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A Systematic Review of Spiking Neural

Networks for Human-Robot Interaction in

Rehabilitative Wearable Robotics
Xingyu Zhang, Yu Cao, Member, IEEE, Jian Huang, Senior Member, IEEE, Jindong Liu,

and Zhi-Qiang Zhang, Senior Member, IEEE

AbstractÐRecent advancements in spiking neural networks
(SNNs) have highlighted their advantages, including energy
efficiency, real-time processing, and compatibility with neu-
romorphic hardware. These features make SNNs particularly
well-suited for human-robot interaction (HRI) in rehabilitative
wearable robotics, where real-time adaptability and low power
consumption are essential. However, there is still a lack of
comprehensive reviews on SNNs’ application to HRI. This paper
addresses this gap by providing a detailed overview of the
latest advancements in SNNs from the perspective of embodied
intelligence in rehabilitative wearable robots. We systematically
examine recent progress in SNNs, including spiking neuron
models, encoding methods, and learning mechanisms. These
advancements are then analyzed with a focus on HRI, addressing
specific challenges in rehabilitative wearable robots from three
key perspectives: human motion decoding, robotic control, and
neuromorphic implementation for embedded systems. By review-
ing current research, this paper highlights the potential benefits
and limitations of SNNs in achieving embodied intelligence
and identifies crucial areas for further investigation, offering
new insights and directions for their future applications in
rehabilitative wearable robotics.

Index TermsÐSpiking neural network, embodied intelligence,
rehabilitative wearable robots, human-robot interaction.

I. INTRODUCTION

RECENT years have witnessed rehabilitative wearable

robots, such as exoskeletons [1]–[3], prosthesis [4],

[5], supernumerary robotic limbs [6] and etc., being widely

recognized for their ability to assist patients with hemiplegia

and amputees in performing daily activities and rehabilitation

exercises. These robots can adjust training programs [7],

facilitate gait reconstruction [8], enhance muscle strength [9],

and maintain balance [10]. These personalized approaches

significantly improve rehabilitation efficiency, and save the ef-

forts of healthcare professionals [11]. Achieving these benefits
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requires effective HRI, which involves decoding physiologi-

cal signals, interpreting movement intentions and developing

appropriate control strategies to address the specific needs of

rehabilitation tasks [12]. However, current robotics technology

struggles to accurately model, predict, and adapt to real-time

human movement due to the complexities of the human neuro-

musculoskeletal system.

With the recent advancement of artificial intelligence, em-

bodied intelligence has emerged as an essential focus, empha-

sizing the ability of robots to perceive, act, and understand the

environment like humans. This sophisticated approach requires

robots to autonomously sense, respond and adapt to varying

contexts [13], [14]. In rehabilitative wearable robots, embodied

intelligence combined with effective HRI enables real-time ad-

justment of assistance by translating sensory feedback into tai-

lored support for individual users [15], [16]. This significantly

enhances rehabilitation outcomes by providing personalized

and responsive treatment. Consequently, integrating advanced

learning algorithms and adaptive technologies highlights em-

bodied intelligence as a key to advancing wearable robots and

improving patient recovery.

In the process of achieving embodied intelligence, artificial

neural networks (ANNs) play a crucial role and have achieved

significant success in processing physiological data for reha-

bilitative wearable robots [17]. After decades of development,

ANNs still encountered challenges in capturing long-term

dependencies and dynamic changes within time-series data,

primarily due to fixed network structures and limited ability to

manage temporal dependencies. To address these issues, recent

research has introduced variants of recurrent neural networks

(RNNs) and time-series processing models, including long

short-term memory (LSTM) [18], gated recurrent unit (GRU)

[19], bidirectional LSTM [20], etc., which are better suited

for handling time-series data. Nevertheless, these models still

face challenges due to the large volume of floating-point op-

erations required for high temporal resolution which demands

significant time and computational resources [21].

SNNs, as computational models closer to biological neural

systems, are gradually gaining attention. Unlike ANNs, SNNs

process dynamic inputs and time-series data by simulating

the pulse-based signal transmission of biological neurons

[22]. This pulse-based mechanism allows SNNs to capture

the subtle, time-dependent aspects of human movement more

accurately, resulting in more precise and responsive control

of rehabilitative wearable robots [23]. Meanwhile, the biolog-
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(a) Implementation of ANN

(b) Implementation of SNN

Fig. 1: Digital-hardware implementation of ANN and SNN

update pipeline [21].

TABLE I: Power Consumption of Different Methods

Method Platform Latency Power Ref

ANN

Parallel ultra-low
power platform

8.00 ms 1.004× 104 µW [29]

NVIDIA Jetson
Nano (Maxwell
GPU)

3.80 ms 9.730× 101 µW [30]

ARM Cortex M4 N/A 2.660× 104 µW [31]

Edge TPU 2.96 ms 2.000× 106 µW [32]

SNN

DYNAP N/A 1.190 µW [33]

DYNAP N/A 5.000× 101 µW [34]

Loihi 5.89 ms 1.000 µW [30]

SpiNNker N/A 7.650× 105 µW [35]

ical plausibility of SNNs, which model neural dynamics and

adapt through local learning rules like spike-timing-dependent

plasticity (STDP) [24], enhances the robots’ capacity to learn

from user interactions and adjust their behaviour in real-time.

Furthermore, by using spikes instead of continuous activation,

SNNs closely mimic biological neural processes and require

fewer multiplication operations in hardware than ANNs, as

shown in Fig. 1, thereby reducing power consumption [25].

Table I further highlights the energy efficiency of SNNs over

ANNs under similar tasks on neuromorphic hardware, making

them ideal for resource-constrained systems [26]. In wear-

able robotics, some SNN reviews focus on analyzing human

electrophysiological signals [27] (e.g., Electroencephalogra-

phy (EEG), Electromyography (EMG), Electrocardiography

(ECG)) or on specific robotic control tasks such as navigation

[28], there is a noticeable gap in detailed exploration of HRI

specifically for wearable robots.

In this paper, we aim to provide a comprehensive review

of the latest advancements in SNNs and their applications

in HRI for rehabilitative wearable robots. Our goal is to

systematically analyze recent developments in SNN technol-

Fig. 2: An overview of SNN implementation and its applica-

tions in wearable robots.

ogy, including spiking neuron models, encoding methods, and

learning mechanisms. We investigate how these advancements

address the specific challenges faced by HRI, such as motion

decoding, robotic control, and neuromorphic implementation.

Literature was sourced from Google Scholar, IEEE Xplore,

Scopus and Web of Science using keywords like SNN or

Neuromorphic, HRI, and rehabilitation or rehabilitative wear-

able robot. Preferred publications were from 2014-2024 with

some exceptions. Finally, this review highlights key areas for

further research, focusing on how advancements in SNNs

can be utilized to improve the effectiveness and usability

of rehabilitative wearable robots. Fig. 2 provides a detailed

overview of SNN implementation in wearable robotics.

II. SNN MODELS

A. Spiking Neuron Models

For SNN, several spiking neuron models have been de-

veloped. Some focus on biologically accurate, such as the

Hodgkin-Huxley (HH) model [36], while others emphasize

computationally efficient, such as the leaky integrate-and-

fire (LIF) model [37], the Izhikevich model [38] and the

spike response model (SRM) [39]. These models demonstrate

a trade-off between biological accuracy and computational
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TABLE II: Neurons in SNN

Neuron Specific Model References

LIF

Basic LIF [26], [40]–[65]

Improved LIF [66], [67]

AdEx [33], [34], [68], [69]

DEXAT [70]

Izhikevich Basic Izhikevich [71]–[81]

SRM Basic SRM [82]

feasibility. Specifically, the HH model, though biologically

accurate, is computationally intensive and rarely used in SNNs

for HRI applications. Thus, this review highlights models as

shown in Table II.

1) LIF Model and Enhancements: The Integrate-and-Fire

(IF) model simply sums input signals until the membrane

potential reaches a threshold. The model is enhanced by

introducing a leak term, called L, representing the passive

decay of the membrane potential toward the resting state. The

LIF expressed by Eq. (1) simplifies the neuron model to a

circuit-like analogy:

τ
dV (t)

dt
= −(V (t)− Vrest) +RI(t) (1)

if V (t) > θ, V (t)← Vreset last tref (2)

where τ is the membrane time constant, Vrest represents the

resting potential, R is the membrane resitance, Vreset represents

the membrane potential’s reset value after firing, and tref is

the refractory period. When the membrane potential reaches

threshold potential θ, the neuron initiates a spike event,

subsequently resetting the potential to the basic value. LIF’s

simplicity makes it the preferred choice for large-scale SNNs.

Current research mainly uses the basic LIF model with

fixed vreset and θ values which may lead to insufficient neuron

firing and information loss. To address this limitation, an

improved LIF model [66] introduces a dynamic reset potential

mechanism that allows Vreset to vary with membrane potential

fluctuations. This model significantly improves recognition

accuracy, speeds up convergence and reduces information loss.

An enhanced LIF model [67] addresses brain-computer inter-

face challenges in wearable robots by dynamically adjusting

θ. After each spike, θ increases and then decays back to

baseline. This approach not only reduces the spike-firing rate

but also improves classification accuracy, suggesting that the

system’s energy consumption is reduced while maintaining

computational efficiency.

To better simulate the excitatory and inhibitory responses

of neurons while also accounting for dynamic changes in

membrane potential, the Adaptive Exponential Integrate-and-

Fire (AdEx) model [83] was proposed. This model can simu-

late the properties of real neurons, making it highly scalable

for practical applications. Moreover, the AdEx model can

be deployed on DYNAP neuromorphic chips, facilitating its

implementation in hardware. Building on the AdEx model,

the Double Exponential Adaptive Threshold (DEXAT) model

was proposed in [70]. Unlike the single adaptive mecha-

nism of the AdEx neuron model, DEXAT controls threshold

changes through two independent time constants, enabling

it to better capture and process spatiotemporal information.

The authors also discussed how to implement DEXAT neu-

rons on Intel’s Loihi neuromorphic chip [84] by simulating

DEXAT behaviour using a multi-compartment structure. This

approach improved gesture recognition accuracy and enabled

the model’s deployment on wearable devices using neuromor-

phic hardware.

2) Izhikevich Model: A simplified model which combines

the biological implementation of the HH model with the

computational efficiency of the LIF model was proposed [85].

Although it is less computationally demanding than the HH

model, it is not as commonly chosen as LIF neurons when

constructing SNNs. Two main differential equations govern the

model: one describes the changes in the neuron’s membrane

potential and the other describes the dynamics of the recovery

variable u.

dV (t)

dt
= 0.04V (t)

2
+ 5V (t) + 140− u+ I(t) (3)

du

dt
= a(bV (t)− u) (4)

if V (t) ≥ θ, V ← c, u← u+ d last tref (5)

where a, b, c and d are constants. u is a feedback mechanism

for the membrane potential. After neuronal firing, this variable

increases, temporarily reducing the neuron’s excitability.

Some studies [71]–[77] have utilized the Izhikevich model

to construct SNN models for predicting user intentions and

facilitating HRI. Moreover, trained SNN models based on

the Izhikevich model can be deployed on neuromorphic pro-

cessors like ODIN [86], as demonstrated in the study by

[30], achieving true neuromorphic applications. Additionally,

other research has employed the Izhikevich model to convert

data into spike signals, enhancing the sensory capabilities of

prosthetic users [78]–[80] and improving the feature extraction

from myoelectric control signals [81].

3) SRM: While LIF and Izhikevich models are effective

for basic spike generation, the SRM offers a more flexible

framework that incorporates refractoriness, adaptation, and

spike history through linear filters and dynamic thresholds. The

SRM dynamics can be described mathematically as follows.

After the last spike at time t̂, the membrane potential v(t)
evolves according to

V (t) = η(t− t̂) +

∫ +∞

−∞

κ(t− t̂, s) I(t− s) ds, (6)

where η represents the spike-afterpotential, κ is the input

kernel, and t̂ is the time of the last spike. A spike is registered

when

if V (t) ≥ θ and V̇ (t) > 0, then t̂ = t, (7)

with an adaptive threshold defined as

θ(t− t̂) =







+∞, t− t̂ ≤ γref ,

θ0 + θ1 exp

[

−
t− t̂

τθ

]

, otherwise.
(8)

Here, γref denotes the absolute refractory period, and θ0, θ1,

and τθ define the baseline, magnitude, and decay rate of the
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dynamic threshold. Thanks to this explicit temporal structure,

the SRM has also been used with reinforcement learning to

solve control tasks like mountain car [82], highlighting its

temporal decision-making capability.

B. Encoding Methods

The signal adapted from the real world can be processed

by SNNs in the form of spikes. In this process, methods

of spike encoding are necessary to process and transmit

information effectively. These methods are divided into three

major categories: rate encoding, temporal encoding and delta

modulation, as illustrated in Table III.

1) Rate Encoding: Inspired by the performance of biolog-

ical neural systems, rate encoding involves neurons convey-

ing information about stimulus intensity by modulating the

frequency of their spike sequences, with higher firing rates

corresponding to stronger stimuli [91]. This method is widely

used in models that require a direct relationship between

stimulus intensity and neural response, playing a crucial role

in sensory information processing and motor control.

For encoding muscle activity, Yang et al. [55] utilized

a Smoothed Frequency Domain (SFD) encoder within rate

encoding to generate spike sequences from smoothed signals.

When the amplitude of muscle signals is higher, this method

produces more frequent spikes, mimicking the biological prin-

ciple that stronger stimuli lead to higher firing rates in neurons.

Sreenivasa et al. [43], [44] used Poisson encoding to realisti-

cally simulate how sensory neurons transmit information about

muscle length and velocity under different muscle states. This

technique helps the model simulate complex neural control

behaviours, playing a crucial role in the feedback of muscle

closed-loop systems. On the other hand, Casellato et.al [54]

used the Radial Basis Function (RBF) to encode joint angles

or positions into spike patterns.

Population rate encoding offers a more effective method

for representing complex signals compared to single-neuron

encoding [92]. This method distributes information across

many neurons, making it more biologically plausible, as

information in the human brain is typically encoded within

neural populations. Moreover, due to the collective activity of

multiple neurons, this encoding method can average out noise,

resulting in more robust signal encoding. Stochastic population

encoding has been used to convert muscle activations into

spike trains for controlling robotic hands [46], [47], [53].

2) Latency Encoding: Rate encoding can account for at

most 15% of neuronal activity in the primary visual cortex

(V1). If neurons indiscriminately defaulted to rate encoding, it

would consume an order of magnitude more energy compared

to temporal encoding [93]. Latency, or temporal encoding,

focuses on the timing of spikes rather than the total number

of spikes [94]. The greatest advantage of temporal encoding

over rate encoding is its inherent sparsity. While this increases

sensitivity to noise, temporal encoding significantly reduces

the hardware power consumption.

Threshold encoding is a form of temporal encoding that

rapidly converts continuous signals into spike sequences

through a simple and efficient threshold setting. Behrenbeck

et al. [57] not only utilized threshold encoding to process

complex EEG and muscle activation signals, but also uti-

lized Ben’s Spike Algorithm (BSA) to encode finger force.

Threshold encoding and BSA play different roles in this

research: the former focuses on capturing the dynamic changes

in signals, while the latter is used in scenarios requiring

higher precision. To maximize the sparsity of neuronal firing,

the Time-to-First-Spike (TTFS) method in temporal encoding

can be employed. In this method, neurons encode their real-

valued response to a stimulus by the time elapsed before

their first spike in response to the stimulus [95]. Steffen

et al. [60] utilized the TTFS encoding method to convert

continuous depth data from depth sensors into spike sequences,

enabling these data to be processed alongside event camera

data by SNNs, thereby generating control signals. To further

enhance neuromorphic implementation, Zanghier et al. [62]

firstly introduced a method inspired by the cochlear model

for hand kinematics regression. The artificial cochlea uses an

event-based encoding technique that mimics natural auditory

processing, enabling efficient signal handling.

Single-spike time encoding methods may lead to neurons

that never fire due to the limited number of input spikes,

which can be detrimental to the training SNNs. To address this

issue, Bohte et al. [96] first proposed the population temporal

encoding method. This approach used a set of overlapping

and evenly spaced Gaussian receptive field functions. Liuy

et al. [90] adopted this method to convert muscle activation

signals into spike sequences. Cheng et al. [61] proposed an

improved population temporal encoding method that integrates

the concept of rank encoding to reduce information loss at the

tails. This enhancement improves the accuracy and reliability

of signal processing in SNNs, particularly for applications like

hand gesture recognition in rehabilitation systems. In addition

to Gaussian receptive field-based methods, Bucci et al. [73]

introduced the concept of polychronous groups, which refers to

a set of neurons that fire action potentials in a specific temporal

sequence demonstrating the effectiveness of this method in

processing tactile signals.

3) Delta Modulation: In Dynamic Vision Sensor (DVS)

cameras, each pixel, and in silicon cochleas, each channel

uses delta modulation to record changes in visual or auditory

scenes. Inspired by these technologies and based on the

concept that neurons thrive on change, delta modulation was

proposed to process biological signals on neuromorphic hard-

ware [97]. Notably, unlike rate and latency encoding which

rely on absolute amplitude, delta modulation encodes temporal

signal changes, enabling event-driven representations.

The enhanced delta modulation encoding method has been

used in recent studies. For example, due to the large firing

rate differences when processing signals of varying intensities

with a fixed-threshold delta encoding method, an adaptive

delta encoding method was proposed by [33]. This approach

aims to maintain a relatively consistent firing rate across all

channels. By introducing the adaptive delta encoding method,

the system achieved balanced firing rates across different

channels, thereby improving control performance while main-

taining low power consumption. In [66], delta modulation was

used for event-driven differential encoding. Unlike traditional
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TABLE III: Encoding of SNN

Method Encoded

Property

Trigger

Mechanism

Advantages Amplitude

Dependency

Specific

Method

References

Rate
Encoding

Amplitude

magnitude

Firing rate

(high amplitude

→ high frequency)

Intuitive
and easy

to implement
High

SFD Encoder [55]

Poisson Sampling [43], [44], [87], [88]

RBF [54]

Population Method [46], [47], [53]

Latency

Encoding

Amplitude

→ spike delay

Firing time

(high amplitude

→ early spike)

Temporally

sparse and

energy-efficient

High

Threshold Encoding [57], [59], [63], [89]

BSA [52], [57]

TTFS [60]

Artificial Cochlea [62]

Population Method [61], [70], [73], [90]

Delta
Modulation

Signal change

(∆)

Firing when temporal

signal change

exceeds threshold

Hardware-friendly

and noise-resilient

Low - only

respond to

changes

Basic [26], [30], [34], [68], [69]

Enhanced
[33], [66]

delta encoding, this variant generates a pulse when the signal’s

temporal variation exceeds a certain threshold but replaces

negative pulses in delta encoding with zeros. This method

helps increase the sparsity of the input signals and reduces

floating-point operations between inputs and weights.

To better achieve hardware implementation, Corradi et

al. [98] proposed an Analogue-to-Digital Converter (ADC)

circuit for delta modulation, which has been widely used

in biomedical circuits and wearable devices due to its low

power consumption, low complexity, and high error tolerance

[99], [100]. Ma et.al [69] used this delta modulation ADC

circuit to implement an efficient signal encoding method. The

application of this circuit also facilitated further processing on

the neuromorphic processor DYNAP, demonstrating its great

potential in real-time processing and wearable devices.

C. Learning Mechanisms

Training is a crucial process that enables SNNs to learn and

perform various specific tasks. In the field of controlling assis-

tive wearable robotics, the training techniques for SNNs can

be categorized as follows: supervised learning, unsupervised

learning, optimization and indirect training of SNNs involving

their transformation from ANNs, as shown in Table IV.

TABLE IV: Learning Methods of SNN

Method Specific Method References

Supervised

BPTT
[26], [30], [40], [48], [51],

[59]–[61], [64]–[66], [90], [101]

PES [46], [47]

STDP & LMS [102]

STDP & SD [53]

Delta Rule [34]

Unsupervised
STDP

[33], [45], [49], [50], [52],
[57], [69], [71]–[76], [79], [89]

CRITICAL [63]

ANN to SNN ReLU to IF [88], [103], [104]

Reinforcement

Policy-Gradient
Actor-Critic

[105]

R-STDP [79]

1) Supervised Learning: Supervised learning for SNNs is

a significant area of research. Initially, traditional supervised

learning algorithms could not be directly applied to SNNs

because the internal state variables of SNN neurons and the

error function between actual and desired output spike trains

do not satisfy the property of being continuously differentiable.

The introduction of surrogate gradient methods addresses the

issue of non-differentiable spike functions, making it possible

to apply gradient descent algorithms to SNNs [106]. Gradient-

based learning algorithms, such as Backpropagation Through

Time (BPTT), can be used in conjunction with surrogate

gradient methods.

However, the traditional surrogate gradient descent method

also brings computational complexity, leading to challenges

in scalability, optimization and balancing model complexity

with computational efficiency. To address this issue, a new

approach can be combined with BPTT, namely stochastic

gradient descent (SGD) [107]. SGD is often computationally

more efficient than surrogate gradient methods because it

involves smaller computational updates. Additionally, due to

its inherent randomness, SGD helps improve model gener-

alization and avoid local optima. The combination of SGD

and BPTT, as shown in [59], enables the SNN to effectively

learn from time-dependent data. Cheng et al. [61] utilized a

modified version of SGD, which enhances the stability and

efficiency of the training process, leading to faster convergence

and more accurate models for real-time motion regression.

Building on these ideas, Wang et al. [101] proposed Adaptive

Smoothing Gradient Learning (ASGL) which dynamically

learns the surrogate width and introduces stochastic pulse

noise during training, enabling efficient and low-latency in-

ference in SNNs. Gradient descent-based learning frameworks

such as SpikeProp [96], SuperSpike [108], and SLAYER [109]

have been proposed and applied in wearable rehabilitation

robots [30], [48], [64], [90].

Additionally, a biologically plausible supervised learning

method for training SNN, Prescribed Error Sensitivity (PES)

[110], has been proposed. Unlike gradient descent, which

relies on global information, PES converts global error signals

into local error signals by limiting each neuron’s encoder

sensitivity to the error vector space. The PES method has been
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shown to effectively classify control signals and trigger robotic

hand reflexes, demonstrating its feasibility and effectiveness in

practical applications [46], [47]. Alternatively, Gyongyossy et

al. [102] proposed a bio-inspired supervised learning method

that combines STDP with the Least Mean Squares (LMS)

algorithm, endowing it with supervised learning capabilities.

This method was applied in gesture recognition scenarios,

demonstrating its suitability for complex tasks in real-world

applications. Tieck et al. [53] introduced the Selective Dis-

inhibition (SD) mechanism building on STDP, which ensures

that input signals are effectively associated with the desired

teaching signals by inhibiting unwanted neuronal activity dur-

ing the learning process. This method helps the network adjust

synaptic weights more accurately, reducing noise interference

in the learning process. Moreover, to promote the development

of neuromorphic systems, the Delta rule was proposed [111]

and demonstrated using Bump circuits [34].

2) Unsupervised Learning: For SNNs, unsupervised learn-

ing methods are based on biological mechanisms which enable

more natural and efficient forms of computation. STDP [24]

is the most commonly used method in training SNN. It

modifies synaptic strength based on the precise timing of

spikes between pre- and postsynaptic neurons, providing a

biologically plausible and temporally precise learning mecha-

nism for SNNs [112]. In addition to traditional STDP training

mechanisms, several improved methods have been proposed

to optimize STDP-based learning for specific applications. Ma

et al. [33] combined STDP with the Winner-Take-All (WTA)

mechanism to effectively extract features from input signals,

using these features for action classification. The study’s soft

WTA approach allows multiple neurons to be winners, thereby

improving the robustness of classification. Furthermore, by

introducing a trace variable into STDP, Ma et al. [69] proposed

a trace-based STDP learning method, and experiments showed

that its biological plausibility makes it well-suited for direct

implementation in online learning on neuromorphic chips.

Another typical type of unsupervised training method is

CRITICAL method. Unlike STDP, which relies on precise

spike timing, the CRITICAL method maintains activity near

the critical point by adjusting branching factors, thereby ensur-

ing network stability. In [63], the CRITICAL algorithm was

applied in reservoir computing within SNNs to process myo-

electric signals for gesture recognition which outperformed the

STDP network. However, the CRITICAL algorithm-improved

network increases computational complexity, making hardware

implementation more challenging compared to the easier hard-

ware deployment of STDP.

3) ANN-to-SNN Conversion: The ANN to SNN conversion

is cost-effective because it avoids the non-differentiable spike

activation in SNNs, requiring minimal training time and GPU

resources during the training phase. The majority of methods

dedicated to the conversion of ANNs to SNNs primarily focus

on transforming ReLU activation function into IF neurons.

Zhang et al. [88] used the error backpropagation algorithm

to train an ANN model for analyzing myoelectric signals of

amputee patients, replacing the ReLU units in the ANN model

with IF neurons and directly mapping the trained connection

weights to an SNN model with a corresponding structure.

Although this method provides a solution for low-power

motion classification in wearable devices, it still suffers from

information loss during the conversion process. To address this

issue, Wang et al. [104] introduced a two-stage framework

that enables accurate and efficient SNN inference under ultra-

low latency conditions, making it promising for real-time

applications such as wearable robotics.

4) Reinforcement Learning: Reinforcement learning (RL),

which enables online adaptation without explicit human mod-

els and optimizes long-term performance through reward-

driven interaction, is well suited for personalized and effi-

cient assistive control in dynamic HRI scenarios. Combined

with SNNs, RL becomes particularly appropriate for wear-

able devices with strict power constraints. Tang et al. [105]

demonstrated this by training a population-coded spiking actor

network using policy-gradient methods to achieve continuous

control in high-dimensional locomotion tasks such as simu-

lated quadruped and biped walking. In addition to gradient-

based methods, bio-inspired RL based on Hebbian plasticity

has also been explored. Wang et al. [79] showed that SNNs

trained with R-STDP can reproduce human-like heat-evoked

withdrawal reflexes in upper-limb prosthetics, enabling reflex-

level responses under low-power constraints. Although these

approaches show promise, the integration of RL and SNNs

in real-world HRI remains limited and presents a valuable

direction for future research.

D. Metaheuristic Optimization

Over the past two decades, metaheuristic optimization tech-

niques have gained significant popularity, such as Genetic

Algorithm (GA) [113], Ant Colony Optimization (ACO) [114],

and Particle Swarm Optimization (PSO) [115], becoming

promising learning methods for training ANNs [116]. To over-

come the limitations of traditional training methods in SNNs,

applying metaheuristic algorithms to SNNs has emerged as a

new research trend. For example, Wang et al. [77] employed

the Cuckoo Search Algorithm [117] to adjust the weights of

an SNN model, optimizing the network weight combination

for superior performance in motor imagery tasks, thereby

enhancing the network’s accuracy and robustness. Yang et

al. [55] utilized the Grey Wolf Optimizer [118] to effectively

balance global and local search capabilities, fine-tuning SNN

parameters to minimize the loss function, which ultimately led

to improved action recognition accuracy.

III. APPLICATIONS OF SNNS IN HUMAN-ROBOT

INTERACTION

HRI plays a crucial role in determining the performance

of wearable robots. Given the limited computational resources

of them, SNNs offer significant advantages. This section will

provide a comprehensive overview of the application of SNNs

in HRI, focusing on three critical aspects: motion decoding,

robotic control, and neuromorphic implementation. The SNN-

based framework is illustrated in Fig. 3, and the literature

summary is presented in Table V.
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TABLE V: Applications of SNN in human-robot interaction.

Function Study Acquired Signals Performance Application

Gesture Recognition

Rekabdar 2015 [71] Visual information from video 83% classification accuracy
Applicable to upper-limb
robotics

Donati 2019 [34] EMG from armband
74% accuracy while consuming
only 0.05 mW on the DYNAP

Deployed on DYNAP

Ceolini 2020 [30]
signals from EMG armband
and DVS event camera

96% accuracy on Loihi Deployed on Loihi

Bezugam 2023 [70] EMG from armband

90% accuracy with 77% fewer
neurons, outperform GPUs by 983
times in energy and 19 times in
speed

Deployed on Loihi

Steffen 2024 [60]
Event data from event
cameras and depth signals
from depth cameras

91.48% accuracies for event data,
and 80% for data fusion

Applicable to upper-limb
robotics

Gesture Recognition

& Force Estimation

& Motor Imagery

Behrenbeck 2019
[57]

EEG from datasets, EMG
from electrode devices, and
force from sensitive resistors

75% accuracy in motor imagery,
1.29 N RMSE in force, and 77%
accuracy for gesture on
SpiNNaker

Deployed on SpiNNaker

Motion Primitive &

Robot Control
Tieck 2020 [47] EMG from armband

Pinky finger and no action reached
100% accuracy, the middle finger
ranged from 60% to 64%

Control of a robotic hand

Motion Prediction Hu 2014 [52]
EEG from a 14-channel
device

86.67% classification accuracy
Applicable to upper-limb
robotics

Motion Prediction &

Robot Control

Kumarasinghe 2018
[119]

EEG from headset
Two subjects achieved 75% and
83.3% accuracies

Control of a prosthetic hand

Zhou 2019 [72]
EMG from armband, EEG
from headset and movement
from motion capture systems

0.683, 0.852, and 0.894 F1 scores
at 10%, 50%, and 100% action
sequence

Control of a robot arm

Feng 2022 [74]
Movement from motion
capture systems

0.805 F1-score at 40% action
sequence

Control of a robot arm

Reflex Triggers

Sreenivasa 2015 [43]

Joint positions from motion
capture, EMG from wireless
device, and force from
bidirectional sensor

Difference are 1° in angles, 1-2
Nm in torque, 5-8 N in force, and
0.07-0.10 in activation

Applicable to upper-limb
robotics

Wang 2023 [79]
Temperature from robotic
skin units

Near 1.0 reflex intensity at 50°C
Applicable to upper-limb
robotics

Kinematic Analysis

Liao 2022 [51]
Spike-band power from V1
cortex

0.75 and 0.58 correlations with
less memory

Applicable to upper-limb
robotics

Leroux 2023 [64]
EMG from NinaproDB8
dataset

MAE of 6.10±1.50 degrees
Applicable to upper-limb
robotics

Dewolf 2023 [62]
Movement from simulated
sensors

0.29106 RMSE on Loihi, with
two orders lower energy use

Deployed on the Loihi, with
potential for 7-DoF robot arm

Tactile Perception

Bucci 2014 [73]
Hand movement from
trackball sensor arrays

Close to 1 ROC curve
Applicable to prosthetics and
rehabilitation gloves

Follmann 2022 [58]
Force from force sensing
resistor

100% accuracy in classifying
sliding events

Applied in slip event detection
for a prosthetic hand

Hu 2023 [41]
Tactile from EvTouch-Objects
and EvTouch-Containers

Improved accuracy on different
datasets by 8.34% and 16.17%

Applicable to prosthetics and
rehabilitation gloves

Ali 2024 [40]
Tactile from a piezoelectric
sensing system

A maximum classification
accuracy of 92.1%

Deployed on Loihi, with
potential for prosthetics

Tactile Perception

& Robot Control
Sorgin 2020 [78]

Force from sensors and hand
movement from leap motion

Improved user task completion
efficiency and accuracy

Control of a robotic arm

Tactile Perception

& Gait Event

Detection

Prasanna 2023 [80]
Pressure from 16-photonic
insole pressure sensors

87.5% accuracy for flat vs. uneven
terrain and 62.5% for three types

Applicable to lower limb
robots

Gait Event Detection

Argones 2021 [120] Gait from IMU
2.16% ± 0.76% equal error rate
with better energy efficiency

Applicable to lower limb
robots

Tao 2024 [121]
Spikes from DVS event
camera

Over 96% accuracy on
DVS128-Gait and EV-CASIA-B

Applicable to lower limb
robots

Robot Control

Luque 2014 [42]
Angle and motion of robot
Joints

Greatly reduce MAE
Control of a lightweight upper
limb robot

Dura 2015 [122]
Muscle length from a virtual
musculoskeletal model

MAE was less than 2 degrees Applicable to robotic arm

Gilar 2018 [123]
Simulated joint angles and
velocities

0.00417 ± 0.00096 mean square
error

Applicable to two-link robotic
arms

Wei 2020 [124]
Visual information from
cameras

Most sessions converged in
100-300 steps

Control of a 6-DOF robot arm

Steffen 2020 [45]
Current-activated spikes of
position neurons

0.021 to 0.041s path search time
Applicable to obstacle
avoidance in wearable robots

Perez 2021 [125]
Arm position and movement
from simulated sensors

Adapted to changes within 1s Applicable to prosthetics



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. XX, NO. XX, AUGUST 2024 8

Fig. 3: SNN-based human-robot interaction for rehabilitative wearable robots.

Fig. 4: Hand gesture recognition for robot control [126].

A. Motion Decoding

1) Hand Gesture Recognition: For the recognition of upper

limb movements, numerous studies have focused on hand

movement analysis based on EMG signals, as illustrated in

Fig. 4, aiming to decode motion intentions for more natural

control of prosthetics or exoskeletons. Several studies have

employed SNNs to process EMG signals for hand movement

classification [30], [34], [60], [66], [68], [70], [71], [103]. It

suggests that rehabilitation robots could rapidly respond to

the user’s EMG signals. This allows for prompt feedback and

assistance, significantly improving the user experience and the

overall effectiveness of rehabilitation training.

2) Motion Primitive Recognition: In this category, SNNs

have been employed to recognize different hand movement

primitives (such as grasping, releasing, or moving) and map

Fig. 5: Continuous motion estimation for robot control [127].

these primitives to robot control signals. For instance, Vasquez

et al. [46] and Tieck et.al [47] used EMG signals, enabling

precise control of each finger’s reflex action. Tieck et al. also

[53] utilized motion capture systems to generate movement

primitives for controlling both finger and hand actions. Fur-

thermore, tactile reflexes were integrated into the robotic hand

to ensure safety during real-world operations. The generation

of motion primitives using SNNs for robotic control is a

cutting-edge and promising research direction, driving the

development of wearable rehabilitation robots towards more

efficient and intelligent systems.

3) Motion Type-Based Intention Prediction: For patients

with mobility impairments, motion intention prediction en-

ables robots to automatically understand and assist in com-

pleting necessary actions, thereby enhancing the collaborative
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aspect of HRI [128]. Hu et al. [52] classified activities of daily

living (ADL) of the upper limbs using EEG data achieving

a classification accuracy of 86.67% on test samples using

SNN. Similarly, Zhou et al. [72] combined multiple signals,

including EEG and EMG, to enable a robot to predict turn-

taking intentions during task handovers. Remarkably, the per-

formance of the proposed SNN surpassed human levels even

with only partial observation data.

4) Reflex Triggers: Reflex activities are a critical area of

research in the application of prosthetics. Sreenivasa et al [43],

[44] combined realistic SNNs with musculoskeletal models to

replicate physiological phenomena such as the stretch reflex of

the human arm. They also explored the potential applications

of these models in rehabilitation engineering, emphasizing

their importance in enhancing prosthetic control and respon-

siveness in real-world scenarios. Wang et al. [79] introduced

a bioinspired neuromorphic model designed to mimic the

nociceptive withdrawal reflex of the upper limb triggered by

thermal stimuli of robotic skin unit. This model offers a new

approach to implementing thermal protection mechanisms in

prosthetics and robotic systems, providing enhanced safety

features for users.

5) Kinematic Regression Analysis: Continuous motion de-

coding is essential for achieving natural control of reha-

bilitative wearable robots. The classic control framework is

illustrated in Fig. 5. Du et al. [48] was the first to use

SNNs to decode elbow joint angles from preprocessed EMG

signals, demonstrating the feasibility of this model. Leroux

et al. [64] and Zanghieri et al. [62] further explored the

regression of hand kinematics using EMG signals, predicting

joint angles of the hand through SNN models. The former

achieved a low mean absolute error (MAE) of 6.10±1.50

degrees and a fast inference time of 3.5 ms per time window,

while the latter demonstrated significant advantages in memory

usage, latency, and energy consumption. Compared to ANN

methods, the memory footprint was reduced by approximately

9 times, latency by 10 times, and energy consumption by about

13 times. In addition to using EMG signals, EEG signals

have also been employed for continuous motion decoding

of the upper limbs. Kumarasinghe et al. [89] decoded and

interpreted muscle activity and movement trajectories from

EEG signals, showing that the proposed brain-inspired SNN

model could achieve good predictive performance even with

small-scale training data. Liao et al. [51] used SNNs to decode

brain signals to predict finger movement speed, achieving a

correlation coefficient level comparable to ANN decoders but

with only 6.8% of the computational operations and 9.4% of

the memory accesses required by ANNs.

6) Gait Analysis and Recognition: A key application of

lower limb rehabilitation is gait reconstruction [129]. SNNs

process data from various sensors, including IMU, ground

reaction force, EMGs, and machine vision, in real-time, allow-

ing for efficient decoding of gait information and providing a

robust tool for gait analysis and recognition. Inspired by the

way tactile data is processed in the brain, Lee et al. [130] de-

signed a low-cost foot pressure sensor using conductive fabric,

which detected events based on timing rather than pressure

intensity. This approach used a two-layer SNN, where input

neurons converted pressure signals into spikes using Izhikevich

neurons, while output neurons identified specific gait events,

and the synaptic kernel inverse method (SKIM) was applied to

solve the weights of a discrete-time perceptron. This method

achieved an accurate detection time of 1.2±7 ms for heel strike

events and 0.2± 14 ms for toe-off events, with a success rate

exceeding 97%. Tao et al. [121] presented GaitSpike, which

leveraged SNNs and a sparsity-driven event-based camera for

gait classification. The SNN with three convolutional layers

of LIF neurons and a fully connected layer was proposed to

process the concise LIR images, using BPTT with a surrogate

gradient function for learning. Argones et al. [120] addressed

gait authentication using SNNs based on IMUs. The SNN

training initially employed STDP to establish a baseline and

subsequently utilized supervised backpropagation for further

learning. It is suggested that the low power consumption of

SNN hardware implementations, coupled with advancements

in backpropagation techniques encourages further research

into SNN applications.

7) Tactile Perception: In the field of rehabilitation, tactile

training is often used for patients with sensory integration

disorder and other neurodevelopmental disorders to improve

their sensory processing and behavioral regulation abilities.

To enhance the effectiveness of Sensory Integration Therapy

(SIT), Bucci et al. [73] discussed the design and implemen-

tation of a neuromorphic robot named CARL-SJR (Cognitive

Anteater Robotics Laboratory Spiking Judgment Robot) and

successfully demonstrated the robot’s ability to classify com-

plex tactile patterns by using SNNs, offering new insights into

the field of tactile perception.

Tactile perception can significantly enhance the ability of

rehabilitation robots or prosthetic users to perceive and adapt

to their surrounding environment [131]. For example, through

tactile feedback, users can sense objects’ hardness, tempera-

ture, or texture, enabling more precise manipulation in daily

activities and improving their quality of life. Sorgini et al.

[78] utilized SNN models to simulate the spiking patterns of

neurons in the actual sensory system, converting force and

motion information from the robot’s end effector into tactile

signals for the user’s hand. The tactile feedback generated

by the SNN allowed the system to more realistically mimic

the response patterns of mechanoreceptor neurons beneath

human skin, enabling users to experience robotic feedback

more intuitively and naturally.

In addition, SNNs can be used to recognize and classify

different objects and textures using tactile data. For instance,

Hu et al. [41] proposed a model called Tacformer, a residual-

ized graph self-attention SNN, for tactile object recognition,

demonstrating that this model outperforms other benchmark

models in object recognition tasks, particularly with small

sample datasets. Similarly, Ali et al. [40] developed a sensing

system that mimics human tactile biological processes, specif-

ically for classifying texture features. This system employs a

neuromorphic approach, using a PVDF-based sensing system

to convert raw tactile signals into spikes, which are then

processed by an SNN, achieving good classification accuracy

under various experimental conditions.

Furthermore, tactile information can also be used to detect
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slippage events. Follmann et al. [58] collected data on slippage

events by applying force with a mechanical finger equipped

with pressure sensors and trained an SNN on this data. The

results showed that the model could accurately detect slippage

events, making it suitable for scenarios requiring real-time

response and low power consumption, such as in prosthetics.

B. Robotic Control

By simulating the interactions between the nervous sys-

tem and the musculoskeletal system using SNNs, researchers

can model the propagation of neural signals and how these

signals drive muscle contractions and skeletal movements.

This approach offers new insights into the motion control of

wearable robots, deepening the understanding of motor control

in living organisms while also providing technical support

for the advancement of bionic robots, neural prostheses, and

rehabilitation devices. From a biomimetic perspective, SNNs

used for robotic control in wearable rehabilitation robots can

be categorized at various levels and scales based on the

hierarchical organization of the nervous system, including

the simulation of individual neuron behaviors, local neural

circuits, and brain area functions.

1) Individual Neuron Level: SNNs emulate fundamental

sensory processing by decoding bio-physiological signals,

such as EMG, EEG, tactile data, etc. Pan et al. [132] utilized

an SNN to encode intra-cortical micro-stimulation (ICMS)

current and employed an auxiliary controller based on an MPC

strategy to regulate the ICMS current. The encoded signal is

fed into the PPV neuron, which senses the current position of

the joint. Sorgini et al. [78] described an intuitive gesture-

based system for remotely controlling a robotic arm with

tactile telepresence, where neuronal spiking models generate

vibrotactile feedback that is delivered directly to the palm

of the hand. Since SNNs are primarily used for decoding

information to interpret human intentions or analyze postures,

this framework allows the robot’s control algorithm to gen-

erate commands accordingly, enabling precise and responsive

movement control.

2) Local Neural Circuit Level: SNNs replicate relatively

complex motor control processes by modelling interconnected

networks of neurons. By constructing a preset structure similar

to reflex arcs using SNNs, Perez et al. [125] proposed a

channel-based synaptic model and a control scheme based

on the equilibrium point hypothesis to enhance the biological

similarity of the controller. Wei et al. [124] developed a spiking

neural circuit inspired by biological spinal circuits, utilizing

dopamine-modulated STDP to adjust neural connections based

on environmental feedback, enabling a robotic arm to au-

tonomously learn how to reach or avoid specific positions.

Meanwhile, local neural processing typically involves neural

circuits that learn an inverse model of the non-linear dy-

namics, enabling them to infer the continuous-time command

required to control a two-link arm along a desired trajectory

[123]. Thus, these methods enable direct control of specific

physiological responses or behaviours and allow for precise

regulation of particular actions.

Fig. 6: Implemented cerebellar control loop [42].

3) Brain Area Level: SNNs simulate the functions of

specific regions of the brain, such as the motor cortex or

cerebellum, which are involved in higher-order tasks like

motion planning, decision-making, and fine motor control,

enabling wearable robots to implement more sophisticated

capabilities. Luque et al. [42] demonstrated how integrating

a cerebellar structure into the control loop as an adaptive

feedforward model can learn to abstract the dynamics of

manipulated objects, as shown in Fig. 6. This was achieved

using an integrated simulation platform that combines a real-

time spiking neural simulator with a simulated robot. Steffen et

al. [45] presented a 3D path planning algorithm that employs

an SNN of place cells. A wavefront initiated at the goal cell

strengthened synapses through STDP, generating a vector field

that directs the path from any cell to the destination. Dura et al.

[122] developed a control system that integrates a cortical SNN

with both a virtual musculoskeletal arm and a physical robotic

arm. The SNN with STDP simulates the brain’s process of

coordinating motor commands through temporal patterns of

neural spikes. The virtual arm, which mimics the dynamics of

a real musculoskeletal system, receives commands from the

SNN and translates them into joint control commands for the

physical robotic arm.

C. Neuromorphic Implementation

In the field of robotic control, motion decoding and control

signal computation are typically resource-intensive, leading to

traditional devices that are both bulky and power-hungry [133].

This is particularly challenging for wearable robots, which

require lightweight and energy-efficient solutions to minimize

signal processing time [134]. Neuromorphic hardware offers

a promising solution to this problem. Unlike traditional hard-

ware optimized for the matrix-based computations of ANNs,

neuromorphic hardware is a biomimetic computing system de-

signed to replicate the structure and function of the biological

brain. This hardware often relies on SNNs, which process and

transmit information through sparse spiking activity, providing

significant advantages in power consumption, computational

latency and efficiency which is especially well-suited for

wearable robots with limited resources.

Several neuromorphic processors have already been devel-

oped, with some of the prominent examples including SpiN-
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Naker [135], Loihi [84], TrueNorth [136], BrainScaleS [137],

DYNAP [138], Neurogrid [139], ODIN [86] and MorphIC

[140]. In the field of rehabilitative wearable robotics, several

studies have implemented applications of neuromorphic pro-

cessors. Behrenbeck et al. [57] deployed the proposed SNN-

based NeuCube framework onto the SpiNNaker platform to

accomplish user motion decoding tasks. The study demon-

strated that this hardware architecture enables the SNN model

to achieve real-time processing under low-power conditions.

Moreover, [33], [34], [68], [69] successfully deployed SNNs

on the compact, ultra-low-power neuromorphic chip DYNAP

to accomplish hand gesture discrimination tasks. These studies

demonstrated the feasibility of implementing spiking models

on the DYNAP neuromorphic chip and confirmed that such

chips can perform complex neural network computations with

extremely low power consumption, making them particularly

suitable for wearable devices and other embedded systems.

In addition to the neuromorphic processors mentioned above,

the effectiveness of the Loihi for SNNs has also been demon-

strated in practical applications. Dewolf et al. [133] deployed

an SNN model on the Loihi to successfully perform complex

nonlinear computations for controlling a 7-degree-of-freedom

robotic arm. This control strategy highlighted the potential of

Loihi in handling high-dimensional nonlinear control prob-

lems. In addition, Vitale et al. [26] and Bezugam et al.

[70] implemented efficient gesture classification by running

SNNs on the Loihi processor, demonstrating the potential of

this neuromorphic processor in wearable devices and real-

time computing. Ceolini et al. [30] explored multimodal data

processing for gesture recognition by implementing SNN

architectures not only on the Loihi but also on the ODIN +

MorphIC. Their experimental data revealed that SNN charac-

teristics vary across different neuromorphic platforms. Loihi

is well-suited for more complex and larger-scale network

architectures, particularly for handling high-dimensional visual

data. In contrast, ODIN + MorphIC excels in low-power,

small-scale tasks. These studies illustrated the potential and

limitations of neuromorphic processors in practical applica-

tions, providing valuable insights for the future deployment of

wearable devices based on neuromorphic hardware.

IV. FUTURE DIRECTIONS

A. Enhancing Computational Efficiency

The impulse-based mechanism of SNNs complicates the

use of gradient computation and backpropagation algorithms,

especially in large-scale networks, leading to the requirement

of complex optimization strategies [141]. Wearable robots,

with their limited computational resources, struggle with high

computational complexity and training difficulty. While neu-

romorphic chips offer a potential solution, the technology

remains immature, expensive, and limited in scale [142],

significantly restricting the widespread adoption of SNNs in

wearable devices. To address these challenges, future develop-

ments in SNNs should focus on several key areas to improve

the feasibility of wearable devices:

1) Bio-Inspired Mechanisms and Neural Innovations: Lever-

aging new neural mechanisms and bio-inspired approaches

may improve the sophistication and efficiency of SNNs. Key

directions include integrating biologically inspired learning

rules and incorporating neuromodulatory mechanisms like

dopamine regulation to dynamically adjust learning processes.

Developing adaptive synaptic models that reflect biological

plasticity, optimizing algorithms for event-driven computation.

Enhanced simulation and optimization tools tailored to these

bio-inspired mechanisms will further support the efficient

design and training of SNNs, paving the way for their practical

application in wearable robots.

2) Hardware Acceleration: Future developments should

focus on several key areas. First, advancing neuromorphic

hardware, such as specialized chips designed to efficiently

process spike-based computations. These chips need to be

more scalable and cost-effective to support larger and more

complex SNNs. Second, optimizing traditional hardware ar-

chitectures, including GPUs and TPUs, to better handle the

asynchronous and event-driven nature of SNNs. Third, inte-

grating custom processing units that are tailored specifically

for SNN operations, such as spike-time and synaptic weight

updates, can improve real-time capabilities. Lastly, developing

efficient hardware-software co-design strategies will ensure

that SNN algorithms are fully optimized for the capabilities of

new hardware, maximizing the potential of SNNs in real-world

applications.

3) Hybrid Approaches: Integrating SNNs with traditional

neural network techniques may be a promising direction.

For example, combining SNNs with deep learning models

can leverage the strengths of both paradigms: SNNs’ event-

driven efficiency and deep networks’ advanced optimization

capabilities. Additionally, incorporating reinforcement learn-

ing techniques like R-STDP [79] with SNNs can enable

adaptive learning and optimization based on environmental

feedback, further improving efficiency. Developing seamless

interfaces and optimization algorithms that allow these hybrid

models to function cohesively will be crucial for maximizing

performance and resource utilization across diverse tasks.

4) Energy-Efficient Architectures: Employing energy-

efficient neuron and synapse models that reduce the number of

active components during computations can further lower en-

ergy usage. Techniques such as dynamic voltage and frequency

scaling (DVFS) and adaptive clocking can be integrated to

adjust power consumption based on network activity levels.

By focusing on these design principles, SNNs can achieve

substantial reductions in power requirements, thus extending

the operational lifespan of wearable robotic systems.

B. Addressing Rehabilitation Needs

Human movement is continuous and highly complex, in-

volving subtle variations and coordinated actions across mul-

tiple muscles and joints. In contrast, SNNs rely on spike-

based communication, which is inherently discrete and event-

driven. Accurately encoding these smooth, dynamic patterns

into spikes demands sophisticated neural models and precise

timing. This challenge is particularly relevant for rehabilitation

needs, as SNNs must effectively capture the fluidity and

variability of natural human motion to provide effective and
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responsive therapy. Furthermore, the diversity in individual

rehabilitation needs adds further complexity, as SNNs must

be able to adapt to a wide range of motor functions and

conditions, often with limited data for each unique case. To

overcome these challenges, future developments in SNNs may

focus on the following important areas:

1) Iterative and Adaptive Learning: By delivering real-time

feedback, SNNs continuously adapt to the user’s movements

and rehabilitation progress, presenting a promising approach

for improving rehabilitation outcomes. This involves designing

learning algorithms that enable SNNs to iteratively refine their

synaptic connections and neural pathways based on ongoing

interaction with the user. By implementing mechanisms that

allow for rapid adaptation to changes in the user’s condition,

such as varying levels of motor function, SNNs can become

more responsive and personalized. Additionally, incorporating

adaptive learning strategies that adjust learning rates and

synaptic plasticity in response to environmental feedback will

help SNNs maintain high performance and accuracy over

time, ensuring that the wearable robots provide effective and

customized assistance throughout the rehabilitation process.

2) Integration of Multi-Modal Inputs: To enhance the effec-

tiveness of SNNs in wearable robotics, future developments

should focus on integrating multi-modal inputs to provide a

richer, more comprehensive understanding of human move-

ment. This involves incorporating diverse sensory data sources

such as accelerometers, gyroscopes, EMG, and pressure sen-

sors into the SNN framework. By fusing these multi-modal

inputs, SNNs can better capture the complex and nuanced

aspects of human motion, including subtle variations in mus-

cle activity and joint dynamics. Developing effective fusion

frameworks and adaptive filtering techniques will enable SNNs

to process and interpret data from different sensors simulta-

neously, leading to more accurate and responsive control of

wearable devices. For example, Jiang et al. [143] proposed a

lightweight framework combining attention-based distillation

and feature selection, offering valuable insights for SNN-based

sensor integration under constrained conditions. Additionally,

integrating real-time data streams with spike-based processing

will allow the SNN to dynamically adjust its models and

outputs based on immediate feedback, improving the system’s

adaptability and performance in varied rehabilitation scenarios.

This multi-modal approach will enhance the SNN’s ability to

model and replicate intricate movement patterns, ultimately

providing more effective and personalized assistance for users.

3) Robustness in Varied Scenarios: Future research should

focus on developing SNNs that can maintain consistent per-

formance despite changes in the environment and user be-

haviour. This involves designing SNN architectures that can

generalize well to different contexts, such as varying terrains,

motion speeds, and user-specific conditions like fatigue or

injury. Implementing advanced generalization techniques, such

as data augmentation, robust training algorithms and low-

precision-aware learning strategies that tolerate quantization

noise and hardware mismatch [144] will help SNNs adapt

to diverse situations without significant loss in accuracy or

reliability. Additionally, integrating context-aware mechanisms

that enable the SNN to dynamically adjust its parameters in

response to real-time changes can further improve robustness.

By focusing on these areas, SNNs in wearable robots may be-

come more resilient and effective, providing reliable assistance

across a wide range of real-world conditions and rehabilitation

scenarios.

V. CONCLUSION

This review highlights the significant potential of SNNs to

advance embodied intelligence for human-robot interaction in

rehabilitative wearable robotics. Recent advancements in SNN

technology tackle critical challenges by enhancing real-time

adaptation, sensory processing, and user interaction. However,

challenges remain in optimizing SNNs for practical appli-

cations across diverse rehabilitation needs. Future research

should concentrate on refining these technologies to maximize

their effectiveness in rehabilitative wearable robots, further

advancing the integration of embodied intelligence in robotics.
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feedforward neural networks: A review of two decades of research,º
Eng. Appl. Artif. Intel., vol. 60, pp. 97–116, 2017.

[117] X.-S. Yang and S. Deb, ªCuckoo search via lÂevy flights,º in Proc. 2009

World Congr. Nat. Biol. Insp. Comput. (NaBIC), 2009, pp. 210–214.
[118] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ªGrey wolf optimizer,º Adv.

Eng. Software, vol. 69, pp. 46–61, 2014.
[119] K. Kumarasinghe, M. Owen, D. Taylor, N. Kasabov, and C. Kit,

ªFaneurobot: A framework for robot and prosthetics control using the
neucube spiking neural network architecture and finite automata the-
ory,º in Proc. 2018 IEEE Int. Conf. Robot. Autom. (ICRA). Brisbane,
QLD, Australia: IEEE, 2018, pp. 4465–4472.

[120] E. A. RÂua, T. van Hamme, D. Preuveneers, and W. Joosen, ªGait
authentication based on spiking neural networks,º in Proc. BIOSIG

2021 20th Int. Conf. Biometrics Spec. Interest GroupGroup. Bonn:
Gesellschaft fÈur Informatik e.V., 2021, pp. 51–60.

[121] Y. Tao, C.-H. Chang, S. SaÈıghi, and S. Gao, ªGaitspike: Event-based
gait recognition with spiking neural network,º in Proc. 2024 IEEE 6th

Int. Conf. AI Circuits Syst. (AICAS), Abu Dhabi, United Arab Emirates,
2024, pp. 357–361.

[122] S. Dura-Bernal, X. Zhou, S. A. Neymotin, A. Przekwas, J. T. Francis,
and W. W. Lytton, ªCortical spiking network interfaced with virtual
musculoskeletal arm and robotic arm,º Front. Neurorob., vol. 9, 2015.

[123] A. Gilra and W. Gerstner, ªNon-linear motor control by local learning
in spiking neural networks,º in Proc. 35th Int. Conf. Mach. Learn.

(ICML), ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80, 10–15 Jul 2018, pp. 1773–1782.

[124] H. Wei, Y. Bu, and Z. Zhu, ªRobotic arm controlling based on a spiking
neural circuit and synaptic plasticity,º Biomed. Signal Proces., vol. 55,
p. 101640, 2020.

[125] J. P. FernÂandez, M. A. Vargas, J. M. V. GarcÂıa, J. A. C. Carrillo, and
J. J. C. Aguilar, ªA biological-like controller using improved spiking
neural networks,º Neurocomputing, vol. 463, pp. 237–250, 2021.

[126] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. MÈuller, ªElectromyography
data for non-invasive naturally-controlled robotic hand prostheses,º Sci.

Data., vol. 1, no. 1, pp. 1–13, 2014.
[127] K. Li, J. Zhang, L. Wang, M. Zhang, J. Li, and S. Bao, ªA review of

the key technologies for semg-based human-robot interaction systems,º
Biomed. Signal Proces., vol. 62, p. 102074, 2020.

[128] C. Tang, Z. Xu, E. Occhipinti, W. Yi, M. Xu, S. Kumar, G. S. Virk,
S. Gao, and L. G. Occhipinti, ªFrom brain to movement: Wearables-
based motion intention prediction across the human nervous system,º
Nano Energy, p. 108712, 2023.

[129] R. Ma, Y.-F. Chen, Y.-C. Jiang, and M. Zhang, ªA new compound-limbs
paradigm: Integrating upper-limb swing improves lower-limb stepping
intention decoding from eeg,º IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 31, pp. 3823–3834, 2023.

[130] W. W. Lee, H. Yu, and N. V. Thakor, ªGait event detection through
neuromorphic spike sequence learning,º in Proc. 5th IEEE RAS/EMBS

Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Sao Paulo, Brazil,
2014, pp. 899–904.

[131] Y. Zhu, T. Ito, T. Aoyama, and Y. Hasegawa, ªDevelopment of sense
of self-location based on somatosensory feedback from finger tips for
extra robotic thumb control,º ROBOMECH J., vol. 6, pp. 1–10, 2019.

[132] H. Pan, W. Mi, X. Lei, and J. Deng, ªA closed-loop brain–machine
interface framework design for motor rehabilitation,º Biomed. Signal

Proces., vol. 58, p. 101877, 2020.

[133] T. DeWolf, K. Patel, P. Jaworski, R. Leontie, J. Hays, and C. Elia-
smith, ªNeuromorphic control of a simulated 7-dof arm using loihi,º
Neuromorphic Comput. Eng., vol. 3, no. 1, p. 014007, 2023.

[134] J. Zhao, E. Donati, and G. Indiveri, ªNeuromorphic implementation of
spiking relational neural network for motor control,º in Proc. 2020 2nd

IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS), 2020, pp. 89–93.

[135] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, ªThe spinnaker
project,º Proc. IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[136] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., ªA
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,º Science, vol. 345, no. 6197, pp. 668–673,
2014.

[137] J. Schemmel, S. Billaudelle, P. Dauer, and J. Weis, ªAccelerated analog
neuromorphic computing,º in Analog Circuits for Machine Learning,

Current/Voltage/Temperature Sensors, and High-speed Communica-

tion: Advances in Analog Circuit Design 2021. Springer, 2021, pp.
83–102.

[138] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, ªA scalable multicore
architecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (dynaps),º IEEE Trans. Biomed.

Circuits Syst., vol. 12, no. 1, pp. 106–122, 2017.

[139] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, ªNeurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,º Proc. IEEE, vol. 102, no. 5, pp.
699–716, 2014.

[140] C. Frenkel, J.-D. Legat, and D. Bol, ªMorphic: A 65-nm 738k-
synapse/mm2 quad-core binary-weight digital neuromorphic processor
with stochastic spike-driven online learning,º IEEE Trans. Biomed.

Circuits Syst., vol. 13, no. 5, pp. 999–1010, 2019.

[141] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, and Z.-Q. Luo, ªTowards
memory- and time-efficient backpropagation for training spiking neural
networks,º in Proc. 2023 IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
2023, pp. 6143–6153.

[142] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, ªSpiking neural networks hardware im-
plementations and challenges: A survey,º ACM J. Emerg. Technol.

Comput. Syst., vol. 15, no. 2, pp. 1–35, 2019.

[143] R. Jiang, J. Han, Y. Xue, P. Wang, and H. Tang, ªCmci: A robust
multimodal fusion method for spiking neural networks,º in Proc. Int.

Conf. Neural Inf. Process. (ICONIP). Springer, 2023, pp. 159–171.

[144] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C.
Liu, ªRobustness of spiking deep belief networks to noise and reduced
bit precision of neuro-inspired hardware platforms,º Front. Neurosci.,
vol. 9, p. 222, 2015.


