F -saturated, and then conclude that H := Hs is the 

desired weakly F -saturated graph on n vertices. Note that there exists an F -bootstrap 

percolation process initiated at Hj that ends up at the union K of a clique on V (Hj−1)

and Uj ⊔ Wj . Note that the intersection of these two sets Wj has cardinality at least 

β and both sets have cardinality at least v. Thus, due to the definition of β, for every 

choice of x ∈ V (Hj−1) \ Wj and y ∈ Uj , a copy of F can be placed inside V (Hj) in such 

a way that {x, y} is the only edge that does not belong to the union of cliques K. Thus, 

all the remaining edges of the clique on V (Hj) can be activated, completing the proof.
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It remains to prove that {i ∈ K : wsat(i + v, F ) ≤ ei + (ℓ − 1)} ⊆ Kβ . Assume 

the contrary: take i ∈ [v − β + 1, v] ∩ K such that wsat(i + v, F ) ≤ ei + (ℓ − 1). Let 

H ∈ wSAT(v + i, F ). Consider an F -bootstrap percolation process H = H0 ⊂ . . . ⊂

HM = Kv+i, each single edge from Hj \ Hj−1 creates Fj
∼ = F in Hj . For every j ∈ [M ], 

let Uj = V (F1) ∪ . . . ∪ V (Fj). Note that UM = V (H) since otherwise there exists a 

vertex v ∈ V (H) adjacent to all the other vertices in H and such that H \ {v} is weakly 

F -saturated. But then deleting all but δ−1 edges going from v keeps the graph H weakly 

F -saturated — a contradiction with its minimality. Now, consider an inclusion-maximum 

sequence U1 ⊂ Uj1
⊂ . . . ⊂ Ujh

such that each successive set is strictly bigger than its 

predecessor. Set St = V (Fjt
) \ Ujt−1

, t ∈ [h], where j0 = 1. Note that

it := |St| ≤ v + i − |Ujt−1
| ≤ v + i − |U1| = i,

that eit
≤ E(H|Ujt

) \ E(H|Ujt−1
), and that i1 + . . . + ih = i. Then wsat(v + i, F ) ≥

ℓ − 1 +
∑h

j=1 eij
, and we get that

ei + (ℓ − 1) ≥ wsat(v + i, F ) ≥ ℓ − 1 +

h 
∑

j=1 
eij

.

The obtained inequality ei ≥
∑h

j=1 eij
may only happen if h = 1 and i1 = i since i ∈ K. 

But then wsat(v + i, F ) = ℓ − 1 + ei. It means that there is a bootstrap F -percolation 

process initiated at H such that, firstly, a clique on V1 := V (F1) is activated, secondly, 

a clique on V2 := V (Fj1
) is activated, and, finally, all edges between V1 \ V2 and V2 \ V1

are activated. Let us take the first edge {x, y} that appears between V1 \ V2 and V2 \ V1

and note that

|V1 ∩ V2| = |V2| − |V2 \ V1| = v − i1 = v − i ≤ β − 1.

But then we get that there exists a copy of F such that the deletion of at most |V1∩V2| ≤

β − 1 vertices from it creates the cut-edge {x, y} — a contradiction with the definition 

of β. �

Appendix A. The proof of Faudree, Gould and Jacobson

Let us recall the proof of the lower bound (2) due to Faudree, Gould and Jacobson [5]:

Assume that G ∈ wSAT(n, F ) for n sufficiently large. Partition the vertices of G into A

and B, with B being the vertices of degree δ − 1 and A the remaining vertices. Let 

|B| = k, and so |A| = n − k. The vertices in B form an independent set, since the 

addition of a first edge to v ∈ B must result in v and all of its neighbors having degree 

at least δ. Likewise, each vertex in A must have degree at least δ − 2 relatively to A to 

be able to add edges between B and A, since at most 2 vertices of B can be used. This 
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gives the inequality (δ − 1)k + (δ − 2)(n − k) ≤ δ(n − k). This implies k ≤ 2n/(δ + 1), 

and so wsat(n, F ) ≥ δn
2 − n 

δ+1 .

First, the counting argument (δ − 1)k + (δ − 2)(n − k) ≤ δ(n − k) is unclear and 

seems to be false since k could be greater than 2n/(δ + 1). In particular, the set B of 

Hv,n ∈ wSAT(n, Kv) obtained by drawing all edges from vertices on [n] \ [v − 2] to the 

clique on [v − 2] has cardinality n − δ + 1 which is bigger than 2n/(δ + 1) for all δ > 1. 

Second, the lower bound for wsat(n, F ) may follow only from a lower bound on k (we 

have the bound wsat(n, F ) ≥ (δ − 1)k + (δ−2)(n−k)
2 = δ−2

2 n + k δ
2 that increases in k). So, 

as might appear at first sight, the authors wrote the opposite inequality — it might be 

k ≥ 2n/(δ + 1). However, B could be even empty (take Kn ∈ wSAT(n, Kv)) and then 

k = 0. 
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