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A Rubber-sheet Transformation Model for Personalized Human-Robot Proxemics

Fanta Camara! Adam El Jabaoui??

Abstract— The deployment of autonomous robots in human
environments requires an understanding of social interactions
and the factors that influence them. Human-robot proxemics
is an important factor that impacts interactions, and modeling
personalized proxemic behavior has always been a challenge,
as it depends on multiple user attributes, including gender, age,
and height. In this paper, we propose a novel approach that uses
rubber-sheet transformation models to represent human-robot
proxemics. We do this by collecting human-robot interpersonal
distance data from 20 users and model it with respect to
their height, age, gender, and the angle at which the robot
approaches. We present an evaluation of the model, and the
outcome of our results, which show a promising approximation
of proxemic distances based on different user attributes. Finally,
we provide a coefficient table for rubber-sheet models to lay
the foundation for personalized human-robot proxemics and
outline future research directions.

I. INTRODUCTION

This work aims to contribute towards the deployment of
autonomous robots in human environments in a safe and
socially acceptable manner. Robots are equipped with many
algorithms and models that define their surrounding world.
For example, many researchers addressed robots’ navigation
[1], mapping [2], [3], and movements [4] to enable them
to carry out their tasks. One prominent area in robotics,
especially when operating in inhabited areas, is ensuring
that a robot’s movements are socially appropriate, meaning
that it interacts with people in a way that feels acceptable
[5], [6]. One of the areas that researchers focused on is
human-robot proxemics [7]-[11], in which they show several
factors, including gender, height, and age, that affect the
interpersonal distance a robot should have when approaching
people. Many studies have investigated these factors, which
are crucial for effective communication and interaction. For
instance, the size and shape of a robot determine how far it
should stand from users, while the height and gender of the
user influence our preferences regarding the robot’s distance
[12].

However, in the context of human-robot proxemics, it
remains a challenge to determine appropriate points at which
a robot should automatically stop when approaching a user
for a specific task. Modeling this behavior requires not
only an understanding of people’s preferences but also the
development of models that can be easily executed by a
robot.

In this research, we explore a novel approach by uti-
lizing rubber-sheet transformations to model human-robot

Mnstitute for Safe Autonomy, University of York, UK
2CSE, Chalmers University of Technology, Sweden
3CSE, University of Gothenburg, Sweden

4CSSE, University of Canterbury, New Zealand

Ramakrishnan Mukundan?

Mohammad Obaid?3

Fig. 1: Sketch of the experimental setup showing a robot
approaching a human from different angles (A to G).

proxemics. Specifically, we apply a user-defined method
for collecting proxemics data (as illustrated in Fig. 1) and
then develop a model that takes into account user attributes
such as height, gender, and age. This paper contributes the
following:

« a novel approach to modeling human-robot proxemics
using a polar-form rubber-sheet model;

« the integration of users’ personal attributes, such as
height, age, and gender, into the model;

« a proxemic model representation and a table of coeffi-
cients for angle, height, age, and gender, which can be
utilized in a social robot for real-time interactions.

To the best of our knowledge, this work is the first to
demonstrate how users’ gender, age, and height can be
integrated into a predictive proxemics model using rubber-
sheet transformation for safe and socially acceptable human-
robot interactions.

II. RELATED WORK

The theory of proxemics was proposed by E. T. Hall
in the 1960’s to describe distances that people keep away
from each other based on different settings [13]. He defined
four discrete spaces: the intimate, personal, social and public
zones, corresponding to areas around a person where they
experience a certain level of comfort or discomfort depending
on who enters each zone. Subsequent empirical studies have
investigated human-human and human-robot proxemics, and
measured specific distances. For human-human interactions,
it was found that the intimate zone corresponds to the area
around a person up to 45cm, the personal zone goes from



45cm up to 1.2m, the social zone goes from 1.2m up to 3.6m
and the public is beyond 3.6m [14].

However, human-robot proxemics zones are found to be
smaller [9], [11], [15], [16]. Takayama and Pantofarou [16]
found empirical proxemics zones to be in the range 0.4m—
0.6m (average interpersonal distances) with a robot that is
1.35m high. They also showed that robot head orientation,
the gender of participants, and previous experience interact-
ing with both pets and robots also affected people’s comfort-
able distances. Syrdal et al. [17] studied the individual factors
that affect proxemic distances, where gender and personality
trait were found to be determining factors. For example, fe-
male and extrovert participants allowed the robot to approach
closer from the front than male and more introvert partici-
pants. The empirical findings in [18] suggest that passing at
the back of a person is more uncomfortable than at the front.
Satake et al. [19] investigated robot approaching strategies
from different distances towards humans. Their work using
Hall concentric proxemic zones showed how a robot can
begin an interaction with a human, i.e. communicate via its
position its intention to start interacting with a person.

Mead et al. [20] developed an automated proxemic fea-
ture extraction method based on Schegloff’s individual (e.g.
shoulder pose, hip pose) [21], Mehrabian’s physical (e.g.
total distance, relative body orientation) [22] and Hall’s
psychophysical (e.g. distance, voice loudness) [13] factors
identified in the social sciences. A Hidden Markov Model
was trained on the physical and psychophysical features and
then tested through an interaction study for the real-time
annotation of proxemic features. Mead et al. [23] studied
the interaction between a robot and human participants. The
interactions consisted in moving the robot towards the partic-
ipants and backwards several times. Their results showed that
individuals’ pre-interaction proxemic preference (mean =
1.14m, SD = 0.49m) was consistent with previous studies.
With a uniform performance in the robot behaviour, the
proxemic preference reached a mean = 1.39m and a SD =
0.63m. It was also found that participants adapted their
distances to improve the robot’s performance. Samarakoon
et al. [24] developed a proxemics-based approach method for
a service robot that relies on the user physical behaviour and
feedback.

Despite the numerous empirical studies, the mathematical
modelling of human-robot proxemics is still in its early
phases. Kirby et al. [25] proposed one of the first mathe-
matical models with the COMPANION framework for robot
path planning and navigation following social conventions.
The cost function for personal space was modelled as two
halves of 2D Gaussian functions producing an asymmetric
shape where the space in front of the person is greatest. Their
approach was tested in two simulated experiments. Torta et
al. [26], [27] performed two psychometric experiments with
a small humanoid robot and proposed a parametric model of
the personal space. The model takes into account the distance
and the direction of approach, and was evaluated with a user
study where subjects are sitting or standing and approached
by the humanoid robot Nao. They derived a polynomial

approximation based on the mean values of user preferences
for different angles of approach, while the preference on the
distance was modelled using a Gaussian function. Similarly,
Kosinski et al. [28] investigated human perceived comfort
level based on a robot approaching distance and angle via
a set of rules, fuzzy sets and parameters. It was assumed
that the approaching distance and angle can be described
by sigmoid and bell-shaped functions and that the perceived
comfort decreases as the angle changes. The authors found
that the proxemic distance is linked to the angle of approach
and that subjects feel more comfortable with approaches
from the boundary of their field of view. Participants were
more tolerant when the robot approached from the right hand
side and felt least comfortable when the robot approached
straight ahead.

Neggers et al. [29] investigated comfortable distances for
robot Pepper passing people from different distances and
sides in a hallway scenario using a 7-point comfort rating
scale. They then used an inverted Gaussian to fit the average
comfort rating from 32 participants and showed that comfort
increases with distance. Patompak et al. [30] developed an in-
ference method to learn human proxemic preferences. Their
method is based on the social force model and reinforcement
learning. They argued that proxemic spaces can be limited to
two zones, the first being the quality interaction area where
a robot could go without creating discomfort, and the private
area which is the personal space. Camara and Fox [31]
proposed a kinematic model that can generate Hall empirical
proxemics zone sizes quantitatively and which also links
pedestrian proxemics with trust in the context of autonomous
driving. The same authors [32] extended their model by
taking the angle of approach into account and generalized
it to human-human and human-robot interaction scenarios,
while [33] showed that the kinematic model can reproduce
several empirical proxemics zone shapes.
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Fig. 2: Schematic of the rubber sheet model for different
users.



III. RUBBER-SHEETS IN POLAR FORM

Rubber-sheet transformations use higher-order polynomi-
als to represent shapes. The elastic property of the rubber-
sheet makes it suitable for representing complex changes
in shapes, such as the example in Obaid et al [34]. In
our research, since we are interested in modeling a robot
approaching a user from different angles, we apply rubber-
sheets in a polar form, where a simple rubber-sheet with a
single feature (cf. Eq. 1) or two features and an interaction
term (cf. Eq. 2) can be represented in 2" order polynomials
in its general form as:

Ri(\i) = a+ b\ + )2, (D
Ri(Ni, ¢i) = a+bidi+cidi+di i +e;(Ni x ¢i)+ 07, (2)
where:

7 : index ranging from 1 to n,
n : number of data points,
a : intercept,
b,c,d, f : coefficients,
A, ¢ : predictive features,
e : interaction coefficient between \; and ¢;,

A X ¢ : interaction term.

To model an approximation to the distance R; for any
features \; and ¢;, we need to find the coefficients that best
fit, thus we apply a least square fit to solve for the coefficients
(a,b,c,d, e, f). An interaction between \; and ¢; means that
the relationship between \; and R; differs depending on the
value of ¢;, thus making the model more flexible for multiple
predictors and generating more coefficients. Fig. 2 presents a
schematic of the rubber sheet model for different user data.
Section IV provides details on the data collection.

IV. USER STUDY

We conducted a user study with 29 participants to gather
proxemics data. The study was set up in a lab using the
commonly used Pepper robot from SoftBank Robotics!,
which has a height of 1.20m and a width of 0.485 m. We used
the Choregraphe suite to program Pepper’s behavior, setting
its speed to a constant 0.35m/s. Throughout the study, Pepper
was set to its default idle movements to give a lively feeling.
Figure 1 illustrates the in-lab setup for Pepper, where a user
stands in the middle of the room while the robot moves
toward the user from seven different angles, ranging from
A =5m/4 (225°) to G = —% (—45°). For each angle, the
robot was 2.6m away from the user before it started moving,
and it was programmed to stop at a maximum distance of
2.45m (15cm away from the participants) to prevent crashes.

Participants and Data collection: The study started with
two participants as pilots to verify the setup and confirm
the accuracy of the speed, and positioning of the robot.
Once all aspects were checked and validated, we recruited 29
participants from the Chalmers University of Technology’s

Thttps://us.softbankrobotics.com/pepper

Fig. 3: Example of data collection conducted in the lab.

network. For each of the participants, we collected several
demographic data points, including age, gender, height, expe-
rience with robots, pet ownership, educational background,
profession, and if they are right- or left-handed. We also
recorded the distance where the robot stopped away from
the user (the interpersonal distance) as shown in Fig. 3.
The data was then examined by two researchers, and only
complete datasets were included. In some cases, participants
clearly did not follow the instructions and instead tested
the robot’s abilities, which was not the focus of this study.
Therefore, incomplete demographic data or extreme outlier
measurements were removed.

The final dataset included 20 participants (11 female, 9
male), aged from 19 to 53 years old, with an average age of
mean = 27.60 and SD = 7.9. Overall, participant heights
ranged from 155 to 187 cm (mean = 171.75, SD = 10.05),
the majority did not own a pet, and most ranked that they
had little prior experience with robots on a scale from 1
to 5 (mean = 2.05, SD = 1.23). Most participants were
students, 15 in total, from high school to PhD level students,
while 5 participants were university staff (researchers or
admin).

Procedure: To start, an experimenter welcomed the par-
ticipant into the lab. They were then asked to read an
information and a consent form to confirm their agreement
to participate. Thereafter, participants completed a demo-
graphics questionnaire before standing at a marked point
in the center of the lab space, facing forward throughout
the study. The experimenter then explained what the task
was to the participants, in which they were told to observe
Pepper moving toward them and say “stop” when they
felt the robot was at a comfortable distance. The task of
Pepper approaching the participant was repeated seven times,
once for each of the angles A to G. To avoid an order
effect, for each session, we have randomized the angle from
which Pepper approaches the user. For each angle, when
the participant said “stop,” a measurement was recorded by
the study experimenter using a measurement tape. The robot
was controlled using a Wizard-of-Oz approach, where the
experimenter activated the stop action when they heard the
participant say “stop.” Overall, the process of collecting data
for one participant lasted approximately 20 minutes.



V. DATA ANALYSIS
A. Feature Correlation

We first performed a correlation analysis to capture the po-
tential relationships between the features in the whole dataset
using Pearson’s method, where coefficients range between
-1 (strong negative) and 1 (strong positive). Fig. 4 shows
some positive correlation between the proxemics distances
measured from different angles of approach (noted from A
to G) and a user’s height, gender and age. This is consistent
with previous works that have shown the effect of the angle
of approach and individual features on proxemic distances
[15]-[17].
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Fig. 4: Pearson’s correlation matrix.

B. A Proxemic Rubber-sheet Model

Python was used to compute a rubber-sheet model on
our dataset, using a set of features at a time to evaluate
how they improve the model’s performance. A train-test split
approach (70% for training set, 30% for test set) was used
for the rubber-sheet modeling and facilitate its evaluation.
The model outputs coefficients of the rubber-sheet that are
required for making new predictions, which can later be
plugged into the robot for real-time prediction of proxemics
distances based on new user data. The model’s surface
results were plotted using Delaunay triangulation. Figs. Sa,
S5c and 5d show the model’s results when the comfortable
proxemic distance, R, is predicted by two features: the angle
of approach, 6, and the height of the participant. Fig. 5a
shows the result for the whole dataset combining both male
and female participants data, while Figs. 5c and 5d show
the results for female and male participants, respectively.
We can see that the model adopts different shapes to fit the

data depending on the gender. Shorter female participants
appear to have a smaller proxemic distance in the angles
of approach at the front between 0 and 180 degrees, while
taller female participants have bigger proxemic distances at
the same angles (Fig. 5c). For male participants, it is the
opposite effect that happens (Fig. 5d). When we include the
age feature into the model, similar patterns can be observed
in Figs. 5e and 5f for female and male participants. We
can also observe in Fig. 5b the effects of height and age
on predicting R. More specifically, Fig. 5g shows how R
increases with height and for younger female participants
whereas in Fig. 5h younger and shorter male participants
tend to have a bigger R value.

Table I provides the coefficients values (approximated to
a few decimals) for all of the features modelled. We used
the following units for the features: degrees (deg) for 6,
centimeters (cm) for height, years for age, as a result of that,
some coefficients are very large or very small for models with
two features or more. As a practical example, Eqs. 3 and 4
can be directly plugged into a robot, such as Pepper that
we used for validation, to predict its proxemic value with a
human user based on their attributes:

R() = 53.87230 — 0.1124 x 0 + 4.46 x 10~* x 0> (3)

R(0, Height) = — 3212.73 — 0.4901 x 6 + 38.185 x Height

+3.6x107* x 0* +2.3 x 10~ x 0 x Height

—0.111 x Height®
)

C. Model Evaluation

We evaluated our approach using two metrics, namely
the Root Mean Square Error (RMSE) and the coefficient of
determination R-squared (R?), which are standardly used for
model evaluation [35], and defined respectively as:

¢ SNy — )2 -

Z 1(yz yz)
Y (i — )

where y represents the observed value, ¢ is the predicted
value and N represents the number of data samples.

On one hand, RMSE estimates how far the predicted and
the actual observations are from each other, thus the lower
its value, the better the model as indicated by the downward
arrow in Table I. On the other hand, the R? score represents
the amount of the predicted value that can be attributed
to the input variables, showing how well observations are
reproduced by the model, hence the higher its value (up to
1), the better the model, as indicated by the upward arrow
in Table L.

Our model performs best when trained/tested separately
on female and male data, while including several features.
For instance, we can see in Table I that with 6 as the only
predictive feature: RMSE= 27.79 and R? = —0.0373 for the

RMSE(y

R*y,9)=1- (6)
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TABLE I: Table listing the model coefficients per feature. (| indicates lower is best, 1 indicates higher is best).

H Model Features a b ¢ d e f g h J k RMSE (1) RZ*(T) H
{0} whole 53.87 0.1124 4.46 x 101 - 27.79 -0.0373
{0. Age}whole 10.13 -0.112 2.867 4.49 x 107*  1.869 x 10~6 -0.0429 27.29 -0.0002
{0, Height}whole -3212.73 -0.4901 38.185 3.6 x 10°4 2.3 x 1073 0.111 24.73 0.1787
{Age, Height}whole -4249.33 12.85 48.30 -0.016 -0.0736 -0.134 25.07 0.1555
{0} Femate 58.33 -0.076 5.7 x 1079 26.49 -0.0945
{6, Height}Female -2783.62 -0.4496 32.023 1.4x107* 223 x1073 -0.08959 21.32 0.2911
{0, Height, Age}remaie  -3616.31 -0.479 38.12 24.09 1.62x 1074 273x 1073 —1.8x 1073 -0.096 -0.136 -0.029 18.98 0.4383
{Age, Height}pemae ~ -3613.43 23.82 37.78 -0.022 -0.13 -0.094 18.51 0.4654
{6 Male 4721 —8.47x 1072  4.26 x 1074 26.87 -0.1025
{6, Height}ae 8451.94 -0.356 -93.43 3.8 x 104 1.5 x 1073 0.259 22.66 0.2156
{0, Height, Age}yae  34962.36 0.165 -215.7 -1241.81 2.3 x 1074 1.5 x 1073 -0.0197 02228 542 53 22.14 0.2513
{Age, Height}yiale 33728.74 -1197.23 -207.87 4.92 527 0.212 21.74 0.2786

whole data, RMSE= 26.49 and R?= —0.0945 for female
data, RMSE= 26.87 and R?= —0.1025 for male data. The
model with # as the sole feature serves as a sort of baseline
with R? values close to zero or negative. But when 6 and
height are used as the predictive features, both RMSE and
R? values improve: RMSE= 24.73 and R?= 0.1787 for the
whole data, RMSE= 21.32 and R? =0.2911 for female data,
RMSE= 22.06 and R? =0.2786 for male data. Modelling
with three features, 6, height and age for female and male
data separately, gives even better results: RMSE= 18.51 and
R?= 0.4383 for female data, while RMSE= 22.14 and R?
=0.2513 for male data. The best model combines age and
height features and provides the lowest RMSE (18.51 for
female data, 21.74 for male data) and the highest R? (0.4654
for female data, 0.2756 for male data) values.

VI. DISCUSSION & CONCLUSION

We presented a novel approach to model human-robot
proxemics using rubber-sheet polar form transformations,
enabling a social robot to predict when to stop at an
appropriate distance from a human user. The model is based
on user data and predicts proxemics using the user’s height,
age, and gender, along with the robot’s angle of approach.
Our validations demonstrate that the proposed approach and
model perform well, offering a new way to represent human-
robot proxemics. Table I shows the main coefficients to
form the rubber-sheet transformations for a social robot
approaching a human user.

Our RMSE and R? values may appear too high and
too low, however this was expected. Firstly, because the
number of participant data is quite low, and secondly because
proxemic distances are influenced by other features [16]
that we did not include such as the robot’s speed [36],
users’ culture, physical and psychophysical features [37]. For
example, it was shown that recognising human speech and
gestures during face-to-face social interactions can improve
proxemics distances [38], and future work should consider
these factors. The advantage of rubber-sheet deformation
models is that, even though, they are prone to outliers but
they are very flexible in modeling a variety of data features.
In our models, we used 2"%order polynomial rubber-sheets,

however, with more complex data, one can trial with higher
orders, for instance, if we are dealing with 3D dimensional
data points, and multiple features that required modeling at
the same time.

As a future direction, we aim to investigate modelling
an interpersonal equilibrium for human-robot interaction,
similar to the one introduced by Argyle and Dean [39] in
human-human communication. In their work, they defined
the equilibrium model for interpersonal distances between
individuals, in which they dynamically adjust their inter-
personal distance to maintain equilibrium. In this case,
adaptation between the two entities (individuals) is required
to achieve this balance. Argyle and Dean [39] formulated the
model as follows:

Physical space,

smile,

@)

Intimacy =
eye contact,

etc.

We see this as an opportunity to adopt Eq. 7 for modeling
human-robot proxemics using rubber-sheet models.

Finally, our study has some limitations that should be
addressed. We used data from 20 users, while this number is
sufficient to present our novel modeling approach, further
research should involve a larger dataset on human-robot
proxemics, to include a more demographically diverse sam-
ple in terms of age, levels of education, cultural backgrounds
etc. Additionally, the robot used in our study was a social
robot and possibly designed with a cute embodiment form.
We anticipate that changing the robot form and type and
interaction contexts can impact the human-robot proxemic
behaviours [15], [40]. Future research should (i) compare
the rubber-sheet model to other baselines, (ii) perform power
analysis (iii) explore data collection with multiple robots,
including those of different sizes and features and (iv) test
in real-time robot interactions to verify whether the model
predictions result in improved comfort or acceptance for
participants. Another direction to consider in future research
is the use of multimodal data [41], which can enrich the
human-robot proxemics estimations.
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