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Causal team semantics ([2]) supports causal-observational languages, which enrich 
the languages for deterministic causation ([11,18]) with dependencies and other 
team-specific operators. Handling the causal aspects of these languages requires a 
richer semantics than propositional team semantics; nonetheless, in this paper we 
show that the causal-observational languages considered in [2] can be embedded 
into first-order dependence logic by means of a translation and a careful choice of 
models. We show that, in some significant cases, the translation can be refined to 
an embedding into the Bernays-Schönfinkel-Ramsey fragment of dependence logic 
or, in the restricted case of recursive causal models, into the existential fragment. 
As an application, we use the embeddings to show the decidability of a satisfiability 
problem for the causal-observational languages. Along the way, we question the 
correctness of the semantics for interventionist counterfactuals proposed by Halpern 
([18]) and propose an alternative one which behaves as usual in the uncontroversial 
recursive case.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The main objective of empirical studies is, arguably, to confirm or falsify our hypotheses on causal 

relationships among variables. The traditional statistical methods do not directly address causation; they 

only analyze associations among variables as they appear in the recorded data. The methods of causal 

inference ([28,29]) explain how the empirical information on associations can be combined with causal 

assumptions in order to prove or reject further causal relationships. In this context, one reasons about 
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the interaction of dependencies of the associational type (which we may call contingent dependencies) and 

causal dependencies. It is therefore natural to search for semantic frameworks and logical languages that 

may account for both kinds of dependencies; let us see what has been done in this direction.

The standard logical approach to causal reasoning ([11,18,8,35,19,17]) makes use of causal models – more 

specifically, those known as (deterministic) structural equation models, which consist of a valuation together 

with a set of functions describing causal laws. The analysis of causal dependence is reduced to the study of 

so-called interventionist counterfactuals of the form X = x� ψ, whose intended interpretation is:

if we were to fix the (tuple of) variables X to the (tuple of) values x, then ψ would hold.

This apparatus is usually modified so that it can handle probabilistic reasoning, and it is most often in 

such form that it is used towards applications (as e.g. in [28,29]). However, neither the usual deterministic 

approach nor the probabilistic one seem to account for those kinds of contingent dependencies that are 

qualitative (i.e. non-probabilistic) in nature. [1,2] then proposed to modify the semantics of causal models 

using ideas from team semantics ([23,31,14,12]). By replacing the single valuation with a set of valuations 

(team) and by modifying appropriately the satisfaction clauses, the resulting causal team semantics allows 

the correct modelling of non-probabilistic contingent dependencies together with counterfactuals and causal 

dependencies.12 A typical example of the contingent dependencies that can be studied with the help of teams 

is functional determinacy, usually symbolized by dependence atoms =(X; Y ), whose intended meaning is:

whenever two valuations agree on the value of X, they also agree on the value of Y .

Among the causal-observational languages proposed in [1,2] as test cases for causal team semantics 

is a language COD that can be seen as a generalization of propositional dependence logic. Aside from 

superficial differences, the language COD enriches propositional dependence logic with dynamic operators 

corresponding to observation (selective implication) and intervention (interventionist counterfactuals). The 

former is definable in propositional dependence logic, while the latter is not.3 This is just one instance of 

the motto that causation is not reducible to association.

In the present paper, the causal-observational languages are compared with first-order dependence logic. 

The latter is a language that incorporates dependence atoms into the syntax of first-order logic. Since causal 

reasoning is beyond the resources of propositional dependence logic, it may come as a surprise that – as 

will be shown in the present paper – causal reasoning can be modelled in first-order dependence logic (and, 

to some extent, already in first-order logic). The key difference between first-order dependence logic and 

its propositional counterpart is that the former does have some dynamic operators: the quantifiers. The 

existential and universal quantifiers can both be seen as operators that modify the shape of the team on 

which a formula is evaluated. In appropriate circumstances, sequences of quantifiers can then be used to 

“simulate” the effect of the intervention operators.4 To realize these circumstances, one needs to associate 

to each causal team T a first-order structure that appropriately encodes the causal laws of T . Once this 

correspondence is set up, we can define a truth-preserving translation of the causal languages into a fragment 

1 A way of reintegrating probabilistic reasoning in a variant of team semantics is suggested in [1] along the lines of earlier work 
such as [9]; a fuller development is under preparation. However interesting this line of investigation may be having in mind the 
applications, in this paper we focus on the simpler deterministic case, which is already of great philosophical interest (see e.g. 
[17,33,22]).

2 Causal team semantics has been later generalized so that it can also model uncertainty about the causal laws ([5]). An alternative 
approach using modal semantics instead of team semantics was given in [3,4]. We will not discuss these alternative approaches in 
this paper.

3 An easy formal proof is given in the forthcoming journal version of [5] ([6]).
4 A reviewer of this paper pointed out the existence of a small literature on quantified propositional logics of dependence 

([21],[20]). This raises the question (which we leave as an open problem) whether the results presented in this paper might be 
strengthened in the form of embeddings into quantified propositional logics.
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of dependence logic. If in the causal languages we impose some restriction on the use of �within antecedents 

of selective implications, the formulas in the corresponding target language can be shown to be equivalent 

to Bernays-Schönfinkel-Ramsey formulas, i.e. formulas with an ∃∗∀∗ prefix and relational vocabulary. The 

same can be achieved also without syntactical restrictions, provide the semantics is limited to the case 

of the so-called unique-solution causal teams. Furthermore, if one restricts attention to systems of acyclic 

causal dependencies (recursive causal teams), it is possible to give a simpler translation which leads (up to 

equivalence) into the existential fragment of first-order dependence logic. On one side, these translations 

reveal that first-order dependence logic can be used to model the discourse on causal dependencies. In the 

opposite direction, they allow us to use known results on dependence logic to shed new light on causal team 

semantics. To illustrate this point, we will use some results on the satisfiability problem of fragments of 

first-order (dependence) logic to address some satisfiability issues for the causal-observational languages.

The paper is structured as follows. In section 2 we review (and illustrate with a few examples) the 

preliminary definitions of causal team semantics and of the causal-observational languages. Contrarily to 

much of the previous literature on causal teams, we do not restrict attention to recursive models (i.e. 

acyclic causal laws). In particular, we adopt a very general definition of intervention that was sketched in 

[1,2] and is here fleshed out for the first time. The definition generalizes an earlier idea of Halpern ([18]) 

for causal models, and thus we denote the semantics that it induces by |=H . In section 3 we show how 

to embed the causal-observational languages (interpreted according to |=H) into the Bernays-Schönfinkel-

Ramsey fragment of dependence logic; the section opens with the necessary preliminaries on first-order logic, 

dependence logic and their team semantics. Section 4 presents two alternative definitions of intervention on 

a causal team, and the alternative semantics they induce. Of these, the former, denoted as |=A, is based on a 

fully general definition of intervention that we argue to agree better with the usual intuitions about causation 

than the semantics |=H does; the latter, denoted as |=R, is the most common definition of intervention from 

the previous literature on causal teams, which applies only to the recursive case. We present embedding 

results for both semantics, and we show that |=H , |=A and |=R agree in the recursive case. In section 5 we 

show that (in the recursive case) the satisfiability problem of the causal languages for a fixed, finite variable 

domain (but arbitrary ranges) is decidable. To this purpose, we introduce a weaker but more general form 

of the embedding. In section 6 we draw conclusions and suggest directions for further research.

2. Causal teams and causal languages

2.1. Preliminaries and notation

We will mostly follow the notational conventions from the literature on interventionist counterfactuals; 

therefore, we use capital letters X, Y, Z... for variables, and small letters x, y, z... for constants (called values). 

Boldface letters X, resp. x, denote (depending on the context) finite sets or sequences of variables, resp. of 

values. We will specify case by case whether we refer to sets or sequences.

Formal definitions and results in the field of causal inference often need to be formulated in relation to 

a signature, which describes which variables are taken into consideration and over what sets their values 

are allowed to vary. More precisely, a signature σ is a pair (Dom, Ran), where Dom is a nonempty set 

of variables and Ran is a function that associates to each variable X ∈ Dom a nonempty set Ran(X) of 

values (the range of X). We will usually assume that Ran(X) has at least two elements, in order to exclude 

trivial cases. When we use X to denote a sequence of variables (X1, . . . , Xn), typically x will stand for a 

tuple (x1, . . . , xn) of the same length, and such that, for all i = 1 . . . n, xi ∈ Ran(Xi). In other words, 

we assume that xi is a value for Xi. Note also that we write Ran(X) := Ran(X1) × · · · × Ran(Xn) when 

X = (X1, . . . , Xn).

An assignment of signature σ is a mapping s : Dom →
⋃

X∈Dom Ran(X) such that s(X) ∈ Ran(X) for 

each X ∈ Dom. A team T of signature σ is a set of such assignments. As a general convention, we will often 
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write s(X) = x as an abbreviation for many statements of the form s(X1) = x1, . . . , s(Xn) = xn; notice 

that we are assuming here that X and x are tuples of equal length, that the variables in X are distinct, and 

that there is an implicit correspondence between the Xi and the xi.

We will make use of (directed) graphs. A graph, in this note, will be a pair G = (V, E), where V is a set 

of variables and E ⊆ V × V. The elements of E will be called arrows or edges. A subgraph of G is a graph 

H = (V′, E′) such that V′ ⊆ V and E′ ⊆ E; if, in particular, V′ = V, then H is said to be a spanning 

subgraph of G. Given a graph G and one of its vertices V , we denote as PAG
V the set of parents of V in G

(i.e. the set of variables X such that (X, V ) ∈ E). We omit the superscript when the graph is clear from the 

context. If the set of parents of V is empty, V is called an exogenous variable; the set of exogenous variables 

of G is denoted as Exo(G). The remaining variables of G are called endogenous and their set is denoted as 

End(G).

A (directed) path of a graph G is a finite sequence (X1, Y1), . . . , (Xn, Yn) of edges such that Yi = Xi+1

for i = 1, . . . , n − 1. The index n is called the length of the path; if the path is the empty sequence, we say 

its length is 0. Given a set of nodes X, a node Y is a strict descendant of X if there is an X ∈ X and a 

path (X, X1), . . . , (Xn, Y ) of length > 0; Y is a descendant of X if either Y is a strict descendant of X or 

Y ∈ X. Y is a nondescendant of X if it is not a descendant of X.

A path (X1, X2), . . . , (Xn−1, Xn) where X1 = Xn while all other variables are distinct is called a cycle. 

A graph without cycles is called acyclic, and a graph without cycles of length 1 is said to be irreflexive.

2.2. Causal teams

A causal team enriches a team by isolating a set of functions which describe the causal mechanisms that 

link the variables. More precisely, some of the variables (endogenous variables) are associated to functions 

that describe their behaviour in terms of the other variables; the remaining, exogenous variables are left 

causally unexplained. A graph is used to keep track of the exogenous/endogenous distinction, and of the 

domains of the functions.5

Definition 2.1 (Causal team). A causal team T of signature σ = (Dom, Ran) with endogenous variables 

End(T ) ⊆ Dom is a triple T = (T −, GT , FT ), where:

1. T − is a team of signature σ (team component of T ).

2. GT = (Dom, E) is an irreflexive graph over Dom (graph component of T ) such that Y ∈ End(GT ) ⇐⇒

Y ∈ End(T ).

3. FT is a function {(Vi, fVi
) | Vi ∈ End(T )} (function component of T ) that assigns to each endogenous 

variable V a function fV : Ran(PAV ) → Ran(V ) which satisfies the compatibility constraint:

(*) For all s ∈ T −, s(V ) = fV (s(PAV )).

The constraint imposed on the graph GT makes so that End(T ) = End(GT ). We define the set of exogenous 

variables of T as Exo(T ) = Exo(GT ). We also remark that the definition places no upper bound on the 

cardinalities of Dom, Ran and of the ranges of individual variables, but in some of the later sections we 

will require that these sets are finite.

5 The graph component is not strictly necessary for an adequate definition of causal teams, at least at the level of generality that 
we consider here. See [5] and [3] for two alternative presentations that do not explicitly include a graph in the definition.
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Example 2.2. Consider a signature σ = (Dom, Ran) with Dom = {X, Y, Z, W} and Ran(V ) = {−1, 0, 1} for 

each V ∈ Dom. The picture below describes the graph component, function component and team component 

of a causal team T = (T −, G, F ) with two assignments.

YX

Z

W

⎧

⎪

⎨

⎪

⎩

Y := X + W

Z := Y − W

W := −Z

X Y Z W

0 0 0 0

1 0 1 -1

Expressions of the form Y := X + W are called, in the literature on causal inference, structural equations. 

They are just a conventional way of expressing causal laws; in this case, the “equation” describes the function 

fY = F (Y ) which “produces” values for Y in terms of the values of PAY = {X, W}. Or, equivalently, this 

equation abbreviates a number of counterfactuals of the form “If X, W were fixed to values x, w, then 

Y would take value x + w”. The three variables occurring in the left members of the equations are the 

endogenous variables, while X is the only exogenous one. The team component is represented as a table 

whose rows are the two assignments; for example, the second row describes an assignment s with s(X) = 1, 

s(Y ) = 0, s(Z) = 1 and s(W ) = −1. Notice that each of these assignments describes a solution of the 

system of “equations”. The distinction between exogenous and endogenous variables can also be read off 

from the graph: X is an exogenous variable (the only one) because no arrow ends in X. Notice that the 

variables Z, W form a cycle of length 2, while Z, W, Y form a cycle of length 3.

We imposed the restriction that GT be irreflexive; this excludes cases of self-causation (cycles of length 

1). This requirement does not, however, exclude cycles in general, as the previous example illustrates. A 

causal team is said to be recursive if its graph is acyclic. The recursive causal teams generalize the recursive 

causal models from the literature on causal inference. It has sometimes been argued (see [30]) that only 

the recursive models have a causal interpretation; however, also the nonrecursive models have been studied, 

especially in relation to interventionist counterfactuals (see e.g. [18,35,19]). The present paper fits in this 

latter tradition.

2.3. Causal-observational languages

We will consider the following languages (parametrized by a signature σ = (Dom, Ran)), as they were 

introduced in [1]:

• CO(σ) ::= Y = y | Y 	= y | α ∧ α | α ∨ α | α ⊃ α | X = x� α

• COD(σ) ::= Y = y | Y 	= y | =(X; Y ) | ψ ∧ ψ | ψ ∨ ψ | α ⊃ ψ | X = x� ψ

• CO⊔(σ) ::= Y = y | Y 	= y | ψ ∧ ψ | ψ ∨ ψ | ψ ⊔ ψ | α ⊃ ψ | X = x� ψ

where X ∪ {Y } ⊆ Dom, y ∈ Ran(Y ), x ∈ Ran(X), α ∈ CO(σ). X = x is an abbreviation for a (finite) 

conjunction X1 = x1 ∧ · · · ∧ Xn = xn.

The language CO(σ) is similar to those used in causal inference; but notice that its formulas are in 

negation normal form. In principle, we could allow a (dual) negation to occur in front of any CO formula, 

but there seems to be no reasonable way to do the same for the larger languages. We will say more about 

this in section 2.6.

We point out that propositional dependence logic ([34]) can be seen as a special case of COD(σ). A lan-

guage for propositional dependence logic with propositional letters p1, . . . , pn, . . . corresponds to a COD(σ)
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language such that Dom contains some variables P1, . . . , Pn, . . . with Ran(Pi) = {0, 1}. Then, the formula 

pi can be identified with Pi = 1, ¬pi with Pi = 0, and so on.

2.4. Halpern-style interventions

The interventionist counterfactual operator � will be given a meaning in terms of interventions on a 

causal team. In this section, we will describe in detail what it means to apply an intervention to a causal 

team, along the lines suggested in [2]. The definition we give here applies to all causal teams; we will 

see later how this definition specializes in the case of recursive causal teams. The general idea is that by 

applying an intervention do(X = x) to a causal team T = (T −, G, F ) one obtains a new causal team 

TX=x. The intervention describes what would happen if we subtracted the variables X from their current 

causal mechanisms (i.e. the corresponding functions from F ) and forced them to take the constant values 

x. If the initial team T − includes all the configurations (of values for the variable in the domain) that are 

considered possible, the team (TX=x)− describes what configurations should be considered possible after 

the intervention.

Now, as mentioned above, there is no general agreement on whether nonrecursive structural equation 

models can be given a causal interpretation. A popular interpretation was given by Strotz&Wold ([30]): the 

solutions to such a system of equations represent all the possible equilibria of the corresponding system of 

variables. An intervention is not necessarily a deterministic act: we may not know, a priori, which of the 

possible equilibria will be obtained after the intervention. Along the lines of this interpretation, Halpern 

([18]) describes the result of an intervention do(X = x) (= do(X1 = x1, . . . , Xn = xn)) on a causal model 

as being the set of all vectors of values for the endogenous variables – variables in X excluded – that satisfy 

the reduced system of equations. Since the languages considered by Halpern allow no atomic statements 

concerning the exogenous variables, Halpern is not including the values of the exogenous variables – nor 

the values of X, which may be thought of as exogenous for the reduced system – in this “solution vector”. 

It seems natural to adapt Halpern’s idea to the context of causal teams, by applying it to each single 

assignment in the team T − at hand, and finally taking the union of the sets of solutions obtained from each 

assignment; but since our assignments cover also the exogenous variables, we must decide what to do about 

these (and about the variables in X). The most natural option seems to be 1) to keep only those solutions 

that satisfy X = x; and, calling U the set of exogenous variables that are not in X, 2) only admit solutions 

whose values for U were already in T −.

A conjunction X = x is said to be inconsistent if it contains two conjuncts X = x and X = x′ with 

distinct values x, x′; otherwise it is said to be consistent; the intervention do(X = x) will be defined only 

in case X = x is consistent. Let σ = (Dom, Ran) be a signature and T = (T −, G, F ) be a causal team of 

signature σ. Let X ⊆ Dom be a tuple of distinct variables and x ∈ Ran(X). Write U for Exo(T ) \ X. Write 

T −(U) := {s(U) | s ∈ T −}. We will say that an assignment s of signature σ is compatible with (G, F ) if

for all Y ∈ End(G), s(Y ) = F (Y )(s(PAY ))

where PAY are the parents of Y as encoded in G.

Definition 2.3 (Intervention, Halpern-style). Let X = x be a consistent conjunction over a signature σ. The 

result of the intervention do(X = x) on a causal team T = (T −, G, F ) of signature σ is the causal team 

TX=x = ((TX=x)−, GX=x, FX=x), where:

• (TX=x)− := {s compatible with (GX=x, FX=x) | s(X) = x and s(U) ∈ T −(U)}

• (Y, Z) ∈ GX=x iff (Y, Z) ∈ G and Z /∈ X,

• FX=x is the restriction of F to End(T ) \ X.
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We point out that the set of endogenous variables for the resulting team TX=x is End(TX=x) = End(T ) \X. 

That is, we treat the intervened variables as exogenous in the intervened team. In this we slightly differ from 

the original approach of Halpern: our approach amounts to removing the equations for the (endogenous) 

variables in X, while Halpern replaces them with equations of the form Xi = xi. These two points of view 

are equivalent with regards to the languages considered here.

Example 2.4. Consider again the causal team T from Example 2.2. If we apply the intervention do(Y = 0)

to it, we obtain the causal team TY =0 described in the picture:

YX

Z

W

{

Z := Y − W

W := −Z

X Y Z W

0 0 0 0

0 0 1 -1

0 0 -1 1

1 0 0 0

1 0 1 -1

1 0 -1 1

In the graph, we have removed all the arrows that pointed to the intervened variable Y ; Y has become an 

exogenous variable in the intervened team. Correspondingly, the function FT (Y ) describing the causal law 

for Y has been removed, thus producing a reduced system of equations. The set U for this intervention 

is {X}; each of the values of X appearing in T (0 and 1) has given rise to three solutions of the system 

compatible with the constraint Y = 0. Notice that, when Y = 0, the system of equations just says that the 

value of Z is the opposite of the value of W .

For a comparison, after the intervention do(Y = 1) we obtain the same graph and function component; 

however, the (reduced) system of equations clearly has no solutions with Y = 1, and therefore (TY =1)− = ∅.

This definition of intervention can be also thought of as applying an intervention (in the sense of [18]) to 

each assignment in the team, and then collecting together the outcomes produced by each assignment. In 

order to express this point precisely, it will be convenient to introduce some auxiliary notations. We say that 

S = (S−, GS , FS) is a causal subteam of T = (T −, GT , FT ), S ≤ T , if S− ⊆ T −, GS = GT and FS = FT . 

We use the improper notation {s} for the causal subteam of T of team component {s} whenever T is clear 

from the context.

Proposition 2.5. Let T = (T −, G, F ) be a causal team of signature σ and X = x be a consistent conjunction 

of signature σ. Then:

T −
X=x =

⋃

s∈T −

{s}−
X=x.

Proof. Write U for Exo(T ) \ X.

Let s ∈ T − and t ∈ {s}−
X=x. By definition of {s}X=x, we have that t is compatible with (GX=x, FX=x), 

t(X) = x and t(U) ∈ {s}(U) ⊆ T −(U). Thus t ∈ T −
X=x. Therefore {s}−

X=x ⊆ T −
X=x.

Vice versa, let t ∈ T −
X=x. By definition of T −

X=x, t(U) ∈ T −(U). This means there is an s ∈ T − such that 

t(U) = s(U). Furthermore, the condition t ∈ T −
X=x gives us that t(X) = x and that t is compatible with 

(GX=x, FX=x). Therefore t ∈ {s}−
X=x for some s ∈ T −. �

Thus, the definition of intervention considered here generalizes the one proposed by Halpern in [18]. Its 

adequacy therefore depends on the adequacy of Halpern’s definition, in the sense that it would inherit any 

of its potential issues. We will discuss in a later section whether the adequacy of Halpern’s definition is 

uncontroversial.
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We conclude this section by introducing one more special class of causal teams.6 Let σ = (Dom, Ran)

be a signature and let T = (T −, G, F ) be a causal team of signature σ with exogenous variables U. T is

unique-solution (for signature σ) if the following hold:

1. For every tuple u ∈ Ran(U), there is exactly one assignment s of signature σ that is compatible with 

(G, F ) and such that s(U) = u.

2. Similarly, for each causal team TX=x (X ⊆ Dom, x ∈ Ran(X)) and every tuple z ∈ Ran(Z) =

Ran(Exo(TX=x)), there is exactly one assignment s of signature σ that is compatible with (GX=x, FX=x)

and such that s(XZ) = xz.

Notice that this definition does not depend on the team component of T . It is also straightforward to prove 

that every recursive causal team is unique-solution, but not vice versa.

2.5. Semantic clauses

We are now ready to define our main semantics for the causal-observational languages. We will define 

what it means for a formula ϕ to be satisfied by a causal team T . This relation will be denoted as T |= ϕ, 

or more specifically as T |=H ϕ if we need to compare it to different semantics.

Satisfaction of a formula by a team, T |= ϕ, is defined inductively as:

• T |= Y = y iff, for all s ∈ T −, s(Y ) = y.

• T |= Y 	= y iff, for all s ∈ T −, s(Y ) 	= y.

• T |==(X; Y ) iff for all s, s′ ∈ T −, s(X) = s′(X) implies s(Y ) = s′(Y ).

• T |= ψ ∧ χ iff T |= ψ and T |= χ.

• T |= ψ ∨ χ iff there are T1, T2 ≤ T s.t. T −
1 ∪ T −

2 = T −, T1 |= ψ and T2 |= χ.

• T |= ψ ⊔ χ iff T |= ψ or T |= χ.

• T |= X = x� χ iff X = x is inconsistent or TX=x |= χ.

• T |= α ⊃ χ iff T α |= χ, where T α is the (unique) causal subteam of T with team component {s ∈ T − |

{s} |= α}.

The operators ∨ and ⊔ are known, respectively, as tensor and global disjunction. The selective implica-

tion α ⊃ χ is interpreted similarly as a public announcement operator ([32]); it says that χ holds if we 

observe/learn that α holds.

This satisfaction relation induces, as usual, notions of semantic entailment and validity. If Γ is a set of 

formulas, ϕ a formula, and σ a signature, we write Γ |=σ ϕ if, for every causal team T of signature σ, T |= Γ

implies that T |= ϕ. If Γ = {θ} we write more simply θ |=σ ϕ. If ϕ, θ are formulas, we write ϕ ≡σ θ if 

θ |=σ ϕ and ϕ |=σ θ. We will often omit the subscript σ if the signature is clear from the context.

Our formal languages, interpreted according to the semantics just described, have the following important 

properties, that we will use throughout the paper.

Proposition 2.6. Let S, T be causal teams of signature σ.

• Empty team property: if ϕ ∈ COD(σ) ∪ CO⊔(σ) and T = (∅, G, F ), then T |= ϕ.

6 This definition and that of a recursive causal team are straightforward adaptations from [11]. They are slight generalizations, 
in that we had to decide what to do with interventions on exogenous variables, which are not allowed in the framework of [11].
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• Flatness: if ϕ ∈ CO(σ), then T |= ϕ iff, for all s ∈ T −, {s} |= ϕ.

• Downward closure: if ϕ ∈ COD(σ) ∪ CO⊔(σ), T |= ϕ and S ≤ T , then S |= ϕ.

Proof. These properties were proved in [2] for the recursive case, by induction on ϕ. In the argument for 

flatness, the inductive case differs from [2] when ϕ is of the form X = x� ψ, so we give the details.

Suppose first that T |= X = x � ψ. Then TX=x |= ψ. By the inductive hypothesis, for every t ∈

(TX=x)−, {t} |= ψ. Now observe that, by Proposition 2.5, for every s ∈ T −, each element of ({s}X=x)− is 

in (TX=x)−. Thus, by the inductive hypothesis again, for each s ∈ T − we have that {s}X=x |= ψ. Thus 

{s} |= X = x� ψ.

From right to left, assume that, for all s ∈ T −, {s} |= X = x � ψ. Then {s}X=x |= ψ for all such s. 

Then, by the inductive hypothesis, for every t ∈ ({s}X=x)−, {t} |= ψ. Since (TX=x)− =
⋃

s∈T −({s}X=x)−, 

applying the inductive hypothesis again we obtain TX=x |= ψ, and thus T |= X = x� ψ. �

We also remark that each of the operators ∧, ∨, ⊃ behaves like the corresponding classical operator on 

causal teams with singleton team component.

2.6. Negation

The languages CO(σ) can be extended with a (dual) negation that behaves as classical negation on causal 

teams with singleton team component. The truth clause is:

• T |= ¬ϕ iff, for all s ∈ T −, {s} 	|= ϕ.

This operator is already definable in CO(σ). Taking ⊥ to stand for any contradictory formula (say, X =

x ∧ X 	= x, for some X ∈ Dom and x ∈ Ran(X)), we have ¬ψ ≡ ψ ⊃ ⊥. Less straightforwardly, in the 

recursive case the dual negation gives formulas that are equivalent to those that are produced by the following 

inductive clauses: (X = x)d := X 	= x, (X 	= x)d := X = x, (ψ ∧ χ)d := ψd ∨ χd, (ψ ∨ χ)d := (ψd ∧ χd), 

(ψ ⊃ χ)d := ψ ∧ χd, (ψ� χ)d := ψ� χd.

Lemma 2.7. Let T be a recursive causal team and ϕ ∈ CO. Then T |= ϕd iff T |= ¬ϕ.

Proof. The proof can be found in [2] (theorem 2.11). �

There seems to be no reasonable extension of this result to COD(σ) or CO⊔(σ); see e.g. [25]. Furthermore, 

the result is false for non-recursive causal teams; in particular, the clause for (ψ� χ)d is incorrect, as the 

following example shows.7

Example 2.8. Let Dom = {X, Y, Z} and Ran(X) = Ran(Y ) = Ran(Z) = {0, 1}. Let s be the assignment 

given by s(X) = s(Y ) = s(Z) = 0. We then consider the causal team T having s as the only assignment, 

and graph and function components given by the equations X := Y and Y := X. Now, as the picture shows,

T : 
X Y Z

0 0 0
� TZ=0: 

X Y Z

0 0 0

1 1 0

T |= ¬(Z = 0 � X = 0) (as {s} 	|= Z = 0 � X = 0), but T 	|= (Z = 0 � X = 0)d = Z = 0 � X 	= 0, 

since X takes the value 1 in one of the assignments of TZ=0.

7 A similar example was given in [18], example 2.3. We thank a reviewer of this paper for pointing out the existence of this 
counterexample (and others which will appear in the following).
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2.7. Unnested form

We end this section with some remarks about the nesting of counterfactuals. The syntax of our languages 

allows for nesting the counterfactuals on the right, as e.g. in X = x � (Y = y � ψ) or X = x �

(ψ ∨ ((Y = y � χ) ∧ (X = x � θ))). However, when the semantics is restricted to the case of unique-

solution causal teams, we can prove that all formulas are equivalent to unnested ones.8 Towards proving 

this fact, we point out some formula equivalences (distribution rules) that hold in general (and which are 

easily provable along the lines of [18] and [2]):

X = x� (ψ ∧ χ) ≡ (X = x� ψ) ∧ (X = x� χ)

X = x� (ψ ⊔ χ) ≡ (X = x� ψ) ⊔ (X = x� χ)

Unfortunately, analogous distribution rules do not hold in general for the operators ∨ and ⊃, as the following 

example shows.

Example 2.9. Consider again the causal team T from Example 2.8. We have T |= Z = 0 � (X = 0 ∨X = 1)

but T 	|= (Z = 0 � X = 0) ∨ (Z = 0 � X = 1).

Observe also that, trivially, T |= (Z = 0 � X = 0) ⊃ (Z = 0 � X = 1) (since TZ=0�X=0 is empty). 

But T 	|= Z = 0 � (X = 0 ⊃ X = 1).

The distribution rules for ∨ and ⊃ do hold if the causal team is unique-solution (thus in particular if it is 

recursive, i.e. the causal graph is acyclic).

Lemma 2.10. Let ψ, χ be COD(σ) or CO⊔(σ) formulas, and α a CO(σ) formula. For all T unique-solution 

causal teams of signature σ, we have:

1. T |= X = x� (ψ ∨ χ) ⇐⇒ T |= (X = x� ψ) ∨ (X = x� χ)

2. T |= X = x� (α ⊃ χ) ⇐⇒ T |= (X = x� α) ⊃ (X = x� χ).

Without the restriction on the unicity of solutions, we still have:

1. (X = x� ψ) ∨ (X = x� χ) |= X = x� (ψ ∨ χ)

2. X = x� (α ⊃ χ) |= (X = x� α) ⊃ (X = x� χ).

Proof. Let us begin with the statements that hold in general.

3) Suppose T |= (X = x � ψ) ∨ (X = x � χ). Then there are two causal subteams T1, T2 of T such 

that T −
1 ∪ T −

2 = T −, (T1)X=x |= ψ and (T2)X=x |= χ. Since by Proposition 2.5 (T1)−
X=x ∪ (T2)−

X=x = T −
X=x, 

we have TX=x |= ψ ∨ χ, from which the thesis follows.

4) Let T be a causal team of signature σ. We first prove that (T X=x�α)X=x is a causal subteam of 

(TX=x)α; this amounts to proving the inclusion of their respective team components.

Let then s ∈ (T X=x�α)−
X=x. Then by Proposition 2.5 there is a t ∈ (T X=x�α)− such that s ∈ {t}−

X=x ⊆

(T X=x�α)−
X=x ⊆ T −

X=x. Since t ∈ (T X=x�α)−, we have {t} |= X = x � α, thus {t}X=x |= α and, by 

downward closure, {s} |= α. Since s ∈ T −
X=x, then, we conclude s ∈ ((TX=x)α)−.

Suppose now that T |= X = x� (α ⊃ χ). Thus (TX=x)α |= χ. By downward closure, (T X=x�α)X=x |=

χ. Thus T |= (X = x� α) ⊃ (X = x� χ).

1) Assume T |= X = x � (ψ ∨ χ). Then, by the semantic clauses, there are S1, S2 causal subteams of 

TX=x such that S−
1 ∪ S−

2 = T −
X=x, S1 |= ψ and S2 |= χ. Let Ti := {s ∈ T − | (t ∈ {s}−

X=x ⇒ t ∈ S−
i )}. 

8 We leave it as an open problem whether this result can be extended to the general case.
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Since T is unique-solution (ensuring that {s}−
X=x is a singleton for each s ∈ T −), we have T −

1 ∪ T −
2 = T −. 

Furthermore, it is easy to see that (Ti)X=x = Si: indeed, if t ∈ (Ti)
−
X=x then by Proposition 2.5 there exists 

some s ∈ T −
i such that t ∈ {s}−

X=x, but by definition {s}−
X=x ⊆ S−

i for all s ∈ T −
i and so in particular 

t ∈ {s}−
X=x ⊆ S−

i ; and conversely, if t ∈ S−
i then t ∈ T −

X=x, and so by Proposition 2.5 there exists some 

s ∈ T − such that t ∈ {s}−
X=x; but then since T is unique-solution we have that {s}−

X=x = {t} ⊆ S−
i

and so s ∈ T −
i and finally – again by Proposition 2.5 – t ∈ {s}−

X=x ⊆ (Ti)
−
X=x. Thus, (T1)X=x |= ψ and 

(T2)X=x |= χ, from which the thesis follows by the semantic clauses. For the right-to-left direction, see the 

proof of 3).

2) We prove that ((TX=x)α)− = (T X=x�α)−
X=x. The left-to-right inclusion was proved in 4). For the 

opposite direction, assume s ∈ ((TX=x)α)−. Then {s} |= α and by Proposition 2.5 there is a t ∈ T − such 

that s ∈ {t}−
X=x. Since T is unique-solution, {t}−

X=x = {s}. Thus {t}X=x |= α, i.e. {t} |= X = x� α. So, 

t ∈ (T X=x�α)−, and therefore s ∈ (T X=x�α)−
X=x; thus, ((TX=x)α)− ⊆ (T X=x�α)−

X=x.

Then T |= (X = x� α) ⊃ (X = x� χ) if and only if (T X=x�α)X=x |= χ if and only if (TX=x)α |= χ

if and only if T |= X = x� (α ⊃ χ). �

The paper [2] presents also a rule for reducing the depth of nesting of counterfactuals (Overwriting rule). Its 

proof was given under the assumption of recursivity. We show here that it can be extended to a much larger 

class. Following the terminology of [35], we say a causal team T = (T −, G, F ) of signature σ = (Dom, Ran)

is solutionful if, for every assignment s of signature σ, and every consistent conjunction X = x of signature 

σ, ({s}, G, F )−
X=x 	= ∅. (Notice that the unique-solution causal teams are a special case of solutionful ones.) 

We then have:

Theorem 2.11. Let σ = (Dom, Ran) be a signature, X ⊆ Dom be distinct variables and x ∈ Ran(X)

(therefore X = x is a consistent conjunction). Let Y ⊆ Dom and y ∈ Ran(Y) and ψ a COD or CO⊔

formula of signature σ. Then, for every solutionful causal team T of signature σ:

T |= X = x� (Y = y� ψ) ⇐⇒ T |= (X′ = x′ ∧ Y = y)� ψ

where X′ = X \ Y and x′ = x \ y.

In particular, this holds whenever T is unique-solution (resp. recursive).

Proof. Let us fix some notation:

U := Exo(T ) \ (X ∪ Y)

V := Exo(TX=x) \ Y = (Exo(T ) ∪ X) \ Y

Furthermore, write

A := ((TX=x)Y=y)− = {s | s(Y) = y, s comp. with (FX=x)Y=y and s(V) ∈ T −
X=x(V)}

B := (TX′=x′∧Y=y)− = {s | s(X′Y) = x′y, s comp. with FX′=x′∧Y=y and s(U) ∈ T −(U)}.

Notice also that (FX=x)Y=y = FX′=x′∧Y=y. The thesis will follow if we prove A = B.

A ⊆ B) Assume s ∈ A. Then s(Y) = y, s is compatible with FX′=x′∧Y=y, and s(V) ∈ T −
X=x(V). In 

particular, since X′ ⊆ V, we have by definition of TX=x that s(X′) = x′. Thus, in order to prove that s ∈ B, 

we only need to prove that s(U) ∈ T −(U). But U ⊆ V; thus s(U) ∈ T −
X=x(U). By the definition of TX=x, 

since U ⊆ Exo(T ) \ X, we conclude s(U) ∈ T −(U).

B ⊆ A) Assume s ∈ B. Then s(Y) = y and s compatible with (FX=x)Y=y. If we prove that s(V) ∈

T −
X=x(V), we are done. Now if X ∈ X \ Y, we have (by definition of s ∈ B) that s(X) = x ∈ T −

X=x(X) (the 
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last inclusion is by the definition of T −
X=x). If instead V ∈ V \ X, we have V ∈ Exo(T ) \ (X ∪ Y) = U. 

Thus s(V ) ∈ T −(V ) by definition of B. Since V is exogenous and V /∈ X, we have that any t ∈ {s}−
X=x is 

such that t(V ) = s(V ). Since T is solutionful, there is such a t. Therefore, s(V ) ∈ T −
X=x(V ). �

Actually the proof of the equivalence above (for each fixed T and fixed formulas) requires weaker assumptions 

on T : that for every assignment s in T −, ({s}, G, F )X=x 	= ∅ (for the specific intervention do(X = x)

corresponding to the antecedent of the formula X = x� (Y = y� ψ)). It is instead false in general, as 

the following example shows:

Example 2.12. Consider a causal team T of variables X, Y, Z, equations Y := X + Z, Z := Y , and with a 

single assignment s(X) = s(Y ) = s(Z) = 0. Note that the system of equations has no solution with X = 1; 

thus T −
X=1 = ∅. By the empty team property, then, we obtain T |= X = 1 � (Y = 1 � Z = 0). On 

the other hand, T −
X=1∧Y =1 = {t}, where t is the assignment such that t(X) = t(Y ) = 1 and t(Z) = 1. 

TX=1∧Y =1 	|= Z = 0, and thus T 	|= (X = 1 ∧ Y = 1) � Z = 0.

If we restrict the semantics to the case of unique-solution causal teams, it should be clear that the 

equivalence rules described above in this section allow transforming any formula of the form X = x � ψ

into an equivalent formula in which only “unnested” counterfactuals occur, i.e. counterfactuals of the form 

Z = z � χ, where χ is a formula without occurrences of �. In order to extend this observation to all 

formulas, we also need a substitution principle; a weaker version of it was proved in [2]. In its statement, we 

write ϕ[θ] to highlight a specific occurrence of θ as a subformula of ϕ[θ]; and ϕ[θ′] for the formula obtained 

by replacing this occurrence with another formula θ′ (if θ is in an antecedent of ⊃ and θ′ /∈ CO, or if θ is in 

an antecedent of � and θ′ is not of the form X = x, we consider the substitution ϕ[θ′] to be undefined). 

If the occurrence θ in ϕ[θ] is in the antecedent of a counterfactual, we say it is a neutral occurrence; if it is 

not neutral and it occurs in an even number of antecedents of ⊃ (possibly none), we say it is positive; and 

otherwise we say it is negative.

Lemma 2.13. Let θ, θ′, ϕ[θ] be COD(σ) or CO⊔(σ) formulas. Suppose that the substitution formula ϕ[θ′] is 

well-defined and that θ |= θ′. If the occurrence of θ in ϕ[θ] is positive, then ϕ[θ] |= ϕ[θ′]; if it is negative, 

then ϕ[θ′] |= ϕ[θ].

Proof. We proceed by induction on the syntax of ϕ[θ]. The cases for atoms Y = y, = (X; Y ) and for 

∧, ∨, ⊔, � are easy.

The only case left is that ϕ[θ] is α[θ] ⊃ χ[θ]. Suppose first that θ occurs positively in ϕ[θ]. There are 

two subcases; suppose first that the occurrence of θ is in χ[θ]. Then α[θ] = α[θ′] and, by the inductive 

hypothesis, χ[θ] |= χ[θ′]. Now assume T |= ϕ[θ]. Then T α[θ′] = T α[θ] |= χ[θ] |= χ[θ′], i.e. T |= ϕ[θ′]. Thus 

ϕ[θ] |= ϕ[θ′].

Suppose instead that the occurrence of θ is in α[θ] (thus χ[θ] = χ[θ′]). Since the occurrence of θ is 

positive in ϕ[θ], it is negative in α[θ]; thus by inductive hypothesis α[θ′] |= α[θ]. Now assume T |= ϕ[θ]. 

Then T α[θ] |= χ[θ] = χ[θ′]. Since α[θ′] |= α[θ], T α[θ′] is a causal subteam of T α[θ]; thus, by downward closure, 

T α[θ′] |= χ[θ′]. Then T |= ϕ[θ′]; we have proved ϕ[θ] |= ϕ[θ′].

In the case that θ is a negative occurrence in ϕ[θ], we have to prove that ϕ[θ′] |= ϕ[θ]; the proof is 

completely symmetrical to the positive case. �

Corollary 2.14. Let θ, θ′, ψ[θ] be COD or CO⊔ formulas, and assume that the substitution formula ψ[θ′] is 

well-defined. If θ ≡ θ′, then ψ[θ] ≡ ψ[θ′].
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Proof. Lemma 2.13 entails that the statement holds when θ is not a neutral occurrence. The case for neutral 

occurrences follows immediately from the observation that equivalent conjunctions of atomic formulas either 

define one and the same intervention, or they are both inconsistent. �

Now, if we have any formula, we can replace each counterfactual occurring in it with an unnested formula 

that is equivalent to it (for unique-solution causal teams), using Lemma 2.10, 1.-2., Theorem 2.11 and 

Corollary 2.14. We have then proved:

Theorem 2.15. For every COD(σ) (resp. CO⊔(σ)) formula ϕ there is an unnested COD(σ) (resp. CO⊔(σ)) 

formula ϕ′ such that, for all unique-solution causal teams T :

T |= ϕ ⇐⇒ T |= ϕ′.

3. The main embedding results

3.1. First-order dependence logic

In this section, we will go through the basic definitions of first-order dependence logic. We will not discuss 

in any detail the properties of this logic or its connection with other logics based on team semantics, for 

which we refer to [31] and [13], but we will merely give the definitions that will be necessary for the rest of 

this work. In accordance with the conventions of causal team semantics, we will use capital letters X, Y, Z, . . .

for variable symbols, and use non-capital letters x, y, z, . . . for constant symbols. It will be useful to think 

that the variables (resp. the values) used for the causal-observational languages come from this same pool 

of variables symbols (resp. constant symbols).

Definition 3.1 (Team). Let M be a first-order structure with at least two elements,9 and let V be a finite 

set of variables. A team T over M with domain V is a set of variable assignments s : V → M .10

Definition 3.2 (Team supplementation). Let T be a team over some first-order structure M , and let F : T →

M be a choice function selecting one element of M for each assignment of T .11 Also, let X be a variable 

symbol. Then we write T [F/X] for the team {s[F (s)/X] | s ∈ T}, where s[F (s)/X] is the assignment 

obtained from s by fixing the value of the variable X to F (s).

Definition 3.3 (Team duplication). Let T be a team over some first-order structure M . Also, let X be a 

variable symbol. Then we write T [M/X] for the team {s(a/X) | s ∈ T, a ∈ M}.

Definition 3.4 (Dependence logic, syntax). An expression ϕ is a formula of dependence logic FO(=(·; ·)) if 

it is produced by the following grammar:

ϕ ::= λ | =(X1, . . . , Xn; Y ) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀V ϕ | ∃V ϕ

where λ is a first-order literal (in the usual sense) and X1, . . . , Xn, Y, V are variable symbols.

9 In this work, we will only consider first-order structures with at least two elements. This is a common assumption in the 
literature on team semantics.
10 More precisely, we should say: s : V → Dom(M), where Dom(M) is the set of all elements of M . For simplicity, we will write M
both for a first-order structure and for the set of its elements.
11 Here we give the so-called “strict” form of supplementation, rather than the “lax” one in which an assignment may be extended 
by picking more than one element. Since we will consider dependence logic proper, rather than other logics based on team semantics, 
these two forms of supplementation are expressively equivalent; and this form has the advantage of simplicity and was the originally 
given one.
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A dependence logic formula without occurrences of dependence atoms is called a first-order formula. 

Given a dependence logic formula ϕ, the sets of its free and bound variables are defined as in the case of 

first-order logic (with the additional stipulation that the variables in a dependence atom are considered 

free). A dependence logic formula without free variables is called a sentence.

As before, we may abbreviate a dependence atom =(X1, . . . , Xn; Y ) as =(X; Y ), and write a constancy 

atom =(; Y ) as =(Y ).

Definition 3.5 (Dependence logic, semantics). Let M be a first-order structure, let T be a team over M with 

domain V, and let ϕ be a dependence logic formula over the signature of M with free variables in V. Then 

we say that T satisfies ϕ in M , and we write M, T |= ϕ, if this can be derived by the following rules:

• If λ is a first-order literal then M, T |= λ iff for all s ∈ T , it holds that M, s |= λ in the sense of ordinary 

Tarskian semantics;

• M, T |==(X1 . . . Xn; Y ) iff any two s, s′ ∈ T that agree over X1 . . . Xn also agree over Y ;

• M, T |= ϕ1 ∨ ϕ2 iff T = T1 ∪ T2 for some T1, T2 ⊆ T such that M, T1 |= ϕ1 and M, T2 |= ϕ2;

• M, T |= ϕ1 ∧ ϕ2 iff M, T |= ϕ1 and M, T |= ϕ2;

• M, T |= ∃Xϕ iff there exists a choice function F such that M, T [F/X] |= ϕ;

• M, T |= ∀Xϕ iff M, T [M/X] |= ϕ.

If ϕ is a dependence logic sentence, we say that ϕ is true in a model M (and we write M |= ϕ) if M, {∅} |= ϕ, 

where ∅ is the empty assignment.

A few well-known basic facts about dependence logic that will be of use for the rest of the work (and for 

whose proofs we refer to [31] or to simple application of the rules of team semantics) are the following:

Proposition 3.6 (Flatness). Let ϕ be a dependence logic formula in which no dependence atom =

(X1 . . . Xn, Y ) appears (i.e., let ϕ be a first-order formula). Then M, T |= ϕ if and only if, for all s ∈ T , 

M, s |= ϕ in the ordinary sense of Tarski’s semantics.

Proposition 3.7 (Downwards closure). Let ϕ be a dependence logic formula and let M and T be a structure 

and a team such that M, T |= ϕ. Then, for all teams T ′ ⊆ T , we have that M, T ′ |= ϕ.

Proposition 3.8 (Empty team property). Let ϕ be a dependence logic formula and let M be a structure whose 

signature contains the signature of ϕ. Then M, ∅ |= ϕ.

Proposition 3.9 (Locality). Let ϕ be a dependence logic formula, let M be a structure whose signature contains 

the signature of ϕ, and let T , T ′ be two teams over M whose restriction12 to the free variables of ϕ is the 

same. Then M, T |= ϕ if and only if M, T ′ |= ϕ.

Let us now recall (and sketch the proofs of) some statements that are well-known in the dependence logic 

research community.

Proposition 3.10. If X and Y are distinct variables and ϕ is any dependence logic formula, ∃X∃Y ϕ is 

equivalent to ∃Y ∃Xϕ; and furthermore, ∃X∃Xϕ is equivalent to ∃Xϕ.

12 The restriction of a team T to a set of variables V is the team T↾V := {s↾V | s ∈ T }.
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Proof. Suppose that M, T |= ∃X∃Y ϕ, where by locality (Proposition 3.9) we can assume that T contains 

neither X nor Y in its domain.

Then there exists a choice function F with domain T and a choice function G with domain T [F/X] such 

that M, T [F/X][G/Y ] |= ϕ. Now define the choice function G′, with domain T , as

G′(s) = G(s[F (s)/X]).

Furthermore, define the choice function F ′, with domain T [G′/Y ], as

F ′(s[y/Y ]) = F (s).

Notice that G′ and F ′ are well-defined by our assumption that X, Y are not in the domain of T (and thus 

of s), together with the fact that X and Y are distinct. Then T [G′/Y ][F ′/X] = T [F/X][G/Y ]: indeed, 

s[y/Y ][x/X] ∈ T [G′/Y ][F ′/X] if and only if s ∈ T , y = G(s[F (s)/X]), and x = F (s), i.e. if and only if 

s ∈ T , x = F (s), and y = G(s[x/X]), i.e. if and only if s[x/X][y/Y ] ∈ T [F/X][G/Y ]; and since X and Y are 

distinct we also have that s[y/Y ][x/X] = s[x/X][y/Y ], and therefore s[y/Y ][x/X] ∈ T [G′/Y ][F ′/X] ⇐⇒

s[x/X][y/Y ] ∈ T [F/X][G/Y ] ⇐⇒ s[y/Y ][x/X] ∈ T [F/X][G/Y ].

Then in particular, since by assumption we have that M, T [F/X][G/Y ] |= ϕ, we also have that 

M, T [G′/Y ][F ′/X] |= ϕ and hence that M, T |= ∃Y ∃Xϕ.

Conversely, suppose that M, T |= ∃Y ∃Xϕ: then by the same argument (with X and Y swapped) we can 

conclude that M, T |= ∃X∃Y ϕ.

Finally, let us consider the case that X = Y : M, T |= ∃X∃Xϕ if and only if there exists some F such 

that M, T [F/X] |= ∃Xϕ. But T and T [F/X] agree over the free variables of ∃Xϕ, since X is not free in 

∃Xϕ, and so by locality this is the case if and only if M, T |= ∃Xϕ, as required. �

Corollary 3.11. Let X = (X1 . . . Xn) be a tuple of – possibly repeated – variables, and let Z = (Z1 . . . Zk)

list the same variables without repetitions (and possibly in a different order). Then, for all ϕ, the formulas 

∃X1 . . . Xnϕ and ∃Z1 . . . Zkϕ are equivalent.

Proof. Repeatedly apply Proposition 3.10 to reorder the Xi in the order of the Z and eliminate doubles. �

The next two statements are also well known in the dependence logic research community. We provide a 

proof sketch for the first (and less obvious) one:

Proposition 3.12. For any first-order structure M , team T , dependence logic formula ϕ and sequence of 

variables X = X1 . . . Xn, M, T |= ∃X1 . . . ∃Xnϕ if and only if there exists a tuple F = (F1 . . . Fn) of 

functions Fi : T → M such that M, T [F/X] |= ϕ, where T [F/X] := {s[F1(s)/X1] . . . [Fn(s)/Xn] | s ∈ T}.

Proof. By locality, we can assume that the variables of X are not in the domain of T .

For the left-to-right direction, we proceed by induction on n. The base case n = 1 is simply the rule 

for existential quantification in first-order team semantics. Suppose now that the statement holds for n, 

and that M, T |= ∃X1 . . . ∃Xn∃Xn+1ϕ. Let Z = Z1 . . . Zk enumerate, without repetition, the variables of 

{X1 . . . Xn} \ {Xn+1}: then k ≤ n and, by Corollary 3.11, M, T |= ∃Z1 . . . ∃Zk∃Xn+1ϕ.

Now, by induction hypothesis, there exists a tuple G = (G1 . . . Gk) of functions T → M such 

that M, T [G/Z1 . . . Zk] |= ∃Xn+1ϕ. Therefore, there exists some function G′
k+1 : T [G/Z1 . . . Zk] → M

such that M, T [G/Z1 . . . Zk][G′
k+1/Xn+1] |= ϕ. But now, if we define Gk+1 : T → M as Gk+1(s) =

G′
k+1(s[G1(s)/Z1]...[Gk(s)/Zk]) and we let (G; Gk+1) be the tuple (G1 . . . Gk, Gk+1), we have that 

T [G/Z1 . . . Zk][G′
k+1/Xn+1] = T [(G; Gk+1)/Z1 . . . ZkXn+1], and hence that M, T [(G; Gk+1)/Z1 . . . ZkXn+1]

|= ϕ. Finally, define the tuple of functions F = (F1 . . . Fn+1) so that, whenever Xi = Zj , Fi = Gj and, 
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whenever Xi = Xn+1, Fi = Gk+1: then T [(G; Gk+1)/Z1 . . . ZkXk+1] = T [F/X1 . . . XnXn+1] and finally 

M, T [F/X1 . . . XnXn+1] |= ϕ, as required.

For the right-to-left direction, we also proceed by induction. Again, the base case is simply the rule 

for existential quantification. Suppose now that the statement holds for n and that M, T [F/X] |= ϕ for 

F = (F1 . . . Fn+1) and X = (X1 . . . Xn+1). Now let F′ = (F1 . . . Fn), let X′ = (X1 . . . Xn), and let F ′
n+1 :

T [F′/X′] → M be such that F ′
n+1(s′) = Fn+1(s) for some s ∈ T such that s[F1(s)/X1] . . . [Fn(s)/Xn] = s′.13

Then T [F′/X′][F ′
n+1/Xn+1] ⊆ T [F/X], and so by downwards closure (Proposition 3.7) we have that 

M, T [F′/X′][F ′
n+1/Xn+1] |= ϕ. But then M, T [F′/X′] |= ∃Xn+1ϕ, and so by induction hypothesis M, T |=

∃X . . . ∃Xn∃Xn+1ϕ. �

Proposition 3.13. For all first-order structures M , teams T , dependence logic formulas ϕ and sequences 

of variables X = X1 . . . Xn, M, T |= ∀X1 . . . ∀Xnϕ if and only if M, T [M/X] |= ϕ, where T [M/X] :=

{s[a1/X1] . . . [an/Xn] | s ∈ T, a1 . . . an ∈ M}.

Two additional connectives that have been studied in the context of dependence logic are the Constant 

Quantification ∃1 and the Global (or Boolean) Disjunction ⊔, whose semantic rules are given by

• M, T |= ∃1Xψ iff there exists some fixed element x of M such that M, T [x/X] |= ψ, where T [x/X] =

{s(x/X) : s ∈ T};

• M, T |= ψ1 ⊔ ψ2 iff M, T |= ψ1 or M, T |= ψ2.

It is easy to see that the previous results (3.10-3.11-3.12-3.13) also apply to the language FO(=(·; ·), ⊔, ∃1)

that extends dependence logic with these two additional connectives (the results work for any local, down-

ward closed language). The logic FO(=(·; ·), ⊔, ∃1) is known to be equivalent to dependence logic. In fact, 

we can say more, as every expression of this logic is reducible to an expression of FO(=(·; ·)) with some 

extra initial existential quantifiers:

Proposition 3.14. ⊔ and ∃1 commute with all connectives of dependence logic, up to renamings, i.e.

• For ◦ = ∧ or ◦ = ∨, (ϕ ⊔ ψ) ◦ θ ≡ (ϕ ◦ θ) ⊔ (ψ ◦ θ), and likewise ϕ ◦ (ψ ⊔ θ) ≡ (ϕ ◦ ψ) ⊔ (ϕ ◦ θ)

• ∃X(ϕ ⊔ ψ) ≡ (∃Xϕ) ⊔ (∃Xψ);

• ∀X(ϕ ⊔ ψ) ≡ (∀Xϕ) ⊔ (∀Xψ)

and

• For ◦ = ∧ or ◦ = ∨, (∃1Xϕ) ◦ ψ ≡ ∃1Y (ϕ[Y/X] ◦ ψ), where Y is a new variable not occurring in ϕ

or in ψ and ϕ[Y/X] is obtained by changing all occurrences of X in ϕ that were bound by ∃1X into 

occurrences of Y ;

• ∃X(∃1Y ϕ) ≡ ∃1Y (∃Xϕ) if X and Y are distinct variables, and ∃X(∃1Xϕ) ≡ ∃1Xϕ otherwise;

• ∀X(∃1Y ϕ) ≡ ∃1Y (∀Xϕ) if X and Y are distinct variables, and ∀X(∃1Xϕ) ≡ ∃1Xϕ otherwise.

Furthermore, ∃1 distributes over ⊔, in the sense that ∃1Y (ψ ⊔ θ) ≡ (∃1Y ψ) ⊔ (∃1Y θ).

Proof. Straightforward by examining the semantic rules. �

13 At least one such s exists, since s′ ∈ T [F′/X′]. It is possible for multiple such s to exist; in this case, any choice may be taken.
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In the formulation of the following result we call “non-constant existential quantifiers” the occurrences of 

the symbol ∃, as opposed to occurrences of ∃1.

Theorem 3.15. Every formula ϕ of FO(=(·; ·), ⊔, ∃1) is equivalent to some formula ϕ′ of dependence logic 

FO(=(·; ·)), which can be assumed to be first order in case ϕ is flat and has no occurrences of dependence 

atoms; and if no non-constant existential quantifier appears in the scope of some universal quantifier in ϕ, 

then no non-constant existential quantifier appears in the scope of some universal quantifier in ϕ′. If ϕ has 

a purely relational vocabulary, the same holds for ϕ′.

Proof. By the previous result, ϕ is equivalent to some expression of the form

⊔
i

(∃1Yiϕi) (1)

where each ϕi is a dependence logic formula; and it is easy to see that if no non-constant existential quantifier 

appeared in the scope of a universal quantifier in ϕ, that does not happen in any ϕi either.

Then observe that ∃1Y ψ ≡ ∃Y (=(Y ) ∧ψ) and that ϕ1⊔ϕ2 ≡ ∃Z∃W (=(Z)∧ =(W ) ∧((Z = W ∧ϕ1) ∨(Z 	=

W ∧ ϕ2))),14 where Z and W are new variables not appearing in ϕ1 and ϕ2. Thus, ϕ is equivalent to some 

expression in the required form.

Now suppose that no dependence atoms appear in ϕ and that this formula is flat (in the sense of 

Proposition 3.6). Since flatness is preserved by logical equivalence, and since the formula transformation 

just described does not add dependence atoms, also (1) has the same properties. Thus in particular all the 

ϕi are first order and therefore flat. Then, as we will now show, (1) is logically equivalent to

∨

i

(∃Yiϕi) (2)

which is a first-order formula.

Indeed, every team that satisfies (1) satisfies (2), since any team that satisfies ∃1Xψ also satisfies ∃Xψ

(you can always pick a constant value for X) and any team that satisfies ψ1 ⊔ ψ2 satisfies ψ1 ∨ ψ2 by the 

empty team property.

Conversely, every team that satisfies (2) is the union of teams that satisfy (1). Indeed, suppose that 

M, T |=
∨

i(∃Yiϕi): then for every assignment s ∈ T , we have (by downwards closure) that (M, {s}) |=
∨

i(∃Yiϕi), and hence there exists an index i and some tuple of elements m such that M, {s(m/Yi)} |= ϕi. 

Therefore, for all such s we have that {s} satisfies (1) in M ; and since (1) is flat, we can conclude that T

satisfies (1) in M . �

3.2. The embedding result, in the general case

We will now show how the causal-observational languages can be embedded into the first-order (depen-

dence) languages just described.

The embedding will be specified in two phases: 1) associating to each causal team an appropriate first-

order structure and a team over the structure; 2) defining a truth-preserving translation from causal-

observational languages to first-order languages. Concerning 2), we will consider a number of alternative 

translations. Those we describe in the present section are meant to work for all causal teams (without the 

restriction of recursiveness) under the Halpern-style semantics described in sections 2.4-2.5.

14 The latter equivalence holds due to our stipulation that all structure have at least two elements. A formula covering also the 
case of one-element structures can be obtained by adding a disjunct of the form ∀X∀Y (X = Y ) ∧ (ϕ1 ∨ ϕ2) and observing that, if 
there is only one element, all teams are empty or singletons.
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We now present the first phase of the embedding. To each causal team T we associate a team (its team 

component T −) and a first-order structure MT , so that the pair (MT , T −) encodes in a natural way the 

content of T .

Definition 3.16. To each causal team T = (T −, GT , FT ) of signature σ = (Dom, Ran) and endogenous 

variables End(T ) we associate a structure MT = (Dom(MT ), (cMT )c∈|MT |, (f
MT

V )V ∈End(T )), where:

• Dom(MT ) =
⋃

V ∈Dom Ran(V )

• cMT = c

• fMT

V (c) =

{

FT (V )(c) if c ∈ Ran(PAV )

an arbitrary d ∈ Ran(V ) otherwise.

The arity of each function symbol fV is card(PAV ).

We remark that in this definition we are again using the ambiguity between a value c and the constant 

symbol c that denotes it; so each constant symbol is denoted by itself in MT . Notice also that the team 

component of T is not involved in the definition of MT ; therefore, a causal subteam S of T will have the 

same associated first-order structure MS = MT . Notice also that, for any consistent X = x, MTX=x
is a 

reduct of MT .

Now to the second step: we will show that, for an appropriate translation tr of COD∪CO⊔ formulas into 

formulas of first-order (dependence) logic plus ⊔, we have: T |= ϕ ⇐⇒ MT , T − |= tr(ϕ). More precisely, we 

define a distinct translation tr(ϕ, G) for each spanning subgraph G of GT , together with an auxiliary family 

of “dual translations” trd(ϕ, G). (The latter are needed in order to translate the antecedents of selective 

implications.) The definition will proceed by induction on the syntax of ϕ. The idea here is that, for each 

intervention do(X = x), the formula tr(ψ, GTX=x
) will encode the fact that ψ holds in the modified causal 

team TX=x; we need this step in order to define the translation of a counterfactual formula X = x � ψ. 

For each spanning subgraph G of GT , we define a quantifier-free formula

Eq(G) :=
∧

V ∈End(G)

V = fV (PAV ),

where PAV is the list of the parent variables of V .15 By this definition, Eq(GT ) asserts that the system of 

equations V = F (V )(PAV ) (V ∈ End(T )) associated to T holds; and Eq(GTX=x
) will similarly describe the 

reduced system of equations that is obtained after applying the intervention do(X = x) to T . Notice that 

Eq(G) is a first-order formula in case Dom is finite; otherwise, Eq(G) can be either an infinitary conjunction 

or it may have occurrences of functions of infinite arity. It is worth emphasizing here that Eq(G) depends 

only on the graph G, not on the functions F associated to it in a given causal team. The interpretation of 

the symbols fV according to Definition 3.16 will vary depending on F , but the expression Eq(G) itself will 

not.

We now define by simultaneous induction the two (relativized) translations tr(ϕ, G) and trd(ϕ, G), where 

(provided G is a finite graph) tr(ϕ, G) goes from COD or CO⊔ to the language of dependence logic and 

trd(ϕ, G) goes from CO to the language of first-order logic. Write V for the set of variables that are 

endogenous according to graph GX=x, and define

• tr(η, G) = η if η is X = x or X 	= x or =(X; Y ).

15 Remember that we are taking the variables from the causal-observational languages to be subsets of the set of first-order 
variables. Thus, V = fV (P AV ) is a first-order formula.
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• tr(ψ ◦ χ, G) := tr(ψ, G) ◦ tr(χ, G) for ◦ = ∧, ∨ or ⊔.

• tr(α ⊃ χ, G) := trd(α, G) ∨ tr(χ, G).

• tr(X = x� ψ, G) :=
{

∃1X(X = x ∧ ∀V(Eq(GX=x)d ∨ tr(ψ, GX=x))) if X = x is consistent

⊤ if X = x is inconsistent.
16

and

• trd(η, G) = X 	= x if η is X = x, and vice versa.

• trd(α ◦ β, G) := trd(α, G) ◦′ trd(β, G), where ∧′ = ∨ and ∨′ = ∧.

• trd(α ⊃ β, G) := tr(α, G) ∧ trd(β, G).

• trd(X = x� β, G) :=
{

∃1X∃V(Eq(GX=x) ∧ X = x ∧ trd(β, GX=x)) if X = x is consistent

⊥ if X = x is inconsistent.

Let us now prove the correctness of the translation.

Remark 3.17. The translations tr(ϕ, G) and trd(ϕ, G) depend only on the expression ϕ and the graph G, 

and not on any team component T − or any function component F .

Theorem 3.18. Let T = (T −, G, F ) be a causal team and ϕ a formula of COD or CO⊔. Then:

MT , T − |= tr(ϕ, G) ⇐⇒ T |= ϕ.

Furthermore, if ϕ is in CO,

MT , T − |= trd(ϕ, G) ⇐⇒ ∀s ∈ T −, ({s}, G,F ) 	|= ϕ.

Proof. The proof is, for the most part, a straightforward induction on ϕ,17 with only the cases of ⊃ and 

� being nontrivial. Let us show all of them anyway:

• MT , T − |= X = x if and only if s(X) = x for all s ∈ T −, that is, if and only if T |= X = x. On the 

other hand, MT , T − |= X 	= x if and only if for all s ∈ T −, s(X) 	= x, as required.

As for the case of = (X; Y ), since this is expression is not in CO the second part of the theorem is 

trivially true. As for the first part, MT , T − |==(X; Y ) if and only if any two s, s′ ∈ T − that agree wrt 

X also agree wrt Y , i.e. if and only if T |==(X; Y ).

• MT , T − |= tr(ψ, G) ∧ tr(χ, G) if and only if MT , T − |= tr(ψ, G) and MT , T − |= tr(χ, G), that is, by 

induction hypothesis, if and only if T |= ψ and T |= χ and thus T |= ψ ∧ χ.

Suppose instead that MT , T − |= trd(ψ ∧ χ, G), that is, T − = T −
1 ∪ T −

2 for two subteams T −
1 , T −

2 such 

that MT , T −
1 |= trd(ψ, G) and MT , T −

2 |= trd(χ, G). Then by induction hypothesis, for all s ∈ T − we 

have that ({s}, G, F ) 	|= ψ or ({s}, G, F ) 	|= χ, depending on whether s is in T −
1 or in T −

2 ; and in either 

case we thus have that ({s}, G, F ) 	|= ψ ∧ χ, as required.

16 Note that Eq(GX=x) is a first-order formula and that Eq(GX=x)d is simply its dual in the usual first-order sense: the only 
application of the dual translation trd is in the rule for selective implication ⊃.
17 The statement must be proved simultaneously for all T .
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Conversely, suppose that for all s ∈ T −, ({s}, G, F ) 	|= ψ ∧ χ. Then T − = T −
1 ∪ T −

2 , where T −
1 =

{s ∈ T − : ({s}, G, F ) 	|= ψ} and T −
2 = {s ∈ T − : ({s}, G, F ) 	|= χ}; and, by induction hypothesis, 

MT , T −
1 |= trd(ψ, G) and MT , T −

2 |= trd(χ, G); so in conclusion MT , T − |= trd(ψ, G) ∨ trd(χ, G).

• MT , T − |= tr(ψ, G) ∨ tr(χ, G) if and only if T − = T −
1 ∪ T −

2 for two subteams T −
1 , T −

2 such that 

MT , T −
1 |= tr(ψ, G) and MT , T −

2 |= tr(χ, G). By induction hypothesis, this is the case if and only if 

(T −
1 , G, F ) |= ψ and (T −

2 , G, F ) |= χ, that is, if and only if (T −, G, F ) |= ψ ∨ χ.

Suppose instead that MT , T − |= trd(ψ, G) ∧ trd(χ, G). Then by induction hypothesis, for all s ∈ T − we 

have that ({s}, G, F ) 	|= ψ and ({s}, G, F ) 	|= χ, and thus ({s}, G, F ) 	|= ψ ∨ χ, as required.

Conversely, if ({s}, G, F ) 	|= ψ∨χ for all s ∈ T − then, for all such s, ({s}, G, F ) 	|= ψ and ({s}, G, F ) 	|= χ, 

and so by induction hypothesis MT , T − |= trd(ψ, G) and MT , T − |= trd(χ, G); thus, MT , T − |= trd(ψ ∨

χ, G), as required.

• MT , T − |= tr(ψ, G) ⊔ tr(χ, G) if and only if (MT , T −) |= tr(ψ, G) or (MT , T −) |= tr(χ, G), that is, by 

induction hypothesis, if and only if (T −, G, F ) |= ψ or (T −, G, F ) |= χ, i.e. (T −, G, F ) |= ψ ⊔ χ.

Since ψ ⊔ χ is not in CO, the second part of the theorem is trivially true.

• Suppose that MT , T − |= trd(α, G) ∨ tr(ψ, G), where α ∈ CO by the definition of our syntax. This is the 

case if and only if T − = T −
1 ∪T −

2 for two T −
1 , T −

2 such that MT , T −
1 |= trd(α, G) and MT , T −

2 |= tr(ψ, G), 

that is, by induction hypothesis, if T − = T −
1 ∪ T −

2 for two T −
1 , T −

2 such that ({s}, G, F ) 	|= α for all 

s ∈ T −
1 and (T −

2 , G, F ) |= ψ. If this is the case, then since (T α)− = {s ∈ T − : ({s}, G, F ) |= α} ⊆ T2, 

by downwards closure we have that ((T α)−, G, F ) |= ψ and hence that (T −, G, F ) |= α ⊃ ψ, as 

required; and conversely, if this is the case then ((T α)−, G, F ) |= ψ, and so we can let T −
2 = (T α)− and 

T −
1 = T −\T −

2 .

Suppose instead that MT , T − |= tr(α, G) and MT , T − |= trd(ψ, G), where α, ψ ∈ CO. Then by induction 

hypothesis we have that (T −, G, F ) |= α – and hence, by Downwards Closure, ({s}, G, F ) |= α for all 

s ∈ T − – and that, for all s ∈ T −, ({s}, G, F ) 	|= ψ. So for all s ∈ T − we have that ({s}, G, F ) 	|= α ⊃ ψ, 

as required.

Conversely, suppose that for all s ∈ T −, ({s}, G, F ) 	|= α ⊃ ψ. Then all such s must satisfy α but not ψ, 

and therefore, by flatness of α and induction hypothesis, MT , T − |= tr(α, G) and MT , T − |= trd(ψ, G).

• The case for X = x inconsistent is easy to prove, so let us assume that X = x is consistent.

Suppose that MT , T − |= ∃1X(X = x ∧ ∀V(Eq(GX=x)d ∨ tr(ψ, GX=x))). Then T −[x/X][M/V] can be 

split into two subteams T −
1 and T −

2 such that

MT , T −
1 |= Eq(GX=x)d (3)

MT , T −
2 |= X = x ∧ tr(ψ, GX=x). (4)

Since Eq(GX=x)d is flat, we can assume without loss of generality that T −
1 contains all assignments 

satisfying Eq(GX=x)d; thus, since the formula X = x ∧ tr(ψ, GX=x) is downward closed, we can also 

assume that no assignment in T −
2 satisfies Eq(GX=x)d. Thus, since M, T −

2 satisfies both X = x and 

Eq(GX=x), we have T −
2 ⊆ T −

X=x. On the other hand, since clearly T −
X=x ⊆ T −[x/X][M/V] and the 

assignments in T −
1 do not satisfy Eq(GX=x), we must also have T −

X=x ⊆ T −
2 . Thus T −

X=x = T −
2 .

From (4) we also obtain

MTX=x
, T −

2 |= tr(ψ, GX=x), (5)

since MTX=x
is the reduct of MT to the vocabulary of tr(ψ, GX=x). Since T −

X=x = T −
2 , we can apply 

the inductive hypothesis and obtain:

(T −
X=x, GX=x,FX=x) |= ψ. (6)
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This implies that (T −, G, F ) |= X = x� ψ, as required.

Conversely, suppose that (T −, G, F ) |= X = x � ψ. Then we have that (T −
X=x, GX=x, FX=x) |= ψ, 

and thus – by induction hypothesis – MTX=x
T −

X=x |= tr(ψ, GX=x). Then, since MTX=x
is a reduct 

of MT , MT , T −
X=x |= tr(ψ, GX=x). Additionally, T −

X=x ⊆ T −[x/X][M/V], and all assignments in 

T −
0 = T −[x/X][M/V] \ T −

X=x violate some structural equation of GX=x (and therefore satisfy 

Eq(GX=x)d). Thus, MT , T −
0 |= Eq(GX=x)d and MT , T −[x/X] |= ∀V(Eq(GX=x)d ∨ tr(ψ, GX=x)). 

Therefore, MT , T − |= ∃1X(X = x ∧ ∀V(Eq(GX=x)d ∨ tr(ψ, GX=x))), as required.

Now suppose that MT , T − |= ∃1X∃V(Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x)) and s ∈ T −. By downward 

closure, MT , {s} |= ∃1X∃V(Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x)). Then there are functions F such that 

MT , {s}[x/X][F/V] |= Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x). By the first two conjuncts, we have then 

that (∅ 	=){s}[x/X][F/V] ⊆ {s}−
X=x, the set of possible assignments resulting from assigning x to X in 

s by intervention. Since MTX=x
is the reduct of MT to the vocabulary of trd(ψ, GX=x), we also have 

MTX=x
, {s}[x/X][F/V] |= trd(ψ, GX=x). Thus, by inductive assumption, for the single assignment s′

in {s}[x/X][F/V], ({s′}, GX=x, FX=x) 	|= ψ. Thus in particular there exists an s′ ∈ {s}−
X=x such that 

({s′}, GX=x, FX=x) 	|= ψ. Thus ({s}, G, F ) 	|= X = x� ψ, as required.

Conversely, suppose that for all s ∈ T −, ({s}, G, F ) 	|= X = x � ψ, where ψ ∈ CO. By definition, 

this means that ({s}−
X=x, GX=x, FX=x) 	|= ψ, that is, by the flatness of CO, there exists at least one 

s′ ∈ {s}X=x such that ({s′}, G, F ) 	|= ψ. Now let the tuple of choice functions F pick F(s[x/X]) = s′(V)

for any such s, so that s[x/X][F(s[x/X])/V] = s′ and that T −[x/X][F/V] = {s′ : s ∈ T −}. Notice 

that F is well-defined, because if s[x/X] = t[x/X] then {s}X=x = {t}X=x, so that the same s′ can 

be associated to both s and t. Now, by construction, all the assignments in {s′ : s ∈ T −} satisfy 

Eq(GX=x) and X = x, and furthermore they do not satisfy ψ; thus, by induction hypothesis and the 

usual considerations about reducts, MT , T −[x/X][F/V] |= Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x) and the 

conclusion follows. �

For the purpose of some applications, it might be preferable to translate the causal-observational formulas 

into statements about a purely relational structure. The transition is not difficult. We need to consider 

special structures in which the relation symbols are interpreted by functional relations, as follows. To a 

causal team T = (T −, G, F ) we associate the structure:

M∗
T = (|MT |, (P

M∗

T
c )c∈|MT |, (R

M∗

T

V )V ∈End(T ))

where the unary predicate symbol Pc is interpreted by the set {c}, and the card(PAV ) + 1-ary relation 

symbol RV is interpreted by R
M∗

T

V = {(a1, . . . , an, b) | fMT

V (a1, . . . , an) = b}, where fMT

V is as in the 

definition of MT . For any spanning subgraph H of G, we can then express the fact that the relations RV

(for V ∈ End(H)) correctly interpret corresponding functions F (V ) by the formula:

Eq∗(H) :=
∧

V ∈End(H)

RV (PAV , V ).

We can then define a “relational” translation tr∗ (and its dual trd
∗) simply by replacing, in the clauses of 

tr (resp. trd), the subformula Eq(GX=x) with Eq∗(GX=x). The following result immediately entails the 

correctness of this new translation.

Theorem 3.19. Let T = (T −, G, F ) be a causal team of signature σ and M∗
T as above. Then, for any COD(σ)

or CO⊔(σ) formula ϕ, and any spanning subgraph H of G:

M∗
T , T − |= tr∗(ϕ, H) ⇐⇒ MT , T − |= tr(ϕ, H).
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In particular (by Theorem 3.18), M∗
T , T − |= tr∗(ϕ, G) ⇐⇒ T |= ϕ.

Proof. By induction on ϕ; the nontrivial case is when ϕ is of the form X = x� ψ. The statement follows 

immediately from the fact that, for each V ∈ End(G), M∗
T , T − |= RV (PAV , V ) iff MT , T − |= V = fV (PAV ), 

and thus M∗
T , T − |= Eq∗(H) ⇐⇒ MT , T − |= Eq(H). �

Theorems 3.18 and 3.19 tell us how to embed CO, COD and CO⊔ into appropriate fragments of 

FO(∃1, ⊔, =(·; ·)) and thus, by Theorem 3.15, into dependence logic, for any fixed choice of graph G.

By theorem 6.2 of [31], this implies that these formulas can be translated into existential second-order 

logic; but for some rather general fragments of these logics, as we will now prove, we can show much more 

- i.e. that they can be embedded into the Bernays-Schönfinkel-Ramsey fragment of dependence logic, i.e. 

the set of prenex formulas (of relational vocabulary) with prefix of the form ∃∗∀∗. Some properties of this 

fragment have been studied in [27]; as its first-order counterpart, it has a decidable satisfaction problem. 

These embeddings are possible only if we appropriately restrict the use of the selective implication. More 

precisely, the fragments to which the result applies will be called CO0, COD0 and CO0
⊔; they consist of those 

formulas of CO, resp. COD, CO⊔ which do not contain subformulas of the form:

• X = x� ψ, where ψ contains a selective implication α ⊃ χ and α contains another counterfactual.

A simple example of a formula that does not belong to these fragments is X = x� ((Z = z �W = w) ⊃

Y = y). It is worth pointing out that these fragments still allow for quite expressive uses of the selective 

implication, such as formulas of the form (Z = z � ψ) ⊃ χ. This kind of formula does not simply state 

what follows from observing the current state of the system; rather, it describes what we can deduce from the 

outcome of an “experiment” (setting X to x). Notice also that CO0, resp. COD0 and CO0
⊔ properly contain 

the fragments COun, CODun and COun
⊔ of unnested formulas of CO, resp. COD and CO⊔, i.e. formulas in 

which a counterfactual cannot occur in the consequent of a counterfactual. Many papers in the literature 

on causation, such as [11] and [18], embrace this restriction; therefore our following result fully covers many 

commonly used languages for causation.

If C is a class of causal teams, we will say that a causal language L C-embeds into a fragment L of 

first-order dependence logic if for every formula ϕ ∈ L and every graph G over its variables there is a 

formula ϕ′ ∈ L such that, for all causal teams T = (T −, G, F ) ∈ C, T |= ϕ if and only if MT , T − |= ϕ′. As a 

special case, if C is the class of all causal teams of the signature of L, we simply say that L embeds into L.

Corollary 3.20. Let σ = (Dom, Ran) be a signature with finite Dom. Then:

a) CO0(σ) embeds into the Bernays-Schönfinkel-Ramsey fragment of first-order logic.

b) COD0(σ) embeds into the Bernays-Schönfinkel-Ramsey fragment of dependence logic.

c) CO0
⊔(σ) embeds into the Bernays-Schönfinkel-Ramsey fragment of dependence logic.

Proof. Observe that, for ϕ ∈ CO0, COD0 or CO0
⊔, tr∗(ϕ, G) is a purely relational formula of FO(∃1, ⊔, =(·; ·))

in which no non-constant existential quantifier ∃V appears in the scope of any universal quantifier. Thus, by 

Theorem 3.15, this expression is equivalent to some expression in the Bernays-Schönfinkel-Ramsey fragment 

of dependence logic.

Now for the case of CO0, note that this expression will be flat: indeed, since formulas in CO0 are flat in the 

sense of causal team semantics M∗
T , T − |= tr∗(ϕ, G) iff (T −, G, F ) |= ϕ iff ({s}, G, F ) |= ϕ for all s ∈ T − iff 

M∗
T , {s} |= tr∗(ϕ, G) for all such s. Additionally, tr∗(ϕ, G) will not contain dependence atoms; and therefore, 

again by Theorem 3.15, it will be equivalent to some first-order formula in the Bernays-Schönfinkel-Ramsey 

fragment of first-order logic. �
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These embedding results can be extended to the unrestricted causal languages, at the cost of restricting 

attention to the class of unique-solution causal teams (and we will see later that the restriction to recursive 

causal teams allows for sharper embedding results).

Calling Uσ the class of unique-solution causal teams of signature σ, we have the following:

Corollary 3.21. Let σ = (Dom, Ran) be a signature with finite Dom. Then:

a) CO(σ) Uσ-embeds into the Bernays-Schönfinkel-Ramsey fragment of first-order logic.

b) COD(σ) Uσ-embeds into the Bernays-Schönfinkel-Ramsey fragment of dependence logic.

c) CO⊔(σ) Uσ-embeds into the Bernays-Schönfinkel-Ramsey fragment of dependence logic.

Proof. Let ϕ be any formula in CO(σ). By Theorem 2.15, we can find an unnested formula ϕ′ which is 

equivalent to it over all unique-solution causal teams. Now notice that ϕ′ is in CO0(σ): indeed, since it is 

unnested it is never the case that a counterfactual appears in the consequent of another counterfactual.

Therefore, by point a) of Corollary 3.20 the formula tr∗(ϕ′, G) – which is in the Bernays-Schönfinkel-

Ramsey fragment of first-order logic – is such that (T −, G, F ) |= ϕ′ if and only if M∗
T , T − |= tr∗(ϕ′, G).

Since for all unique-solution causal teams, (T −, G, F ) |= ϕ if and only if (T −, G, F ) |= ϕ′, for all such 

causal teams we have that (T −, G, F ) |= ϕ if and only if M∗
T , T − |= tr∗(ϕ′, G), as required.

The cases of ϕ ∈ COD(σ) or ϕ ∈ CO⊔(σ) are analogous: by Theorem 2.15 we can find a ϕ′ ∈ COD0(σ)

(respectively CO0
⊔(σ)) which is equivalent to ϕ over unique-solution causal teams, and by point b) (respec-

tively c)) of Corollary 3.20 this translates into the Bernays-Schönfinkel-Ramsey fragment of dependence 

logic. �

4. Alternative semantics

4.1. An alternative definition of intervention

The definition of intervention that we have been following until now is the natural extension of the 

definition of intervention on causal models proposed by Halpern ([18]) to the more general case of causal 

teams. While we see no doubt about the correctness of the generalization procedure, Halpern’s rule itself 

seems vulnerable to criticism. The following example should make this clear.

Consider a signature with four variables X, Y , W and Z, all with range {0, 1}. We then assume that 

Y, W, Z are endogenous variables, generated by the identity functions F (Y )(X) = X, F (W )(Z) = Z and 

F (Z)(W ) = W , so that W, Z form a cycle; furthermore, this cycle is completely separated from the rest of 

the system.18 We assume that in the current state of the system all variables have value 0. These assumptions 

are represented by the following causal team:

T : 
X Y W Z

0 0 0 0

We should expect the intervention do(X = 0) not to alter the system in any way. However, if we evaluate 

it according to the Halpern-style definition, we obtain a two-row causal team:

TX=0: 

X Y W Z

0 0 0 0

0 0 1 1

18 The cycle also happens not to causally depend on any exogenous variable; this point is not crucial for our example.
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It would seem then that intervening on X has some causal effect on W and Z, even though there is no 

directed path from X to W , resp. Z in the causal graph.19 Thus, the Halpern-style definition of intervention 

contradicts a usual assumption of causal inference - that the lack of directed paths among two variables 

indicates the lack of causal connections between the two. The outcome just described would be reasonable 

only if the model were an incorrect representation of reality, which omits some causal connections going from 

the variable X to variables W and Z. Observe also that T has a singleton team component, and therefore 

it can be identified with a causal model; thus, the antinomy does not arise from our generalized definition 

for causal teams, but it is already present in Halpern’s definition of intervention for causal models.

We want then to propose a more coherent definition of intervention, and see whether the causal-

observational languages can still be embedded into dependence logic under this more refined semantics. 

We have seen that the problem with Halpern’s definition lies in the fact that an intervention on X may 

produce solutions (to the system of equations) that differ from the initial ones over variables that are not 

descendants of X. The lack of paths from X to such variables should entail that X has no causal import 

at all for such variables, if we want to take seriously the causal meaning of the graph. It would then seem 

more natural to us to accept only solutions which do not differ from the initial state(s) on variables (distinct 

from X) that are not descendants of X. Call NX the set of nondescendants of X that are, furthermore, 

endogenous in the graph under consideration (note that X ∩ NX = ∅!). As before, we denote by U the set 

Exo(T ) \ X. Using the notations of section 2.4, we redefine:

(T A
X=x)− := {s compatible with (GX=x,FX=x) | s(X) = x and s(UNX) ∈ T −(UNX)}.

We then define GA
X=x := GX=x, F A

X=x := FX=x; the result of the intervention do(X = x) applied to T is 

then the causal team T A
X=x = ((T A

X=x)−, GA
X=x, F A

X=x). Clearly, with this definition of intervention, in the 

example above we simply obtain T A
X=0 = T , as should be expected.

Having modified the definition of intervention, we obtain a new notion of satisfaction T |=A ϕ by keeping 

the same semantic clauses as before, with the exception that in the clause for counterfactuals we refer to 

this alternative definition of intervened causal team. Also the semantic clause for ⊃ must be modified (in 

an obvious way):

• T |= α ⊃ ψ ⇐⇒ T α
A |= ψ, where T α

A is the causal subteam of T with team component {s ∈ T − |

{s} |=A α}.

Let us state some basic properties of this alternative semantics. The first shows that, as before, the inter-

vention on a causal team could in principle be defined on an assignment-by-assignment basis.

Proposition 4.1. Let T = (T −, G, F ) be a causal team of signature σ and X = x be a consistent conjunction 

of signature σ. Then:

(T A
X=x)− =

⋃

s∈T −

({s}A
X=x)−.

Proof. Write U for Exo(T ) \ X and NX for the set of nondescendants of X that are endogenous in G.

Let s ∈ T − and t ∈ ({s}A
X=x)−. By definition of {s}A

X=x, we have that t is compatible with (GX=x, FX=x), 

t(X) = x and t(UNX) ∈ {s}(UNX) ⊆ T −(UNX). Thus t ∈ (T A
X=x)−. Therefore ({s}A

X=x)− ⊆ T −
X=x.

19 This immediately affects the truth values of formulas: by the observations above, the Halpern-style semantics entails that 
T �|= [X = 0]Z = 0, while we should expect that TX=0 = T and thus T |= [X = 0]Z = 0.
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Vice versa, let t ∈ (T A
X=x)−. By definition, t(UNX) ∈ T −(UNX). This means there is an s ∈ T − such 

that t(UNX) = s(UNX), i.e. t(UNX) ∈ {s}(UNX). Furthermore, the assumption that t ∈ (T A
X=x)− gives 

us that t(X) = x and that t is compatible with (GX=x, FX=x). Therefore t ∈ {s}−
X=x. �

Proposition 4.2. Let S, T be causal teams of signature σ.

• Empty team property: if ϕ ∈ COD(σ) ∪ CO⊔(σ) and T = (∅, G, F ), then T |=A ϕ.

• Flatness: if ϕ ∈ CO(σ), then T |=A ϕ iff, for all s ∈ T −, {s} |=A ϕ.

• Downward closure: if ϕ ∈ COD(σ) ∪ CO⊔(σ), T |=A ϕ and S ≤ T , then S |=A ϕ.

The proofs are analogous to those for |=H ; in the case of downward closure, one needs to use the easily 

provable fact that, if S is a causal subteam of T , then SA
X=x is a causal subteam of T A

X=x.

On a negative side, the alternative semantics shares with the Halpern-style semantics the failure of some 

Distribution properties of the connectives that hold in the recursive case.

Example 4.3. Consider the causal team T depicted below (together with the result of the intervention 

do(Z = 0)):

T : 
Z X Y

0 0 0
� TZ=0: 

Z X Y

0 0 0

0 1 1

with a single assignment s, where X := max(Z, Y) and Y := X. Now T |= ¬(Z = 0 � X = 0), but 

T 	|= (Z = 0 � X = 0)d i.e. T 	|= Z = 0 � X 	= 0. Thus, the dualization procedure for the recursive case 

is not correct in general, even under the alternative semantics.

Furthermore, T |= Z = 0 � (X = 0 ∨ X = 1) but T 	|= (Z = 0 � X = 0) ∨ (Z = 0 � X = 1); the 

distribution rule for � over ∨ fails.

Finally, observe that T |= (Z = 0 � X = 0) ⊃ (Z = 0 � X = 1) (trivially, since the antecedent is not 

satisfied by s), while T 	|= Z = 0 � (X = 0 ⊃ X = 1). Thus also the distributivity of � over ⊃ is falsified.

We can say that a causal team is A-unique-solution if the definition of “unique-solution” holds when we 

replace the Halpern-style definition of intervention with the new one. An analogue of Lemma 2.10 can 

then be proved (by the same method), showing in particular that the Distribution rules do hold in the 

A-unique-solution case.

Concerning the Overwriting rule (the equivalence of X = x � (Y = y � ψ) and (X′ = x′ ∧ Y =

y) � ψ, under the assumption of the consistency of X = x), we saw that, with the H-semantics, it is valid 

on teams in which every assignment s satisfies {s}−
X=x 	= ∅; the following counterexample shows that this 

condition does not suffice with the A-semantics.

Example 4.4. Consider a causal team T of four variables, with Ran(X) = Ran(Y ) = {0, 1} and Ran(V ) =

Ran(W ) = Z, satisfying V := X − W and W := Y − V . Thus X, Y are exogenous, while V, W are 

endogenous and form a 2-cycle. It is easy to see that the solutions to this system of equations are all and 

only the assignments of the form t(X) = t(Y ) = k, t(V ) = n, t(W ) = k − n (k, n ∈ Z). Let T − = {s}, where 

s(X) = s(V ) = s(W ) = s(Y ) = 0. Now, intervening according to the Halpern-style definition, we obtain 

T −
X=1 = {s}−

X=1 	= ∅: this team contains all assignments of the form t(X) = t(Y ) = 1, t(V ) = n, t(W ) = 1 −n

(n ∈ Z). On the other hand, (T A
X=1)− = ({s}A

X=1)− = ∅: Y is not a descendant of X, and therefore it keeps 

its value 0; but there is no solution t to the system having both t(X) = 1 and t(Y ) = 0. Notice also that 

(T A
X=1∧Y =1)− = T −

X=1. Therefore, T |=A X = 1 � (Y = 1 � ⊥) (by the empty team property), while 

T 	|=A (X = 1 ∧ Y = 1) � ⊥.
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Let us say instead that a causal team T = (T −, G, F ) of signature σ = (Dom, Ran) is A-solutionful

if, for every assignment s of signature σ, and every consistent conjunction X = x of signature σ, 

(({s}, G, F )A
X=x)− 	= ∅. This assumption suffices to validate the Overwriting rule.

Theorem 4.5. Let σ = (Dom, Ran) be a signature, X ⊆ Dom be distinct variables and x ∈ Ran(X)

(therefore X = x is a consistent conjunction). Let Y ⊆ Dom, y ∈ Ran(Y) and ψ be a COD or CO⊔

formula of signature σ. Then, for every A-solutionful causal team T of signature σ:

T |=A X = x� (Y = y� ψ) ⇐⇒ T |=A (X′ = x′ ∧ Y = y)� ψ

where X′ = X \ Y and x′ = x \ y.

Proof. Let IGX=x

Y and IG
X′Y be the sets of non-descendants of Y in graph GX=x and of X′Y in graph G, 

and let us write

A := ((T A
X=x)A

Y=y)−

= {s | s(Y) = y, s comp. with ((GX=x)Y=y, (FX=x)Y=y) and s(IGX=x

Y ) ∈ (T A
X=x)−(IGX=x

Y )}

B := (T A
X′=x′∧Y=y)−

= {s | s(X′Y) = x′y, s comp. with (GX′=x′∧Y=y,FX′=x′∧Y=y) and s(IG
X′Y) ∈ T −(IG

X′Y)}.

Proving A = B leads easily to the conclusion.

• A ⊆ B) Assume s ∈ A. Then there exists some s1 ∈ (T A
X=x)− such that s(IGX=x

Y ) = s1(IGX=x

Y ).

Furthermore, since s1 ∈ (T A
X=x)−, there exists some s0 ∈ T − such that s1(IG

X) = s0(IG
X) and s1 is 

compatible with FX=x.

Now observe that IG
X′Y ⊆ IGX=x

Y ∩ IG
X: indeed, if there existed a causal path from variables in Y to V

in GX=x or from variables in X to V in G, the same path would go from variables in X′Y to V in G.

Therefore, s(IG
X′Y) = s1(IG

X′Y) = s0(IG
X′Y) ∈ T −(IG

X′Y); s(Y) = y; since X′ ⊆ IGX=x

Y , s(X′) = s1(X′) =

x′; and finally s is compatible with (FX=x)Y=y = FX′=x′∧Y=y and the corresponding graph. Thus 

s ∈ B, as required.

• B ⊆ A) Assume s ∈ B. Then there exists some s0 ∈ T − such that s(IG
X′Y) = s0(IG

X′Y).

Now let D be the set of variables that strictly descend from X but do not descend from Y in GX=x, 

and let d = s(D).

Write x for s(X); the conjunction X = x ∧ D = d is consistent, since s(X) = x and s(D) = d. Because 

T is A-solutionful, there exists some s1 ∈ ({s0}A
X=x∧D=d)−.

We state that s1 ∈ ({s0}A
X=x)− as well. Indeed,

1. s1(X) = x;

2. s1 is compatible with (GX=x, FX=x).

Indeed, s1 is compatible with FX=x∧D=d; thus for all variables V /∈ X ∪ D we have that

FX=x∧D=d(V ) = FX=x(V );

furthermore,

PAGX=x∧D=d

V = PAGX=x

V
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and thus s1(V ) = FX=x(V )(s1(PAGX=x

V )).

If V ∈ X, there is nothing to show because the variables in X are exogenous in GX=x. For V ∈ D

we have instead that

s1(V ) = s(V ) = FX′=x′∧Y=y(V )(s(PA
GX′=x′∧Y=y

V )) = FX=x(V )(s(PAGX=x

V ))

where we used the fact that, since V /∈ Y, PA
GX′=x′∧Y=y

V = PAGX=x

V and FX′=x′∧Y=y(V ) =

FX=x(V ).

If we can prove that s1 and s agree over the parents of V , we are done, because then

s1(V ) = FX=x(V )(s(PAGX=x

V )) = FX=x(V )(s1(PAGX=x

V ))

as required.

Let then W be a parent of V : since V ∈ D (i.e., in GX=x, V strictly descends from X but is not in 

Y nor it is a descendant of Y) its parents do not descend from Y, and so they must either descend 

from X but not from Y (i.e. they must be in X or in D) or from neither X nor Y (i.e. they must 

be in IG
X′Y).

In the first case, s1(W ) = s(W ) since s1(X) = x = s(X) and s1(D) = d = s(D); and in the second 

case, W in particular is a non-descendant of X and of D (since D contains only descendants of X) 

and so s1(W ) = s0(W ), and moreover since s0 and s agree over the non-descendants of X′Y we 

have that s0(W ) = s(W ).

3. For all V ∈ IG
X, we need to prove that s1(V ) = s0(V ). Now, by definition if V ∈ IG

X there is no path 

from X to V in G. But then there is no path from D to V either, since D contains only descendants 

of X, and so V ∈ IG
X∪D and s1(V ) = s0(V ) as required.

It remains only to show that s ∈ ({s1}A
Y=y)− ⊆ ((T A

X=x)A
Y=y)−. This is indeed the case:

1. s(Y) = y, as required.

2. We already know that s is compatible with (FX=x)Y=y = FX′=x′∧Y=y and the corresponding 

graph.

3. Let V ∈ IGX=x

Y be a non-descendant of Y in GX=x. We need to prove that s(V ) = s1(V ).

If V descends from X in GX=x then V ∈ X ∪ D, and so by definition s1(V ) = s(V ).

If V descends from neither X nor Y in GX=x then it descends from neither X nor Y in G as 

well: indeed, GX=x differs from G only in that X is now exogenous, and so the only paths that are 

available in G but not in GX=x pass through X.

Therefore V ∈ IG
X′Y ⊆ IG

X and s(V ) = s0(V ). Moreover, since s1 ∈ ({s0}A
X=x)− we have that 

s0(V ) = s1(V ). Thus,

s(V ) = s0(V ) = s1(V ).

Therefore we have that s(IGX=x

Y ) = s1(IGX=x

Y ), as required.

Thus, we showed that there exists some s0 ∈ T − and some s1 ∈ ({s0}A
X=x)− ⊆ (T A

X=x)− such that 

s ∈ ({s1}A
Y=y)−; therefore, s is in ((T A

X=x)A
Y=y)−, as required. �

Being A-unique-solution entails being A-solutionful. The observations above, then, allow us to prove that, 

over A-unique-solution causal teams, every formula is equivalent to an unnested one under the A-semantics, 

exactly as was done in section 2.7.
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Notice that the new definition of intervention produces a causal subteam of what is produced by the 

corresponding Halpern-style intervention. We should then expect formulas to be easier to satisfy in the new 

semantics, as long as counterfactuals do not occur in antecedents of ⊃. The following results prove and 

generalize this observation. Remember the definition of positive and negative occurrence from section 2.7.20

Lemma 4.6. Let α ∈ CO(σ), and T a causal team of signature σ. Then:

1. If all occurrences of � in α are positive, then T α ≤ T α
A .

2. If all occurrences of � in α are negative, then T α
A ≤ T α.

Proof. We prove 1. and 2. simultaneously, for all causal teams T of signature σ, by induction on the syntax 

of α.

• It is straightforward to see that, if α is an atom, then T α = T α
A . So α satisfies both 1. and 2.

• Suppose α = β ∧ γ only has positive occurrences of �. Then the same holds for β and γ. Thus, by 

inductive hypothesis, T β ≤ T β
A and T γ ≤ T γ

A. Thus (T α)− = (T β)− ∩ (T γ)− ⊆ (T β
A)− ∩ (T γ

A)− = (T α
A)−. 

The cases for α with negative occurrences of � and for α = β ∨ γ are analogous.

• Suppose α = β ⊃ γ only has positive occurrences of �. Then the same holds for γ, and thus by inductive 

assumption T γ ≤ T γ
A. Instead, β only has negative occurrences of �, and thus the inductive assumption 

yields T β
A ≤ T β . From T γ ≤ T γ

A we obtain T − \ (T γ
A)− ⊆ T − \ (T γ)−. This, together with T β

A ≤ T β , 

yields (T β
A)− ∩ (T − \ (T γ

A)−) ⊆ (T β)− ∩ (T − \ (T γ)−). Thus (T α)− = T − \ ((T β)− ∩ (T − \ (T γ)−)) ⊆

T − \ ((T β
A)− ∩ (T − \ (T γ

A)−)) = (T α
A)−.

Suppose instead that α = β ⊃ γ only has negative occurrences of �. Then also γ is such, and then (i.h.) 

T γ
A ≤ T γ , from which we obtain T −\(T γ)− ⊆ T −\(T γ

A)−. Instead, β only has positive occurrences of �, 

and the inductive hypothesis yields T β ≤ T β
A. We then have (T β)−∩(T −\(T γ)−) ⊆ (T β

A)−∩(T −\(T γ
A)−). 

Thus (T α
A)− = T − \ ((T β

A)− ∩ (T − \ (T γ
A)−)) ⊆ T − \ ((T β)− ∩ (T − \ (T γ)−)) = (T α)−, as required.

• Suppose α = X = x� γ. Notice that here the assumption of 2. (that all occurrences of � are negative) 

is false, so we have nothing to prove. Let us assume instead that γ only has positive occurrences of �. 

Then, by induction hypothesis, Sγ ≤ Sγ
A for any causal team S of signature σ; in particular, (TX=x)γ ≤

(TX=x)γ
A. Then (T α)− = {s ∈ T − | {s}X=x |= γ} = {s ∈ T − | {s}−

X=x ⊆ ((TX=x)γ)−} ⊆ {s ∈ T − |

{s}−
X=x ⊆ ((TX=x)γ

A)−} ⊆ {s ∈ T − | ({s}A
X=x)− ⊆ ((TX=x)γ

A)−} = {s ∈ T − | {s}A
X=x |=A γ} = (T α

A)−, 

where the second inclusion holds because, by the two definitions of intervention, {s}A
X=x ⊆ {s}X=x for 

any assignment s. �

Theorem 4.7. Let ϕ ∈ COD(σ) ∪ CO⊔(σ) and T a team of signature σ. Then:

1. If all occurrences of � in ϕ are positive, then T |=H ϕ ⇒ T |=A ϕ.

2. If all occurrences of � in ϕ are negative, then T |=A ϕ ⇒ T |=H ϕ.

Proof. By induction on ϕ. The nontrivial cases are those for � and ⊃.

• Case ϕ is X = x � ψ. Assume that it contains only positive occurrences of �. If T |=H ϕ, then 

TX=x |=H ψ. Now all occurrences of � in ψ are positive; so, by inductive hypothesis, TX=x |=A ψ. 

20 The definition of positive and negative occurrences was given for subformulas, but it can be adapted in an obvious way to other 
tokens (in this case, the occurrences of �).
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Since T A
X=x is a causal subteam of TX=x, by downward closure of |=A (Proposition 4.2), T A

X=x |=A ψ. 

Thus T |=A ϕ.

On the other hand, notice that such a formula cannot have only negative occurrences of �.

• Case ϕ is α ⊃ ψ. Assume that it contains only positive occurrences of �. If T |=H ϕ, T α |=H ψ (where 

T α is the causal subteam of T with team component {s ∈ T − | {s} |=H α}). Now all occurrences of 

� in ψ are positive; so, by inductive hypothesis, T α |=A ψ. Let us write T α
A , instead, for the causal 

subteam of T with team component {s ∈ T − | {s} |=A α}. Now observe that all occurrences of � in α

are negative. Thus, by Lemma 4.6, 2., T α
A ⊆ T α. So, by downward closure, T α

A |=A ψ. Thus T |=A α ⊃ ψ.

Assume instead that ϕ contains only negative occurrences of �. If T |=A ϕ, T α
A |=A ψ. Now all 

occurrences of � in ψ are negative; so, by inductive hypothesis, T α
A |=H ψ. Now observe that all 

occurrences of � in α are positive. Thus, by Lemma 4.6, 1., T α ⊆ T α
A . So, by downward closure, 

T α |=H ψ. Thus T |=H α ⊃ ψ. �

Let us now see how the translation of counterfactuals into dependence logic should be modified when 

the counterfactuals are interpreted under this alternative semantics. Given a fixed graph G, we write DX

for the set of strict descendants of X in G; notice that this is a set of endogenous variables. We replace the 

translation clauses for counterfactuals with consistent antecedent with the following:

• trA(X = x� ψ, G) := ∃1X(X = x ∧ ∀DX(Eq(GX=x)d ∨ trA(ψ, GX=x)))

• trd
A(X = x� ψ, G) := ∃1X∃DX(Eq(GX=x) ∧ X = x ∧ trd

A(ψ, GX=x))

and maintain the other clauses as in tr(ϕ).

We now prove the correctness of this translation.

Theorem 4.8. Let T = (T −, G, F ) be a causal team and ϕ a formula of COD or CO⊔. Then:

MT , T − |= trA(ϕ, G) ⇐⇒ T |=A ϕ.

Furthermore, if ϕ is in CO,

MT , T − |= trd
A(ϕ, G) ⇐⇒ ∀s ∈ T −, ({s}, G,F ) 	|=A ϕ.

Proof. The proof is by induction on ϕ along the lines of the proof of 3.18. We describe the only case that 

differs significantly, the case for �.

Suppose that MT , T − |= ∃1X(X = x ∧ ∀DX(Eq(GX=x)d ∨ trA(ψ, GX=x))). Then T −[x/X][M/DX] can 

be split into two subteams T −
1 and T −

2 such that MT , T −
1 |= Eq(GX=x)d and MT , T −

2 |= trA(ψ, GX=x). 

As in Theorem 3.18, because of the flatness of Eq(GX=x)d and of the downwards closure property we can 

assume that T −
2 satisfies Eq(GX=x), and therefore – since it is the set of all assignments obtained from 

assignments in T − by fixing the value of X to x and letting the descendants of X take values compatible 

with the equations – that it is exactly (T A
X=x)−.

Then, since MT A
X=x

is the reduct of MT to the vocabulary of trA(ψ, GX=x) and MT , (T A
X=x)− |=

trA(ψ, GX=x), by induction hypothesis we have ((T A
X=x)−, GX=x, FX=x) |=A ψ. This implies that 

(T −, G, F ) |=A X = x� ψ, as required.

Conversely, suppose that (T −, G, F ) |=A X = x� ψ. Then we have that ((T A
X=x)−, GX=x, FX=x) |=A ψ, 

and thus – by induction hypothesis – MT A
X=x

, (T A
X=x)− |= trA(ψ, GX=x). Then, since MT A

X=x
is a reduct of 

MT , we have MT , (T A
X=x)− |= trA(ψ, GX=x). Additionally, (T A

X=x)− ⊆ T −[x/X][M/DX], and all assign-

ments in T −
0 = T −[x/X][M/DX] \ (T A

X=x)− violate some structural equation of GX=x (and therefore 
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satisfy Eq(GX=x)d). Thus, MT , T −
0 |= Eq(GX=x)d and MT , T −[x/X] |= X = x ∧ ∀DX(Eq(GX=x)d ∨

trA(ψ, GX=x)). Thus, MT , T − |= ∃1X(X = x ∧ ∀DX(Eq(GX=x)d ∨ trA(ψ, GX=x))).

Now suppose that MT , T − |= ∃1X∃DX(Eq(GX=x) ∧ X = x ∧ trd
A(ψ, GX=x)). By downward closure, 

MT , {s} |= ∃1X∃DX(Eq(GX=x) ∧ X = x ∧ trd
A(ψ, GX=x)) for each s ∈ T −. Then there are functions F

such that MT , {s}[x/X][F/DX] |= Eq(GX=x) ∧ X = x ∧ trd
A(ψ, GX=x). From the first two conjuncts, we 

infer that (∅ 	=){s}[x/X][F/DX] ⊆ ({s}A
X=x)−, the set of possible assignments resulting from assigning 

x to X in s by intervention. Write M ′ for M({s}[x/X][F/DX],GX=x,FX=x). Since M ′ is the reduct of MT to 

the vocabulary of trd
A(ψ, GX=x), we also have M ′, {s}[x/X][F/DX] |= trd

A(ψ, GX=x). Thus, by inductive 

assumption, for all assignments s′ in {s}[x/X][F/DX], ({s′}, GX=x, FX=x) 	|=A ψ. Thus in particular there 

exists an s′ ∈ ({s}A
X=x)− such that ({s′}, GX=x, FX=x) 	|=A ψ. Thus ({s}, G, F ) 	|=A X = x � ψ, as 

required.

Conversely, suppose that for all s ∈ T −, ({s}, G, F ) 	|=A X = x � ψ, where ψ ∈ CO. By definition, 

this means that (({s}A
X=x)−, GX=x, FX=x) 	|=A ψ, that is, by the flatness of CO, there exists at least 

one s′ ∈ ({s}A
X=x)− such that ({s′}, GX=x, FX=x) 	|=A ψ. Now let the tuple of choice functions F pick 

F(s[x/X]) = s′(DX) for any such s, so that s[x/X][F(s[x/X])/DX] = s′ and T −[x/X][F/DX] = {s′ :

s ∈ T −}. By construction, all the assignments in {s′ : s ∈ T −} satisfy Eq(GX=x) and X = x, and 

furthermore they do not satisfy ψ; thus, by induction hypothesis and the usual considerations about reducts, 

MT , T −[x/X][F/DX] |= Eq(GX=x) ∧ X = x ∧ trd
A(ψ, GX=x) and the conclusion follows. �

We can also obtain a relational version of the translation (as in Theorem 3.19) and use it to produce, 

exactly as in Corollary 3.20, embeddings of the causal-observational languages CO0, COD0 and CO0
⊔ (over 

finite variable domains) into the Bernays-Schönfinkel-Ramsey fragments of first-order and dependence logic. 

For the unrestricted languages we can also obtain embeddings into the Bernays-Schönfinkel-Ramsey if we 

restrict the semantics to A-unique-solution causal teams (analogously to Corollary 3.21).

4.2. The recursive case

The recursive causal teams have acyclic causal graphs; thus they are models of non-circular causation. 

In the literature on causal inference it is then not uncommon to restrict attention to the recursive case; the 

recursive models are technically easier to treat and have a less controversial causal interpretation (see [30]

for a discussion). Also the literature on causal teams has until now mostly favoured the investigation of this 

case. We then think it convenient to see how the approach of the present paper can be refined in this special 

case.

First of all, in the recursive case the definition of intervention can be reduced to a more concrete presen-

tation, which will be seen to agree with both the Halpern-style definition (section 2.4) and the alternative 

one (section 4.1) over recursive causal teams.

Definition 4.9. [Intervention, recursive case]

Let T = (T −, G, F ) be a causal team over some signature σ = (Dom, Ran). Let X = x stand for a 

consistent conjunction X1 = x1 ∧ · · · ∧ Xn = xn over σ. The intervention do(X = x) on T is the procedure 

that generates a new causal team T R
X=x = ((T R

X=x)−, GX=x, FX=x) over σ, where GX=x, FX=x are as in 

Definition 2.3, and (T R
X=x)− is defined as follows:

• (T R
X=x)− = {sFX=x | s ∈ T −}, where each sFX=x is the unique assignment compatible with FX=x defined 

(recursively) as
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sFX=x(V ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xi if V = Xi ∈ X

s(V ) if V ∈ Exo(T ) \ X

F (V )(sFX=x(PAV )) if V ∈ End(T ) \ X

We will simply write TX=x for T R
X=x when we do not need to distinguish this object from those obtained 

by other definitions of intervention.

The result of an intervention on a recursive causal team can then be computed via an intuitive iterative 

procedure; we illustrate this with an example.

Example 4.10. Consider a causal team T with Dom = {U, X, Y, W, Z}, function component F (X) =

U, F (Y ) = X + 1, F (W ) = X + 2, F (Z) = U + 2 ∗ W and team and graph component as in the pic-

ture below; we apply to T the intervention do(X = 1).

T : 
U X Y W Z

1 1 2 3 7

2 2 3 4 10

�

U X Y W Z

1 1 . . . . . . . . .

2 1 . . . . . . . . .

�

�

U X Y W Z

1 1 2 3 . . .

2 1 2 3 . . .

� TX=1: 
U X Y W Z

1 1 2 3 7

2 1 2 3 8

The team component T −
X=1 is produced by first rewriting with 1 the values in the X column, and then 

recomputing the columns corresponding to each descendant V of X as soon as the new values for the 

parents of V are available. FX=1 is as F , but without a function for X; GX=1 is obtained by removing from 

GT all arrows that point to X (in this case, the arrow (U, X)).

As the example illustrates, the structure of the causal graph determines a specific (pre-)order in which the 

variables need to be updated. We can understand what pre-order this is by introducing a notion of “distance” 

(from a set of variables X to a variable Y ). This was done in [2] for the case of finite variable domains; we 

show here that this observation can be extended also to causal teams with infinitely many variables. Unless 

otherwise specified, in the rest of the section we allow the ranges of variables to have arbitrary (set-sized) 

cardinality. We will also assume that the reader is familiar with the basics of the theory of ordinals. The 

symbols sup, max, + will denote the corresponding ordinal operations. Now write DX for the set of strict 

descendants of X in GX=x and D+
X for DX ∪ X.

Definition 4.11 (distance). Let G = (V, E) be an acyclic directed graph, X a finite subset of V. Then, for 

every Y ∈ D+
X we define:

d(X, Y ) :=

{

0 if Y ∈ X

sup{d(X, Z) + 1 | Z ∈ PAY ∩ D+
X} if Y ∈ DX.

An intervention do(X = x) is then computed by replacing all values in the X-columns of the team with 

x, then updating all columns corresponding to variables at distance 1 from X, then all those at distance 

2, and so on. This point will be formalized in Lemma 4.17. For now, we observe that, by the next lemma, 

each variable in DX is “further away” from X than its parents; and if Y is a strict descendant of X, then 
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at least one of the parents of Y is a descendant of X; thus, it is indeed possible to calculate the new values 

for a variable at distance n + 1 from X only after calculating the new values for some variables at distance 

≤ n. Furthermore, it should be clear from the definition of the distance that there are no “gaps”, that is, 

if there is a variable at distance n + 1, all distances ≤ n are obtained by some variable and if there is a 

variable at distance λ for some limit ordinal λ then there are variables at distances n for all n < λ.

Lemma 4.12. Let G = (V, E) be an acyclic directed graph. Let X be a finite subset of V, Y ∈ DX, and d be 

the distance from Definition 4.11. If W ∈ PAG
Y ∩ D+

X, then d(X, W ) < d(X, Y ).

Proof. Since Y ∈ DX and G is acyclic, we have Y /∈ X. Then d(X, Y ) ≥ 1, and thus

d(X, Y ) = sup{d(X, Z) + 1 | Z ∈ PAY ∩ D+
X}

≥ d(X, W ) + 1 > d(X, W ). �

We can now prove that, in the finite case, our notion of distance coincides with that which was suggested 

in [2].

Theorem 4.13. Let G = (V, E) be an acyclic directed graph. If V is finite, and X ⊆ V, then for each 

Y ∈ DX:

d(X, Y ) = max{lengths of paths in GX=x from some X ∈ X to Y }.

Proof. Let κ be the smallest infinite value taken by the distance (say d(X, W ) = κ for some W ). By 

Lemma 4.12, for every Z ∈ PAW ∩ D+
X, d(X, Z) < d(X, W ) is then a finite number. Furthermore, since G

is finite and acyclic, {d(X, Z) | Z ∈ PAW ∩ D+
X} is a finite set. Thus d(X, W ) = sup{d(X, Z) + 1 | Z ∈

PAW ∩D+
X} is finite, a contradiction. We then conclude that d(X, Y ) is finite for every Y ∈ D+

X. Therefore, 

we can prove the statement by ordinary induction on d(X, Y ) < ω.

Since Y ∈ DX and G is acyclic, we have Y /∈ X. Thus by definition d(X, Y ) > 0.

If d(X, Y ) = 1, by definition we have that d(X, Z) = 0 for all Z ∈ PAY ∩D+
X; therefore, PAY ∩D+

X ⊆ X

and (since in GX=x there are no arrows connecting distinct variables of X) all paths in GX=x from X to Y

have length 1, as required.

Now suppose that d(X, Y ) = k + 1. By the inductive assumption the statement holds for all variables W

with d(X, W ) ≤ k; in particular, for all Z ∈ PAY ∩ D+
X the inductive hypothesis yields

d(X, Z) = max{lengths of paths in GX=x from some X ∈ X to Z}.

But then d(X, Y ) =

= sup{max{lengths of paths in GX=x from some X ∈ X to Z} + 1 | Z ∈ PAY ∩ D+
X}

= max{max{lengths of paths in GX=x from some X ∈ X to Z} + 1 | Z ∈ PAY ∩ D+
X}

= max{lengths of paths in GX=x from some X ∈ X to some Z ∈ PAY ∩ D+
X} + 1.

On the other hand, notice that every path P from some X ∈ X to Y ends with an edge of the form (Z, Y )

for some Z ∈ PAY ∩ D+
X, thus length(P ) = length(P ′) + 1 where P ′ is some path from X to Z (the path 

obtained removing the last edge of P ). Thus

max{ lengths of paths in GX=x from some X ∈ X to Y }

= max{ length (P ′) + 1 for P ′ path in GX=x from an X ∈ X to a Z ∈ PAY ∩ D+
X }



F. Barbero, P. Galliani / Annals of Pure and Applied Logic 173 (2022) 103159 33

= max{ lengths of paths in GX=x from some X ∈ X to some Z ∈ PAY ∩ D+
X } + 1,

where the second equality used the finitude and acyclicity of G. Putting all equations together, one obtains 

the desired result. �

The new definition of intervention induces as before a semantic clause for the interventionist counterfac-

tuals; and, keeping the same clauses for the other connectives,21 we obtain a semantics that we may denote, 

where there is risk of confusion, by the symbol |=R. However, as the next results show, there is no risk of 

confusion: the relation |=R is just the restriction of either |=H or |=A to recursive causal teams.

Lemma 4.14. Let T = (T −, G, F ) be a recursive causal team of signature σ with T − = {s}, and let X = x

be a consistent conjunction of signature σ. Write U for Exo(T ) \ X. Then there is a unique assignment t of 

signature σ which is compatible with (GX=x, FX=x) and such that t(U) = s(U) and t(X) = x; t is sFX=x.

Proof. Notice first that such a t exists: given values for X and U, the values of all variables can be recom-

puted using the procedure described in Definition 4.10, yielding the assignment sFX=x.

Suppose now that some t satisfies the required constraints; we will prove that t = sFX=x. Suppose first 

V = Xi ∈ X; then, since t(X) = x, we have t(V ) = xi = sFX=x(V ). If V ∈ U = Exo(T ) \ X, then since 

t(U) = s(U) we have t(V ) = s(V ) = sFX=x(V ). Finally, if V ∈ End(T ) \ X, we prove that t(V ) = sFX=x(V )

by induction on the distance d(XU, V ) (as per Definition 4.11; this distance is well-defined because, by the 

acyclicity of G, V ∈ D+
XU for all variables V ).

Observe that Y ∈ DXU, and thus by Lemma 4.12 we have (*): for each Y ∈ PAV , d(XU, Y ) < d(XU, V ). 

Now, since t is compatible with (GX=x, FX=x) we have t(V ) = FX=x(t(PAV )) = FX=x(sFX=x(PAV )) =

sFX=x(V ), where in the second equality we used (*) and the inductive hypothesis.

Thus we conclude that t = sFX=x, and therefore that t is unique. �

Lemma 4.15. For any recursive causal team T , T R
X=x = TX=x = T A

X=x.

Proof. It suffices to prove that (T R
X=x)− = (TX=x)− = (T A

X=x)−.

Write T = (T −, G, F ). According to the Halpern-style definition (2.3), (TX=x)− is the set of assignments 

t that are compatible with (GX=x, FX=x) and such that t(X) = x and t(U) ∈ T −(U) (where U = Exo(T ) \

X). Since T is recursive, by Lemma 4.14 we have (TX=x)− = {sFX=x | s ∈ T −} = (T R
X=x)−.

(T A
X=x)− is the set of assignments t of (TX=x)− that satisfy the further condition that t(NX) ∈ T −(NX)

(where NX is the set of endogenous nondescendants of X). Now we know that each t ∈ (TX=x)− is of the 

form sFX=x for some s ∈ T −. If we show that, for each such s, sFX=x(NX) = s(NX), then we conclude that 

(T A
X=x)− = (TX=x)−.

We proceed by induction on d(Exo(T ) \X, V ). For the purposes of induction, we need to prove a stronger 

statement: that, for each V ∈ (Exo(T ) \ X) ∪ NX, sFX=x(V ) = s(V ). By the acyclicity of GX=x, there is 

always at least a variable U ∈ Exo(T ) \ X with a path from U to V ; therefore d(Exo(T ) \ X, V ) is always 

well-defined. It should also be clear that, for each V ∈ NX, we have PAV ⊆ (Exo(T ) \X) ∪NX ⊆ D+
Exo(T )\X

, 

and thus, by Lemma 4.12 we have d(Exo(T ) \X, Y ) < d(Exo(T ) \X, V ) for each such V and each Y ∈ PAV .

Now, if V ∈ Exo(T ) \ X, by the definition of sFX=x we have sFX=x(V ) = s(V ), as required. If instead 

V ∈ NX ⊆ End(T ) \ X, by definition of sFX=x we have sFX=x(V ) = F (V )(sFX=x(PAV )). Since PAV ⊆

(Exo(T ) \ X) ∪ NX, the inductive hypothesis gives us sFX=x(Y ) = s(Y ) for each Y ∈ PAV . Therefore 

sFX=x(V ) = F (V )(s(PAV )) = s(V ), as required. �

21 With a straightforward change in the clause for ⊃; cp. with the definition of |=A.
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Theorem 4.16. Let T be a recursive causal team of signature σ, and let ϕ be a COD(σ) or CO⊔(σ) formula. 

Then

T |=R ϕ ⇐⇒ T |=H ϕ ⇐⇒ T |=A ϕ.

Proof. This is proved by a straightforward induction. It suffices to consider the case for ϕ of the form 

X = x� ψ.

We have T |=R X = x � ψ ⇐⇒ T R
X=x |=R ψ, T |=H X = x � ψ ⇐⇒ TX=x |=H ψ and 

T |=A X = x � ψ ⇐⇒ T A
X=x |=A ψ. Since T R

X=x = TX=x = T A
X=x by Lemma 4.15, the statement 

amounts to the equivalence TX=x |=R ψ ⇐⇒ TX=x |=H ψ ⇐⇒ TX=x |=A ψ, which immediately follows 

from the inductive hypothesis. �

This theorem tells us that both the Halpern-style and our alternative definition of intervention do not 

contradict the commonly accepted notion of intervention on a recursive causal model. Therefore, in the 

following of this section we will simply write |= for |=R.

Let us now discuss the translations into dependence logic in the recursive case. Of course, since recursive 

causal teams are only a special case of causal teams, by Theorem 4.16 the translations tr, trd, trA and trd
A

are still correct in this restricted case. But we may wonder whether on this restricted class of structures it 

is possible to obtain a more informative translation. This is indeed the case. We define a translation trR by 

replacing the translation of selective implications and counterfactuals with the following clauses:

• trR(α ⊃ χ, G) := trR(αd, G) ∨ trR(χ, G), where αd is the dual of the CO formula α discussed in 

section 2.6;

• trR(X = x� ψ, G) := ∃X∃DX(X = x ∧ Eq(GX=x) ∧ trR(ψ, GX=x)).22

The most evident advantage of this specialized translation is that it completely dispenses with universal 

quantifiers and requires no dual translation trd
R, due to the different treatment of selective implication. In 

the following, we prove its correctness and we use it to show that, under the recursivity restriction, the 

causal-observational languages can be embedded into the existential fragment of first-order (dependence) 

logic. As before, this will be possible only for finite variable domains.

We see in the next lemma that in the recursive case the effect of an intervention on a causal team T

can be “simulated” by a sequence of supplementations; this result is not limited to finite signatures. Since 

we assume causal teams to be recursive, the variables in DX can be partitioned according to their distance 

from X. So we may write D1
X, . . . Dκ

X . . . for the set of variables from DX which are at distance 1 . . . κ . . .

from X. We omit the suffix X when clear from the context. As mentioned before, when performing an 

intervention do(X = x), we are updating first the variables in X, then those in D1, in D2, and so on. Write 

nj for card(Dj); nj might in general be an infinite cardinal.

Given a causal team T = (T −, G, F ), let MT be the first-order structure given by Definition 3.16. Given 

a tuple of distinct variables X and values x ∈ X, we define simultaneously a sequence of extended teams 

T0, . . . Tκ, . . . and a sequence of functions Fj : Tj−1 → M
nj

T (for j > 0), as follows:

• T0 := T [x/X]

• Tj+1 := Tj [Fj+1/Dj+1]

• Fj+1(s) := (fMT

V1
(s(PAV1

)), . . . , fMT

Vnj
(s(PAVnj+1

))),

where s ∈ Tj and {V1, . . . Vnj+1
} = Dj+1.

22 DX is the set of strict descendants of X, listed in a fixed alphabetical order.
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The following lemma ensures that, in MT , the effect of an intervention on T can be simulated by applying 

a sequence of supplementations to T −; the sequence is determined by the signature and by the function 

component of T .

Lemma 4.17. Let T = (T −, G, F ) be a recursive causal team of signature σ = (Dom, Ran), and 

MT = (|MT |, (cMT )c∈|MT |, (f
MT

V )V ∈End(T )) as in Definition 3.16. Then, for every X ⊆ Dom and every 

x ∈ Ran(X):

(TX=x)− = T −[x/X, F1/D1, . . . , Fκ/Dκ, . . . ]

where κ < sup{d(X, V ) | V ∈ Dom} if there is no variable V with d(X, V ) = sup{d(X, V ) | V ∈ Dom}, 

and κ ≤ sup{d(X, V ) | V ∈ Dom} otherwise.

Proof. Straightforward from the definition of intervention in the recursive case, the definition of the inter-

pretations fMT

V and Proposition 3.12. �

Theorem 4.18. Let T = (T −, G, F ) be a recursive causal team and let ϕ be a formula of COD or CO⊔. Then:

MT , T − |= trR(ϕ, G) ⇐⇒ T |= ϕ.

Proof. All cases are treated as in the proof of Theorem 3.18, with the exception of the cases for ⊃ and �.

• Suppose that MT , T − |= trR(αd, G) ∨ trR(χ, G). Then T − = T −
1 ∪T −

2 , where MT , T −
1 |= trR(αd, G) and 

MT , T −
2 |= trR(χ, G). Since (T −, G, F ) is a recursive causal team, so are (T −

1 , G, F ) and (T −
2 , G, F ); 

and so, by induction hypothesis,23 (T −
1 , G, F ) |= αd and (T −

2 , G, F ) |= χ.

By Lemma 2.7, we then have that (T −
1 , G, F ) |= ¬α, i.e. ({s}, G, F ) 	|= α for all s ∈ T −

1 . This implies 

that the set (T −)α = {s ∈ T − : ({s}, G, F ) |= α} is contained in T −
2 ; and thus, by downwards closure, 

(T −, G, F )α = ((T −)α, G, F ) |= χ. Therefore, (T −, G, F ) |= α ⊃ χ, as required.

Conversely, suppose that (T −, G, F ) |= α ⊃ χ. Then (T −
2 , G, F ) |= χ, where T −

2 = (T −)α = {s ∈ T − :

({s}, G, F ) |= α}. Now let T −
1 = T − \ T −

2 = {s ∈ T − : ({s}, G, F ) 	|= α}.

By definition and the flatness of ¬α, (T −
1 , G, F ) |= ¬α, and therefore by Lemma 2.7 (T −

1 , G, F ) |=

αd, which by induction hypothesis implies that MT , T −
1 |= tr(αd, G); and furthermore, by induction 

hypothesis we also have that MT , T −
2 |= tr(χ, G). But T − = T −

1 ∪ T −
2 , and so MT , T − |= tr(αd, G) ∨

tr(χ, G), as required.

• First, assume that MT , T − |= ∃X∃DX(X = x ∧ Eq(GX=x) ∧ trR(ψ, GX=x)). Then there is a sequence 

of functions F = (FV )V ∈DX
such that MT , T −[x/X, F/DX] |= X = x∧Eq(GX=x) ∧ trR(ψ, GX=x). The 

second conjunct entails that FV (s) = fV (s(PAV )) for all V ∈ DX, and therefore that

T −[x/X, F/DX] = T −[x/X, F1/D1, . . . , Fκ/Dκ, . . . ]

for the Fj defined, as above, by the condition Fj(s) := (fMT

V1
(s(PAV1

)), . . . , fMT

Vnj
(s(PAVnj

))), where 

{V1, . . . Vnj
} = Dj .

The third conjunct, therefore, entails that MT , T −[x/X, F1/D1, . . . , Fκ/Dκ, . . . ] |= trR(ψ, GX=x). 

Thus, by Lemma 4.17 plus taking reducts, we obtain MTX=x
, (TX=x)− |= trR(ψ, GX=x). The induc-

tive hypothesis then gives TX=x |= ψ; and finally, T |= X = x� ψ.

23 Recall that the model MT is determined only by the graph and function components of T , and so MT = MT1
= MT2

.
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Conversely, assume that T |= X = x � ψ. Then TX=x |= ψ. TX=x has graph GX=x; 

so, by the inductive hypothesis, MTX=x
, (TX=x)− |= trR(ψ, GX=x). Since MTX=x

is a reduct of 

MT , we obtain MT , (TX=x)− |= trR(ψ, GX=x). Now by Lemma 4.17 we also have (TX=x)− =

T −[x/X, F1/D1, . . . , Fκ/Dκ, . . . ]. Furthermore, it is straightforward to see that MT , T −[x/X, F1/D1,

. . . , Fκ/Dκ, . . . ] |= X = x ∧ Eq(GX=x). By the clause for existential quantifiers and Proposition 3.12, 

MT , T − |= ∃X∃DX(X = x ∧ Eq(GX=x) ∧ trR(ψ, GX=x)), that is, MT , T − |= trR(ϕ, G). �

Let us denote the class of recursive causal teams as Rσ. Using the terminology introduced immediately 

before Corollary 3.20, we have the following.

Corollary 4.19. Let σ = (Dom, Ran) be a signature with finite Dom. Then:

a) CO(σ) Rσ-embeds into the existential fragment of first-order logic

b) COD(σ) Rσ-embeds into the existential fragment of dependence logic

c) CO⊔(σ) Rσ-embeds into the existential fragment of dependence logic.

Proof. Observe that, for ϕ ∈ CO, COD or CO⊔, if G is a finite graph trR(ϕ, G) is an expression in FO(⊔, =

(·; ·)) in which no universal quantifier appears. Thus, by Theorem 3.15, this expression is equivalent to some 

expression in the existential fragment of dependence logic.

Now for the case of CO, note that this expression will be flat: indeed, since formulas in CO are flat in the 

sense of causal team semantics MT , T − |= trR(ϕ, G) iff (T −, G, F ) |= ϕ iff ({s}, G, F ) |= ϕ for all s ∈ T −

iff MT , {s} |= trR(ϕ, G) for all such s.

Additionally, trR(ϕ, G) will not contain dependence atoms; and therefore, again by Theorem 3.15, it will 

be equivalent to some existential first-order formula. �

It is well-known that the existential sentences of dependence logic are equivalent to first-order (existential) 

sentences. However, trR(ϕ, G) will typically not be a sentence. For example, the formula (= (X; Y )∨ =

(X; Y ))∨ =(Z; V ) is in the range of the translations of COD formulas; and it is known that its model-

checking problem is NP-complete with respect to data complexity, while first-order formulas always have 

AC0 ⊂ LOGSPACE ⊆ NP model-checking problems.24 Thus, COD(σ) cannot be embedded into first-order 

logic.

5. Applications of the embedding to the satisfiability problem

In this section we will show an example of how our embeddings can help in transferring known results for 

dependence logic to the causal-observational languages. We will use the decidability of existential dependence 

logic to prove the decidability of a particular satisfiability problem: given a COD (or CO⊔) formula ϕ and 

a finite set of variables Dom, is there a recursive causal team of domain Dom which satisfies ϕ?25

We will need to slightly generalize our embedding results in order to prove this. The embeddings as 

defined until now are too concrete: they link truth over a causal team T (picked in complete generality) to 

truth over a very specific pair (MT , T −); that is, to a very special case of truth in first-order team semantics. 

Therefore, information about the satisfiability problem in general (i.e. over all possible pairs (M, S)) cannot 

24 Both results are proved in [26]. The model checking problem for logics based on team semantics asks, given a formula ϕ(V)
with free variables V, to decide whether a structure (M, R) is of the form (M, T (V)) for a given team T such that M, T |= ϕ, 
where T (V) is the relation that the team T induces over the sequence of variables V = V1 . . . Vn, i.e. {(s(V1) . . . s(Vn)) | s ∈ T }.
25 As pointed out by one of the reviewers of this paper, it would be easy to obtain an answer to this question if the answer to the 
analogous question for language CO were known. Halpern ([18], p. 328) states that a more general version of the problem (for a 
language not too dissimilar from CO) is NP-complete, and it would not be difficult to convert this into a result for CO. However, 
Halpern provides no proof of his claim, and we are not aware of any published proof. Thus, our proof will not go through this 
claim. Notice also that the argument given in this section proves the decidability of CO as a special case.
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tell us much about satisfiability in causal team semantics. In the following section, we explain how to improve 

the flow of information in this direction.

5.1. Going backwards: from teams to causal teams

The embedding results we have presented until now have the following form: for all causal teams T ,

T |= ϕ ⇔ MT , T − |= tr(ϕ, G),

where MT and T − are appropriately constructed from T . We want now to proceed in the opposite direction: 

if we are given an arbitrary structure M and an arbitrary team T on M , can we build a causal team T ∗

such that

T ∗ |= ϕ ⇔ M, T |= tr(ϕ, G)?

We do not know the full answer to this question, but we show here that the right-to-left implication can be 

guaranteed - provided we pick T ∗ as a function of G. We now describe in detail this construction.

When discussing a graph, the indegree of a node V is the cardinality of the set of parents of V .

Definition 5.1. We say that a finite graph G = (V, E) (where V is a finite set of variables) is:

• compatible with a first-order structure M in case (for all m, n ∈ N) if G has m nodes of indegree n, 

then M interprets at least m function symbols of arity n

• compatible with a team T in case dom(T ) = V and, for all V ∈ V, if PAV = {X1, . . . , Xn}, then 

T |==(X1, . . . , Xn; V ).

We then abide to the following:

Convention 5.2. For every pair G, M , where M is a first-order structure and G = (V, E) a graph compatible 

with M , we fix a correspondence between the endogenous variables in V and (distinct) function symbols 

interpreted by M . The chosen correspondence is such that to each V ∈ V of indegree n > 0 is associated a 

function symbol fV of arity n. (Such a correspondence exists by the definition of compatibility with M .)

Notice the following important fact.

Fact 5.3. Let G = (V, E) be a graph, and M a first-order structure. Let σ = (Dom, Ran) be the signature 

given by Dom = V, Ran(V ) = M for each V ∈ V.

If G is compatible with M , then, for every formula ϕ ∈ COD(σ) ∪ CO⊔(σ) the translations tr(ϕ, G) and 

trR(ϕ, G) are well-formed formulas in the vocabulary of M .

Now, we claim that any given first-order structure M induces a family of functions πG (one for each graph 

G compatible with M) that associate to each team T compatible with G a causal team πG(M, T ) such that, 

for all ϕ ∈ COD ∪ CO⊔,

M, T |= tr(ϕ, G) ⇒ πG(M, T ) |= ϕ.

We will write, more briefly, T G for πG(M, T ). We define T G = (T −, G, F ) as follows:

• T − := T
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• G is the parameter of πG

• for each V ∈ End(G), F (V ) is the function that associates to each tuple a ∈ Mar(fV ) the element 

fM
V (a) ∈ M .

Notice that the domain of T G is V, the set of vertices of G; for all V ∈ V, we can take Ran(V ) to be M .

Theorem 5.4. Let M be a first-order structure and T a team on M . For every G = (V, E) compatible with 

both M and T , let T G = (T, G, F ) be defined as before. Let ϕ ∈ COD(σ) ∪CO⊔(σ), where σ is the signature 

given by Dom = V and Ran(V ) = M for each V ∈ V. Then:

M, T |= tr(ϕ, G) ⇒ T G |= ϕ

and, if ϕ ∈ CO,

M, T |= trd(ϕ, G) ⇒ ∀s ∈ T : ({s}, G,F ) 	|= ϕ.

Proof. We prove the claim simultaneously for all teams T (on M) such that G is compatible with T and 

M . The proof is mostly identical to the left-to-right direction of Theorem 3.18:

• Suppose that M, T |= tr(X = x, G). Then M, T |= X = x, and so s(X) = x for all s ∈ T . But since the 

team component of T G is precisely T , we have at once that T G |= X = x. A similar argument holds for 

dependence atoms.

Suppose now that M, T |= trd(X = x, G). Then M, T |= X 	= x, and so s(X) 	= x for all assignments 

s ∈ T , and finally ({s}, G, F ) 	|= X = x for all s ∈ T . Instead, there is no dual case for dependence 

atoms.

• Suppose that M, T |= tr(ψ, G) ∧ tr(θ, G). Then M, T |= tr(ψ, G) and M, T |= tr(θ, G), and so by 

induction hypothesis T G |= ψ and T G |= θ and finally T G |= ψ ∧ θ.

If instead M, T |= trd(ψ ∧ θ, G) we have that M, T |= trd(ψ, G) ∨ trd(θ, G): therefore, T = T1 ∪ T2 where 

M, T1 |= trd(ψ, G) and M, T2 |= trd(θ, G). Note that if G is compatible with M and T then it is also 

compatible with M and T1 or T2: thus, by induction hypothesis, ({s}, G, F ) 	|= ψ for all s ∈ T1 and 

({s}, G, F } 	|= θ for all s ∈ T2 (note that G and F are defined in terms of the model M only, and so are 

the same in the two expressions). But then for every s ∈ T = T1 ∪ T2 we have that ({s}, G, F ) 	|= ψ ∧ θ, 

as required.

• The case for disjunction is dual to the previous one.

• If M, T |= tr(ψ ⊔ θ, G) then M, T |= tr(ψ, G) ⊔ tr(θ, G). But then by induction hypothesis T G |= ψ or 

T G |= θ, and in either case T G |= ψ ⊔ θ.

Note that an expression of the form ψ ⊔ θ is never in CO, so – as in the case of functional dependencies 

– the second part of the theorem does not need to be proved.

• If M, T |= tr(α ⊃ χ, G) then T = T1 ∪ T2, where M, T1 |= trd(α, G) and M, T2 |= tr(χ, G).

Now let T α = {s ∈ T | M, {s} |= α}: by the induction hypothesis for α we necessarily have that 

T α ⊆ T2; so, by downwards closure M, T α |= tr(χ, G) and thus – by the induction hypothesis on χ, 

observing that if G is compatible with M and T it is also compatible with M and T α – (T α, G, F ) |= χ, 

which implies that (T, G, F ) |= α ⊃ χ.

Suppose instead that M, T |= trd(α ⊃ χ, G), where α and χ are both in CO. Then M, T |= tr(α, G) ∧

trd(χ, G), and so – by induction hypothesis and downward closure – for every s ∈ T we have that 

({s}, G, F ) |= α and ({s}, G, F ) 	|= χ. But then ({s}, G, F } 	|= α ⊃ χ for all such s, as required.
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• If X = x is inconsistent then tr(X = x� ψ, G) and X = x� ψ are both trivially true and there is 

nothing to prove.

Let us suppose then that X = x is consistent and M, T |= tr(X = x� ψ, G). Then, as in Theorem 3.18, 

T [x/X][M/V] can be split into two subteams T1 and T2, the second of which satisfies tr(ψ, GX=x) and, 

by flatness and downwards closure, can be assumed to be the set of all assignments in T [x/X][M/V]

that satisfy Eq(GX=x). Now GX=x is compatible with T2, since T2 satisfies Eq(GX=x). Thus we can 

apply the induction hypothesis to obtain (T2)GX=x |= ψ; but, by construction, (T2)GX=x = (T G)X=x, 

and so T G |= X = x� ψ.

If instead ψ ∈ CO and M, T |= trd(X = x � ψ), for all s ∈ T we have that M, {s} |=

∃1X∃V(Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x)) by downward closure. Then for some choice of func-

tions F we have that M, {s}[x/X][F/V] |= Eq(GX=x) ∧ X = x ∧ trd(ψ, GX=x). Thus, there exists some 

assignment s′ obtainable from s via the intervention X = x that satisfies trd(ψ, GX=x) with respect to 

the model M , and we obtain ({s′}, GX=x, FX=x) 	|= ψ by the inductive hypothesis, where FX=x is the 

function component of (T G)X=x. Write {s}G for the causal team ({s}, G, F ); since s′ ∈ (({s}G)X=x)−, 

by the previous statement and downwards closure we have that ({s}G)X=x 	|= ψ; and finally, this implies 

that {s}G 	|= X = x� ψ, for any such s ∈ T , as required. �

For the sake of our applications, we are more interested in a result of this kind for the recursive case. 

If we start from an acyclic graph G, the same procedure works if we replace tr with trR, and in this case 

obviously we obtain a recursive causal team T G.

Theorem 5.5. Let M be a first-order structure and T a team on M . For every acyclic graph G compatible 

with both M and T ,

M, T |= trR(ϕ, G) ⇒ T G |= ϕ.

Proof. The proof is mostly identical to the left-to-right part of 4.18, with small modifications analogous to 

those added in the proof of 5.4, and using the following additional fact:

• ((T G)X=x)− = T −[x/X, F1/D1, . . . , Fκ/Dκ, . . . ] (see Lemma 4.17 for notations and an analogous 

proof). �

5.2. The satisfiability problem

We now discuss the decidability of the satisfiability problem over a finite variable domain (in the recursive 

semantics). We say that a causal team T is a causal team over Dom if the signature of T is of the form 

(Dom, Ran), for an appropriate function Ran.

Theorem 5.6. Let Dom be a finite set of variables, and let ϕ vary over COD or CO⊔ formulas with variables 

in Dom. Then it is decidable whether ϕ is |=R-satisfiable in some recursive causal team over Dom.

We point out that this theorem, together with Theorem 4.16, implies that also |=H -satisfiability and |=A-

satisfiability are decidable over recursive causal teams.

Proof. Let ϕ ∈ COD. Now, if ϕ is satisfied by some nonempty (recursive) causal team T = (T −, G, F )

then, by Theorem 4.18 and downward closure, for every s ∈ T − it holds that MT , {s} |= Eq(G) ∧ trR(ϕ, G). 

Conversely, if M, {s} |= Eq(G) ∧ trR(ϕ, G) then (by M, {s} |= Eq(G)) G is compatible with both M

and T = {s}; therefore, by Theorem 5.5 the causal team T G (which is recursive) satisfies ϕ. Therefore, 

∃Z(Eq(G) ∧ trR(ϕ, G)) (where Z is the set of all free variables of Eq(G) ∧ trR(ϕ, G)) is a sentence of 
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dependence logic that is satisfiable if and only if there is a recursive causal team with graph G that satisfies 

ϕ. Therefore, ψ :=
∨

G ∃Z(Eq(G) ∧ trR(ϕ, G)), where G ranges over all acyclic graphs with the variables 

in Dom as nodes, is a dependence logic sentence that is satisfiable if and only if ϕ is satisfiable by some 

recursive causal team of domain Dom. Since all quantifiers occur in ψ in positive positions, we can extract all 

the existential quantifiers in ψ so as to obtain a prenex formula ψ∗ that has an ∃∗ prefix. Each such sentence 

is satisfiable iff the first-order sentence (ψ∗)f (“flattening”) that is obtained by removing all dependence 

atoms is satisfiable. The reason for this is that, by downward closure, ψ∗ is satisfied on a team if and only 

if it is satisfied by a singleton team; and on singleton teams, all dependence atoms evaluate as true. Since 

the construction of (ψ∗)f from ϕ is clearly a computable procedure, our problem is reduced to satisfiability 

in the existential fragment of first-order logic, which is decidable (also in case the vocabulary is not purely 

relational) by a classical result of Gurevich ([16]).

If ϕ ∈ CO⊔, we can proceed in the same way after replacing trR(ϕ, G) with an equivalent dependence 

logic formula (by removing the ⊔ symbols as explained in the proof of Theorem 3.15). �

We remark that it is not straightforward to extend this result to the general, possibly non-recursive 

case. Indeed, our main translation tr produces formulas that are equivalent to ∃∗∀∗ formulas with function 

symbols. This fragment of dependence logic (or even first-order logic) is not decidable (see [7] or [15]; the 

result was proved in [16]). On the other hand, the modified translation tr∗, which produces formulas of 

relational vocabulary, seems not to be suitable for the “converse” embedding proposed in section 5.1.26

6. Conclusions

In this paper, we have pursued two lines of thought. The first consisted in systematizing the treatment 

of causal team semantics in the general (i.e. possibly nonrecursive) case. A definition of interventions in the 

general case was suggested already in [1,2], but most work in the literature on causal teams has focused on 

the recursive case. We have shown here that this (call it “Halpern-style”) definition is adequate, at least in 

the sense that it agrees with the uncontroversial definition of intervention on a recursive causal team. On 

the other hand, we have remarked that the Halpern-style definition of intervention seems to work contrary 

to the usual intuitions that lie behind causal modelling; the problems with this definition arise already at 

the level of causal models, and are thus not an artifact of our generalization to causal teams. In view of this 

objection, we have argued in favour of an alternative definition of intervention; and we have shown that also 

this alternative clause agrees with the usual definition of intervention in the recursive case. In summary, we 

have analyzed three alternative semantics |=H , |=A, |=R (which agree in the recursive case) and their mutual 

relations.

The second line of thought consisted in a systematic effort of embedding the causal-observational lan-

guages from [2] (evaluated according to each of the three semantics) into first-order languages. The semantics 

of classical logic does not come equipped with instruments for encoding causal laws. Nonetheless, we have 

shown that the simplest of the causal-observational languages, CO, can be embedded into first-order logic; 

that is, the usual causal reasoning can be encoded into classical logic. The embedding extends straightfor-

wardly to the more complex languages COD and CO⊔, but in this case the target language is first-order 

dependence logic. With a bit of extra effort, the embeddings for the semantics |=H and |=A can be sharp-

ened into embeddings into the Bernays-Schönfinkel-Ramsey fragment of first-order/dependence logic (i.e., 

prenex formulas with ∃∗∀∗ prefix and relational vocabulary), and similarly, when using |=R, one can obtain 

embeddings into purely existential fragments. These embeddings come at the price of non-straightforward 

translations and of a restrictive choice of the models on which to interpret the translations. We believe, 

26 The main problem here is that the constraint Eq∗(G) is insufficient for imposing the correct causal constraints on a generic 
structure: plausibly, additional quantifiers are needed in order to impose the functionality of the laws.
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however, that there is more work to be done in order to generalize the connection between the two semantic 

frameworks and make it more flexible. This point is illustrated by the variant of the embedding that we 

presented in section 5. This alternative correspondence ensures that the truth of the translation of ϕ over 

an arbitrary model (of appropriate signature) entails the truth of ϕ in an appropriate causal team. The 

two-way connection established by the two kinds of embeddings allowed us to use a well-known decidability 

result (for existential dependence logic) to prove the decidability of the satisfiability problem for causal-

observational languages over a finite variable domain. This result holds in the recursive case; we leave its 

extension to the general case as an open problem.

The main take is that the most common kinds of causal reasoning can be in principle carried out in 

(classical) first-order logic, and causal reasoning paired with discussion of contingent functional dependencies 

can be carried out in dependence logic. A possible direction for future research on this topic is finding out 

whether the embedding of CO can be extended also to other kinds of contingent dependencies (such as the 

inclusion dependencies of [12], the independence atoms of [14] or the multivalued embedded dependencies 

of [10]). Of course, since these dependencies are not downward closed, the target language will not be 

dependence logic.

On the other hand, having switched the focus of the discourse from the recursive to the general case, 

we may want to look at less common forms of causal reasoning, which may well not be embeddable into 

classical first-order logic. Halpern ([18]) pointed out that, in the general case, it is natural to consider also 

the dual conditionals, i.e. the interventionist might-counterfactuals. A might-counterfactual X = x � → ψ is 

true if the system of equations obtained after the intervention do(X = x) has at least one solution (a tuple 

of values for the variables) that satisfies ψ. In causal team semantics, it is more natural to give a slightly 

more general semantic clause:

• T |= X = x � → ψ if S |= ψ for some causal subteam S of TX=x with S− 	= ∅.

It is easy to see that this operator does not preserve downward closure nor the empty team property; 

therefore it is implausible that CO enriched with this operator can still be embedded into first-order logic 

(or even dependence logic). The operator does preserve, instead, closure under unions of causal teams (with 

identical function components); the ideal candidate for an embedding of this extension of CO seems then to 

be inclusion logic with nonemptiness atoms, or some more general union-closed logic ([24]). We leave this 

problem open for future investigations.
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