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Abstract

Heyman’s ‘safe theorem’ is widely used to assess the safety of masonry gravity
structures. In its original incarnation, a funicular thrust line—i.e., a hanging
chain—was used to represent a possible flow of forces through a structure,
though this was later found to be problematic in some cases. Following the
work of Moseley, a line of resistance has also been used as a representation
of a thrust line. However, although this provides a valid representation of
equilibrium, it does not facilitate clear visualization of a flow of forces within
a structure, making it less intuitive than a funicular thrust line. To address
shortcomings associated with funicular thrust lines, the notion of a ‘thrust
layout’ is also considered here. This can accurately represent a state of
equilibrium while also enabling visualization of the flow of forces. Thrust
layouts also allow explicit consideration of the tensile forces that can (or
cannot) be reasonably sustained in a masonry construction, such as within
constituent blocks but not across weak joints.

Keywords: Form-resistant structures, thrust lines, thrust layouts

1. Introduction

Robert Hooke (1635-1703) observed the correspondence between a hang-
ing chain and a rigid arch and stated ‘As hangs the flexible line, so but
inverted will stand the rigid arch’ [1, 2, 3]. Thus originated the idea of a ‘fu-
nicular’ to represent the equilibrium of an arch. In 1748, Poleni successfully
applied this to the analysis of the cracked dome of St. Peter’s in Rome [3].
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Since then, thrust lines generated from funiculars have been extensively
used in the analysis of masonry gravity structures, such as arches, vaults, and
domes. Here, such thrust lines generated from funiculars will be referred to
as ‘funicular thrust lines’, where the funiculars can be from physical hanging
chain/cloth models [4, 5, 6], graphic statics [2, 5, 7, 8], or various other nu-
merical methods (e.g., particle spring models [9, 10]). The usage of funicular
thrust lines was further popularized by the development of Heyman’s ‘safe
theorem’ [1], as this placed it within the realm of limit analysis, giving struc-
tural engineers the confidence to use it in everyday practice. Here, it is noted
that a thrust line may not represent the exact state of the structure, where
these masonry gravity structures are highly statically indeterminate a thrust
line would only show one possible flow of forces within the structure. As
Heyman [11] notes, and experimental evidence suggest [12], this is sufficient
to guarantee the safety of masonry gravity structures.

However, as was later noted by Heyman himself [13, 14], along with oth-
ers, funicular thrust lines unintentionally assume the structure to be made
up of equivalent vertical strips of material, rather than using the actual block
stereotomy that is present. If care is not exercised then this assumption may
lead to unsafe designs. For instance, when analysing a masonry buttress,
the masonry effective in resisting the external loads needs to be determined
first to prevent ineffective material from being inadvertently ‘lifted up’ to
the thrust line, leading to an overestimation of the load carrying capacity
[12, 15].

The usage of thrust lines is further complicated by the different notions of
thrust lines that arise from Moseley’s ‘line of resistance’ and ‘line of pressure’,
where the latter coincides with what is here referred to as a funicular thrust
line [3, 16]. Although the subtle but important distinctions between the
two have been previously noted, they have both been referred to as ‘thrust
lines’1, and used in the application of Heyman’s safe theorem (e.g., the line
of resistance is used as the thrust line in [5, 17, 18], whilst the line of pressure
/ funicular thrust line is used for this purpose in [2, 11, 19])

Drawing upon previous attempts to resolve these issues ([13, 16, 20]), a
thorough discussion is provided here. In addition, the new notion of a ‘thrust

1In this paper, the term ‘thrust lines’ is used as an umbrella term for all usages of thrust
lines. Furthermore, ‘thrust lines’ and ‘lines of thrust’ are considered interchangeable terms,
referring to the same.
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layout’ is introduced, which allows new light to be shed on the various defini-
tions of thrust lines. Thrust layouts are a valid representation of equilibrium
(as is the line of resistance) and a valid force flow (as is the line of pres-
sure/funicular thrust line) of masonry gravity structures, thus providing a
means of bringing together the current competing definitions.

Issues related to frictional contacts in thrust lines are noted but not ex-
plored in depth in this work. Heyman’s safe theorem assumes infinite fric-
tion capacity at masonry block interfaces, notwithstanding that frictional
failures in masonry gravity structures have been previously observed, e.g.,
sliding failure at the head of a flying buttress [21]. In this case, Bagi [22]
has pointed out that rigid block systems can fail even when an equilibrium
solution exists and the sliding resistance is not exceeded anywhere, with ad-
ditional kinematic conditions needing to be considered to make Heyman’s
safe theorem truly ‘safe’ in this case. Furthermore, other failure modes such
as creep instability and crushing at hinge points are also ignored [23].

In this contribution, the limitations of using funicular thrust lines are
first carefully considered. Then, to remedy these, thrust layouts are intro-
duced. Conjectures on detecting valid and erroneous funicular thrust lines
are also presented. An example of a flat arch on two columns is presented to
demonstrate the superiority of the proposed thrust layouts in comparison to
the funicular thrust lines.

2. The funicular thrust line

A funicular thrust line (or a ‘line of pressure’) is defined here as a funicular
polygon representing a possible state of equilibrium of a masonry gravity
structure. These terms are formally defined as follows.

Definition 1. A funicular polygon is an open or closed polygon that takes
the form of a (weightless) cable acted upon at a number of points by forces
in various directions. (see Fig. 1)

Definition 2. A funicular thrust line is a funicular polygon, where the
forces acting upon the cable represent the boundary conditions of a masonry
gravity structure (i.e., external loading, self-weight, and support reactions),
and the cable represents one possible state of equilibrium of the masonry
gravity structure.
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Figure 1: A funicular polygon generated by hanging loads on a cable or thread (in blue),
the weight of which is negligible.

Jacques Heyman, in his eponymous ‘safe theorem’, used funicular thrust
lines to represent the equilibrium of a masonry gravity structure [1], with
the zero tensile capacity yield criterion satisfied when these thrust lines are
completely contained within the extents of the structure. Thus, if a funicular
thrust line subjected to self-weight and external loading can be contained
entirely within the structure, it can be deemed safe; see Fig. 2.

2.1. Assumption of equivalent vertical-strips

Heyman [13] notes that his earlier work [1] “unintentionally” assumes the
voussoirs to have vertical cuts between them. He concludes that, although
the safe theorem can reasonably be applied to say, a monolithic arch, it fails
to account for the effects of cuts, or interfaces between voussoirs (la coupe
des pierres or block stereotomy).

For instance, consider the segmental arch shown in Fig. 3. A funicular
thrust line, shown in blue is generated considering the weight of the voussoirs,
lumped at their mass centres. The geometry of the real voussoirs, and the
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Figure 2: Heyman’s safe theorem: the funicular thrust line (in blue), generated by a
hanging chain model (inverted), is fully contained within the arch section; assuming the
self-weight of the arch is negligible, the arch can be considered safe.

corresponding equivalent vertical strips (in grey) for two voussoirs, A and B,
are shown.

Now consider the funicular thrust line segments within those voussoirs,
real and equivalent, and the corresponding thrusts at their interfaces (see the
inset figures in Fig. 3b). As seen in inset (i), the thrust line segment within
the voussoir (blue line) and the thrusts at the interfaces (green arrows) do
not exactly coincide, leaving an offset; i.e., they are inconsistent, albeit only
slightly. This inconsistency implies that the funicular thrust line is not a
valid representation of the equilibrium of the voussoir, and thus the arch. In
contrast, the funicular thrust line and the thrusts at interfaces are consistent
for the equivalent vertical strips (see inset (ii) of Fig. 3b).

Nevertheless, the geometry and orientation of the voussoirs can be such
that the static equilibrium representation of a thrust line is still valid. For
instance, consider voussoir B in Fig. 3. As seen in inset (iii) the funicular
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Figure 3: Funicular thrust lines unintentionally assume a series of equivalent vertical strips
instead of the actual voussoir stereotomy: funicular thrust line within voussoir A is not
consistent with the thrust at the interfaces, whereas it is for the assumed equivalent vertical
strip; in contrast, for voussoir B, the funicular thrust line within both the voussoir and
the equivalent vertical strip are consistent with the thrust at interfaces.
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Figure 4: Implicit tension in funicular thrust lines: Funicular thrust lines assume tensile
forces to transfer the self-weight loads from their points of application to the thrust line,
as indicated by dashed red verticals where the self-weights are lumped at the centres of
mass of the voussoirs. Equivalently, when the self-weight is considered distributed, the
areas below the funicular thrust line (shaded in pink) will be in tension in the vertical
direction. Similarly, blue indicates compressive forces.

thrust line and the thrusts at interfaces are in this case consistent. This is
in fact guaranteed to be the case if the line of action of the self-weight of the
voussoir does not cross a radial joint (i.e., the line of action of the self-weight
remains within the corresponding block).

2.2. Implicit tensile strength

Now consider the segmental arch shown in Fig. 4. A funicular thrust line,
corresponding to one possible flow of forces, is also constructed, shown in a
blue solid line, considering self-weights lumped at the centres of mass of the
voussoirs.

Now observe in Fig. 4 the positions of the centres of mass (marked with
an ×) relative to the funicular thrust line. It is evident that some of the mass
centres lie above the funicular thrust line, while others lie below. This implies
that struts in compression are required to transfer the self-weight of voussoirs
to the thrust line, as indicated by dashed blue vertical lines running from the
centres of mass in Fig. 4. Similarly, ties in tension are required to transfer
the self-weight loads in cases where the centres of mass of voussoirs are below
the funicular thrust line; see dashed red vertical lines in Fig. 4. Thus, this
construction of a funicular thrust line implicitly assumes that tensile forces
can be resisted by the masonry.

In summary, funicular thrust lines (i) assume equivalent vertical strips
instead of the real voussoir configuration, which is likely to lead to an invalid
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representation of the state of equilibrium of the structure; and (ii) implicitly
assume tensile forces can be resisted by the voussoirs, although this is not
made explicitly clear to the users, though no tensile forces are allowed in the
funicular thrust line itself.

For a typical example involving a segmental arch subjected to self-weight
and other vertical loads, the aforementioned shortcomings may lead to con-
servative predictions of safety. Consider for example the two voussoirs shown
in Fig. 5, where the voussoirs share a common interface, have self-weights
WA and WB, and are subjected to thrust forces FA and FB. Here, the funic-
ular thrust line considered (and shown in a solid blue line) moves outside the
two-voussoir configuration indicating according to Heyman’s safe theorem
that the structure will not stand due to the absence of a valid equilibrium
solution. However, the structure is safe: the three forces on each of the vous-
soirs (self-weight, external thrust force, and the thrust between the voussoirs)
create closed force polygons (see force diagram in Fig. 5) guaranteeing equi-
librium, and all thrust forces are contained within corresponding interfaces
ensuring the yield condition for masonry is not violated. Thus, here, the
funicular thrust line indicates an unsafe structure even when the structure is
safe, therefore leading to a conservative assessment of safety.

Alternatively, assuming infinitely rigid blocks (which was not an explicit
assumption of Heyman [1]) would rectify the issues caused by the assumption
of vertical strips and implicit tensile strength [24]. However, thrust lines
generated with this assumption would no longer be funicular thrust lines:
they would align with the notion of the line of resistance, described next in
Section 3.

3. The line of resistance

In 1843 Moseley [25] presented the notion of a ‘line of resistance’ to rep-
resent a possible state of equilibrium of ‘a structure made of uncemented
stone’. The same notion was in 1907 also presented by Milankovich, though
in this case referred to as die druckkrve [26, 27]. When thrust lines are pre-
sented from rigid block analysis (e.g. [18]), this notion of a line of resistance
is being used.

Definition 3. A line of resistance is a geometrical locus of points-of-
application of the resultant thrust forces that develop at interfaces within a
masonry arch or other structure.
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Figure 5: Funicular thrust line in two-voussoir example: although an equilibrium solution
exists, the funicular thrust line moving outside the extent of the assembly indicates an
unsafe solution. (The two voussoirs are of weight WA and WB , share an interface, and are
subjected to thrusts FA and FB .)

Revisiting the two-voussoir example, now consider a line of resistance.
The line of resistance drawn as a solid purple line in Fig. 6 is constructed by
first determining the points-of-application of thrust at each interface (marked
X, Y, Z) and then connecting them by line segments.

Thus a line of resistance is a valid equilibrium representation that explic-
itly considers block stereotomy. However, it does not necessarily align with
the thrust trajectory at interfaces; this happens if and only if the interfaces
are vertical [26, 27]. Thus, it can be argued that a line of resistance does not
represent a valid force flow within the structure. Also, as a line of resistance
does not follow the thrust force vectors, it is visually less intuitive than a
funicular thrust line and does not make it clear to a structural engineer how
the structure could safely carry the applied loads.

Furthermore, a convenient, albeit non-rigorous, way of checking for sliding
failure is to check the angle of incidence of a thrust line at an interface
against the angle of friction of the material; e.g., see [25, 28]. Now, since a
line of resistance representing a thrust line does not reflect the actual thrust
trajectory, such a geometrical check is not possible.
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Figure 6: Line of resistance in two-voussoir example: although the line of resistance is fully
contained within the structure, it does not correspond to a force flow as the line segments
do not align with the corresponding thrusts at the interface.

4. The thrust layout

Now, consider the network of forces in Fig. 7 for the same two-voussior ex-
ample considered earlier. The network is fully contained within the structure;
its line segments align with the force vectors and the forces satisfy equilibrium
constraints for each of the voussoirs, and hence in turn the whole assembly.
Therefore, this network of forces is both a valid representation of equilibrium
and a meaningful visualisation of force flow. This network of forces is here
termed the ‘thrust layout’.

The thrust layout is formally defined below:

Definition 4. A thrust layout is a network of forces in equilibrium, rep-
resenting a possible flow of forces in an assembly of blocks, where:

1. compressive forces of any magnitude are allowed;

2. self-weight forces must be transferred to the network within the extent
of the corresponding masonry block;

3. tensile forces are allowed within blocks, but not across the weak inter-
faces that lie between them.
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T

WA

W
B

FA

FB

Figure 7: Thrust layout in two-voussoir example: the thrust layout is fully contained within
the structure and properly corresponds to a force flow (Blue and red lines correspond to
compression and tensile forces, respectively).

Taking a thrust layout to be a natural extension of a funicular thrust line,
the condition of infinite compressive forces is adopted here and two additional
constraints are introduced: (i) self-weight is assumed to be transferred to a
thrust layout within the extent of a given block; (ii) tension is explicitly
allowed within the extents of a given block. The effects of these additional
constraints are explored further in the following sections.

4.1. Transferring self-weight to the thrust layout within the extent of a given
block

Consider the simple two-block example shown in Fig. 8a, which shows a
small block stacked on a larger block. An increasing horizontal load P is
applied at the top left corner of the top block, which will eventually overturn
that block about its bottom right corner, opening up the weak interface
between the two blocks. One may construct a hanging chain model (Fig. 8b),
or a corresponding graphic static funicular thrust line (Fig. 8c), considering
the self-weights of the blocks, WA and WB, to be lumped at their mass
centres. Both methods predict the same collapse load, of P = P1.

However, the force flow represented by this funicular thrust line is not
admissible in the real structure, since it implicitly assumes that a tensile
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P1

WA

WB

P2

(c) (d)

(a) (b)

WA

5

3

5

5

Figure 8: Mobilizing self-weight load within the extent of a given block: (a) experimentally
observed failure mechanism when a horizontal load P is applied at the top left corner of
the top block; (b) physical hanging chain model at failure, with P = P1; (c) corresponding
graphic statics model, with again P = P1; (d) thrust layout model, with now P = P2,
where P2 < P1; in this case the self-weight of the bottom block is carried directly by
the supporting ground whereas the funicular thrust line implicitly assumes that a tensile
force can be transmitted across the weak interface between the blocks, inadmissible in the
physical model. (Compression and tension forces are shown in blue and red respectively.
For WA and WB of 15 and 25 units, P1 and P2 are 7 and 4.5 units, respectively.)

force can be transmitted across a weak interface, which in reality is not
possible. This error is easily detected when the forces carrying self-weight
from the mass centres to the funicular thrust line are plotted (see Fig. 8c),
whereas not so obvious in the physical hanging chain model (see Fig. 8b).

This erroneous funicular thrust line can be corrected by ensuring the
self-weight load corresponding to a given block is mobilized only within the
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extent of that block. A valid thrust layout is presented in Fig. 8d, where the
self-weight of the bottom block WB is not transmitted up to the main thrust
line, but instead is directly transferred down to the supporting ground. In
this solution equilibrium of each individual block is satisfied, and hence so is
the equilibrium of the whole structure. Also, the yield condition is satisfied
at all interfaces (i.e., no tension is applied across weak interfaces), with the
solution also corresponding to a valid collapse mechanism, where the top
block rotates about the bottom right corner, as in Fig. 8a, thus giving the
exact collapse load, of P = P2.

Contrary to the commonly held belief that thrust line solutions will always
be conservative, the solution of P = P1 given by the funicular thrust line in
Fig. 8c, is higher than the exact collapse load of P = P2, since the self-weight
of the bottom block will help resist the applied load.

4.2. Incorporating tension explicitly

Now consider another example involving two blocks, where in this case the
top block overhangs the bottom block (Fig. 9a). The two block assemblage
is in this case subjected to an inclined load applied to the top right corner
of the overhanging block.

Firstly, an attempt is made to construct a funicular thrust line for this
example (Fig. 9b). For this, a compressive force along the line of action of the
external load P is required, to satisfy equilibrium at point X. However, this
compressive force would move outside of the structure before intersecting the
line of action of the self-weight WA of the top block (indicated by a dashed
line). Thus a funicular thrust line fully contained within the structure cannot
be constructed.

Yet the physical model (Fig. 9a) suggests that a valid solution must exist.
Investigating this further, a free body diagram for the rocking top block is
drawn (Fig. 9c); observe the top block rocking about point Y in the physical
model. This is equivalent to a beam subjected to a point load in bending.
The presence of bending in the beam suggests that tensile forces must be
mobilized in the block, likely to be in the upper portion of the block. Follow-
ing this intuition, a force network that includes a tensile force (i.e., a thrust
layout) is constructed (Fig. 9d), where the forces are in equilibrium and the
network is fully contained within the structure.

Thus, a valid thrust layout is constructed by explicitly allowing tensile
forces within constituent blocks to mobilize self-weight within the extent of
the corresponding blocks. A valid thrust layout exists although a funicular
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Figure 9: Incorporating tension explicitly: (a) experimentally observed failure mechanism
when an inclined load P is applied at the top right corner of the top block; (b) a thrust line
lying entirely within the structure cannot be constructed; (c) observing the equivalence of
the rocking top block (in the physical model) to a beam in bending, the requirement for
tensile forces to be present inside the block is noted; (d) a valid thrust layout incorporating
tensile forces is constructed. (Compression and tension forces are shown in blue and red
respectively. ForWA andWB of 15 and 10 units, P and T is 5.6 and 2.5 units, respectively.)
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thrust line has suggested an unstable structure under the given loading. Note
that the thrust layout presented in Fig. 9d is one of many possible valid thrust
layouts.

5. Identifying erroneous funicular thrust lines

Funicular thrust lines have traditionally been used to analyze masonry
gravity structures, and structures built based on such analysis still exist. It
will be useful to formally check if those funicular thrust lines give safe results
and correct them when not. The following discussion forms a basis towards
that end.

5.1. When the funicular thrust line is valid

Funicular thrust lines give an invalid representation of equilibrium when,
at an interface, the point of action of the thrust and the point of intersec-
tion of the funicular thrust line with the interface are not coincident. As
observed previously, this occurs when the self-weight loads are transferred to
the thrust line at a point outside the corresponding block (see Fig. 3). This
is now studied in detail, additionally considering the following simplifying
assumptions.

– Only three forces, self-weight and externally applied loads and/or thrusts
at interfaces, are applied on each of the constituent blocks, therefore
requiring the lines of action of those forces to coincide at a point to
ensure equilibrium of the block.

– The block is convex, or only slightly concave, therefore having the self-
weight’s line of action intersecting the block’s boundary only at two
points: at an upper and lower interface.

– Block interfaces are perfectly flat.

These assumptions are reasonable and valid for the typical structures and
loading cases studied with funicular thrust lines.

Consider a constituent block of a block assembly in isolation: see Fig. 10.
The point of intersection of the lines of action of the three forces (herein
referred to as point X) can be within, above, or below the block. Here,
‘above’ and ‘below’ are with respect to the segment of self-weight’s line of
action which is within the block’s boundary and the gravity direction being
vertically downward (see Fig. 11).
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Figure 10: Equilibrium of a block subjected to three forces (FA, FB , and W ): The point
of intersection of their lines of action (point X) can be (a) within, (b) above, or (c) below
the block.
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Figure 11: Form and force diagram of a block subjected to three forces (FA, FB , and
W ). Given the gravity direction is vertically downward, the force ‘above’ (FA) will make
a larger angle with the vertical than the force ‘below’ (FB); θA > θB .
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P

Figure 12: When the funicular thrust line is valid: If the segment of the self-weight’s
line of action which is within the extent of the structure (dashed vertical lines) is also
fully within the corresponding block, then any funicular thrust line for the structure (solid
lines in blue) which are contained within the structure will be a valid representation of
equilibrium. The funicular thrust line is light blue for P = 0 and the darker blue is for
Plimit. Points X are marked with crosses.

Looking at Fig. 10a, any combination of thrusts (FA and FB) with point
X inside the block will give a thrust line segment (in blue) consistent with
the thrusts at interfaces. Thus we conjecture the following:

Conjecture 1. Given only three forces are applied on each of the blocks of
a block assembly, if the segment of the self-weight’s line of action which is
within the extent of the structure is also fully within the corresponding block,
then any funicular thrust line for the structure which is contained within the
structure will be a valid representation of equilibrium for the structure.

Points X will always be (a) on the line of action of the self-weight of the
corresponding block, and (b) on the funicular thrust line (∵ a polygon on the
force diagram is a point on the dual form diagram). Then, (a) the segment
of the self-weight’s line of action which is within the extent of the structure
being also fully within the corresponding block, and (b) the funicular thrust
line considered being fully contained within the structure results in the point
X being within the corresponding block. This, then guarantees that the
block under consideration is some version of the case shown in Fig. 10a.
This ensures that the thrusts at the block interfaces are consistent with the
funicular thrust line. Fig. 12 is an example of the above being the case for
all blocks, and therefore satisfying the conditions of Conjecture 1.

Note that the Conjecture 1 gives a sufficient condition for a funicular
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Figure 13: When point X is above the block: The lines of action of the equilibrating forces
FA, FB , and W on the block intersect at point X. The point of action of the thrust FA

is point Y and the funicular thrust line intersects the interface at point Z. In (a) both
points Y and Z are inside the structure; (b) point Y is at the boundary of the structure;
(c) point Y is outside the structure while point Z is still inside the structure. In all cases
the funicular thrust line is inside the structure

thrust line to represent equilibrium accurately. However, it is not a necessary
condition.

5.2. Collapse load over-estimation

Now, consider the scenario from Fig. 10b when point X is above the con-
stituent block. Point X must be inside the structure, otherwise the funicular
thrust line is already indicating an unsafe structure.

The free-body diagram and the funicular thrust line in Fig. 10b are re-
produced in Fig. 13a, now with two more cases. It presents possible cases for
the point of action of the thrust FA when point X is above the block and the
funicular thrust line inside the structure. Here, without loss of generality,
the three cases are generated by increasing the horizontal component of the
thrust FA while point X is kept in place.

In Fig. 13, the point of action of the thrust FA at the upper interface
(in bold) is denoted point Y (see inset), and the point of intersection of the
funicular thrust line with the interface is denoted point Z. Following from
the force diagram in Fig. 11, thrust FA makes a larger angle to the vertical
compared to that of thrust FB. Observe that when point X is above the block,
the segment of the thrust line that intersects the upper interface aligns with

18



the line of action of thrust FB. Then, it will always be the case, if point X
is above the block, point Y is closer to the edge of the upper interface, and
point Z is closer to where the line of action of the self-weight of the block
(W ) intersects the same interface.

The funicular thrust line in the case shown in Fig. 13c indicates the left
edge of the interface to be a potential hinge point (note that point Z is at
the edge of the interface). However, the equilibrium here is unrealistic as
point Y is now outside the structure, and therefore the thrust FA cannot be
transferred to the block. Fig. 13b shows the case where the thrust FA could
have been transferred to the block while forming a potential hinge point.
Note that point Y is at the edge of the interface.

What is observed here is that point X being above the block, on its
own, cannot indicate the validity of the limit load indicated by the funicular
thrust line (this will, in addition, require the construction of the free-body
diagrams, as done above). In Fig. 13a and b, both the funicular thrust
line and the free-body diagram indicate the existence of a safe load path
although it could be argued that the funicular thrust line does not correctly
represent the equilibrium (i.e, citing points Z and Y being apart). Whereas
in Fig. 13c, the funicular thrust line identifies a potential hinge point but the
equilibrium condition is unrealistic and therefore the limiting load indicated
by the funicular thrust line is definitively incorrect; in fact, an overestimation.
So are all the intermediate cases between Fig. 13b and c where the funicular
thrust line would be well inside the structure (i.e., no potential hinge point
identified by the funicular thrust line).

Recognizing that this exercise aims to identify erroneous funicular thrust
lines, the conservative approach is to check all cases where point X is above
the constituent block rather than (say) considering only the cases where the
funicular thrust line indicates a potential hinge point. Thus we conjecture:

Conjecture 2. Given only three forces are applied on a block in considera-
tion, the point of intersection of the lines of action of the self-weight load and
the thrusts at the interfaces (and/or external loads) being above the block in-
dicate the possibility of the funicular thrust line overestimating the limit load
of the structure.

The above conjecture considers the position of points X, as this is readily
observable from the funicular thrust line—these are the points where the
weights are hung on the funicular. The positions of points Y are constructed
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Figure 14: Over-estimation of the collapse load by the funicular thrust line: Point X
corresponding to the bottom block is ‘above’ it, in (a). The free-body diagram of the
bottom block, in (c), shows the thrust FA between the blocks acting at point Y, which
is outside the interface between the two blocks. The force diagram corresponding to the
funicular thrust line is in (b).

from the free-body diagram. Therefore, the application of this conjecture
in practice would be by first checking the position of all the X points. If
they are above the corresponding block, then extend the line of action of the
thrust to get the point Y and observe where it intersects the corresponding
interface.

Fig. 14 reproduces example in Fig. 8 as a specific example of applying
Conjecture 2. Here, the point X of the block in consideration (bottom block)
is above it and the funicular thrust line indicates a potential hinge point at
the corresponding interface. This, therefore definitively leads to an overesti-
mation of limit load by the funicular thrust line.

5.3. Collapse load under-estimation

Similarly, now consider the case from Fig. 10c where point X is below the
constituent block but is within the structure. The free-body diagram and
the funicular thrust line in Fig. 10c are reproduced in Fig. 15a, now with two
more cases where the point of intersection of the funicular thrust line with
the interface (point Z) and the point of action of the thrust FB (point Y),
respectively, are at the edge of the lower interface. Without loss of generality,
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Figure 15: Possible cases for the position of the funicular thrust line when point X is below
the block and point of action of the thrust FB within the lower interface. The lines of
action of the equilibrating forces FA, FB , and W on the block intersect at point X. The
point of action of the thrust FB is point Y and the funicular thrust line intersects the
interface at point Z. In (a) both points Y and Z are inside the structure; (b) point Z is at
the boundary of the structure; (c) point Z is outside the structure while point Y is at the
boundary of the structure.
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the three cases are generated by increasing the vertical component of the
thrust FA while the point of action of thrust FA at the top interface was kept
the same.

In Fig. 15b, the funicular thrust indicates the right edge of the interface to
be a potential hinge point (note that point Z is at the edge of the interface).
However, the right edge would be a potential hinge point only in the case
shown in Fig. 15c where point Y is at the edge of the interface. In the range
of possible cases that fall between Fig. 15b and c, a valid load path exists
although the funicular thrust line indicates no solution by virtue of the fu-
nicular thrust line lying outside the structure, and therefore underestimating
the limit load.

What is observed here is that point X being below the block combined
with the funicular thrust line passing through the edge of the corresponding
interface (i.e., lower interface) indicates an underestimation of the limit load
by the funicular thrust line. However, this cannot be used as definitive
evidence of the limit load being underestimated as only a single block is
considered here. A block elsewhere in the structure may be overestimating
the load as the corresponding point X is above that block (see Appendix A).
Thus we conjecture:

Conjecture 3. Given only three forces are applied on the critical block in
consideration, if (a) the point of intersection of the lines of action of the
self-weight load and the thrusts at the interfaces (and/or external loads) is
below the block, and (b) the funicular thrust line is passing through the edge
of the lower interface of the block, then this indicates the possibility of the
funicular thrust line underestimating the limit load.

This conjecture can be used to identify funicular thrust lines where the
limit load is underestimated. Fig. 16 presents an example where the condi-
tions of Conjecture 3 are satisfied and isolating the corresponding block and
drawing its free-body diagram indicates that a hinge is not formed at the
interface between the blocks as suggested by the funicular thrust line.

6. Example: flat arch on two columns

A flat arch made of stone blocks and supported on two columns are now
considered to demonstrate the superiority of thrust layouts over funicular
thrust lines (see Fig. 17). The flat arch consists of five equally sized stone
blocks and frictional sliding is ignored.
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Figure 16: Under-estimation of the collapse load by the funicular thrust line: Point X
corresponding to the top block is ‘below’ it, in (a). the free-body diagram of the top
block, in (c), shows the thrust FB between the blocks acting at point Y, which is well
within the interface between the two blocks. The force diagram corresponding to the
funicular thrust line is in (b).

The funicular thrust line within the structure (see Fig. 17a) estimates
the maximum central point load, P , of 9.91 kN. It is noted that the weight
of the springer blocks is transferred to the columns at a point below them.
Following Conjecture 3, this suggests that the load carrying capacity of the
structure may be underestimated.

The thrust layout shown in Fig. 17b predicts the load carrying capacity
is P = 45.1 kN. This value is determined to be the exact collapse load for
the structure, via a rigid block analysis of the structure (Fig. 17c). Thrust
layout is fully contained within the bounds of the structure and respects
the block stereotomy. Note that the tensile forces within the springer blocks
mobilize their weights within the corresponding block. In addition, the tensile
forces within the keystone block allow the thrust layout to hug the extrados,
creating the hinge points observed in the rigid block analysis. This significant
increase in load-carrying capacity achieved by recognizing the tensile strength
of the material is broadly consistent with what was observed by Boothby and
Coronelli [23].

The funicular thrust lines and thrust layouts are constructed here using
form-force duals (see force diagram in Fig. 18). Although the construction
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Figure 17: Flat arch on stone columns—solutions obtained using: (a) funicular thrust
line; (b) thrust layout; and (c) rigid block method (all five blocks in the arch have a top
breadth of 0.54m and a bottom breadth of 0.42m; a width of 1m and material unit weight
of 25 kN/m3 are assumed).
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of funicular thrust lines is fairly straightforward, thrust layout patterns may
not be obvious at first glance. For example, the half-wheel pattern within
the keystone is not foreseen by the conjectures presented. In recent work,
Nanayakkara et al. [29] present an automated procedure for the generation of
thrust layouts. Their work presents a collection of examples, further explor-
ing the use of thrust layouts in the analysis of masonry gravity structures.
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W1
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Figure 18: Dual force diagrams—solutions of the flat arch on stone columns example,
obtained using (a) funicular thrust line; (b) thrust layout (deconstructed, in clockwise
order from top-left, keystone block, left arch blocks, left springer block, and left column).
Pf an Pt are collapse load estimates and Hf an Ht are horizontal thrusts at column base.

7. Discussion

Thrust layouts can be used for the analysis of masonry gravity structures
where the block stereotomy is known; a structure is safe if a thrust layout
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fully contained within the structure can be found. One method of generating
thrust layouts is by starting with a hanging chain model, and then using
the two observations noted to identify locations where either an alternative
load path is required or tension needs to be introduced; i.e., add struts and
add/remove extra ties from the hanging chain model. However, this would be
impractical where the geometry is complex and a large number of constituent
blocks are involved. For such cases, user-friendly computer tools will be
required to automatically generate thrust layouts, as has been the case for
the generation of funicular thrust lines, e.g., [9, 30, 31].

Masonry gravity structures are generally statically indeterminate and
thus have multiple possible ‘safe’ load paths. Knowing one of these would be
satisfactory for an engineer to assess an existing structure (or to verify the
design of a new one). In other words, although only one load path may exist
in reality, knowing that particular load path is not necessary.

The thrust layout optimization (TLO) procedure presented recently by
Nanayakkara et al. [29] automates the generation of thrust layouts. The
presented numerical method solves an underlying linear programming (LP)
problem, taking advantage of efficient and widely available LP solvers. Fur-
thermore, the TLO procedure also takes account of the limited frictional
capacity of block interfaces, albeit implicitly assuming associative friction.
Thus the concerns of Bagi [22] are not addressed here, though this could
be remedied by adopting an iterative solution scheme, e.g., the approach
proposed in [32].

While noting that funicular thrust lines implicitly assume vertical tension-
weak planes, Heyman suggests that a funicular thrust line would be valid for
a monolithic continuum [13]. However, testing on monolithic arches made of
rammed earth suggests that the failure planes of the arch are unlikely to be
vertical [33, 34]. This suggests that a methodology that automatically iden-
tifies critical failure planes (e.g., [35, 36]) would be more appropriate for the
analysis of form-resistant continua (e.g., arches formed using rammed earth
construction). It is also noted that the effect of stereotomy on the minimum
thickness of arches, without stereotomy considered a prior, has been exten-
sively studied [37, 38, 39, 40, 12], and shows the effect of stereotomy to be
limited in this particular case. Heyman’s [41] classic solution considering in-
finitely many ‘vertical-strips’ gives a minimum arch thickness to radius ratio
(t/R) of 0.106, for semi-circular arches. Similarly, considering radial joints,
Ochsendorf [12] calculates a minimum t/R of 0.1075. Having the voussoir
joints variable, Gaspar [39] calculates a minimum t/R of 0.0819. But, when
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the friction capacity is considered the stereotomy effect is found to be limited:
For a friction coefficient of unity, variable voussoir joints give a minimum t/R
of 0.1044 [40].

Thrust networks are the equivalent three-dimensional extension of funic-
ular thrust lines, and similar shortcomings exist there too. Fantin and Ciblac
[42] extend thrust networks with additional ‘partial branches’ to account for
solutions where the forces on a block do not converge to a point, whereas
thrust networks restrict the domain of acceptable solutions to where all forces
on a block coincide at a point. This, however, does not appear in the two-
dimensional problem as the blocks are in equilibrium under only three forces
and therefore must meet at a point to satisfy equilibrium. Furthermore, Barsi
et al. [20] map the funicular thrust lines to the classic membrane solution
(in 3D) and the line of resistance to thrust surfaces (in 3D).

8. Conclusions

Heyman’s ‘safe theorem’ is widely used in the assessment of masonry grav-
ity structures. In developing his theorem, Heyman used a funicular thrust
line to represent the equilibrium of a masonry gravity structure. However,
as noted in this contribution, there are limitations associated with using
a funicular thrust line to represent the state of equilibrium of a masonry
gravity structure. These limitations arise from not taking account of block
stereotomy, which can lead to either under- or over-estimation of the collapse
load of a masonry gravity structure, contrary to the commonly held belief
that the thrust line method will generally give safe solutions. Furthermore,
the implicit reliance on tensile strength when working with funicular thrust
lines is not clear to users.

Here, the notion of a ‘thrust layout’ is proposed. Block stereotomy is
explicitly taken into account in a thrust layout, with tensile forces allowed
within constituent blocks, but not across the weak interfaces between blocks.
Thrust layouts can be used in the application of Heyman’s safe theorem to
any structure, as this now appropriately represents the equilibrium of the
structure. Furthermore, similar to funicular thrust lines, thrust layouts vi-
sualize a flow of forces within a structure. Thus, in contrast to the ‘line of
resistance’ presented by Moseley, a thrust layout enables the structural engi-
neer to clearly grasp how a masonry gravity structure safely carries applied
loads.
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Appendix A. Example: Stack-of-four blocks

The funicular thrust line drawn for the stack-of-four-blocks example (see
Fig. A.19) indicates a situation where the self-weights WB and WC are mo-
bilized outside their corresponding blocks, but still within the structure. In
the case of block B, the lines of action of the three equilibrating forces on
the block intersect at a point above the block indicating the possibility of an
overestimation of the load capacity. The corresponding intersection point in
block C is below the block, indicating the possibility of an underestimation
of the load capacity. The overall impact of these two scenarios cannot be
readily predicted by simply looking at the funicular thrust line.

Since the funicular thrust line does not correctly represent the equilibrium
of the structure and the problematic interfaces (between blocks A and B and
C and D) have been identified, this can be further investigated.

Considering the moment equilibrium of block A about point Z, the force P
should be less than 4.5 units to prevent overturning about point Z. Similarly,
to prevent rocking about point Y, the force P should be greater than 6.16
units (considering the moment about point Y considering blocks A, B, and
C). Therefore, there is no valid solution for this assembly of blocks although
a valid funicular thrust line is constructed. Therefore, the overall effect is a
load overestimation.
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Figure A.19: A funicular thrust line indicating simultaneous over and under-estimation of
load carrying capacity. A stack of four blocks with geometry as indicated is considered.
The Corresponding force diagram is also shown. (Compression and tension forces are
shown in blue and red respectively. For WA, WB , WC and WD of 15, 25, 50, and 26.25
units, P1 is 7 units.)
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