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 Digital twins as self-models for 
intelligent structures
Xiaoxue Shen1, David J. Wagg1,2, Matthew Tipuric1,2 & Matthew S. Bonney3

A self-model is an artificial intelligence that is able to create a continuously updated internal 
representation of itself. In this paper we use an agent-based architecture to create a ‘digital twin self-
model’, using the example of a small-scale three-story building. The architecture is based on a set of 
heterogeneous digital components, each managed by an agent. The agents can be orchestrated to 
perform a specific workflow, or collaborate with a human user to perform requested tasks. The digital 
twin architecture enables multiple complex behaviors to be represented via a time-evolving dynamic 
assembly of the digital components, that also includes the encoding of a self-model in a knowledge 
graph as well as producing quantitative outputs. Four operational modes are defined for the digital 
twin and the example shown here demonstrates an offline mode that executes a predefined workflow 
with five agents. The digital twin has an information management system which is coordinated using 
a dynamic knowledge graph that encodes the self-model. Users can visualize the knowledge graph via 
a web-based user interface and also input natural language queries. Retrieval augmented generation 
is used to give a response to the queries using both the local knowledge graph and a large language 
model.

Keywords Digital twin, Self-model, Agent, Structure

In this paper, we consider how a digital twin might be used as a self-model in the context of structural engineering. 
The motivation is to move towards the idea of so called ‘intelligent’ (or ‘smart’) structures — something that 
has been an aspiration of engineers since the 1980s1. Up until now ‘low-level’ forms of intelligence have been 
developed, based on using material and control design (and more recently machine learning) to enable structures, 
such as buildings, bridges, or aircraft, to sense and respond to their environments2–5. In this paper we consider 
a different aspect of intelligence applied to structural engineering, that of the self-model6. More specifically, we 
argue that a digital twin can be used as a self-model for an intelligent structure.

Self-modeling is the process whereby an intelligent agent learns to model its own time evolving behavior. 
Self-modeling occurs in intelligent lifeforms (e.g. in humans and animals) and is a desirable attribute for entities 
with artificial intelligence (AI), such as robots7. We will define a self-model as an artificial intelligence capable of 
creating a continuously updated internal representation of itself. In this context, we propose to use a digital twin 
as the self-model for an intelligent structure.

Digital twins are virtual representations of a physical object or process called the physical twin, with the 
capacity for bi-directional data-exchange between the digital and physical domains8. In this work we will 
make an explicit distinction between the physical twin (we use a small-scale building as the example) and its 
surrounding physical environment9. The digital twin will be developed as a self-model of the physical twin, and 
the surrounding physical environment can then be considered either as a world-model10 in which the self-model 
operates or (as here) simply as an assumed boundary with the self-model. We therefore create a world-self-
model system9, where the digital twin acts as the self-model. Our approach is distinct from previous work which 
typically considers digital twins as creating a complete interconnected virtual representation of the physical 
world, such as the ‘world avatar’ concept11–13.

To demonstrate an initial version of the concept, we focus on creating a self-model that is an informational 
representation consisting of ‘self-knowledge’ and ‘memory’. The self-knowledge and memory are contained in 
an information management system14–17 that allows the digital twin to accumulate knowledge and also respond 
to queries from human users and agents. In this paper, the information management system for the digital twin 
is coordinated using a knowledge graph that is implemented using the Neo4j graph database package18. On 
first launch of the digital twin, the knowledge graph is built based on an initially available set of information. 
Following that, subsequent actions taken by the agents (or human users) are recorded as events in a dynamically 
updated version of the knowledge graph. In this way, the self-model is encoded in the knowledge graph.
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University of Sheffield, Sheffield S1 3JD, UK. 3School of Aerospace, Civil, Electrical and Mechanical Engineering, 
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Choice of example structure
Building structures form part of the built environment, and are often surrounded by many other similar structures 
in urban areas and cities19,20. Buildings are also complex systems in their own right, requiring increasingly 
advanced forms of asset management to optimize functions such as energy use based on human occupation21. 
Here we use a small-scale building as the example physical twin, because the system can be complex in its own 
right, but also part of a bigger more complex system22. Thus, we make a distinction between the self-model of 
the building itself, and a world-model of the environment surrounding the building.

To charactierize the level of intelligence, we adopt a four-level system where Level-0 means no intelligence, 
and Levels 1–3 progressively introduce aspects of intelligence9. In this work, the most important aspects of Level 
1–3 intelligence are that the digital twin (i) has a goal, (ii) can receive, process & output information to pursue 
the goal, (iii) has an informational representation of itself & the world, (iv) can self-update, (v) can abstract 
information from physical reality & transfer information into physical actions, and (vi) is able to interact with 
the physical world.

In order to demonstrate the concept, we will focus on aspect (iii), which is creating an informational 
representation of itself & the world. In our study the informational representation is limited to a system of 
self-knowledge about the constituent parts and behaviors of the structure including ‘memory’ of events that 
occur during a prescribed timeline. To achieve this, we use an architecture based on a set of ‘components’, each 
managed by an intelligent agent that can perceive information (across a communication network) and respond 
by taking actions. Each of the agents has responsibility for curating a component, and by orchestrating the agents 
together the components can be ‘assembled’ into a digital twin23.

The approach we take here is that the entire architecture of the digital twin is designed as a network of 
collaborating agents to enable both the dynamic assembly of components and the construction of a self-model 
which can maintain an updated internal representation of itself. Sample results are presented in the Results 
Section to show how the overall process works for the example system.

Related work
Self-models have a long history of development in cognitive science and philosophy24 and more recently in 
AI and robotics6,7. In a different context from this work, agent-based models within digital twins have already 
been considered by several authors, typically by using agent-based modeling to capture some process of interest 
within the digital twin19,25–28. More broadly, intelligent agents are an important tool in AI applications29–34. There 
are multiple interpretations and definitions of ‘agent’ including the rapidly developing topic of agentic systems 
where, for example, large language models (LLMs) are used as the agents35. Other approaches to building digital 
twins using graphical models, have also been developed36,37.

There is a wide literature relating to knowledge modeling38–41 for AI systems. Both knowledge graphs and 
LLMs have been developed extensively in the domain12,42,43. Digital twins including knowledge graphs have 
been developed, for example as part of the ‘world avatar’ concept11–13.

We note that there is no single definition of intelligence in the context of AI44, so here we adopt a four-level 
system previously described in the context of world-self-models9.

Results
Agent-based workflow
A sample result of creating the digital twin self-model for the three-story building example is shown in Fig. 1. 
In this example, a predefined workflow (Fig. 1b) has been designed for the three-story building digital twin. 
The workflow has a sequential structure, and will be started by the human user, after which there are a sequence 
of five requests to Agents 1 to 5. Each of the digital twin components (Fig. 1a) in this example are managed by 
Agents 1 to 5.

Agents 1 and 2 are designed to deal with the geometric complexity in this particular example. The information 
generated by Agents 1 & 2 is then passed onto the knowledge graph (Fig. 1c) and Agent 3 which deals with 
an aspect of the behavioral complexity for this example. Agent 3 also requires additional inputs that define 
the material properties, boundary conditions (eg the interface with the world model) and other details of the 
physical twin. This is provided using tabulated information based on the design and manufacture of the building 
(Fig. 1d). Outputs from Agent 3 include parameter matrices than can be used by Agents 4 and 5 which ultimately 
create the required quantitative and visual outputs that can be returned to the human user (Fig. 1g). Further 
details of the workflow, including architecture and implementation, are given in the Methods Section.

Encoding the self-model within the knowledge graph
The time-evolving knowledge graph is initially seeded from the available information (Fig. 1d) to represent 
the initial parameters and inputs of the building structure. As the workflow proceeds, the knowledge graph is 
updated in parallel (dashed lines in Fig. 1) to record the outputs from each Agent as entities and relationships 
in the knowledge graph. Seeding the knowledge graph requires context specific inputs from the digital twin 
designer (or a human user), which includes the initial computer-aided-design (CAD) geometry, and tabulated 
information about the material properties, joints, sensors, actuators & loads (often collated into a ‘bill of 
materials’), other boundary conditions (eg the interface with the world model) including parameters such as 
temperature etc. After seeding, and as the workflow progresses, each time an agent performs a task it also triggers 
an update to the knowledge graph, which evolves dynamically as the workflow progresses. The knowledge graph 
therefore essentially encodes the self-model, meaning it contains the knowledge representation of the physical 
twin and the associated computational agents, which can then be used as part of a query system for human users.
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User query results
In terms of what the human user experiences, an example user interface is shown in Fig. 2a, which in this case is 
a web browser window. The user interface can be customized to suit the particular application of the digital twin. 
In this case the user interface is designed as a proof-of-concept that showcases just a small number of desirable 
functionalities. For example, the interface shown on the left of Fig. 2 can be used to visualize the knowledge 
graph and interact with a chatbot-like query system.

The chat interface allows users to send questions via a text input field and receive responses from a server 
endpoint. Answers to the chat interface are provided by a combined knowledge graph and language model 
(LLM)-based question-answering system. The combination of knowledge graph and LLM is a form of retrieval 
augmented generation (RAG) that sends the user query to both the local knowledge graph and the LLM (which 
in this case is Chat-GPT43).

Examples of a human user making queries via the query box in the user interface are shown on the right 
side of Fig. 2. Figure 2b illustrates the results obtained when querying information explicitly available within 
the knowledge graph, such as the properties of material AL6082, the agents in the digital twin and their 
respective names. Conversely, Fig. 2c illustrates the outcome of queries for information that is absent from 
the local knowledge graph. In such cases, the query system switches to the external LLM API to retrieve data 
from internet-based sources, ensuring the provision of comprehensive responses when local graph data are 
incomplete or unavailable. The user interface indicates which system is answering by prefixing the response with 
‘RAG:’ when the local knowledge graph responds and ‘LLM:’ when the LLM API responds.

This example is designed to demonstrate how a self-model can be used to enable increased intelligence 
(Level-1 in this case9) in a digital twin of a structure. Specifically, the goal was to build a system of self-knowledge 
(e.g., the knowledge graph within the IMS) that can respond to natural language queries accurately and efficiently 
via RAG45,46.

(b)  Workflow

Fig. 1. Creating a digital twin (DT) self-model from a predefined workflow for the three-story building 
example, showing a the DT components, b the predefined workflow, c the knowledge graph which encodes the 
self-model, d additional data sources, e the physical twin (PT), f a sample of the measured data from the PT, 
and (g) quantitative outputs. The solid arrows show initial data flows and the dashed lines show dynamically 
updated data/information flows into the knowledge graph.
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Methods
Digital twin architecture and implementation
The overall architecture of the digital twin is shown schematically in Fig. 3. In this architecture, the digital twin 
is composed of three main parts that enable a connection between the physical twin and the human user(s). 
Firstly, there is a user interface through which human users give inputs and view the outputs of the digital twin, 
as shown in Fig. 2. The user interface directs the input to and outputs from the two other main parts. These parts 
are, firstly a network of N collaborative agents which are used to perform specific tasks within the digital twin. 
Each agent is responsible for ‘curating’ a specific component in the digital twin, where curating in this context 
means maintaining and updating the component. The agents communicate across a network, and each agent has 
a set of potential actions it can take, depending on the task at hand. All actions across the network are logged, 
and recorded as events in the temporal part of the information management system (IMS) which is coordinated 
using the knowledge graph. The numbered circles in Fig. 3 denote the main points of information exchange.

In the current context, it is important to understand the possible modes of operation for the digital twin, which 
are shown schematically in Fig. 4a. In this case, the modes of operation for the digital twin are a combination of 
the ‘connectivity modes’ and ‘work modes’. Note that ‘online’ means the digital and physical twins are actively 
connected over a network (via data flow 1  in Fig. 3), whereas ‘offline’ means that there is not an active connection 
between physical and digital twins. During the offline mode data flows are still possible via 2 , 3 , 4  and 5  shown 
in Fig. 3. The cases shown in in Fig. 4a are: 

 (1) online mode with agent orchestration; e.g. to carry out automated processes related to monitoring and con-
trol of the physical twin,

 (2) online mode with the human user and agents collaborating; e.g. to respond to urgent situations and take 
command of the situation,

 (3) offline mode with agent-based orchestration; e.g. to carry out predefined background processes and work-
flows, and

 (4) offline mode with the human user and agents collaborating; e.g. to carry out bespoke analyses and mainte-
nance that isn’t in a predefined workflow.

Normally agents are considered to be taking actions into an ‘environment’ and then learning from the feedback 
from the action taken. In the architecture proposed in Fig. 3, the agent will only be able to take actions that 
influence the physical twin (e.g. the physical ‘environment’) during the online connectivity modes. In offline 
mode, the agents will interact with either prerecorded and/or simulated (e.g synthetic) data. In other words, the 

Fig. 2. Screenshots of the user interface of the three-story building digital twin. a The web-page that forms the 
user-interface in this example, where a visualization of the knowledge graph is shown and the user can also 
input queries. Note that when the user’s cursor hovers over the agent node, the node dynamically enlarges, 
and the output generated by the agent is displayed adjacent to it (in this case the Gmsh image). This output 
visualization persists only during the hover interaction and is concealed once the cursor moves away from the 
node. The query system uses a form of retrieval augmented generation (RAG) to combine the local knowledge 
graph with a large language model (LLM). b A query which is answered using information from the local 
knowledge graph (the cursor response is RAG). c A query which is answered using information from the LLM 
(cursor shows as LLM).
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agents interact with a virtual environment47 only when in offline mode. The example chosen here falls into mode 
(3), it is an offline mode with a pre-defined, agent orchestrated workflow.

To create a digital twin self model the agents we use need to have some level of intelligence9. The specific 
details of the agents used in this work are considered next.

Agents
The detailed layout of the agent structure used here is shown schematically in Fig. 4b. The nth agent structure 
can be represented as a tuple αn = ⟨P, S, C, A⟩ with P inputs, S agent states, C component states, and A output 

Fig. 4. a Modes of operation for the digital twin as a combination of the connectivity modes and work modes. 
The cases are (1) online mode with agent orchestration, (2) online mode with the human user and agents 
collaborating, (3) offline mode with agent-based orchestration, and (4) offline mode with the human user and 
agents collaborating. b A schematic diagram of the structure of an intelligent agent within the digital twin.

 

workflows

Fig. 3. The overall architecture of the digital twin. N-agents are used to perform specific computational tasks 
within the digital twin. The agents communicate across a network. The information management system 
is coordinated with a dynamic knowledge graph, and the user interface allows the user to interact with the 
digital twin. The physical twin has local edge hardware such that data can be collected, and control actions 
taken to adjust the behavior of the physical twin. The numbered circles denote the main points of information 
exchange. Specifically 1  is the data exchange between the physical and digital twin, 2  is the exchange between 
the N agents and the IMS, 3  is the UI interface with the agents, 4  the UI and IMS and finally 5  is the human 
user interaction with the digital twin.
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actions. The agent receives inputs from human users and/or other agents in addition to sensor data across the 
network P = ⟨p1, p2..., pn⟩. Then the agent uses predefined logic to make a decision on what corresponding 
sequence of output actions is required A = ⟨a1, a2..., an⟩. The decision making process iterates the agent states 
S = ⟨s1, s2..., sn⟩ and relevant DT component states C = ⟨c1, c2..., cn⟩.

Each agent is given responsibility for curating (e.g. managing and maintaining) a specific digital twin 
component. These components are a heterogeneous set of ‘digital objects’23 that relate to the specific context of 
the digital twin, as shown in Fig. 1a. In terms of software architecture, each agent manages a digital object that is 
located in a software container. Containers are widely used in software development, and have also been using in 
building digital twins11. The container network is used to communicate between agents.

To demonstrate the implementation and potential use of agents, the example case in Fig. 1 will be explained 
further in this section. The workflow in Fig. 1 proceeds as follows. Agent 1 is used to build/upload the computer-
aided design (CAD) files representing the geometric complexity of the building, considered to be input p1. The 
output from Agent 1 is a set of STL (stereolithography CAD48) files of the individual components, as well as the 
assembled building structure. Each STL file describes a raw, unstructured triangulated surface by the unit normal 
and vertices of the triangles using a three-dimensional Cartesian coordinate system. For this demonstration, we 
utilize Blender, an open-source CAD software tool; however, STL is a widely used standardized format across 
most CAD software tools.

The STL files serve both as the output of the Agent 1 and as the input of the Agent 2, in the form of a mapping 
a1 → p2. The process carried out by Agent 2 using the Python library Gmsh49 is outlined in Algorithm A shown 
in Figure 5. After initializing Gmsh and setting the meshing parameters, the system merges the STL files stored 
in the digital twin system. The geometric information is then classified to redefine the surfaces, followed by the 
creation of discrete curves and surfaces in the mesh. Once these surfaces are created, a volume defined by these 
surfaces will be prepared for meshing with the specified meshing parameters. For simple geometries, this process 
can be fully automated.

Finally, Agent 2 converts the mesh to XDMF50 format so that it can be recognized by the open-source FEA 
tool FEniCSx51. This process first determines the topological dimension of the existing mesh, the types of cells 
and facets are defined. These are then extracted from the structured information and reconstructed as a MeshIO 
mesh in the mapping a2 → p3.

In addition to the mesh, the boundary conditions (type and coordinates), mesh specifications (size), and 
material properties (density, Young’s modulus, and Poisson’s ratio) are also required as the inputs for Agent 
3 (e.g. Fig. 1d) which manages FEniCSx, the finite element analysis (FEA) component. Agent 3 captures the 
behavioral complexity via two types of analysis: modal analysis and steady-state analysis. In this modal analysis 
case, the eigenfrequencies and mode shapes are compared with the data from the physical twin. The results 
of Agent 3 are then mapped to the input of Agent 4, a3 → p4 where they are verified against a reduced order 
ordinary differential equation model8. Lastly, with mapping a4 → p5, Agent 5 performs Bayesian calibration52 
that can calibrate the model parameters of Agent 4, using data measured from the physical twin8.

Example of calculating quantitative outputs
To demonstrate a quantitative result of the digital twin, an estimation of the parametric uncertainty of the 
stiffness parameters k1, k2, k3 from Agent 4, was carried out using Agent 5. A uniform prior distribution 
ranging from [30, 000, 50, 000]N/m is set as the initial estimate for the prior distributions of the parameters 
k1, k2, k3. Agent 5, Bayesian model calibration method, was then used to calibrate the analytical model by 
inferring the parameters k1, k2, k3

8,52, and the results are shown as quantitative and visual outputs in Fig. 1g. The 
discrepancy between the inferred (red line distributions) and the “ground truth” values (vertical black lines) in 

Fig. 5. Sample pseudo-code for the algorithms for parts of the agent process. Shown here are: A Gmsh 
meshing process, and B workflow of the knowledge graph.
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Fig. 1g is less than 200 N/m, which can be taken to be a reasonable result considering the range of the uniform 
prior distribution.

As the workflow progresses, the agents’ outputs are dynamically updated both in the knowledge graph and 
the relational database, and the results will be displayed via the user interface as shown in Fig. 2.

Information management system
The information management system (IMS)16 coordinates all data, information and knowledge within the 
digital twin. All the knowledge of these digital assets is modeled through a structured, ontology-based approach. 
Rooted in the philosophical exploration of being, existence, and reality, the term ontology has been adapted in 
information technology to describe a structured framework of concepts used to model a particular domain of 
knowledge. In the context of this digital twin, the ontology functions as a foundational blueprint that defines 
the classification, attributes, and interrelationships of entities across all components of the digital twin. For the 
example structure described in this paper, a more detailed ontology, including geometrical and behavioral, is 
described in the authors’ previous work53. Note that, we have chosen to develop a custom domain ontology in 
Neo4j because they can carry rich contextual information, including timestamps, values, and other attributes, 
which are not natively supported in other ontology models.

In this digital twin, the IMS consists of a knowledge graph and two relational databases. The first relational 
database contains information on material properties, joints, sensors, actuators, loads, boundary conditions, 
and conditions of the test environment (e.g. Fig. 1d). The second relational database contains the sensor data 
recorded from the physical twin (e.g., Fig. 1f).

Structure and time evolution of the knowledge graph
The knowledge graph was built using Neo4j18, and in this example is a property graph41 denoted as the tuple 
G = ⟨V, E, L, U, ℓ, e, r⟩ where V is the set of entities (graph nodes), E is the set of relationships (graph edges), 
L the labels, U are property-value pairs and ℓ, e, r are mappings within the graph. Specifically, ℓ is the mapping 
that defines each of the labels in L to the elements in V and E. Then e maps the relationships (edges) E to a pair 
of entities (nodes) in V. Finally, r maps entities and relationships to property-value pairs defined in U — see 
Algorithm B in Fig. 5.

A section of the resulting graph built from Algorithm B is shown in Fig. 6a, where circles represent entities 
and the relationships are shown using labeled single-direction arrows — note that a number of entities and 
relationships have been removed from Fig. 6a to make it readable. The graph is centered around a single entity, 
denoted Layer 0 (e.g. V0, the sand colored entity in Fig. 6) representing the top-level part of the hierarchy in the 
graph; for example, we can identify this as the self-model. Then each of the N agents are represented at Layer 1 
and shown as green entities in Fig. 6. Other entities are considered to be in Layers 2, 3 or 4 depending on the 
graph structure. In particular, Layers 3 and 4, are where the child characteristics of Layer 2 are defined and are 
inherently bespoke due to the heterogeneous nature of the components within the specific digital twin.

To give context, a single generic agent structure is shown in detail in Fig. 6b, which is assumed to be part of 
a generic ‘product’ at Level 0. Here examples of the detailed possible relationships, including self-relations and 
double entity relations are shown. The metagraph depicts how a range of agent architectures can be represented 
in the graph. Each agent within the DT has defined inputs and outputs and performs a distinct task. These 
tasks are predetermined, and therefore fixed in the graph structure. In contrast, input/output parameters, files, 
or components created during the agents’ operation will be added to the graph dynamically as the workflow 
proceeds. An example of the evolution of the knowledge graph is shown in Fig. 6c.

A time-stamped recording approach is employed for new events occurring within the DT, which are stored 
as entities or relationships in the KG. These timestamps effectively reflect the computational efforts of associated 
agents. Each agent operates in two distinct modes: ‘on’ and ‘off ’. In the ‘on’ mode, agents execute predefined 
computational functionalities, whereas in the ‘off ’ mode, the KG is updated to include either input or output 
data. The computational durations of the five agents were recorded as 9 seconds, 12 seconds, 20 seconds, 4 
seconds, and 1500 seconds (25 minutes), respectively, as shown in Fig. 6c.

RAG query system design
The information management system includes a natural language querying function which in this case is enabled 
using RAG between the local knowledge graph and a LLM. LLMs have gained much attention since the launch 
of Chat-GPT in late 202243. LLMs allow users to retrieve a comprehensive answer to a query (prompt), but the 
answer does not include information drawn from the specific domain defined by the user, especially from a 
specific application-based knowledge graph, or the most recent information (before the LLM was trained).

The user interface shown in Fig. 2 was built using a combination of HTML, CSS, and JavaScript. It contains 
a graph visualization powered by the D3.js library54. JavaScript is used to process user interactions, including 
fetching graph data from a server endpoint and rendering it using a force-directed graph layout. The nodes and 
edges of the graph are drawn with varying sizes and colors based on their labels and relationships. A custom 
centering force ensures that the Layers 0 & 1 node types (e.g. “product” and “agent”) are positioned strategically 
within the graph based on the assumption that the digital twin should be centered around the start node of the 
self-model.

In Fig. 2, the chatbox element is used to input natural language queries. The RAG is achieved by establishing 
a connection to the Neo4j graph database, facilitating semantic queries to the knowledge graph. Then the 
LangChain55 library is employed to query the graph using the natural language input from the user. Langchain 
processes the input into Cypher language, the underlying query language used to query the Neo4j graph data-
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Fig. 6. Examples of the knowledge graph structure, showing a the three-story building knowledge graph with 
the primary entity of the graph (Layer 0) as the sand color entity, and the agents as green entities — note a 
number of entities and relationships have been removed from this Figure to make it readable. b A meta-graph, 
indicating a generic graph structure for a generic agent, with a representative example of the associated entities 
and relationships. c Evolution of the knowledge graph; the KG is initialized by defining the Layer 0 node, and 
it will subsequently be updated for each of the agent inputs (indicated by red arrows) and outputs (indicated 
by blue arrows) to the KG; the associated computational time between agent inputs and outputs is indicated in 
seconds (s). Note only Layers 0 and 1 are color coded in this figure.
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base. If the Cypher query to the Neo4j graph fails to return a valid response, the system reverts to the OpenAI 
language model (GPT-4), querying the model via the OpenAI library using a chat-based completion approach. 
As a demonstration, the back-end log for the example shown in the top right side of Fig. 2, is shown below:

Notice that in the Full Context the parameter values are stored as key value pairs from U, for example for 
Poisson’s ratio as ′p.parameter_name′

:
′possionsratio′, ′v.parameter_value′

:
′
0.3′.

Discussion
The digital twin architecture presented here enables the ‘assembly’ of a series of heterogeneous digital components 
into a workflow that can be used to build a self-model. To enable the modes of operation, and switches between 
them, it is important that agents can both collaborate and work autonomously. We have shown one, small-scale, 
example of how this can be achieved for the case of just a single workflow in offline mode, and from that the 
initial self-model is encoded in the form of a knowledge graph. In this small-scale example, the knowledge graph 
is fulfilling the role of both a graph database and a knowledge-based representation of the self-model. Relational 
databases are used to store other information relevant to the overall self-model.

Knowledge graphs can be highly effective for managing information, as we have shown, by designing a 
hierarchical architecture in which the digital twin self-model concept is represented as the Layer 0 node, and 
agents serve to provide functionalities at Layer 1 of the digital twin. Dynamic knowledge graphs can be used to 
create ‘digital threads’ which can significantly enhance the life-cycle management of assets56. This is because, the 
timestamped event information, stored in the property graph, allows users to trace back the activities of agents 
that occurred within the digital twin. The ultimate goal of using these types of knowledge graphs is to integrate 
more sophisticated functions such as knowledge manipulation and reasoning capabilities12,42.

The example chosen for this proof-of-concept work was quite small-scale, but we believe that the architecture 
could be applied to many other applications, including at scale. Here, the purpose of the digital twin is chosen 
purely to demonstrate how an agent-based architecture can be used to deliver a specific outcome. Other choices 
could be made depending on the specific context of the application of interest. In this paper, we define the 
purpose as creating a system of self-knowledge and enabling users to make queries via a user interface to access 
the stored information. To achieve this functionality, a sample workflow for the digital twin is developed that 
integrates geometric, material, and behavioral properties of the building structure in addition to a series of 
analytical & numerical methods that create predictions and estimate uncertainties.

The output of our chosen example was a measure of parameter uncertainty. Future online workflows 
could use newly measured data to update multi-fidelity prediction models and perform more sophisticated 
uncertainty quantification and propagation methods. The high-fidelity model (such as FEA in Agent 3) can also 
be used to update and re-calibrate the low-fidelity models (like ODE in Agent 4) once updated. By continuously 
incorporating new information, the digital twin predictions remain up-to-date, while historical data are 
preserved for future retrieval via a digital thread. It is possible that future DTs could have simultaneous online/
offline connectivity modes and therefore be operating both physical and virtual environments at the same time. 
Also, we note that the example used here has significant similarities with building information management 
(BIM) systems which have also been explored in connection with digital twinning57.

However, it should also be noted that there are some limitations of the architecture proposed here. For 
example, by using agents in this manner, it will not always be easy (or even possible) to represent the coupling 
between physics that are not already contained in an individual agent. In particular, here we use a stepped 
workflow approach (similar to how most FEA software does multiphysics) that ignores the non-propagation 
aspects of the component parts of the overall model. For example, it could propagate the thermal stress but 
would not typically be able to propagate the thermal expansion/volume change.

Although not considered here, actions can be sent to ‘actuators’ (or other forms of action-taking mechanism 
acting on the physical twin) in the case that real-world actions are required. In the current example of the three-
story building, one method of taking actions is provided by force from a vibration ‘shaker’ (shown in Figure 1 (e) 
attached to the three-story physical twin).
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Conclusion
In this paper, an agent-based digital twin architecture has been used to create a self-model of a small-scale three-
story building. The architecture was based on a set of digital components, each managed by an agent, and used to 
create a self-model encoded in a knowledge graph. The agents can be orchestrated to perform a specific workflow 
or collaborate with a human user to perform requested tasks.

The workflow chosen here enabled both complex geometries and behaviors to be represented. In this case 
via a time-evolving dynamic assembly of the digital components, which also included uncertainty quantification 
of selected parameters within the digital twin. Four operational modes were defined, based on the combination 
of work and operational modes. The example shown here demonstrated an offline mode with agent-based 
orchestration to carry out a predefined workflow with five agents.

The information management system was coordinated using a dynamic knowledge graph that encoded the 
self-model. Users can visualize the graph representing the self-model via a web-based user interface. Natural 
language queries can be input by the human user, and a form of retrieval augmented generation was used to give 
response to the queries using both the local knowledge graph and a large language model.

Data availability
All code and data is available via:  h t t p s :  / / g i t h  u b . c o m  / D i g i  t a l - T w i n - O p e r a t i o n a l - P l a t f o r m / K G / t r e e / m a i n / d i g i t a 
l t w i n  

Received: 10 April 2025; Accepted: 30 July 2025

References
 1. Crawley, E. F. Intelligent structures for aerospace-a technology overview and assessment. AIAA J. 32, 1689–1699 (1994).
 2. Guran, A. & Inman, D. J. Intelligent Structures and Nonlinear Mechanics (World Scientific).
 3. Chopra, I. & Sirohi, J. Smart Structures Theory Vol. 35 (Cambridge University Press, 2013).
 4. Salehi, H. & Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Sruct. 171, 170–189 (2018).
 5. Tapeh, A. T. G. & Naser, M. Artificial intelligence, machine learning, and deep learning in structural engineering: a scientometrics 

review of trends and best practices. Arch. Comput. Methods Eng. 30, 115–159 (2023).
 6. Kwiatkowski, R., Hu, Y., Chen, B. & Lipson, H. On the origins of self-modeling. arXiv preprint arXiv:2209.02010 (2022).
 7. Chen, B., Kwiatkowski, R., Vondrick, C. & Lipson, H. Fully body visual self-modeling of robot morphologies. Sci. Robot. 7, 

eabn1944 (2022).
 8. Wagg, D. J., Worden, K., Barthorpe, R. J. & Gardner, P. Digital Twins: State-of-the-Art and Future Directions for Modeling and 

Simulation in Engineering Dynamics Applications. ASCE-ASME J. Risk Uncert. Engrg. Sys. Part B Mech. Engrg. 6, 030901 (2020).
 9. Yue, Y. A world-self model towards understanding intelligence. IEEE Access 10, 63034–63048 (2022).
 10. Bar, A., Zhou, G., Tran, D., Darrell, T. & LeCun, Y. Navigation world models. arXiv preprint arXiv:2412.03572 (2024).
 11. Akroyd, J., Mosbach, S., Bhave, A. & Kraft, M. Universal digital twin–a dynamic knowledge graph. Data-Centric Eng. 2, e14 (2021).
 12. Bai, J. et al. A derived information framework for a dynamic knowledge graph and its application to smart cities. Future Gener. 

Comput. Syst. 152, 112–126 (2024).
 13. Quek, H. Y. et al. Dynamic knowledge graph applications for augmented built environments through “the world avatar’’. J. Build. 

Eng. 91, 109507 (2024).
 14. Hetherington, J. & West, M. The pathway towards an information management framework-a ‘commons’ for digital built britain. 

CDBB white paper (2020).  h t t p s :   /  / w w  w . c d b  b . c  a m .  a  c  . u k /  fi   l e s   / t h e _ p  a t  h w a  y _ t o  w a r  d s _  a n _ i m f . p d f.
 15. Sacks, R., Brilakis, I., Pikas, E., Xie, H. S. & Girolami, M. Construction with digital twin information systems. Data-Centric Eng. 1, 

e14 (2020).
 16. Singh, S. et al. Towards information management framework for digital twin in aircraft manufacturing. Procedia CIRP 96, 163–168 

(2021).
 17. Correia, J. B., Abel, M. & Becker, K. Data management in digital twins: a systematic literature review. Knowl. Inf. Syst. 65, 3165–

3196 (2023).
 18. Bratanic, T. Graph Algorithms for Data Science: with Examples in Neo4j (Simon and Schuster, 2024).
 19. Clemen, T. et al. Multi-agent systems and digital twins for smarter cities. In Proceedings of the 2021 ACM SIGSIM conference on 

principles of advanced discrete simulation, 45–55 (2021).
 20. Caldarelli, G. et al. The role of complexity for digital twins of cities. Nat. Comput. Sci. 3(5), 374–81 (2023).
 21. Francisco, A., Mohammadi, N. & Taylor, J. E. Smart city digital twin-enabled energy management: Toward real-time urban 

building energy benchmarking. J. Manag. Eng. 36(2), 04019045 (2020).
 22. Lu, Q. et al. Developing a digital twin at building and city levels: Case study of west Cambridge campus. J. Manag. Eng. 36, 

05020004 (2020).
 23. Wagg, D. J. et al. The philosophical foundations of digital twinning. Data-Centric Eng. 6, e12 (2025).
 24. Metzinger, T. Being No One: The Self-model Theory of Subjectivity (MIT Press, 2004).
 25. Zheng, X. et al. A quality-oriented digital twin modelling method for manufacturing processes based on a multi-agent architecture. 

Procedia Manuf. 51, 309–315 (2020).
 26. Croatti, A., Gabellini, M., Montagna, S. & Ricci, A. On the integration of agents and digital twins in healthcare. J. Med. Syst. 44, 1–8 

(2020).
 27. Vrabič, R., Erkoyuncu, J. A., Farsi, M. & Ariansyah, D. An intelligent agent-based architecture for resilient digital twins in 

manufacturing. CIRP Ann. 70, 349–352 (2021).
 28. Marah, H. & Challenger, M. Madtwin: a framework for multi-agent digital twin development: smart warehouse case study. Ann. 

Math. Artif. Intell. 92, 975–1005 (2024).
 29. Wooldridge, M. Intelligent agents. In Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence 27–73 (MIT 

Press, 1999).
 30. Wooldridge, M. An Introduction to Multiagent Systems (Wiley, 2009).
 31. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach (Pearson, 2010).
 32. Abar, S., Theodoropoulos, G. K., Lemarinier, P. & O’Hare, G. M. Agent based modelling and simulation tools: A review of the state-

of-art software. Comput. Sci. Rev. 24, 13–33 (2017).
 33. Dziomin, U., Kabysh, A., Stetter, R. & Golovko, V. A multi-agent reinforcement learning approach for the efficient control of 

mobile robots. In Advances in Intelligent Robotics and Collaborative Automation 123–145 (River Publishers, 2022).
 34. Wang, L. et al. A survey on large language model based autonomous agents. Front. Comput. Sci. 18, 186345 (2024).

Scientific Reports |        (2025) 15:30327 10| https://doi.org/10.1038/s41598-025-14347-8

www.nature.com/scientificreports/

https://github.com/Digital-Twin-Operational-Platform/KG/tree/main/digitaltwin
https://github.com/Digital-Twin-Operational-Platform/KG/tree/main/digitaltwin
http://arxiv.org/abs/2209.02010
http://arxiv.org/abs/2412.03572
https://www.cdbb.cam.ac.uk/files/the_pathway_towards_an_imf.pdf
http://www.nature.com/scientificreports


 35. Acharya, D. B., Kuppan, K. & Divya, B. Autonomous intelligence for complex goals-a comprehensive survey. IEEE Access 13, 
18912–18936 (2025).

 36. Kapteyn, M. G., Pretorius, J. V. R. & Willcox, K. E. A probabilistic graphical model foundation for enabling predictive digital twins 
at scale. Nature 1, 337–347 (2021).

 37. Tezzele, M., Carr, S., Topcu, U. & Willcox, K.  E. Adaptive planning for risk-aware predictive digital twins. arXiv preprint 
arXiv:2407.20490 (2024).

 38. Allemang, D. & Hendler, J. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL (Elsevier, 2011).
 39. Fensel, D. et al. Knowledge Graphs (Springer, 2020).
 40. Bergman, M. K., Bergman, M. K. & Lagerstrom-Fife,. Knowledge Representation Practionary (Springer, 2018).
 41. Hogan, A. et al. Knowledge graphs. ACM Comput. Surv. (Csur) 54, 1–37 (2021).
 42. Zhou, B. et al. Semantic-aware event link reasoning over industrial knowledge graph embedding time series data. Int. J. Prod. Res. 

61(12), 4117–34 (2022).
 43. Teubner, T., Flath, C. M., Weinhardt, C., van der Aalst, W. & Hinz, O. Welcome to the era of chatgpt et al. the prospects of large 

language models. Bus. Inf. Syst. Eng. 65, 95–101 (2023).
 44. Wang, P. On defining artificial intelligence. J. Artif. Gen. Intell. 10, 1–37 (2019).
 45. Ieva, S. et al. A retrieval-augmented generation approach for data-driven energy infrastructure digital twins. Smart Cities 7, 3095–

3120 (2024).
 46. Xia, Y., Xiao, Z., Jazdi, N. & Weyrich, M. Generation of asset administration shell with large language model agents: Interoperability 

in digital twins with semantic node. arXiv preprint arXiv:2403.17209 (2024).
 47. Luck, M. & Aylett, R. Applying artificial intelligence to virtual reality: Intelligent virtual environments. Appl. Artif. Intell. 14, 3–32 

(2000).
 48. 3D Systems, Inc., “stl file format specification,” 1989. [online]. https://web.archive.org/web/20170105062756/,  h t t p : / / w w w . f a b b e r s . 

c o m / t e c h / S T L _ F o r m a t       
 49. Geuzaine, C. & Remacle, J.-F. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. 

Numer. Methods Eng. 79, 1309–1331 (2009).
 50. Geveci, B., Moreland, K. & Ahrens, J. Xdmf: extensible data model and format. retrieved from. https://www.xdmf.org/.
 51. Baratta, I. A. et al. Dolfinx: the next generation fenics problem solving environment (2023).
 52. Kennedy, M. C. & O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 63, 425–464 (2001).
 53. Shen, X., Devaraja, P., Wagg, D. & Bonney, M. S. A structured knowledge graph for a geometric and behavioral digital twin in the 

context of modal testing. In IMAC, A Conference and Exposition on Structural Dynamics, 5–14 (Springer, 2024).
 54. Bostock, M., Ogievetsky, V. & Heer, J. D

3
 data-driven documents. IEEE Trans. Vis. Comput. Gr. 17, 2301–2309 (2011).

 55. Topsakal, O. & Akinci, T. C. Creating large language model applications utilizing langchain: A primer on developing llm apps fast. 
In International Conference on Applied Engineering and Natural Sciences 1, 1050–1056 (2023).

 56. Singh, V. & Willcox, K. E. Engineering design with digital thread. AIAA J. 56, 4515–4528 (2018).
 57. Sepasgozar, S. M. et al. BIM and digital twin for developing convergence technologies as future of digital construction. Buildings 

13, 441 (2023).

Acknowledgements
This work was funded by the Alan Turing Institute. Xiaoxue Shen would like to acknowledge support from the 
Alan Turing Institute. This work was also partly funded by the EPSRC grant digital twins for improved dynamic 
design, United Kingdom (EP/R006768/1). David Wagg would like to acknowledge the support of UKRI via EP/
Y016289/1, and the Alan Turing Institute.

Author contributions
XS produced the three-story building results shown in the paper, including linking the components into agent-
based code, and the Blender, Gmsh, MeshIO, FEinCSx, Neo4j, D3.js, Cypher, Langchain, Chatgpt-4 and RAG 
implementation. DW developed the digital twin self-model concept, the software containerization structure, 
and managed the overall drafting process. MT and MB contributed to the physical twin and software develop-
ment for the three-story example including the data collection, CAD, Gmsh and FEA code. All authors contrib-
uted to the writing, review and editing of the paper.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:30327 11| https://doi.org/10.1038/s41598-025-14347-8

www.nature.com/scientificreports/

http://arxiv.org/abs/2407.20490
http://arxiv.org/abs/2403.17209
https://web.archive.org/web/20170105062756/
http://www.fabbers.com/tech/STL_Format
http://www.fabbers.com/tech/STL_Format
https://www.xdmf.org/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Digital twins as self-models for intelligent structures
	﻿Choice of example structure
	﻿Related work
	﻿Results
	﻿Agent-based workflow
	﻿Encoding the self-model within the knowledge graph
	﻿User query results

	﻿Methods
	﻿Digital twin architecture and implementation
	﻿Agents
	﻿Example of calculating quantitative outputs
	﻿Information management system
	﻿Structure and time evolution of the knowledge graph
	﻿RAG query system design

	﻿Discussion
	﻿Conclusion
	﻿References


