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Figure 1: Visualisation and topological analysis of Lagrangian simulations often have to rely on costly resampling onto a grid
(a), (b). We perform topological data analysis directly from the parcel neighbourhoods (c) faster, and with good quality (d).

ABSTRACT

Many scientific and engineering problems are modelled by simulat-
ing scalar fields defined either on space-filling meshes (Eulerian) or
as particles (Lagrangian). For analysis and visualization, topolog-
ical primitives such as contour trees can be used, but these often
need simplification to filter out small-scale features. For parcel-
based convective cloud simulations, simplification of the contour
tree requires a volumetric measure rather than persistence. Unlike
for cubic meshes, volume cannot be approximated by counting reg-
ular vertices. Typically, this is addressed by resampling irregular
data onto a uniform grid. Unfortunately, the spatial proximity of
parcels requires a high sampling frequency, resulting in a massive
increase in data size for processing. We therefore extend volume-
based contour tree simplification to parcel-in-cell simulations with
a graph adaptor in Viskores (VTK-m), using Delaunay tetrahedral-
ization of the parcel centroids as input. Instead of relying on a
volume approximation by counting regular vertices ± as was done
for cubic meshes ± we adapt the 2D area splines reported by Bajaj
et al. [1], and Zhou et al. [37]. We implement this in Viskores
(formerly called VTK-m) as prefix-sum style hypersweeps for paral-
lel efficiency and show how it can be generalized to compute any
integrable property. Finally, our results reveal that contour trees
computed directly on the parcels are orders of magnitude faster than
computing them on a resampled grid, while also arguably offering
better quality segmentation, avoiding interpolation artifacts.

Index Terms: Visualization, Topological Analysis, Contour Tree,
3D Lagrangian Segmentation, Geometric Measures, Parcel-in-Cell

1 INTRODUCTION

Scientific computing and engineering depend on fluid simulations,
which are increasingly computed using Lagrangian techniques for
efficiency instead of Eulerian rectilinear grids. Once the data are
computed, it must still be visualized, understood, and analyzed.
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Contour trees help to visualize scientific datasets and can be
computed directly on irregular tetrahedral meshes. However, imple-
mentations have focused on regular rectilinear grids. For topologi-
cal simplification, the standard practice to compute the volume has
been by simple vertex count approximation, which is a cheap oper-
ation and converges rapidly as the grid resolution increases [10].

Parcel-in-Cell (PIC) are hybrid Lagrangian-Eulerian simula-
tions, tracking fluid parcels of nonzero volume (unlike particles),
driven by an underlying fixed-resolution coarse simulation grid. Vi-
sualization of PIC data needs an additional post-processing step,
computing the weighted contributions of every parcel at each point
on the interpolation grid (much finer than the simulation grid). This
increases costs in storage, computation, visualization, and analysis.

Because parcels are often tightly packed in space, the Nyquist
limit [33] requires a high sampling rate, and working directly with
the parcels is preferable. Since PIC simulations exchange material
between adjacent parcels, we construct the Delaunay tetrahedral-
ization of the parcel centroids and use this as an irregular mesh.

The approximation of volume by vertex count is only appropri-
ate for regular meshes [6]. For irregular meshes, we revert to the
observation by Pascucci et al. [1] that geometric properties, such as
volume, can be expressed by sets of polynomial coefficients.

Initial VTK-m (now Viskores) [27] contour tree implementation
made the strong assumption that vertex degree was bounded (as is
normal in regular grids) and applied optimizations on this basis.
We report on the changes necessary to compute contour trees for
any irregular mesh, complete with hypersweep-based summation of
polynomial coefficients, branch decomposition, and visualizations.

We show that working directly from the parcels is more efficient
than resampling at high resolutions, and also more accurate.

We start with a brief description of the problem in meteorology
Sec. 2, and a summary of the differences between grid-based and
Parcel-in-Cell simulations in Sec. 3, followed by a summary of the
key developments in computational topology relevant to this paper
in Sec. 4. We will then be able to state the problem being solved in
this paper in Sec. 5. We will then describe the details of the poly-
nomial coefficients necessary to compute volume in a tetrahedral
mesh in Sec. 6, and how to adapt the parallel hypersweep to them
in Sec. 7. Once this is complete, we will discuss the implementa-
tion details for this pipeline in the Viskores toolkit in Sec. 8, and
evaluate the performance and quality in Sec. 9. Finally, we will
summarize our results and speculate on future work in Sec. 10.



Figure 2: Current visual cloud structure analysis techniques. 2D slicing (B.1) is a common way for inspecting vortex rings (A), but features
tend to spread out at higher resolutions (e.g. at 10003 grids). Isosurfaces (B.2) often hide structures of interest with their outer shell (left),
while cross-sections (right) show the characteristic Φ profile but miss the full 3D form. Direct Volume Rendering (B.3) is somewhat better,
but the blurry nature of rendering makes it hard to perceive features of interest (left), and transfer function design is complex (bottom-right).

2 METEOROLOGICAL BACKGROUND

Cloud formation depends on transport of air from the surface to
upper levels. This thermal column of warm air can curl up into
vortex rings as it punches into colder surrounding air (Fig. 2 A).

Entrainment, a process of dry surrounding air entering a moist
cloud, influences cloud droplet distribution [3] and cloud lifes-
pan [25]. This mixing process can speed up when vortex rings are
present [14]. If the thermal cools enough during the intake of drier
air, the cloud can dissipate. Therefore, the cloud life-cycle depends
on the entrainment rate, which itself is an active area of research [4].

Vortex rings and related mixing processes are studied to under-
stand entrainment better. High-resolution data are essential for cap-
turing local variation and detailed flow structure [19]. Vortex rings
are often identified qualitatively, through visualization (Fig. 2 B).
In 2D cross-sections, they appear as Φ-shaped structures, with the
thermal column in the middle and circles on each side. In 3D, they
form tori that trap air with distinct scalar values often unknown be-
forehand. Both views are unreliable, as the ring’s appearance varies
with transfer functions, simulation parameters, and resolution [5].

Although these visualizations are effective at small scale for de-
riving insight, the long-term goal is reliable quantitative detection
over large regions, such as west Africa. Moreover, spatial metrics,
such as the total volume of the vortex ring, are useful for modeling.
One of the possible solutions for a more robust analytic pipeline is
to apply contour tree analysis (Sec. 4). Before we approach this,
however, we must look at one of the key characteristics of modern
meteorological simulations: the use of parcel-in-cell simulations.

3 PARCEL-IN-CELL SIMULATIONS

Historically, meteorological simulation started with Eulerian ap-
proaches on regular grids in 2D and 3D, as with many scientific
and engineering problems [15]. Regular grids have uniform reso-
lution, even in inactive regions. While effective, ever-finer scales
require increasing resolution, driving the computational cost up for
Large-Eddy Simulation (LES) and direct numerical simulation.

Regular grids are not the only way. Lagrangian methods track in-

dividual flow elements, focusing on active regions. Early examples
include contour advection ± following the fluid boundaries (like the
outline of an ink drop). Later, to combine the strengths of both, hy-
brid methods were derived, such as the Parcel-in-Cell (PIC), where
volumetric parcels are tracked through an underlying simulation
grid. The parcels carry prognostic information on dynamic (vortic-
ity) and thermodynamic (heat, moisture) properties of the flow at a
scale that is finer than the simulation grid. The Elliptical Parcel-
in-Cell (EPIC) variant improves spatial packing (incompressibility)
and the accuracy of advection by using deformable ellipses instead
of spheres [19]. Earlier studies [19, 20] showed that EPIC compares
favorably with gridded LES models run at even slightly higher res-
olutions, with EPIC producing much less diffuse vortex rings than
LES [20] because diffusion can be explicitly controlled in EPIC.

Advances in PIC and EPIC have not always been accompanied
by advances in the visualization tools for examining and analyzing
the data. As a result, visualization is currently performed largely by
resampling the simulation to a high-resolution grid, then invoking
existing tools: as we will see in Sec. 9, this is not the ideal solution.

4 CONTOUR TREE ANALYSIS

Although both isosurface extraction [24] and direct volume render-
ing [23, 16] assist in analysing cloud formation, selecting suitable
isosurfaces is difficult, as the features of interest are inside the cloud
and are likely to be occluded by exterior structures (Fig. 2 B.2).

One solution is the flexible isosurface [11], which uses the con-
tour tree to select connected components of isosurfaces (contours),
allowing finer-grained choice of what is seen. Moreover, geometric
properties of contours such as volume, surface area, or integrals of
secondary properties can be pre-computed with the tree.

A Reeb graph [31] is the quotient space under continuous con-
traction of connected components of inverse images of an isovalue
h in a function f on some manifold M. Most often, the manifold M
is a mesh from a simulation, and is a compact subset of either R2 or
R3. In this case there are no cycles, and the Reeb graph is referred
to as a contour tree, composed of supernodes and superarcs, with
the mesh vertices as regular nodes along the superarcs.



The contour tree is useful for extracting isosurfaces [1] or indi-
vidual contours, but also for finding features and their relationships
based on the extrema and critical points [11]. They can be com-
puted efficiently in serial for simplicial meshes [11], non-simplicial
meshes [29, 9] or by choosing a suitable topology graph that cap-
tures neighborhood relationships [9, 13]. More recently parallel al-
gorithms have been described for shared memory [21], PRAM [12],
distributed [29] or hybrid distributed/PRAM [7] models.

As data sizes increase, so do contour trees, which can be sim-
plified by discarding superarcs with small height [30], or by using
geometric properties such as volume in a similar fashion [11].

While edge height is easy to calculate, other geometric proper-
ties are not. Bajaj et al. [1] showed that geometric properties such as
volume, surface, etc. are functions of the isovalue, and that in sim-
plicial meshes, are often per-simplex polynomial splines. Then, one
can compute the function for every possible isovalue in advance.
However, their development of the 3D are splines was slightly im-
precise, and did not apply Federer’s co-area formula [18] to ad-
just for gradient which was identified as necessary [32], with Zhou
et al.[37] confirming this and correcting the missing details.

Later work [11] established that these computations could be ex-
tended from functions for the entire domain M to functions with
respect to individual points in the contour tree, and could be com-
puted efficiently by sweeping through the tree, one regular node
(mesh vertex) at a time. Computation of the coefficients involved
taking cells incident to each node, subtracting out their coefficients
for the value range before the vertex was swept past and adding the
coefficients for the value range after the vertex was swept past.

This work also showed that for a regular mesh, the regular node
count on each superarc was a cheap and effective approximation
of volume. Pascucci [28] showed how to compute the Betti num-
bers [28] for edges on the contour tree, which could potentially
detect the characteristic toroidal configuration of vortex rings.

In recent years, efforts have focused on adding contour tree anal-
ysis to the principal topology toolkits: TTK (Topology Tool Kit) [36]
(now incorporated into ParaView), and Viskores [27]. Either can
be used for contour tree analysis, with Viskores performing better
at scale, while TTK already supports irregular meshes.

Hristov et al. [22] demonstrated efficient parallel computation in
Viskores for arbitrary contour tree properties using prefix-sums.
Their approach uses a variation on rake-and-contraction [26] called
the hypersweep, however, was applied only to compute volume by
counting regular nodes. In contrast, there is no explicit mechanism
in TTK for computing properties through the contour tree sweep.

In summary, parallel contour tree algorithms exist, but computa-
tion of geometric properties on irregular meshes is incomplete.

5 PROBLEM STATEMENT

In applying contour tree analysis to meteorological simulations
of cloud formation, the obvious solution is to resample from the
parcel-in-cell simulation to a rectilinear mesh, then run the existing
tools, either in TTK or in Viskores. However, a problem arises -
what is the appropriate sampling rate, and how much does it cost?

The parcel centroids are not uniformly distributed (Sec. 3). This
means that sampling resolution on a regular grid must be driven by
the closest pair of parcels. Following the Nyquist sampling the-
orem [33], we would need a resolution of no more than half of
this distance. For our PIC simulation, which has around 2,000,000
parcels, this argues for a 4,0963 = 68,719,476,736 sampling grid
resolution, and > 256GB of RAM just to store a single variable.

Previous experience has shown that the memory footprint of con-
tour tree analysis is ≈ 200B or more per sample, implying the need
for > 10T B of RAM if the computation is performed on a single
machine. At this point, we started asking if it was wiser to work
directly with the PIC representation rather than re-sampling it.

Applying the knowledge derived from the previous work out-
lined above, we can see that the first step is to choose a suitable
topology graph based on the parcel-in-cell simulations. Since these
simulations already depend on tracking which parcels are near each
other, the natural choice is to use the Delaunay triangulation, which
we can then represent as an irregular mesh in Viskores.

Although all of the other steps are on principle solved, the re-
maining obstacle is the computation of volume, which is the prop-
erty of interest to the meteorologists. For an irregular mesh, such
as a Delaunay triangulation, counting regular nodes is not an effec-
tive approximation, so Sec. 6 will develop the formulae necessary
to compute volume correctly in an irregular mesh such as Delaunay.

Once we have done this, we will give the implementation details
that were necessary to add this to the Viskores library in Sec. 8,
then compare the rectilinear and PIC-based results in Sec. 9.

6 POLYNOMIAL COEFFICIENTS

We saw in Sec. 4 that area and volume are polynomial splines in
the isovalue h [1] and that the correct derivation needs Federer’s
co-area formula [18] for area integration [37]. The polynomial
must be expressed in standard form (such as ah2 + bh + c) for
summing coefficients (e.g. a,b,c) with a hypersweep [22] (Sec. 4).
Instead of expanding B-splines [37] recursively into the standard
form, we develop a direct geometric construction, making explicit
how each coefficient arises from the tetrahedral mesh itself rather
than treating them as abstract results of the spline formulation.

Assume a tetrahedron has vertices A,B,C,D with function values
hA < hB < hC < hD (Fig. 3). Barycentric contours in a tetrahedron
are parallel planes. Where contours meet tetrahedron edges, the
angle is constant and is fixed by the contours intersecting with the
edge dihedral. Vertices E,F are defined by linear interpolation on
edges AD,AC by the triangular contour BEF at h = hB = f (B).
We get Area(BEF) from half the cross product of FB,FE. We
can then compute φ , the angle at F in BEF , or more importantly,
sin(φ). Similarly, we compute vertices G,H of contour CGH at
hC = f (C), Area(CGH), and sin(θ). The scalar triple product is
used to compute Volume(ABEF) and Volume(DCGH).

We consider contours in the range hA < h < hB: in Fig. 3, the
contour is a single triangle JKL, where J,K,L are linearly interpo-

lated along AB,AE,AF by the parameter r = h−hA

hB−hA
.

It then follows that:

Area(JKL) = r2Area(BEF)

=
Area(BEF)

(hB −hA)2
(h2 −2hAh+h2

A)

Volume(AJKL) = r3Volume(ABEF)

=
Volume(ABEF)

(hB −hA)3
(h3 −3hAh2 +3h2

Ah−h3
A)

For isovalues in the range hC < h < hD, the position is symmet-

ric, and we parameterize on t = hD−h
hD−hC

to get:

Area(MNO) =
Area(CGH)

(hD −hC)2
(h2 −2hDh+h2

D)

Volume(DMNO) =
Volume(DCGH)

(hD −hC)3
(h3

4 −3h ·h2
D +3h2h4 −h3)

However, since we are actually interested in the volume to the
left of △MNO, we convert the volume by subtraction:

Volume(ABCMNO) =Volume(ABCD)−Volume(DMNO)



Figure 3: Tetrahedron ABCD with values hA < hB < hC < hD.
Barycentric interpolation guarantees that all contours are planar and
parallel, with constant angles θ ,φ . Area at isovalue h is computed
with △JKL, △PQS and △QRS, or △MNO, and volume is inte-
grated from area as described in the text.

This leaves the middle section, with isovalues hB < h < hC. We
know Volume(ABEF) and want the Volume(BEFPQRS). We con-
sider the area of quad PQRS, noting that angles θ ,φ are fixed by
the edge dihedral, and using PQ = |PQ| ,PS = |PS|, and so forth.
Now, we know that P and Q are linearly interpolated with param-

eter s = h−hB

hC−hB
and 1− s = hC−h

hC−hB
between B and H respectively,

so:

PQ = s ·HG+(1− s)BE

PS = s ·HC

PQ ·PS =

(

HG−BE

hC −hB
h+

hCBE −hBHG

hC −hB

)

·

(

HC

hC −hB
h+

−hBHC

hC −hB

)

=
(HG−BE)HC

(hC −hB)2
h2

+
2hBHG ·HC+(hC −hB)BE ·HC

(hC −hB)2
h

+

(

h2
BHG−hBhCBE

)

HC

(hC −hB)2

Repeating the process for △QRS gives us a similar set of terms:

RQ = s ·EF +(1− s)GC

RS = (1− s) ·BF

RQ ·RS =

(

EF −GC

hC −hB
h+

hCGC−hBEF

hC −hB

)

·

(

BF

hC −hB
hC −

BF

hC −hB
h

)

=
(GC−EF) · (−BF)

(hC −hB)2
h2

+
−2hCBF ·EF +(hC +hB)GC ·BF

(hC −hB)2
h

+

(

h2
CEF −hBhCGC

)

BF

(hC −hB)2

Finally, we use these to compute:

Area(PQRS)(h)) = Area(△PQS)+Area(△QRS)

=
1

2
sin(θ)PQ ·PS+

1

2
sin(φ)RQ ·RS

= αh2 +βh+ γ

α =
sin(θ)(HG−BE)HC− sin(φ)(GC−EF)BF

2(hC −hB)2

β =
sin(θ)(2hBHG ·HC+(hC −hB)BE ·HC)

2(hC −hB)2

+
sin(φ)(−2hCBF ·EF +(hC +hB)GC ·BF)

2(hC −hB)2

γ =
sin(θ)

(

h2
BHG−hBhCBE

)

HC

2(hC −hB)2

+
sin(φ)

(

h2
CEF −hBhCGC

)

BF

2(hC −hB)2

For volume, we apply Federer’s co-area formula [18] and inte-
grate with respect to h. This computes the interval volume between
two isosurfaces by applying a correction factor of the inverse of the
gradient magnitude [17]. In a barycentric interpolant, gradient mag-
nitude is constant, and is the difference between isovalues hB,hC

divided by the perpendicular distance between BEF and CGH, us-

ing the normal form of plane BEF , n⃗ = EF×BF
|EF×BF | and points B,H,

i.e. δ = n⃗ ·B− n⃗ ·H. Since δ is independent of h, it can be moved
outside the integral. The volume polynomial for BEFPQRS is then:

Volume(BEFPQRS)(h) =
αδ

3
h3 +

βδ

2
h2 + γδh+D

where D, the constant of integration can be determined by observ-
ing that for h = hB, the volume must be 0, since we are interested in
the ∆volume (change since the last vertex), and back-substituting.

Once we have the correct coefficients, we can compute lo-
cal (per-tetrahedron) coefficient changes (deltas) in a parallel pre-
processing step. Then, these are summed efficiently in the polyno-
mial hypersweep (Sec. 7) to obtain the volume for each superarc.

7 POLYNOMIAL HYPERSWEEP

We saw in Sec. 4 that the existing pipeline was implemented for reg-
ular grids, and that volume was approximated by the regular node
count. In Sec. 6, we developed the correct polynomial coefficients.

Since Viskores is based on the PRAM model, we consider how
to extend hypersweeps [22] to update the polynomial coefficients.
For each tetrahedral cell K incident to vertex v, the sweep subtracts
coefficients k1,k2, . . . ,kn before the vertex is swept, then adds co-
efficients K1,K2, . . . ,Kn afterwards. This is equivalent to adding
δ1 = K1 − k1, . . . ,δn = Kn − kn, which can be computed indepen-
dently for each vertex in each cell.

The solution is then to compute the deltas for each cell in the
mesh at each vertex (wlog, in the downwards direction). Assign the
deltas to the vertex, and sum all deltas for each vertex to produce a
single set of deltas per vertex. The correct coefficients in each reg-
ular arc can then be computed as a prefix sum using a hypersweep.

This is not yet complete, as hypersweeps may reverse the sweep
direction. The existing code subtracts node count from total count
for the entire data set, then adds one because the origin supernode
of each superarc is counted as part of the superarc. For polynomial
coefficients, it is necessary to modify the approach so that deltas are
stored at each supernode as well as at each superarc.



Figure 4: Contour trees computed from the 243 grid (left) and 10K subsampled particles (right). For each major branch (ranked by volume),
flexible isosurface visualizations are shown and color-coded, alongside the full datasets. Light-gray branches denote low-volume features.

8 IMPLEMENTATION

Given the polynomial coefficients in Sec. 6, we can now turn to the
implementation details for computing PIC-based contour trees.

The key decision was whether to implement the new exact vol-
ume simplification pipeline in VTK-m (now called Viskores) or
TTK. As in Sec. 4, TTK already has irregular meshes implemented,
but does not have the hypersweep framework needed for summing
the coefficients described in Sec. 6. TTK is integrated to ParaView,
while Viskores form the basis of distributed contour tree computa-
tion methods and is faster at large scales [8]. We therefore decided
to implement the pipeline in Viskores, for which there are five
principal changes required:

• Delaunay tetrahedralization

• Replacing grid-based code with mesh-based code

• Implementing polynomial coefficient computation

• Modifications to hypersweep

• Visualization pipeline changes: flexible isosurface adaptation

Delaunay Tetrahedralization: Since Delaunay meshing is not
yet in the Viskores codebase, we computed a Delaunay tetrahe-
dralization from the parcel centroids externally with TetGen [34],
as shown in Fig. 1(c), then read the resulting mesh into Viskores.

Grid To Mesh: Given prior experience with the contour tree,
considerable effort was expended in the original implementation of
Viskores to ensure that the contour tree algorithm was abstracted
rather than built directly on the grid. It was previously implemented
by building a Mesh class on top of the input data, for 2D and 3D
Freudenthal simplicial meshes, plus the ability to compute contour
trees based on Marching Cubes connectivity. Since the contour tree
is a valid topology graph for computing itself, a Mesh class could
effectively encapsulate a contour tree as input to the computation,
permitting an easy early way to distributed computation.

In all cases, access to the Mesh was abstracted, but in two places,
there was an assumption of vertex degree less than 32 for all ver-
tices, allowing the use of a bitmask for efficient representation
of vertex neighborhoods. This same vertex bound allowed us to

run worklets that iterated around each vertex in early stages: for
arbitrary-degree vertices, this can degenerate to serial performance.

We therefore implemented a new Mesh class to encapsulate an
arbitrary TopologyGraph, and rewrote the section of code that iter-
ated around a vertex to substitute a PRAM-efficient segmented sort
to select the best ascending edge for each vertex. Since the original
code was templated on the Mesh, it was not difficult to ensure that
the existing code path was preserved for grid-based data.

Polynomial Coefficients: As seen in Sec. 6, further code was
also required to compute the correct polynomial coefficients and
deltas as pre-processing. This was done with a single parallel loop
to compute all of the deltas for each cell, then a segmented sort to
collect them in segments corresponding to each vertex in the mesh.
Finally, a segmented prefix sum computed the total delta at each
vertex, which was used as input to the following hypersweep.

Modifications to Hypersweep: The existing hypersweep
code assumed a single (integer) value per vertex, and inversion
could be easily performed by subtracting from the total volume and
adding 1. For full polynomial coefficients, we had to upgrade the
Hypersweep to a version templated on a data type (in our case, vec-
tors of four doubles to represent the coefficients) and which cor-
rectly handled arbitrary deltas at each supernode.

Visualization Pipeline: Previous work [22] computed the
branch decomposition based on node counts, and had to be
templated to allow arbitrary data types. We also carried over
the flexible isosurface [11] extraction of single contours by first
reconstructing entire surfaces at critical points with marching
tetrahedra, then choosing only those triangles that mapped to the
correct superarc, as before. This is different for the main branch
(the one with the largest volume). As it connects to many other
branches, any extracted isosurface would either occlude inner
structures or be occluded by them. Therefore, we select the middle
iso-value, and later use transparency to show it.

As we will see in Sec. 9, these modifications were successful,
and we expect to contribute them to Viskores in due course.



9 RESULTS

We used an EPIC [20] simulation of a developing cloud at a mature
stage, with ∼2 million parcels, and its resampled version onto a
10243 grid. We evaluated performance, accuracy, and quality, com-
paring the time cost and memory use of our code to contour tree
implementations in Viskores and TTK. We then examined the con-
tour tree structure and displayed flexible isosurfaces side-by-side.

Hardware: Because contour tree computation has a significant
memory footprint (Sec. 5), we chose to run our benchmarks on the
Aire HPC Facility. We use the standard compute partition that of-
fers CPU nodes with AMD Dual 84 core 2.2GHz (9634 Genoa-X)
processors and 768 GB DDR5-4800 memory.

Software: Our method builds on VTK-m 2.3.0 (at the time of its
rebranding as Viskores 1.0.0). We compare our Viskores irreg-
ular mesh implementation against TTK 1.3.0 (the most recent stable
release at the time of our evaluation), and include three contour tree
construction baselines: on regular grids (timing, memory Tab. 1),
and on irregular meshes (timing Tab. 2, memory Tab. 3). All bench-
marks exclude I/O and were run in parallel, on 128 threads.

Data Sets: We use a parcel-based simulation generated by at-
mospheric scientists for studying cloud formation [20]. The simula-
tion tracks two million parcels and we use the parcel centroids from
one of the time steps when the cloud has already matured. We use
the total water specific humidity scalar field (i.e. kg of water vapour
plus liquid water per kg of air), as the scientists are interested in
studying the cloud droplet distribution (Sec. 2).

Methodology (Grid): The original ∼2 million parcel mesh-
free simulation was first recomputed onto a uniform 10243 mesh,
following [19] Appendix H, and then coarse-grained to grid resolu-
tions from 243 to 5123. Tab. 1 shows the statistics collected, while
Fig. 6 shows flexible isosurface visualizations for all resolutions.

We recorded the data resolution, the number of input points (i.e.
regular nodes), and the construction time for respective TTK and
Viskores contour tree filters. For Viskores, we also show the
time to count regular nodes for volume approximation, as well as
the branch decomposition. We later use this to compare our new
irregular mesh polynomial hypersweep, which computes exact vol-
ume weights, and is more complex. TTK outperforms Viskores
for smaller resolutions, while larger resolutions take a significant
amount of time (> 16 times slower than Viskores). This is not a
surprise, since TTK targets workstations rather than many-core ar-
chitectures and relies more on coarse-grain parallelism.

We used valgrind to record peak memory usage. At lower res-
olutions, Viskores uses half the memory of TTK, but converges
for grids with more than 16M data points. We suspect this is be-
cause TTK switches to a fully implicit triangulation for meshes with
> 16,777,216 vertices. As the data scales, the size per data point
ends up around 80−100B per sample point in both Viskores and
TTK. At the highest resolution, Viskores is at the lower-end of this
range (86B) compared to TTK (101B). For the smallest resolutions,
the ratio is over 100, but this is likely due to general overhead.

In Fig. 6, we see that the thermal column and cloud body are not
reliably visible on grids until 1283 samples are available, but that
a separate component at the top (the pileus) is visible throughout.
We also see that the vortex ring is hard to make out until higher
resolutions, and tends to be visible as multiple components rather
than the single toroidal shape we expect.

Methodology (PIC): We computed contour trees and exact
volume weights from the EPIC simulation using the Delaunay
pipeline (Sec. 8), testing smaller data sizes with random down-
samples of the parcels. We show visualizations in Fig. 7 and com-
pare the performance to TTK in tables Tab. 2, Tab. 3 and plots Fig. 5.

Tab. 2 shows the time costs of: Delaunay tetrahedralization,
contour tree construction, the simplification using exact volume in

Viskores, and computing the contour tree in TTK (join/split trees
and the merge). We do not report the simplification time cost in TTK
because it does not have an exact volume computation.

The Delaunay tetrahedralization is quasilinear [35, 34] and dom-
inates the time cost compared to the contour tree computation in
both Viskores and TTK. However, even when we add all the to-
tal time steps: the tetrahedralization, the contour tree construction
and (in Viskores) the exact volume simplification, the time cost is
still smaller than for the highest resolution resampled grids (10243

in Viskores and both 5123,10243 in TTK). Moreover, it took ∼23
minutes to compute the 10243 regridding of the original mesh-free
simulation in the first place (compared to just 13 seconds for the
Delaunay meshing on the original ∼2 million parcels).

We also break down the contour tree construction time. Both
Viskores and TTK have two steps, building the edge list for each
vertex, and running the contour tree constructor. In Viskores,
the first step involves a prefix-sum style parallel worklet to ex-
tract the edge list from the delaunay mesh, while TTK uses a se-
rial OneSkeleton extraction step. This is reflected in the tim-
ings, where OneSkeleton remains the dominant time cost for all
resolutions. However, the serial extraction is undoubtedly paral-
lel, so we primarily compare the main step, that of computing
the contour tree itself. In Viskores, we modified the existing
ContourTreeAugmented worklet to handle arbitrary graph in-
put (to support arbitrary vertex neighbourhood degrees), causing
a significant slow-down compared to the original Viskores grid
version and to TTK, as we can no longer rely on the optimisation
that assumed < 32 maximum neighbours per vertex (Sec. 8).

We note that the ratio of the Viskores CTA / TTK FTMTree fil-
ter timings is trending downwards with bigger datasets Fig. 5(a)
in much the same way as for grids. We predicted that around
30M parcels the Viskores CTA worklet would break even with
the FTMTree filter. We ran a comparison for a larger, different, 30M
parcel simulation, and measured that Viskores/CTA contour tree
construction was twice as fast as TTK/FTMTree (Fig. 5(a) - cross).

We then turn our attention to the time cost of exact volume com-
putation in Viskores. Compared to grid-based volume approxi-
mation, this requires accessing the tetrahedral mesh during the hy-
persweep, and is in the region of 40−150 times slower for the same
number of regular nodes. This is because collecting the coefficients
requires accessing the vertex coordinates and performing millions
of double floating-point operations. While the computation of vol-
ume weights dominates the time cost, the branch decomposition
occupies only a small fraction of the cost but is still about 3− 4
times slower than for the same number of input points on the grid.
This is caused by the contour tree having an order of 10 times more
branches when computed from our EPIC Delaunay meshing. Com-
putation of volumetric weights is more expensive per vertex than
for grids, but since we need to sum multiple sets of polynomial co-
efficients rather than just use the value 1, this is not a surprise.

For memory usage, Tab. 3 lists the number of sample parcels,
the number of tetrahedra in the Delaunay mesh, the peak memory
usage according to valgrind for both Viskores and TTK, and the
overall cost per data point. For Viskores, we also report more
fine-grained memory information, such as the memory for raw data
and vertex positions, contour tree construction, and simplification.
Unsurprisingly, an explicit tetrahedral mesh requires more memory
than an implicit gridded mesh with the same number of data points
(Tab. 1), but the memory footprint is around 1000B overall per data
point, and the highest resolution (all 2.1M data points) occupies
only 2GiB of memory, where the largest (10243) gridded data is
96GiB. In TTK, the memory footprint is around 4000B per data
point for smaller resolutions, and 6000B for the largest, compared
to 543B in Viskores. In Fig. 5(b), we see that the Viskores / TTK
ratio of memory footprint (for just the contour tree construction) is
slightly trending downwards, consistently remaining below 1.
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24 14K 0.068 0.0662 0.0003 0.0019 0.003 22.08 1.6 0.053 111 3.232 234
32 32K 0.073 0.0708 0.0005 0.0021 0.006 11.80 3.48 0.125 102 6.713 205
48 110K 0.120 0.1162 0.0011 0.0024 0.021 5.536 11.19 0.422 97 21.07 191
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384 57M 2.285 1.8687 0.4032 0.0132 11.730 0.159 5,489 216 93 5,953 105
512 134M 4.674 3.5602 0.9544 0.1590 34.874 0.102 13,010 512 93 14,030 105

1024 1B 37.574 29.5676 7.7865 0.2195 504.800 0.059 96,700 4096 86 108,594 101

Table 1: Comparison of timings and memory usage for Viskores (VTK-m) and TTK for grid-based data. We also note that it takes ∼23
minutes just to grid the original simulation onto the 10243 mesh. The resolutions 243 to 5123 are down-sampled versions of the 10243 grid.
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100K 0.425 0.329 0.079 0.250 0.113 0.105 0.007 0.125 0.098 0.027 9.24
250K 1.455 0.499 0.156 0.343 0.238 0.230 0.008 0.312 0.256 0.056 6.13
1M 5.470 1.214 0.331 0.883 1.049 1.038 0.011 1.245 1.046 0.199 4.44

2.1M 13.889 2.075 0.646 1.429 2.155 2.140 0.016 2.603 2.162 0.441 3.24
30M* 225.84* 42.39* 7.72* 34.671* 71.758* 70.998* 0.759* 102.60* 36.86* 65.743* 0.53*

Table 2: Comparison of contour tree construction timings on an irregular mesh in Viskores (VTK-m) and TTK.
Corresponding filters are: CTA (ContourTreeAugmented) in Viskores, and FTMTree (Fibonacci Task-based Merge tree) in TTK.
Row marked with ’*’ comes from a different, 30M parcel simulation for time estimation on larger data.
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10K 67K 21 0.23 16.10 4.7 1,610 490 2,100 40.29 4029 0.399
30K 201K 50.7 0.69 35.92 14.1 1,197 493 1,690 120.4 4013 0.298
100K 671K 111.6 2.29 62.28 47.0 623 493 1,116 400.5 4005 0.155
250K 1.7M 277.1 5.72 153.78 117.6 615 493 1,108 978 3912 0.157
1M 6.3M 1,029 22.88 558.40 447.7 558 471 1,029 6,203 6203 0.090

2.1M 13M 2,160 49.44 1174.45 936.1 543 456 1,000 13,240 6127 0.089

Table 3: Comparison of memory usage associated with contour tree analysis in Viskores (VTK-m) and TTK for an irregular mesh.



(a) Time usage trend comparison. Data from Tab. 1, Tab. 2 (b) Memory usage trend comparison. Data from Tab. 1, Tab. 3

Figure 5: Logarithmic plots showing the Viskores
TTK

ratios in contour tree construction timings and memory use.
The x-axis shows the input sizes (millions of vertices); y-axis shows the ratios, with the shaded region below y= 1 indicating better Viskores
performance. Blue lines are measures on irregular data: (a) Tab. 2 (Time Ratio CTA/FTMTree), (b) Tab. 3 (Bytes per Data Point: Viskores
(Construction) / TTK). Dashed blue line with the cross marker in (a) is from a larger, different (30M) simulation. Orange lines indicate grid
data measures: (a) Tab. 1 (Time Ratio CTA/FTMTree), (b) Tab. 1 (Bytes per Data Point: Viskores / TTK).

Comparison: Our original hypothesis was twofold: that con-
tour tree analysis was more efficient and accurate without having
to resample irregular meshes, and that flexible isosurface visualiza-
tions were potentially useful in studying cloud formation.

Looking at Fig. 4, the contour tree structures appear similar, ex-
cept that we see more branches in the tree generated directly from
the parcels because critical points are guaranteed to appear at the
vertices [6]. The color-coded branches (which represent the largest
features by volume) are labelled a-f by order of volume and appear
in similar regions in both datasets. The biggest features a, b, c can
be easily matched to well-known parts of a cloud, namely the vor-
tex ring, the thermal column, and the pileus (the cap), in that order;
d, e, f are more difficult to pinpoint, especially since (d, e) appear
as both topological peaks or pits, but look to be part of the vortex
core - part of the cloud typically associated with strongest vorticity.

As we see in higher resolutions (Fig. 6, Fig. 7) we can reliably
discern features of the cloud. In Fig. 6 and Fig. 7 we can see the
quality improving as the resolution increases. However, one effect
that we had not anticipated was the breaking-up of the vortex ring in
gridded resampling, with the direct parcel-based version producing
more consistent results. We suspect that this is a side-effect of the
interpolants used in the resampling, but were unable to test this.

In terms of efficiency, we can see that the direct computation
with 2.1M parcels is time-competitive with gridded resamplings at
around 3843, and memory-competitive at around 2563 but that in
the visualizations, the rising cloud stem and the vortex ring starts
being visible even with as few as 10K parcels, and the 1M and 2M
parcel versions appear to show not only the vortex ring itself but
also the vortex core. By the time that a regridded resolution starts
showing the vortex core and ring reliably, however, the compute
time is 2× slower and the memory footprint 50× greater. We also
note that resampling ∼2 million parcels onto a 10243 grid can take
up to 30 minutes even when using task-based parallelism (when
using parcel resampling methods described in [19] Appendix H),
whereas the Delaunay tetrahedralization only takes about 13 sec-
onds. Additionally, by doing the topological analysis directly on the
parcels, the interpolation artifacts are avoided, such as the smooth-
ing and blurring of the features; however, further studies on alter-

native neighbourhoods than just Delaunay are also of great interest.
The downside of the coefficient-style exact volume computations is
the summation of many very small floating point numbers, which is
likely to cause precision errors for larger data, as we already noticed
the dynamic range of the summation sequence reaching 1e+13,
prompting more future research for applying computer arithmetic
methods for better numerical stability (especially in-parallel).

We would therefore conclude that, where possible, both topolog-
ical analysis and regular visualization of EPIC simulations is best
done with the original parcels, after a meshing them with a Delau-
nay tetrahedralization rather than by resampling to a grid just to
take advantage of existing tools.

10 SUMMARY AND FUTURE WORK

We have reported correctly developed polynomial coefficients for
geometric properties in the well-known Contour Spectrum [1], and
demonstrated how to compute them in PRAM parallel for data on
an irregular mesh for contour tree analysis. This enables the com-
putation of exact (i.e. not approximated) volumes for important re-
gions of parcel-based scientific simulations. We have also reported
on the implementation changes in the Viskores library necessary
to add irregular mesh analysis to the existing methods. We have
shown that for a known data set, working directly with the underly-
ing data representation is preferable to resampling just for the pur-
pose of data visualization, and have shown that the efficiency gains
in doing so can be several orders of magnitude.

Several lines of inquiry now open up, in particular to return
to Pascucci’s computation of Betti numbers [28], but also to ex-
pand the hypersweep computation to a broader range of geometric
measures [11], now that the basic mechanisms have been tested.
Some more care will be needed to handle the numerical precision
of this technique, which can become the limiting factor if not ad-
dressed. Inevitably, though, this work will also need porting to the
distributed layer, as the real value of topological analysis is to be
found at the supercomputer scale rather than the single node which
we used in our experiments.



(a) 323 grid (32K points) (b) 643 grid (256K points) (c) 1283 grid (2M points)

(d) 2563 grid (16M points) (e) 5123 grid (128M points) (f) 10243 grid (1B points)

Figure 6: Grid-based visualizations at different resolutions.

(a) PIC subsample (1K parcels) (b) PIC subsample (10K parcels) (c) PIC subsample (100K parcels)

(d) PIC subsample (200K parcels) (e) PIC subsample (1M parcels) (f) PIC - the original 2.1M parcels

Figure 7: PIC-based visualizations based on random sub-selection of parcels.
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