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A Rubber-sheet Transformation Model for Personalized Human-Robot Proxemics

Fanta Camara1 Adam El Jabaoui2,3 Ramakrishnan Mukundan4 Mohammad Obaid2,3

AbstractÐ The deployment of autonomous robots in human
environments requires an understanding of social interactions
and the factors that influence them. Human-robot proxemics
is an important factor that impacts interactions, and modeling
personalized proxemic behavior has always been a challenge,
as it depends on multiple user attributes, including gender, age,
and height. In this paper, we propose a novel approach that uses
rubber-sheet transformation models to represent human-robot
proxemics. We do this by collecting human-robot interpersonal
distance data from 20 users and model it with respect to
their height, age, gender, and the angle at which the robot
approaches. We present an evaluation of the model, and the
outcome of our results, which show a promising approximation
of proxemic distances based on different user attributes. Finally,
we provide a coefficient table for rubber-sheet models to lay
the foundation for personalized human-robot proxemics and
outline future research directions.

I. INTRODUCTION

This work aims to contribute towards the deployment of

autonomous robots in human environments in a safe and

socially acceptable manner. Robots are equipped with many

algorithms and models that define their surrounding world.

For example, many researchers addressed robots’ navigation

[1], mapping [2], [3], and movements [4] to enable them

to carry out their tasks. One prominent area in robotics,

especially when operating in inhabited areas, is ensuring

that a robot’s movements are socially appropriate, meaning

that it interacts with people in a way that feels acceptable

[5], [6]. One of the areas that researchers focused on is

human-robot proxemics [7]±[11], in which they show several

factors, including gender, height, and age, that affect the

interpersonal distance a robot should have when approaching

people. Many studies have investigated these factors, which

are crucial for effective communication and interaction. For

instance, the size and shape of a robot determine how far it

should stand from users, while the height and gender of the

user influence our preferences regarding the robot’s distance

[12].

However, in the context of human-robot proxemics, it

remains a challenge to determine appropriate points at which

a robot should automatically stop when approaching a user

for a specific task. Modeling this behavior requires not

only an understanding of people’s preferences but also the

development of models that can be easily executed by a

robot.

In this research, we explore a novel approach by uti-

lizing rubber-sheet transformations to model human-robot
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Fig. 1: Sketch of the experimental setup showing a robot

approaching a human from different angles (A to G).

proxemics. Specifically, we apply a user-defined method

for collecting proxemics data (as illustrated in Fig. 1) and

then develop a model that takes into account user attributes

such as height, gender, and age. This paper contributes the

following:

• a novel approach to modeling human-robot proxemics

using a polar-form rubber-sheet model;

• the integration of users’ personal attributes, such as

height, age, and gender, into the model;

• a proxemic model representation and a table of coeffi-

cients for angle, height, age, and gender, which can be

utilized in a social robot for real-time interactions.

To the best of our knowledge, this work is the first to

demonstrate how users’ gender, age, and height can be

integrated into a predictive proxemics model using rubber-

sheet transformation for safe and socially acceptable human-

robot interactions.

II. RELATED WORK

The theory of proxemics was proposed by E. T. Hall

in the 1960’s to describe distances that people keep away

from each other based on different settings [13]. He defined

four discrete spaces: the intimate, personal, social and public

zones, corresponding to areas around a person where they

experience a certain level of comfort or discomfort depending

on who enters each zone. Subsequent empirical studies have

investigated human-human and human-robot proxemics, and

measured specific distances. For human-human interactions,

it was found that the intimate zone corresponds to the area

around a person up to 45cm, the personal zone goes from



45cm up to 1.2m, the social zone goes from 1.2m up to 3.6m

and the public is beyond 3.6m [14].

However, human-robot proxemics zones are found to be

smaller [9], [11], [15], [16]. Takayama and Pantofarou [16]

found empirical proxemics zones to be in the range 0.4m±

0.6m (average interpersonal distances) with a robot that is

1.35m high. They also showed that robot head orientation,

the gender of participants, and previous experience interact-

ing with both pets and robots also affected people’s comfort-

able distances. Syrdal et al. [17] studied the individual factors

that affect proxemic distances, where gender and personality

trait were found to be determining factors. For example, fe-

male and extrovert participants allowed the robot to approach

closer from the front than male and more introvert partici-

pants. The empirical findings in [18] suggest that passing at

the back of a person is more uncomfortable than at the front.

Satake et al. [19] investigated robot approaching strategies

from different distances towards humans. Their work using

Hall concentric proxemic zones showed how a robot can

begin an interaction with a human, i.e. communicate via its

position its intention to start interacting with a person.

Mead et al. [20] developed an automated proxemic fea-

ture extraction method based on Schegloff’s individual (e.g.

shoulder pose, hip pose) [21], Mehrabian’s physical (e.g.

total distance, relative body orientation) [22] and Hall’s

psychophysical (e.g. distance, voice loudness) [13] factors

identified in the social sciences. A Hidden Markov Model

was trained on the physical and psychophysical features and

then tested through an interaction study for the real-time

annotation of proxemic features. Mead et al. [23] studied

the interaction between a robot and human participants. The

interactions consisted in moving the robot towards the partic-

ipants and backwards several times. Their results showed that

individuals’ pre-interaction proxemic preference (mean =
1.14m, SD = 0.49m) was consistent with previous studies.

With a uniform performance in the robot behaviour, the

proxemic preference reached a mean = 1.39m and a SD =
0.63m. It was also found that participants adapted their

distances to improve the robot’s performance. Samarakoon

et al. [24] developed a proxemics-based approach method for

a service robot that relies on the user physical behaviour and

feedback.

Despite the numerous empirical studies, the mathematical

modelling of human-robot proxemics is still in its early

phases. Kirby et al. [25] proposed one of the first mathe-

matical models with the COMPANION framework for robot

path planning and navigation following social conventions.

The cost function for personal space was modelled as two

halves of 2D Gaussian functions producing an asymmetric

shape where the space in front of the person is greatest. Their

approach was tested in two simulated experiments. Torta et

al. [26], [27] performed two psychometric experiments with

a small humanoid robot and proposed a parametric model of

the personal space. The model takes into account the distance

and the direction of approach, and was evaluated with a user

study where subjects are sitting or standing and approached

by the humanoid robot Nao. They derived a polynomial

approximation based on the mean values of user preferences

for different angles of approach, while the preference on the

distance was modelled using a Gaussian function. Similarly,

Kosinski et al. [28] investigated human perceived comfort

level based on a robot approaching distance and angle via

a set of rules, fuzzy sets and parameters. It was assumed

that the approaching distance and angle can be described

by sigmoid and bell-shaped functions and that the perceived

comfort decreases as the angle changes. The authors found

that the proxemic distance is linked to the angle of approach

and that subjects feel more comfortable with approaches

from the boundary of their field of view. Participants were

more tolerant when the robot approached from the right hand

side and felt least comfortable when the robot approached

straight ahead.

Neggers et al. [29] investigated comfortable distances for

robot Pepper passing people from different distances and

sides in a hallway scenario using a 7-point comfort rating

scale. They then used an inverted Gaussian to fit the average

comfort rating from 32 participants and showed that comfort

increases with distance. Patompak et al. [30] developed an in-

ference method to learn human proxemic preferences. Their

method is based on the social force model and reinforcement

learning. They argued that proxemic spaces can be limited to

two zones, the first being the quality interaction area where

a robot could go without creating discomfort, and the private

area which is the personal space. Camara and Fox [31]

proposed a kinematic model that can generate Hall empirical

proxemics zone sizes quantitatively and which also links

pedestrian proxemics with trust in the context of autonomous

driving. The same authors [32] extended their model by

taking the angle of approach into account and generalized

it to human-human and human-robot interaction scenarios,

while [33] showed that the kinematic model can reproduce

several empirical proxemics zone shapes.

Fig. 2: Schematic of the rubber sheet model for different

users.



III. RUBBER-SHEETS IN POLAR FORM

Rubber-sheet transformations use higher-order polynomi-

als to represent shapes. The elastic property of the rubber-

sheet makes it suitable for representing complex changes

in shapes, such as the example in Obaid et al [34]. In

our research, since we are interested in modeling a robot

approaching a user from different angles, we apply rubber-

sheets in a polar form, where a simple rubber-sheet with a

single feature (cf. Eq. 1) or two features and an interaction

term (cf. Eq. 2) can be represented in 2nd order polynomials

in its general form as:

Ri(λi) = a+ biλi + ciλ
2

i
, (1)

Ri(λi, ϕi) = a+biλi+ciϕi+diλ
2

i
+ei(λi×ϕi)+fiϕ

2

i
, (2)

where:

i : index ranging from 1 to n,

n : number of data points,

a : intercept,

b, c, d, f : coefficients,

λ, ϕ : predictive features,

e : interaction coefficient between λi and ϕi,

λ× ϕ : interaction term.

To model an approximation to the distance Ri for any

features λi and ϕi, we need to find the coefficients that best

fit, thus we apply a least square fit to solve for the coefficients

(a, b, c, d, e, f). An interaction between λi and ϕi means that

the relationship between λi and Ri differs depending on the

value of ϕi, thus making the model more flexible for multiple

predictors and generating more coefficients. Fig. 2 presents a

schematic of the rubber sheet model for different user data.

Section IV provides details on the data collection.

IV. USER STUDY

We conducted a user study with 29 participants to gather

proxemics data. The study was set up in a lab using the

commonly used Pepper robot from SoftBank Robotics1,

which has a height of 1.20m and a width of 0.485 m. We used

the Choregraphe suite to program Pepper’s behavior, setting

its speed to a constant 0.35m/s. Throughout the study, Pepper

was set to its default idle movements to give a lively feeling.

Figure 1 illustrates the in-lab setup for Pepper, where a user

stands in the middle of the room while the robot moves

toward the user from seven different angles, ranging from

A = 5π/4 (225◦) to G = −π

4
(−45◦). For each angle, the

robot was 2.6m away from the user before it started moving,

and it was programmed to stop at a maximum distance of

2.45m (15cm away from the participants) to prevent crashes.

Participants and Data collection: The study started with

two participants as pilots to verify the setup and confirm

the accuracy of the speed, and positioning of the robot.

Once all aspects were checked and validated, we recruited 29

participants from the Chalmers University of Technology’s

1https://us.softbankrobotics.com/pepper

Fig. 3: Example of data collection conducted in the lab.

network. For each of the participants, we collected several

demographic data points, including age, gender, height, expe-

rience with robots, pet ownership, educational background,

profession, and if they are right- or left-handed. We also

recorded the distance where the robot stopped away from

the user (the interpersonal distance) as shown in Fig. 3.

The data was then examined by two researchers, and only

complete datasets were included. In some cases, participants

clearly did not follow the instructions and instead tested

the robot’s abilities, which was not the focus of this study.

Therefore, incomplete demographic data or extreme outlier

measurements were removed.

The final dataset included 20 participants (11 female, 9

male), aged from 19 to 53 years old, with an average age of

mean = 27.60 and SD = 7.9. Overall, participant heights

ranged from 155 to 187 cm (mean = 171.75, SD = 10.05),

the majority did not own a pet, and most ranked that they

had little prior experience with robots on a scale from 1

to 5 (mean = 2.05, SD = 1.23). Most participants were

students, 15 in total, from high school to PhD level students,

while 5 participants were university staff (researchers or

admin).

Procedure: To start, an experimenter welcomed the par-

ticipant into the lab. They were then asked to read an

information and a consent form to confirm their agreement

to participate. Thereafter, participants completed a demo-

graphics questionnaire before standing at a marked point

in the center of the lab space, facing forward throughout

the study. The experimenter then explained what the task

was to the participants, in which they were told to observe

Pepper moving toward them and say ªstopº when they

felt the robot was at a comfortable distance. The task of

Pepper approaching the participant was repeated seven times,

once for each of the angles A to G. To avoid an order

effect, for each session, we have randomized the angle from

which Pepper approaches the user. For each angle, when

the participant said ªstop,º a measurement was recorded by

the study experimenter using a measurement tape. The robot

was controlled using a Wizard-of-Oz approach, where the

experimenter activated the stop action when they heard the

participant say ªstop.º Overall, the process of collecting data

for one participant lasted approximately 20 minutes.



V. DATA ANALYSIS

A. Feature Correlation

We first performed a correlation analysis to capture the po-

tential relationships between the features in the whole dataset

using Pearson’s method, where coefficients range between

-1 (strong negative) and 1 (strong positive). Fig. 4 shows

some positive correlation between the proxemics distances

measured from different angles of approach (noted from A

to G) and a user’s height, gender and age. This is consistent

with previous works that have shown the effect of the angle

of approach and individual features on proxemic distances

[15]±[17].

Fig. 4: Pearson’s correlation matrix.

B. A Proxemic Rubber-sheet Model

Python was used to compute a rubber-sheet model on

our dataset, using a set of features at a time to evaluate

how they improve the model’s performance. A train-test split

approach (70% for training set, 30% for test set) was used

for the rubber-sheet modeling and facilitate its evaluation.

The model outputs coefficients of the rubber-sheet that are

required for making new predictions, which can later be

plugged into the robot for real-time prediction of proxemics

distances based on new user data. The model’s surface

results were plotted using Delaunay triangulation. Figs. 5a,

5c and 5d show the model’s results when the comfortable

proxemic distance, R, is predicted by two features: the angle

of approach, θ, and the height of the participant. Fig. 5a

shows the result for the whole dataset combining both male

and female participants data, while Figs. 5c and 5d show

the results for female and male participants, respectively.

We can see that the model adopts different shapes to fit the

data depending on the gender. Shorter female participants

appear to have a smaller proxemic distance in the angles

of approach at the front between 0 and 180 degrees, while

taller female participants have bigger proxemic distances at

the same angles (Fig. 5c). For male participants, it is the

opposite effect that happens (Fig. 5d). When we include the

age feature into the model, similar patterns can be observed

in Figs. 5e and 5f for female and male participants. We

can also observe in Fig. 5b the effects of height and age

on predicting R. More specifically, Fig. 5g shows how R
increases with height and for younger female participants

whereas in Fig. 5h younger and shorter male participants

tend to have a bigger R value.

Table I provides the coefficients values (approximated to

a few decimals) for all of the features modelled. We used

the following units for the features: degrees (deg) for θ,

centimeters (cm) for height, years for age, as a result of that,

some coefficients are very large or very small for models with

two features or more. As a practical example, Eqs. 3 and 4

can be directly plugged into a robot, such as Pepper that

we used for validation, to predict its proxemic value with a

human user based on their attributes:

R(θ) = 53.87230− 0.1124× θ + 4.46× 10−4 × θ2 (3)

R(θ,Height) =− 3212.73− 0.4901× θ + 38.185× Height

+ 3.6× 10−4
× θ

2 + 2.3× 10−3
× θ × Height

− 0.111× Height
2

(4)

C. Model Evaluation

We evaluated our approach using two metrics, namely

the Root Mean Square Error (RMSE) and the coefficient of

determination R-squared (R2), which are standardly used for

model evaluation [35], and defined respectively as:

RMSE(y, ŷ) =

√

∑

N−1

i=0
(yi − ŷi)2

N
(5)

R2(y, ŷ) = 1−

∑

N

i=1
(yi − ŷi)

2

∑

N

i=1
(yi − ȳ)2

(6)

where y represents the observed value, ŷ is the predicted

value and N represents the number of data samples.

On one hand, RMSE estimates how far the predicted and

the actual observations are from each other, thus the lower

its value, the better the model as indicated by the downward

arrow in Table I. On the other hand, the R2 score represents

the amount of the predicted value that can be attributed

to the input variables, showing how well observations are

reproduced by the model, hence the higher its value (up to

1), the better the model, as indicated by the upward arrow

in Table I.

Our model performs best when trained/tested separately

on female and male data, while including several features.

For instance, we can see in Table I that with θ as the only

predictive feature: RMSE= 27.79 and R2 = −0.0373 for the



(a) Whole data (θ and height) (b) Whole data (age and height)

(c) Female data (θ and height) (d) Male data (θ and height)

(e) Female data (θ, height, and age) (f) Male data (θ, height, and age)

(g) Female data (age and height) (h) Male data (age and height)

Fig. 5: Model results for different feature combinations in predicting R. The 1st row presents whole data. The 2nd and 3rd

rows include θ, height, and age features per gender. The 4th row shows results for age and height features per gender.



TABLE I: Table listing the model coefficients per feature. (↓ indicates lower is best, ↑ indicates higher is best).

Model Features a b c d e f g h j k RMSE (↓) R
2(↑ )

{θ}Whole 53.87 -0.1124 4.46× 10
−4 - - - - - - 27.79 -0.0373

{θ, Age}Whole 10.13 -0.112 2.867 4.49× 10
−4

1.869× 10
−6 -0.0429 - - - - 27.29 -0.0002

{θ, Height}Whole -3212.73 -0.4901 38.185 3.6× 10
−4

2.3× 10
−3 -0.111 - - - - 24.73 0.1787

{Age, Height}Whole -4249.33 12.85 48.30 -0.016 -0.0736 -0.134 - - - - 25.07 0.1555

{θ}Female 58.33 -0.076 5.7× 10
−5 - - - - - - - 26.49 -0.0945

{θ, Height}Female -2783.62 -0.4496 32.023 1.4× 10
−4

2.23× 10
−3 -0.08959 - - - - 21.32 0.2911

{θ, Height, Age}Female -3616.31 -0.479 38.12 24.09 1.62× 10
−4

2.73× 10
−3 −1.8× 10

−3 -0.096 -0.136 -0.029 18.98 0.4383

{Age, Height}Female -3613.43 23.82 37.78 -0.022 -0.13 -0.094 - - - - 18.51 0.4654

{θ}Male 47.21 −8.47× 10
−2

4.26× 10
−4 - - - - - - - 26.87 -0.1025

{θ, Height}Male 8451.94 -0.356 -93.43 3.8× 10
−4

1.5× 10
−3 0.259 - - - - 22.66 0.2156

{θ, Height, Age}Male 34962.36 0.165 -215.7 -1241.81 2.3× 10
−4

1.5× 10
−3 -0.0197 0.2228 5.42 5.3 22.14 0.2513

{Age, Height}Male 33728.74 -1197.23 -207.87 4.92 5.27 0.212 - - - - 21.74 0.2786

whole data, RMSE= 26.49 and R2= −0.0945 for female

data, RMSE= 26.87 and R2= −0.1025 for male data. The

model with θ as the sole feature serves as a sort of baseline

with R2 values close to zero or negative. But when θ and

height are used as the predictive features, both RMSE and

R2 values improve: RMSE= 24.73 and R2= 0.1787 for the

whole data, RMSE= 21.32 and R2 =0.2911 for female data,

RMSE= 22.06 and R2 =0.2786 for male data. Modelling

with three features, θ, height and age for female and male

data separately, gives even better results: RMSE= 18.51 and

R2= 0.4383 for female data, while RMSE= 22.14 and R2

=0.2513 for male data. The best model combines age and

height features and provides the lowest RMSE (18.51 for

female data, 21.74 for male data) and the highest R2 (0.4654

for female data, 0.2756 for male data) values.

VI. DISCUSSION & CONCLUSION

We presented a novel approach to model human-robot

proxemics using rubber-sheet polar form transformations,

enabling a social robot to predict when to stop at an

appropriate distance from a human user. The model is based

on user data and predicts proxemics using the user’s height,

age, and gender, along with the robot’s angle of approach.

Our validations demonstrate that the proposed approach and

model perform well, offering a new way to represent human-

robot proxemics. Table I shows the main coefficients to

form the rubber-sheet transformations for a social robot

approaching a human user.

Our RMSE and R2 values may appear too high and

too low, however this was expected. Firstly, because the

number of participant data is quite low, and secondly because

proxemic distances are influenced by other features [16]

that we did not include such as the robot’s speed [36],

users’ culture, physical and psychophysical features [37]. For

example, it was shown that recognising human speech and

gestures during face-to-face social interactions can improve

proxemics distances [38], and future work should consider

these factors. The advantage of rubber-sheet deformation

models is that, even though, they are prone to outliers but

they are very flexible in modeling a variety of data features.

In our models, we used 2ndorder polynomial rubber-sheets,

however, with more complex data, one can trial with higher

orders, for instance, if we are dealing with 3D dimensional

data points, and multiple features that required modeling at

the same time.

As a future direction, we aim to investigate modelling

an interpersonal equilibrium for human-robot interaction,

similar to the one introduced by Argyle and Dean [39] in

human-human communication. In their work, they defined

the equilibrium model for interpersonal distances between

individuals, in which they dynamically adjust their inter-

personal distance to maintain equilibrium. In this case,

adaptation between the two entities (individuals) is required

to achieve this balance. Argyle and Dean [39] formulated the

model as follows:

Intimacy =



















Physical space,

smile,

eye contact,

etc.



















(7)

We see this as an opportunity to adopt Eq. 7 for modeling

human-robot proxemics using rubber-sheet models.

Finally, our study has some limitations that should be

addressed. We used data from 20 users, while this number is

sufficient to present our novel modeling approach, further

research should involve a larger dataset on human-robot

proxemics, to include a more demographically diverse sam-

ple in terms of age, levels of education, cultural backgrounds

etc. Additionally, the robot used in our study was a social

robot and possibly designed with a cute embodiment form.

We anticipate that changing the robot form and type and

interaction contexts can impact the human-robot proxemic

behaviours [15], [40]. Future research should (i) compare

the rubber-sheet model to other baselines, (ii) perform power

analysis (iii) explore data collection with multiple robots,

including those of different sizes and features and (iv) test

in real-time robot interactions to verify whether the model

predictions result in improved comfort or acceptance for

participants. Another direction to consider in future research

is the use of multimodal data [41], which can enrich the

human-robot proxemics estimations.
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