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A B S T R A C T

Soil-filled wire and geotextile gabions stand as vital bulwarks in military bases, harnessing soil’s innate capacity
to absorb shock and safeguard both personnel and critical assets from blast and fragmentation effects. Yet,
the dynamic response of cohesive soils under extreme loads remains largely unexplored, leaving engineers
grappling with a significant void in knowledge as they strive to fortify structures against emerging threats.
This paper considers the high-strain-rate behaviour of kaolin clay using the split Hopkinson pressure bar in both
confined and unconfined configurations, with a range of moisture contents representing dry, partially-saturated
and saturated conditions. Analysis of the results indicates distinct phase behaviours in transmitted and radial
stress based on strain rate, moisture content and confinement. Leveraging cutting-edge machine learning
models such as the Proper Orthogonal Decomposition (POD) and sparse Proper Generalised Decomposition
(sPGD), data-driven parametric models were developed based on the experimental data. These models enable
the prediction of cohesive soil behaviour at specified strain rate and moisture content, enabling engineers to
rapidly predict soil behaviour in response to new threats and ground conditions.

1. Introduction

Fortification engineers rely on soil-filled barriers like Hesco Con-
certainers for blast protection, yet cohesive soil’s high-strain-rate be-
haviour remains elusive despite its widespread use. Understanding
cohesive soils such as clay and silt is crucial for the design of fortifica-
tions, due to their global presence and potential as alternatives where
sandy soils are less common.

Precise data on local soils are vital for fortification engineers to
adapt designs, urging comprehensive studies on soil behaviour under
extreme loading conditions. Focusing on kaolin clay offers a foun-
dation for understanding its response to strain rate, moisture, and
confinement variations through SHPB tests. The complexities of cohe-
sive soils, including their undrained behaviour and fine particle size,
pose challenges compared to cohesionless soils such as sand [1–6],
necessitating new research to inform resilient fortification designs and
bridge existing knowledge gaps.

Experimental research on kaolin clay has explored its behaviour
under varied confinement, moisture content and strain rate conditions
[7]. In summary, experimental testing on kaolin clay demonstrated
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that fully saturated cohesive soil samples exhibited fluid-like behaviour
and showed a clear dependence on strain rate. The study also high-
lighted the significant effects of strain rate and moisture content on
the high-strain-rate response of these soils. Additionally, phase be-
haviour was observed under both confinement conditions, reflecting
categorical variations in axial and radial stress responses. On the other
hand, numerical modelling demonstrated that a valid SHPB model
design could represent both testing conditions. However, the LS-DYNA
models created showed significant limitations in modelling cohesive
soils: they could not capture phase behaviour, and the Mohr–Coulomb
model proved largely ineffective in modelling cohesive soils under
high-strain-rate conditions. The model was speed-driven and struggled
to accurately represent the material’s cohesive properties. Addition-
ally, the perfect seal of the confining ring in the numerical model
affected the amplitude of the results. Overcoming the limitations of
time-consuming high-strain rate testing, and inaccuracies in numerical
modelling, machine learning methods leverage collected test data to
construct data-driven parametric models capable of predicting cohesive
soil behaviour.
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Various machine learning algorithms can be utilised for regression
tasks. Linear regression assumes a relationship between input features
and the target variable, while polynomial regression extends this con-
cept by considering polynomial relationships. Regularised regressions,
such as Ridge and Lasso, add penalty terms to prevent overfitting and
induce sparsity in models [8]. Support vector Regression (SVR) [9]
extends support vector machines (SVMs) for regression tasks, while
decision trees [10] and random forest regression [11] split the data
and combine trees to improve accuracy. Gradient boosting [12] builds
weak learners sequentially, correcting errors, and deep learning tech-
niques [13], like artificial neural networks, learn complex relationships
for regression.

Polynomial regression techniques, employed in computational me-
chanics [14] and structural deformation [15], have yet to be applied in
the field of blast and impact dynamics. This study aims to utilise SHPB
test data and machine learning tools to rapidly predict the high-strain-
rate behaviour of cohesive soils under diverse loading conditions and
material properties.

2. Parametric modelling: background, method & theory

Model Order Reduction (MOR) is a field within computational
science focused on simplifying complex mathematical models, such
as differential equations or transfer functions, while preserving their
essential dynamics. By reducing degrees of freedom, MOR creates
reduced-order models (ROMs) that enable faster simulations, optimi-
sation, and control design with high fidelity. This approach is par-
ticularly useful for high-dimensional or parametric systems commonly
encountered in scientific applications.

Now, a general procedure for constructing parametric surrogates of
curves is presented, using extensive literature and detailed reviews on
state-of-the-art MOR technologies [16–18]:

1. Consider a scenario where experimental data is collected, com-
prising of input parameters 𝐩𝑖 and corresponding output curves
𝑔(𝑥;𝐩𝑖). Each curve represents the system’s behaviour under
various conditions, with 𝐩𝑖 representing geometrical or mate-
rial parameters. In simulation-based engineering, data 𝑔(𝑥;𝐩𝑖)

is typically obtained through simulation software runs, with
the parameters of interest 𝐩𝑖 potentially including modelling
features.

2. Each experimental data point can be viewed as a snapshot
(𝐩𝑖, 𝑔(𝑥;𝐩𝑖)), where 𝑖 = 1, 2,… , 𝑛𝑠, (𝑛𝑠 is the number of sampling
points used for training) depicting parameter combinations and
their corresponding output curves.

3. Dimensionality reduction techniques such as Principal Compo-
nent Analysis (PCA) or Proper Orthogonal Decomposition (POD)
are applied directly to test data to extract dominant modes of
variability in the output curves 𝑔(𝑥;𝐩𝑖).

4. The reduced basis functions 𝜙𝑗 (𝑥) are constructed by identifying
the dominant modes through dimensionality reduction. These
basis functions effectively capture the essential features of the
output curves.

5. Using the reduced basis functions, a surrogate model 𝑔̂(𝑥,𝐩) is
constructed to approximate the output curves 𝑔(𝑥;𝐩𝑖) based on
the input parameters 𝐩𝑖 and the domain 𝑥. This surrogate model
can be formulated as:

𝑔̂(𝑥,𝐩) =
𝑚∑
𝑗=1

𝜆𝑗 (𝐩)𝜙𝑗 (𝑥)

where 𝜆𝑗 (𝐩) are the coefficients of the surrogate model, which
depend on the parameters 𝐩.

6. Surrogate models for 𝜆𝑗 (𝐩) can be built by training a regression
algorithm on the available dataset, to establish links between
input parameters and measured output.

In polynomial regressions, addressing high-dimensional parametric
challenges has led to techniques like Proper Generalised Decomposition
(PGD) [19–21]. PGD, a tensor-based method, uses separable represen-
tations and a greedy iterative algorithm for adaptive basis construction.
It is applied across engineering and scientific fields, including blast and
impact dynamics.

2.1. POD-based modes extraction

To construct the snapshots matrix for training data {𝑔𝑖(𝑥)}
𝑛𝑠
𝑖=1

, for
𝑥 ∈ 𝑋 = {𝑥𝑗}

𝑛𝑥
𝑗=1

utilised in this study, consider the following procedure:

𝐒 =
[
𝐠1 𝐠2 … 𝐠𝑛𝑠

]
∈ R

𝑛𝑥×𝑛𝑠 ,

where 𝐠 ∈ R
𝑛𝑥×1 contains the evaluations of 𝑔(𝑥) over the discrete

ensemble 𝑋.
Next, a reduced factorisation of the snapshots matrix is achieved

through a standard truncated POD of rank 𝑟:

𝐒 ≈ 𝐔𝜮𝐕𝑇

where 𝐔 ∈ R
𝑛𝑥×𝑟, 𝜮 ∈ R

𝑟×𝑟, 𝐕 ∈ R
𝑛𝑠×𝑟. From these, we can define the

matrices of POD modes and coefficients, as follows:

𝜱 ∶= 𝐔 =
[
𝝓1 𝝓2 … 𝝓𝑟

]
, 𝜦 ∶= 𝐕𝜮 =

[
𝝀1 𝝀2 … 𝝀𝑟.

]

The matrix 𝜱 contains, by columns, the functions of the reduced
POD basis {𝝓𝑖(𝑥)}

𝑟
𝑖=1

evaluated at points in 𝑋, while 𝜦 collects the
projection coefficients into the reduced basis. For a generic curve 𝑔𝑘(𝑥)
belonging to the training dataset, where 𝑘 = 1,… , 𝑛𝑠 and 𝑥 ∈ 𝑋, its
reduced counterpart is given by:

𝑔
(𝑟)

𝑘
(𝑥) =

𝑟∑
𝑖=1

𝜆𝑘,𝑖𝜙𝑖(𝑥), (1)

and, in particular, its discrete form reads

𝐠
(𝑟)

𝑘
= 𝜦𝑘,∙𝜱

𝑇 ,

where 𝜦𝑘,∙ denotes the 𝑘th row of the matrix 𝜦.
Now, let us consider a parametric curve dependent on 𝑑 features 𝐩̄ ∈

𝛺, denoted as 𝑔(𝑥; 𝐩̄), where 𝑥 ∈ 𝑋. From Eq. (1) it is evident that once
the reduced basis matrix 𝜱 is available, this function is projected onto
this basis solely through the POD (parametric) coefficients {𝜆𝑖(𝐩)}

𝑟
𝑖=1

:

𝑔(𝑟)(𝑥; 𝐩̄) =
𝑟∑
𝑖=1

𝜆𝑖(𝐩̄)𝜙𝑖(𝑥).

The equation above indicates that a reduced-order parametric meta-
model for the curves can be constructed using only the set of coeffi-
cients {𝜆𝑖(𝐩)}

𝑟
𝑖=1

. Specifically, the following parametric function shall
be constructed:

𝐟 (𝐩) =

⎡
⎢⎢⎢⎢⎣

𝜆1(𝐩)

𝜆2(𝐩)

⋮

𝜆𝑟(𝐩)

⎤
⎥⎥⎥⎥⎦
∶ 𝛺 ⊂ R

𝑑
→ R

𝑟,

from the training dataset available as {𝐩𝑘,𝜦𝑘,∙ = (𝜆𝑘,1, 𝜆𝑘,2,… ,

𝜆𝑘,𝑟)}
𝑛𝑠
𝑘=1

, obtained after the POD.

2.2. Advanced PGD-based sparse nonlinear regressions

Nonlinear regression methods such as the sparse Proper Generalised
Decomposition (sPGD) are increasingly vital for managing complex
parameters efficiently while preserving accuracy, complementing MOR
techniques for real-world engineering problems [19–21]. These meth-
ods have recently gained significant attraction in industry, with various
approaches expanding their applicability for approximating parametric
curves [15,22–24].

In this section, the focus shifts to the concept behind the PGD-
based regression methods for constructing metamodels dependent on 𝑑
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features, which are used in this study [15]. This setup enables the pre-
diction of parametric curves using the coefficients 𝜆𝑖(𝒑) corresponding
to the POD modes, as previously suggested.

For each coefficient 𝜆𝑖(𝐩), the challenge lies in constructing the
function

𝑓 (𝑝1,… , 𝑝𝑑 ) ∶ 𝛺 ⊂ R
𝑑
→ R,

which depends on 𝑑 features (parameters) 𝑝𝑘, 𝑘 = 1,… , 𝑑, within
the parametric space 𝛺, given a sparse sample of 𝑛𝑠 points and their
corresponding outputs.

The sparse PGD (sPGD) represents the function 𝑓 using a low-rank
separated representation

𝑓 (𝑝1,… , 𝑝𝑑 ) ≈ 𝑓𝑀 (𝑝1,… , 𝑝𝑑 ) =
𝑀∑
𝑚=1

𝑑∏
𝑘=1

𝜓𝑘
𝑚
(𝑝𝑘), (2)

constructed from rank-one updates within a greedy constructor. Here,
𝑓𝑀 denotes the approximation, 𝑀 the number of employed modes
(sums), and 𝜓𝑘

𝑚
the one-dimensional functions pertaining to mode 𝑚

and dimension 𝑘.

The functions 𝜓𝑘
𝑚

, 𝑚 = 1,… , 𝑀 and 𝑘 = 1,… , 𝑑, are derived from a
standard approximation basis 𝐍𝑘

𝑚
using coefficients 𝐚𝑘

𝑚
:

𝜓𝑘
𝑚
(𝑝𝑘) =

𝐷∑
𝑗=1

𝑁𝑘
𝑗 ,𝑚(𝑝

𝑘)𝑎𝑘
𝑗 ,𝑚 = (𝐍𝑘

𝑚
)𝑇 𝐚𝑘

𝑚
,

where 𝐷 represents the number of degrees of freedom (nodes) of
the chosen approximation and 𝐍𝑘

𝑚
is the vector collecting the shape

functions.

In standard regression, the approximation 𝑓𝑀 is obtained by min-
imising the error function

𝑓𝑀 = arg min
𝑓∗

‖‖𝑓 − 𝑓 ∗‖‖22 = arg min
𝑓∗

𝑛𝑠∑
𝑖=1

|𝑓 (𝐩𝑖) − 𝑓 ∗(𝐩𝑖)|2,

where 𝑓𝑀 takes the separated form of Eq. (2), 𝑛𝑠 is the number of
sampling points used for training, and 𝐩𝑖 are the vectors containing the
input data points of the training set. It is important to note that to avoid
overfitting, the number of basis functions 𝐷 must satisfy 𝐷 < 𝑛𝑠.

The approximation coefficients for each one-dimensional function
are computed using a greedy algorithm. Given the approximation up
to order 𝑀 − 1, the 𝑀th order term is determined as

𝑓𝑀 =

𝑀−1∑
𝑚=1

𝑑∏
𝑘=1

𝜓𝑘
𝑚
(𝑝𝑘) +

𝑑∏
𝑘=1

𝜓𝑘
𝑀
(𝑝𝑘)

The resulting function is expected to approximate 𝑓 not only in the
training set but also at any point 𝐩 ∈ 𝛺.

The main challenge lies in balancing detailed approximations with
limited data and avoiding overfitting. To address this, a modal adaptiv-
ity strategy (MAS) was introduced alongside sPGD. However, achieving
desired accuracy with MAS can lead to overfitting or premature ter-
mination, resulting in low-order PGD solutions that lack sufficient
detail [19]. Additionally, in cases with sparse non-zero elements in the
interpolation basis, MAS may struggle to accurately capture the true
model, reducing accuracy. Various regularisation methods combining
𝐿1 and 𝐿2 norms affecting coefficients 𝐚𝑘

𝑚
have been proposed to

enhance predictive performance beyond sPGD or create parsimonious
models with improved accuracy [20].

3. Split-Hopkinson pressure bar testing of cohesive soils

This is a concise overview of the Split-Hopkinson pressure bar
testing of cohesive soils conducted in [7], highlighting all the key
testing parameters. For further details, please refer to [7].

Table 1
Overview of the kaolin clay material properties.

Soil properties Units Value

Primary mineral – Kaolinite
Particle density, 𝜌𝑠 Mg m−3 2.65
Liquid limit, LL % 40
Plastic limit, PL % 25
Plastic Index, PI % 15
𝐷50 μm 0.74
Particle sphericity – Low – Medium
Angularity – Subrounded – Subangular
Surface texture – Smooth

3.1. Material characterisation

The soil chosen is defined as white fine CLAY (CL) according to EN
ISO 14688–1:2002 [25], and referred to as ‘kaolin clay’ for brevity.
Table 1 outlines the material properties of the kaolin clay, derived using
the methods detailed below.

The kaolin clay’s particle size distribution (PSD) was assessed using
IMERYS’ supplier-provided data sheet. Fig. 1 shows the cumulative
PSD, revealing a 𝐷50 of 0.74 μm. With 80% clay and 20% silt, the soil
is classified as CLAY (CL).

Fig. 1. Cumulative particle size distribution of the kaolin clay soil.

The particle density, 𝜌𝑠, represents the density of the solid mineral
particles. Together with the bulk dry density, 𝜌𝑑 , it determines the soil’s
void ratio using the relationship:

𝑒 =
𝜌𝑠

𝜌𝑑
− 1

The kaolin clay’s particle density, 𝜌𝑠, was determined to be
2.65 Mg m−3, following the method outlined in BS 1377–2:1990
§8.2 [26], which is the density of kaolinite.

X-ray diffraction (XRD) was conducted on the kaolin clay to identify
its constituent minerals. In XRD, an incident X-ray beam diffracts due
to the specimen’s regular atomic structure. By measuring diffraction
intensity at various incident angles, 𝜃, a unique diffraction pattern is
obtained. This pattern was compared to a database of known patterns
for phase identification. Phase analysis utilised a PANalytical Aeris
diffractometer and the ICDD’s Diffraction File (PDF-4+). Fig. 2 displays
the diffraction pattern of the kaolin clay, revealing primarily kaolinite
with some quartz present.

Sample consistency is vital, hence Atterberg limits must be consis-
tent across all soil samples. The fall cone test was used to obtain the
Atterberg limits of kaolin clay [26]. The liquid limit (LL), plastic limit
(PL), and plastic index (PI) are 40%, 25% and 15%, respectively [26].
These values surpass the A-line, confirming the soil’s classification as
CLAY (CL) [27].

Kaolinite-sized particles in the soil were qualitatively assessed using
a scanning electron microscope (SEM), employing descriptors from EN
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Fig. 2. X-ray diffraction data of the kaolin clay soil.

Fig. 3. SEM imagery of kaolin clay at 20,000x magnification.

ISO 14688–1:2002 [25]. Before insertion into the SEM, the kaolin
clay soil undegoes gold (Au) coating. Fig. 3 illustrates the kaolin clay
particles, revealing variations from low to medium sphericity, with
subrounded to subangular shape, and smooth surface texture.

3.2. Specimen preparation

Kaolin clay samples were prepared using powdered speswhite kaolin
clay, mixed with water at a 1:1 ratio to form a slurry. The slurry was
consolidated in a pressurised cylindrical Rowe cell to 600 kPa, resulting
in a fully saturated kaolin clay wheel with a 44% moisture content.

Controlled drying was employed to study the effect of moisture con-
tent on the high-strain-rate behaviour of kaolin clay. Specimens with
moisture content levels ranging from 0 to 44% were prepared, covering
all saturation levels, from unsaturated to fully saturated [7]. For both
unconfined and confined SHPB testing, the following procedure was
followed to prepare the specimens:

1. Cylindrical kaolin clay samples with varying moisture content
are made using a 25 mm stainless-steel cylinder slicer. The
specimens have a nominal length of 5 mm and a diameter
of 25 mm. The initial weight of the kaolin clay specimen is
recorded immediately after it has been sliced.

Fig. 5. Diagrams showing (a) the confining ring for confined SHPB testing and (b) the
confining ring with the sample inside, ready for testing.

2. Samples are air dried in a temperature-controlled setting at 20
degrees Celsius, and weighed at regular intervals to measure
their current moisture content based on their initial wet weight
and current weight.

3. Cut and air-dried samples are then wrapped in polyvinylidene
chloride to minimise changes in moisture content between sam-
ple preparation and testing. The samples are prepared and tested
in different laboratories, hence they are stored in sealed plastic
bags until required for testing.

3.3. Experimental setup

The SHPB experimental setup features a conventional pressure
bar arrangement comprising a striker bar (350 mm), an incident bar

Fig. 4. Schematic diagram of the SHPB experimental setup with the confining ring [* removed for unconfined SHPB tests].
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Fig. 6. (a) Phase behaviour observed in SHPB testing of kaolin clay, defined by air and water volume ratios and maximum experimental strain. The indicative stress transmission
through the clay in each phase at 2800 s−1 is depicted for (b) unconfined and (c) fully confined test conditions.

(2500 mm) and a transmitter bar (1500 mm), each with a diameter
of 25 mm (Fig. 4). For confined SHPB testing, a steel confining ring
(Fig. 5a) was used to encase the sample between the incident and
transmitter bars (Fig. 5b).

Pressure bar strain gauges signals were captured using a TiePie
Handyscope four-channel digital oscilloscope with a 14-bit A-D reso-
lution, a sampling frequency of 1 MHz, and a record length of 131.072
kSa. The material’s axial stress response was monitored using a pair
of Kyowa KSP-2-120-E4 strain gauges mounted on the incident and
transmitter bars, while the radial stress was measured using a single
strain gauge mounted on the outside of the confining ring. Strain gauge
signals were collected from the incident and transmitter bars using
a half Wheatstone bridge configuration, and from the confining ring
using a quarter Wheatstone bridge configuration [7]. These signals
were then used to calculate the stresses in the kaolin clay specimen
using the conventional three-wave method [3,7].

3.4. Test programme

For unconfined SHPB testing, tests commenced at 8, 12 and 16 m/s
on kaolin clay samples with moisture content ranging from 0 to 44%.
Subsequent tests were conducted at 18, 20 and 22 m/s to assess the
impact of higher strain rates. Correspondingly, peak average strain
rates of 1200, 1900 and 2800 s−1, were achieved for 8, 12 and 16 m/s,
respectively [7].

For confined SHPB testing, tests started at 12 m/s on kaolin clay
samples with moisture content ranging from 0 to 41% for behavioural
comparison with the unconfined SHPB tests. Then, tests at 18, 20 and
22 m/s were conduced. Under confined conditions, the average peak
strain rates were 2600, 2800 and 3100 s−1, for 18, 20 and 22 m/s,
respectively [7].

Under both testing conditions, the specimen’s axial and radial
stresses and strains are measured.

It is important to note that the test speed in these SHPB experi-
ments is setup-specific, while the strain rate reflects what the sample
experiences during testing.

3.5. Testing results

The SHPB test signals for the incident bar, transmitter bar and
confining ring were processed using the open-source Python algo-
rithm 𝚂𝙷𝙿𝙱_𝙿𝚛𝚘𝚌𝚎𝚜𝚜𝚒𝚗𝚐.𝚙𝚢 [28]. This algorithm incorporates the sub-
routine 𝚍𝚒𝚜𝚙𝚎𝚛𝚜𝚒𝚘𝚗.𝚙𝚢, which implements Tyas and Pope’s dispersion-
correction approach [29]. This ensures accurate representation of the
sample’s axial and radial stresses and strains during testing.

The behaviour of the tested kaolin clay samples can be categorised
into four distinct ‘‘phases’’, each defined by its stress transmission
characteristics, termed the ‘‘back stress’’ in SHPB tests [7]. These phases
are delineated by the air volume ratio 𝑉𝑎𝑖𝑟∕𝑉 , water volume ratio
𝑉𝑤𝑎𝑡𝑒𝑟∕𝑉 , and the maximum experimental strain attained during the
experiment, as illustrated in Fig. 6a:

• Phase 0: Encompasses all dry specimens, positioned on the y-axis
in Fig. 6a.

• Phase 1: Comprises partially-saturated specimens where soil
pores are primarily filled with air. The maximum moisture con-
tent for phase 1 is defined by the boundary formed by the
intersection of the air and water ratio trendlines, denoted as Point
A in Fig. 6a.

• Phase 2: Comprises partially-saturated specimens where soil
pores are primarily filled with water. The upper limit of moisture
content is defined by the intersection of the air volume ratio with
the max experimental strain, marked as Point B in Fig. 6a.

• Phase 3: Defines experiments which begin partially-saturated,
but reach full saturation during testing.

The behaviour of soil specimens vary across the four phases, de-
pending on whether testing is unconfined or fully confined.

In unconfined conditions (Fig. 6b), each phase exhibits a distinct
stress transmission pattern, with increased moisture content correlat-
ing with reduced peak stress due to enhanced lateral movement and
specimen extrusion. While moisture content minimally impacts stress
transmission within each phase, back stress transmission increases with
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Fig. 7. Diagram of the classification of experimental SHPB test data.

rising strain rates.
In fully confined conditions (Figs. 6c), phases 0 and 1 primarily

involve the compaction of the dry soil fraction, showcasing a similar
shock absorption effect on transmitted stress. The attainment of high
strains in confined SHPB tests eliminates phases 2 at higher strain rates,
leading to an abrupt transition between phases 1 and 3. Upon reaching
saturation, clay samples assume fluid-like behaviour with 𝜈 = 0.5,
resulting in a significantly heightened stress transmission.

4. Development of data-driven parametric models

4.1. Data-driven classification

The classification of the data was conducted based on both the
experimental test results and the initial sample parameters.

The data obtained from the SHPB tests on the kaolin clay samples,
along with their initial parameters, can be classified into five categories
represented by a Russian doll model, as illustrated in Fig. 7: SHPB test-
ing, unconfined and confined conditions, strain rate, moisture content,
and phase number.

These parameters are ranked from 1 to 5, each denoting a different
level of specificity in data classification. Parameter 1 encompasses all
the tests, while parameter 5 represents a more specific subset. The
parameters are defined as follows:

1. ‘‘SHPB testing’’ encompasses all tests conducted using the SHPB
apparatus.

2. ‘‘Unconfined & confined conditions’’ categorises the tests which
were performed under ‘‘unconfined’’ or ‘‘confined’’ conditions.

3. ‘‘Strain rate’’ indicates the tests were conducted at different strain
rates: 1200, 1900, 2800 s−1 for unconfined and 2600, 2800 and
3100 s−1 for confined.

4. ‘‘Moisture content’’, reflects the varying moisture levels of the
kaolin clay samples tested, ranging from 0 to 44%.

5. ‘‘Phase No’’. assigns a specific phase number (0, 1, 2 or 3) to each
moisture content, as detailed in Section 3.5.

A total of 144 SHPB experimental tests were carried out on kaolin
clay samples spanning moisture contents from 0 to 44%. Among these,
98 tests were performed under unconfined conditions, while 46 tests
were conducted under fully confined conditions. The majority of the
test data was utilised to develop the parametric models, with the
exception of one test from each condition, which was reserved for
subsequent model validation.

The insights gained into the high-strain-rate behaviour of cohesive
soils, as discussed in Section 3.5, enabled the categorisation of the
test data into separate confinement conditions and different phase
behaviours, based on the sample’s moisture content and strain rate.
This physics-informed classification, was conducted manually, guided
by test findings, with the strain rate identified as the key parameter
influencing the material’s response. The model simplifies from a poly-
nomial regression to a linear analysis, with ‘‘strain rate’’, parameter 3,

Fig. 8. POD_sPGD flowchart.

as the key parameter. The analysis within each material phase number
showed that variations in moisture content had no discernible impact
on the overall response. Consequently, the mean response was used
for the parametric models. In summary, for unconfined conditions,
the strain rate was 1200, 1900, 2800 s−1, with four material phases,
while for confined conditions, it was 2700, 2800 and 3100 s−1 with 3
material phases, with phase 2 disappearing at 2700 s−1 under confined
conditions.

4.2. Parametric model

With the data classified into corresponding SHPB test conditions and
phase numbers based on strain rate and moisture content, attention
shifts to the parametric model. Fig. 8 details the structure of the
parametric model used for training the test data, comprising inputs, a
surrogate model, and outputs.

The input section focuses on the model’s input parameters: the
Design of Experiments (DOE) and Quantity of Interest (QOI). The DOE
represents the parameter the model trains on, which in this case, is the
key parameter: strain rate. Three strain rate values are utilised for each
confinement condition. The QOI refers to the mean data properties of
interest used for training against the DOE. For unconfined SHPB testing,
there are five QOIs: strain, front stress, back stress, mid stress and time.
Confined SHPB testing includes six QOIs: strain, front stress, mid stress,
back stress and radial stress and time.

Data training for each model is facilitated by the surrogate model,
made of two sections: POD mode extraction and sPGD regression.
Since there is only one parameter, strain rate, POD mode extraction
focuses on a single mode, mapping the data’s curve behaviour along
this parameter. Subsequently, sPGD regression utilises this information
to predict the data’s behaviour based on this relationship along the set
parameter.

After passing through the surrogate model, the training data is
saved, resulting in the creation of four different models for each phase
number, as illustrated in Fig. 9.

4.3. Visualisation model

After training the tests data using the POD_sPGD model, the trained
model results are saved according to their respective phase number.
This process is illustrated in Fig. 9, termed as the test data structuring
and model training flowchart.

This trained data is utilised for the visualisation model, as depicted
in the visualisation flowchart shown in Fig. 9. The visualisation model
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Fig. 9. Overall design flowchart of the data-driven parametric models.

consists of a four sections: model initialisation, model selection based
on selected output parameters, model design and visualisation out-
put. Model initialisation establishes the input parameters and widget
architecture. The model selection section is made of the phase num-
ber and strain rate selection functions. It established the relationship
between the trained POD_sPGD models for each phases number and
the corresponding moisture content ranges obtained from testing. The
model design encompasses interactive widget functionalities, while the
visualisation output updates the visual plots based on selected moisture
content and strain rate. As the selected strain rate changes, the model
representing the data remains the same. However, altering moisture
content prompts a transition between different material phase number,
resulting in a change of the model number selected to represent the
data.

The flowchart depicted in Fig. 9 guides the creation of two widgets
for each SHPB test condition, using the trained mean data. These final
interactive widgets, are displayed in Figs. 10 and 11. The unconfined
SHPB test model features four plots, representing the four QOIs: strain,
front stress, back stress and mid stress over time. Conversely, the
confined SHPB test model includes five plots, representing the five
QOIs: strain, front stress, mid stress, back stress and radial stress over
time.

The plot axes in Figs. 10 and 11 adjust responsively based on
the selected moisture content, corresponding to a specific phase at a
given strain rate. The y-axis dynamically adjusts to accommodate the
maximum potential value.

Confidence patches, depicting the 90% confidence interval based on
the standard deviation of the test data, are included in Figs. 10 and 11
in light grey for both unconfined and confined SHPB test conditions.
They are especially crucial for unconfined SHPB tests due to potential
errors associated with testing.

The widgets in Figs. 10 and 11, feature sliders for strain rate and
moisture content, facilitating adjustments between the different phase
behaviours of cohesive soil. The sliders are user-friendly, allowing for
quick and interactive changes. The selected values for moisture content
and strain rate are displayed on the right hand side of each slider.
Additionally, a point picking option is available above the sliders,

enabling selection of specific moisture content and strain rate values,
with the complete selected ranges next to them. Both options provide
immediate visualisation of cohesive soil responses under the selected
parameters, offering instant information.

4.4. Model validation

To validate the data-driven parametric models, a comparative eval-
uation against a random SHPB test is imperative. This involves testing
a kaolin clay sample with a specific moisture content under both
unconfined and confined conditions using the SHPB apparatus, at a
specific strain rate. The test results in red are compared against the
model predictions.

The additional unconfined SHPB test was conducted on a kaolin
clay sample with a moisture content of 11.32% at a speed of 12.0 m/s,
corresponding to a strain rate of 1996 s−1. Similarly, the confined SHPB
test involved a kaolin clay sample with a moisture content of 21.36%
at a speed of 20.0 m/s, resulting in a strain rate of 2976 s−1.

The comparative results between the data-driven parametric mod-
els and the additional SHPB tests are depicted in Figs. 12 and 13,
where the supplementary tests are plotted in red on the interactive
visual widgets. When comparing the newly performed tests and the
data-driven parametric models on the visual widgets, the predicted
representation exhibits remarkable accuracy, closely resembling the
expected material response seen in testing. In both test conditions, the
maximum amplitude is slightly higher, which is expected as the model
represents the mean behaviour. The confidence interval around the
black line is crucial, indicating the possible range of sample behaviour.
Therefore, it is prudent to base designs on the maximum value.

To enhance the model validation process, a quantitative comparison
was conducted between the experimental data and the model predic-
tions for both unconfined and confined SHPB test conditions, as shown
in Figs. 12 and 13. Metrics such as the coefficient of determination (𝑅2)
and root mean square error (RMSE) were computed for each plot, com-
paring the model’s predictions to the experimental results (Table 2).
This evaluation provides objective evidence of the model’s accuracy
and reliability, enabling a thorough assessment of its performance in
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Fig. 10. Parametric model visualisation widget for unconfined SHPB experimental data.

predicting the high-strain-rate behaviour of cohesive soils.
As depicted in Table 2, 𝑅2 values demonstrate a high level of

agreement, indicating a strong correlation between the model and
experimental data. Meanwhile, RMSE values are approaching 0 and are
less than 10%–20% of the data range, further confirming the model’s
accuracy against the validation test data. This underscores the model’s
reliability and minimal variance between the predictions and the actual
data. Notably, a single 𝑅2 value is measured, as the comparison is made
along the y-axis, with both curves sharing the same x-range.

This consistency across various test conditions reinforces reliabil-
ity, enabling engineers to make informed decisions based on accurate
assessments of high-strain-rate behaviour. The precision not only vali-
dates the models but also enhances their applicability in real-world sce-
narios, ensuring they effectively guide the design and implementation
of solutions to complex engineering challenges.

5. Discussion

Experimental SHPB tests were performed on kaolin clay samples,
covering a range of moisture contents from 0 to 44%. These tests were
conducted under both unconfined and confined conditions, totalling
144 experiments, with 2 tests reserved for model validation. Of these,
98 tests were completed under unconfined conditions, while 46 tests
were carried out under confined conditions. Analysis of the results re-
vealed distinct phase behaviours of cohesive soils under high-strain-rate
conditions, guiding the development of the parametric models.

Numerous constitutive models in LS-DYNA have been evaluated
for modelling the high-strain-rate behaviour of cohesive soils, but
they showed significant limitations [7]. As an alternative, parametric
modelling options were explored, with the POD-sPGD method chosen
to build these data-driven models. While these models are often viewed

as simple predictive tools, their true benefit lies in supplementing
existing experimental data, providing a more comprehensive dataset
for calibrating and assessing future numerical models. This approach
bridges the gap between Split-Hopkinson Pressure Bar (SHPB) testing
and numerical simulations, emphasising the need for both. Parametric
modelling offers a robust method to better integrate SHPB test data
with numerical models, improving our ability to interpret and calibrate
high-strain-rate behaviour.

In contrast to traditional machine learning approaches, such as
artificial neural networks (ANNs), the parametric modelling approach
using Proper Orthogonal Decomposition (POD) combined with the
sPGD method does not require intensive training cycles, validation
processes, or hyper parameter tuning. Unlike ANNs, which rely on
iterative training over multiple epochs and the optimisation of loss
functions such as mean squared error (MSE), the POD-sPGD method di-
rectly leverages experimental data to construct a reduced-order model
without the need for cumbersome training schemes. This provides a
clear advantage in terms of efficiency, making it more suitable for appli-
cations where large-scale training datasets or computationally intensive
processes are impractical. This distinction underscores the simplicity
and computational efficiency of POD-based approaches in compari-
son to traditional machine learning techniques, offering a streamlined
yet powerful alternative for generating accurate models from limited
experimental data.

The parametric models developed in this study were designed with-
out reliance on implemented machine learning Python libraries, en-
suring transparency and avoiding a black box scenario. Instead, the
machine learning model was developed based on mathematical princi-
ples, with the coupling of POD modes extraction and sPGD regression
methods proving invaluable in creating these parametric models. The
foundation for building these models was laid upon novel SHPB test
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Fig. 11. Parametric model visualisation widget for confined SHPB experimental data.

Fig. 12. Parametric model validation: comparison of an unconfined SHPB test (in red) and its data-driven parametric model.
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Fig. 13. Parametric model validation: comparison of a confined SHPB test (in red) and its data-driven parametric model.

Table 2
Comparison of experimental and parametric model results (versus time): R2 and RMSE values.

Unconfined SHPB data: model vs experimental results
Front stress Back stress Mid stress Strain Radial stress

𝑅2 0.73 0.87 0.70 0.97 –
RMSE 9.4 12.5 10.2 4.4 –

Confined SHPB data: model vs experimental results
Front stress Back stress Mid stress Strain Radial stress

𝑅2 0.71 0.76 0.68 0.99 0.59
RMSE 11.1 12.8 11.5 2.2 26.8

data.
The development of the models was guided by physics-informed

classification of test data. Clear delineation of test data into different
phase numbers based on confinement, moisture content, and strain
rate behaviour eliminated the need for classification algorithms. Con-
structed through POD modes extraction and sPGD regression algo-
rithms, the surrogate model played a vital role in producing trained
data representing each phase number observed in material testing.
The model’s architecture was predominantly shaped by the strain rate,
identified as the key parameter.

A vital aspect for understanding the trained data from the para-
metric models is a clear visual representation. To fulfil this need,
interactive widgets were crafted for both testing scenarios, offering
high responsiveness and user-friendliness. These widgets offer instan-
taneous responses and harness the trained data from the parametric
model.

In the current models, stress-time plots were generated, as this
approach is more aligned with practical, on-site applications and better
suited for evaluating the model’s effectiveness. However, if needed, the
validation model can also be adapted to use strain, instead of time,
allowing for the generation of stress–strain curves.

Model validation involved comparing the trained model data, de-
picted in black, with a distinct SHPB test, highlighted in red. Uncon-
fined tests demonstrated notable accuracy, with confined tests, though

fewer, also displaying considerable precision. Unconfined tests featured
larger confidence intervals due to their susceptibility to testing errors,
whereas confined tests showcased smaller confidence intervals owing to
their high consistency. Further refinement of the confined parametric
model can be achieved through additional testing. Nonetheless, at
this stage, the model proves sufficiently precise, offering significant
time and cost savings compared to traditional testing. Overall, the
parametric model effectively predicts the high-strain-rate behaviour of
cohesive soils under unconfined and confined conditions within the
tested range.

The machine learning tools (i.e. the POD and sPGD) used in the
development of these data-driven parametric models face several lim-
itations. Their performance is highly dependent on the quality of the
data collected, and their efficiency is influenced by the quantity of
available data based on the chosen experimental approach. In this case,
the limited number of tests conducted for each moisture content and
strain rate under different confinement conditions has an impact on
the accuracy and robustness of the models. Additional testing would
further improve the quality of these models.

The data-driven methods employed in this paper can be applied to
a wide range of scenarios, provided that data has been collected and
key parameters influencing the collected outputs have been identified.
Naturally, the more comprehensive the dataset and the greater the
number of influential parameters, the more fine-tuning the model will
require for optimal performance.

International Journal of Impact Engineering 198 (2025) 105218 

10 



A. Van Lerberghe et al.

6. Summary

Utilising cutting-edge machine learning polynomial regression tech-
niques such as the POD and sPGD, engineers can now access two
separate data-driven parametric models, offering rapid predictive ca-
pabilities for the behaviour of cohesive soils under various loading
conditions and material parameters.

Experimental SHPB tests were conducted on kaolin clay samples,
covering a range of moisture contents from 0 to 44%, under both
unconfined and fully confined conditions. Through these tests, the
degree of confinement, moisture content and strain rate were identified
as the significant factors influencing the specimen’s behaviour. This
dataset served as the foundation for testing and training the parametric
models.

The work undertaken in classifying the data was instrumental,
as it demonstrated the feasibility of organising the findings within
each phase number under specific confinement conditions and strain
rates. Moreover, given the similar behaviour observed among test
results within each phase number, the mean behaviour was used and
represented. Strain rate emerged as the key parameter within each
individual phase, effectively simplifying the complexity of the problem
from nonlinear to linear. The POD analysis was therefore conducted
along a single mode with strain rate as the key parameter, and sPGD
modelling was executed within each distinct phase number, for each
confinement state.

All tests, except for one from each test condition, were utilised for
model construction, while the reserved tests were set aside for valida-
tion, allowing for comparisons with actual experiments, underscoring
the accuracy of the two data-driven parametric models.

Interactive visual widgets were tailored for each test condition,
enriching the user experience and streamlining the utilisation of these
data-driven parametric models to empower engineers to respond
promptly and effectively to threats.

For future endeavours, expanding the scope to include lower and
higher strain rates would be beneficial, providing a more comprehen-
sive understanding of the behaviour of cohesive soils at high-strain-
rates. Nonetheless, the current results already offer substantial time
and cost savings. This would include applications such as designing
effective soil-filled barriers without the need for additional extensive
experimental testing.

It is envisioned that these models will empower engineers to safe-
guard personnel and infrastructure from a variety of threats through the
rapid assessment of cohesive soil properties. The POD-sPGD approach
offers remarkable versatility and adaptability compared to traditional
machine learning models such as ANNs, allowing for quick adjustments
to reflect new data without extensive training or hyper parameter
tuning. This efficiency makes the models ideal for practical applica-
tions, such as designing soil-filled barriers and enhancing infrastructure
protection.
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