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Mediating heat transport by microbubble dispersions: The role of dissolved 
gases and phase change dynamics 
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A B S T R A C T   

Recently a theory for additional heat convection by microbubbles was posited. The mechanism proposed is that 
the latent heat of vapor of the liquid is carried by microbubbles from hot zones that vaporize more liquid to cold 
zones where condensation releases the latent heat. In this paper, the proposition that the additional heat flux is 
controlled by the phase fraction of microbubbles, is tested by steady state solutions of the canonical hot wall / 
cold wall buoyant convection problem. The simulations show that the range of additional heat transfer varies 
monotonically with length scale of the cavity, between 5 and 45% with phase fractions varying from 0.02 and 
0.2. The larger characteristic lengths introduce insufficient heat flux from the hot wall to maintain a “driven 
cavity” flow structure, so that the steady state structure that emerges is a stable stratification with thin boundary 
layers near the hot and cold walls, with weak shear flow convection. The stable stratification resultant at higher 
characteristic lengths suppresses the additional heat flux due to microbubble mediation, yet only moderately 
deviating from proportionality. These conclusions hold qualitatively for a variant of the model which simply 
treats the gas exchange between the microbubble phase and dissolved gases in the liquid, resulting in variation of 
the microbubble phase fraction with temperature, hence with position in the domain. Quantitatively, the per-
centage increases are 3–30% in the parameter regime above, with the effects of dissolved gases captured 
dynamically.   

1. Introduction 

Mpemba and Osborne [1] challenged several generations of physical 
chemists, chemical and mechanical engineers, and physicists with a 
simple observation and experiments that could be carried out by high 
school students – how could some hot water cool faster than cold water? 
It had long been posited that dissolved gases in the water might be the 
source of this Mpemba effect, but it was not until Zimmerman [2] 
showed a correlation in agreement with a hypothesis about how 
microbubbles mediate the effect has there been any underpinning theory 
nor mechanistic explanation. Zimmerman [2] was aiming to demon-
strate a new theory for microbubble mediated heat transfer, and found 
that support came from experiments already in the literature. Zimmer-
man [3] expands on the rationale for why only some scenarios have led 
to the observation of the Mpemba effect, likely due to the uncontrolled 
nature of the experiments. Systematic experiments such as Burridge and 
Linden [4] do not observe the Mpemba effect, but also aim to exclude 
features that would generate microbubbles with protocols that make 
them “systematic error.” 

This paper is aimed at exploring the ability to use the new 

microbubble mediated model equations proposed by Zimmerman [2] for 
simulations that underpin engineering design, potentially applicable to 
several classes of unit operations where bubbles are routinely present, as 
well as introducing them into those where no bubble has gone before. As 
a scientific study, the simulations explored here can test a scaling 
argument that is part of Zimmerman’s [2] hypothesis for microbubble 
mediation of the Mpemba and Osborne [1] experiments as the dominant 
mechanism. 

Intuitively, people understand that microbubbles should increase 
mass transfer due to their high surface to volume ratio, especially useful 
in fermentation processes (see [5]), yet they do not have the same ef-
ficacy at heat transfer due to a complication. Generally, solvents acting 
in unit operations where heat transfer is desirable are volatile. Addi-
tional enthalpy introduced by heating injected microbubbles is parti-
tioned between sensible heat transfer to the liquid or to provide the 
latent heat for evaporation of the solvent. Microbubble distillation unit 
operations were developed by Zimmerman et al. [6], exploiting this 
possibility by observing that microbubbles achieve internal complete 
mixing and equilibrate with their gas-liquid interface within a few 
milliseconds of contact time from injection. By arranging that the liquid 
layer height limits the contact time to within that regime of maximum 
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vaporization, without any time for sensible heat transfer, thermal non- 
equilibrium can be maintained with much higher vaporization rates than 
conventional boiling. 

Desai et al. [7] is the most recent example of using microbubble 
distillation, also termed hot microbubble stripping, to rapidly remove 
ammonia from aqueous solution, achieving 100–300 fold faster pro-
cessing than conventional air stripping of ammonia. Those authors also 
review recent advances in other applications, as well as placing the 
mechanism in the context of classical non-equilibrium chemical ther-
modynamics. Isothermal distillation is possible, which is important for 
thermally unstable chemical composition of the solvent or suspended 
materials, such as microbes, that are thermally sensitive. Many other 
uses in chemical and biological processing are reviewed in Gilmour and 
Zimmerman [5]. 

The new phase change dynamics theory, however, is constructive, 
presenting an additional exchange term / convection-like mechanism 
into the energy transport equation. Hence, it is in principle possible to 
design heat transfer devices or characterize heat transfer in unit oper-
ations, that exploit microbubble phase change mediated heat transfer. 
The immediate application is to direct contact heaters / condensers such 
as those reviewed by Ribeiro and Lage [89], but with the novel intro-
duction of microbubbles replacing conventional fine bubbles. Similarly, 
bioreactors as reviewed by Gilmour and Zimmerman [5], typically have 
dispersed bubble phases either introduced for dosing with nutrient gases 
or evolved from the microbes releasing waste gases. But conventional 
fermenters are typically batch processes, which need to be heated during 
the early incubation stage, but release substantial heat during expo-
nential growth and homeostatic production stages due to high metabolic 
activity, so require cooling. This additional heat transfer mechanism 
mediated by microbubbles, were they dispersed for either nutrient gas 
dosing or stripping of waste gases, could serve an additional duty for 
more rapid heating or cooling as required by transient metabolism of the 
bioculture. 

Applications, however, are by no means limited to unit operations 
where bubbles have been previously used for heat transfer mediation in 
two phase contactors or known to be present. Many applications for heat 
transfer require cheap, even disposable, heat transfer fluids, and there-
fore use water. Perhaps the only widely available fluid cheaper than 
water is air, so the introduction of a long-lived dispersed air microbubble 
phase may be the least expensive intensification of heat transfer due to 
no need to change the infrastructure. For example, geothermal heat 
pumps use water as the working heat transfer fluid, but could introduce 
microbubbles at ground level into the cold water, which would undergo 
a transformation to dissolved gases with complete disappearance of the 

microbubble phase as it is pressurized for underground flow, and then 
reappearance by nucleation and cavitation as the now hot, depressur-
ized water. In this cycle, the convection of the latent heat of vaporization 
from hot to cold surfaces happens while the microbubble phase exists at 
the lower pressures in the rising stage. This contacting pattern is very 
similar to the widely used deep shaft process for aerating wastewater, 
without, however, the pre-injection of microbubbles prior to pressuri-
zation (see Mazumder and Dikshit [10]). The injection of a long-lived 
microbubble phase, termed a bubble bank, whereby the microbubbles 
are sufficiently small that they are effectively non-buoyant but also, due 
to presence of surfactants or ions non-coalescent, they can remain 
dispersed for either longer than the processing time or potentially 
indefinitely, is explored by Fan et al. [11]. 

The new microbubble phase change theory grew from an observation 
of Zimmerman et al. [6] about the time scales for microbubble heat 
transfer response to liquid temperature change. Zimmerman [2] posited 
that most contacting configurations for microbubbles would achieve 
vapor-liquid equilibria as the contact time would naturally exceed those 
few milliseconds observed by Zimmerman [6]. The direct contact 
condenser has potential for exploitation of heat transfer by micro-
bubbles. That paper posited an additional benefit to the obvious high 
gas-liquid interfacial area (therefore potential high interfacial heat 
transfer) and the high bubble flux (potentially hectares per cubic meter 
per second). Microbubbles that pass through a hot zone or near a heated 
surface will quickly vaporize, within milliseconds, to the saturation 
pressure, while absorbing the latent heat. Similarly, as they approach a 
cold surface or pass through a cold zone, they will condense the vapor, 
and release the associate latent heat. 

Zimmerman [2] derived, from control volume analysis, an additional 
convection term for the heat transport equation. Using scaling analysis, 
it was deduced that the additional convective term would introduce an 
additional heat flux that is proportional to the microbubble phase 
fraction, as well as an estimate of the constant of proportionality. The 
hypothesis was supported by analyzing the time to freezing transient 
experiments of Mpemba and Osborne [1] with boiled water. The heating 
rates were found to correlate linearly with the inverse solubility of ox-
ygen at the initial temperature, reflecting that the microbubble phase 
had equilibrated with the dissolved gas composition in the liquid. The 
purpose of this paper is to test whether, for steady state solutions to the 
canonical hot wall/cold wall problem [12], the scaling analysis of the 
modified heat transport equation holds, i.e. the additional heat flux is 
proportional to the microbubble phase fraction. 

This paper is organized as follows. The novel heat transport 
phenomenological model is presented in Section 2, in the context of 

Nomenclature 

cp Heat capacity at constant pressure [J/kgK] 
c* Saturation concentration [mol/m3] 
F Latent heat density within dispersed microbubbles [J/m3] 
g,g Gravitational acceleration constant/vector [m/s2] 
h Side length for 2-D square domain [m] 
Gr Non-dimensional gravity group parameter[–] 
NMpemba Dimensionless function of temperature [–] 
Nu, Nuc Non-dimensional ratio of total to conductive heat flux [–] 
p Pressure scalar – dimensional or dimensionless (context) 

[N/m2] 
P* Saturation pressure [N/m2] 
Pr Prandtl number (temperature dependent) [–] 
q Heat flux [W/m2] 
R Gas constant [J/molK] 
s*(T) Air or oxygen solubility in water (context) [mg / L] 
T Temperature – dimensional or dimensionless (context) [K] 

t Time coordinate [s] 
u Velocity – dimensional or dimensionless (context) [m/s] 
x Coordinate – dimensional or dimensionless (context) [m] 
z Coordinate – dimensional or dimensionless (context) [m] 
Special characters 
α Thermal diffusivity [m2/s] 
ϕ Microbubble phase fraction [–] 
k Thermal conductivity [W/mK] 
k̂ Unit vector anti-parallel to gravity [–] 
n̂ Outward pointing unit normal to the domain [–] 
ρ Density [kg/m3] 
ρ̂ Specific gravity (temperature dependent) [–] 
μ Dynamic viscosity [Pa⋅s] 
Subscripts 
0 Ambient or reference state  
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buoyant convection in a hot-wall/ cold wall canonical heat transfer 
configuration. This novel microbubble heat exchange term, based on 
phase change dynamics, although proposed in [2] and shown to be 
consistent in scaling predictions with [1], has never been simulated 
before. The Tsuji two fluid approach is adopted for the momentum 
equations and for the heat transport equation. Al-Mashhadani et al. [13] 
used this approach for mass transport phenomena, but this is the first 
time it has been adopted for heat transport with a dispersed bubble phase. 
The effects of microbubble phase fraction on the physical properties of 
the continuum phase for viscosity, density, heat capacity, and thermal 
conductivity turn out to be small [2], but are estimated in Section 3 for 
density of saturated gases. 

Section 3 displays the results of this new simulation approach, and 
discusses them in the context of the length scale through the dimen-
sionless gravity group ratio (Gr), which for the fixed fluid of water is 
controlled only by the length of the cavity side wall. In Section 4, the 
conclusions are drawn, including the parameter region where the pro-
portionality between the additional heat transfer due to microbubble 
phase change dynamics holds. 

2. Buoyant convection modelling 

This section is organized as follows. The governing transport equa-
tions are presented in Section 2.1, with the novel heat transport equation 
incorporating the microbubble mediated phase change term introduced 
by [2], but not previously analysed by numerical methods. Reference [2] 
gave only a scaling argument. In Section 2.2, the numerical methods are 
described for the simulation of the governing equations in the case of the 
canonical hot wall / cold wall buoyant convection model, in order to 
evaluate the role of additional heat transport mechanism mediated by 
microbubbles on the emergent heat flux, as assessed by the change of the 
Nusselt number, for water as the working fluid. A mesh resolution study 
is conducted with the view to determining how well the emergent 
Nusselt number is estimated in the range of domains that are charac-
terized by laminar convection, using a sufficient mesh resolution. This 
mesh is then adopted for all studies reported in Section 3, with the 
exception of those with graphical representations of detailed, distrib-
uted temperature fields and streamlines. 

In Section 2.3, the range of the parametric sweep is described in 
terms of the controlling non-dimensional parameter, the gravity group 
(similar to the Galileo number), where the typical buoyant convection 
controlling parameters, the Prandtl and Rayleigh numbers, are dimen-
sionless functions of temperature, because the working fluid is fixed as 
water. It should be noted that the model assumes that the cavity is fluid 
filled, which rules out Marangoni convection as a transport mechanism. 
The microbubble phase is assumed to be non-deformable – dispersed 
spheres which holds for microbubble of 100 µm diameter and smaller – 

so that surface tension is unimportant. 

2.1. Governing transport equations 

Momentum and heat transport are now a well studied area of 
transport phenomena, commonly coupled in computational fluid dy-
namics packages. The governing equations are 

ρ

(
∂u

∂t
+ u⋅∇u

)
= −∇p + μ∇2u + ρg

∂ρ

∂t
+∇⋅ρu = 0ρcp

(
∂T

∂t
+ u⋅∇T

)
= κ∇2T

(1) 

Here, the dependent variables are described as follows: u is the ve-
locity vector, p is the pressure, and T is the temperature. The indepen-
dent variables are spatial coordinates (implied in the differential 
operators) and time t. Everything else is a parameter (μ, ρ(T), cp, k, g) 
with fixed value once the fluid and domain are defined. If there is no 
imposed moving boundary or pressure gradient, then motion is induced 

by buoyancy differences due to temperature gradients. Zimmerman [2] 
proposed, from control volume analysis of cycling the evaporation and 
condensation dynamics, a modified heat transport equation for a 
dispersed microbubble phase in volatile liquid. A thorough discussion of 
the adoption of this term is given in [2]: 

ρcp

DT

Dt
= κ∇2T − ϕ∇⋅uF

= κ∇2T − ϕF∇⋅u − ϕu⋅(F
′

∇T)

(2) 

Equations (1) and (2) define a canonical problem, which with F = 0, 
is commonly called the hot wall / cold wall problem, used as an exem-
plar, for instance, for new numerical analysis methods [12]. There are 
two additional terms once the extra divergence term is expanded. Since 
the velocity field is nearly divergence free for hydrodynamics, one of the 
two additional terms is negligible. ϕ is the volume or phase fraction of 
microbubbles. F(T) is a state function which has the connotation of the 
additional energy potential that is convected by the flow representing 
the latent heat of vaporization for the amount of vapor (of the volatile 
liquid) in the dispersed microbubble phase, per unit volume: 

F(T) = c*(T)ΔHV(T) =
p*(T)

RT
ΔHV(T) (3) 

p*(T) is the saturation pressure of the liquid at the absolute tem-
perature T. For simple volatile liquids, the saturation pressure is tabu-
lated and well correlated by the Antoine equation. R is the gas constant. 
ΔHV(T) is the latent heat of vaporization, also commonly tabulated for 
volatile liquids, and commonly correlated by polynomial fit. 

Equations (1) and (2) are commonly simplified by the Boussinesq 
approximation for buoyant convection, and non-dimensionalized by 
adopting scalings for length (h, the characteristic length scale), time 
(ρ0cp,0h2

κ
), and velocity ( μ0

ρ0h). With these scalings, the system of equations 
(1) modified by (2) becomes: 
∂u

∂t
+ u⋅∇u = −∇p + Pr(T)∇2u − Grρ̂(T)k̂

∇⋅u = 0

DT

Dt
= ∇2T − ϕNMpemba(T)u⋅∇T

(4) 

For a small subset of our simulations, the Boussinesq approximation 
for the solendoidal velocity field will be replaced by the weakly 
compressible continuity equation ∇⋅ρ̂(T)u= 0. This will be flagged in 
Section 3.5 for the assessment of the validity of the Boussinesq 
approximation. 

2.2. Numerical methods 

2.2.1. Boundary conditions 
The boundary conditions for momentum transport are no slip on all 

cavity surfaces. The boundary conditions for the upper and lower sur-
faces are insulated for heat transfer. The boundary condition for the hot 
wall (right) is fixed temperature at 100 ◦C. The boundary condition at 
the cold wall is fixed temperature at 0 ◦C. 

In addition to the solution of the velocity field, for presentational 
purposes, the 2-D streamfunction is computed from the well known 
relationship that ∇2ψ = −ω = ∂v

∂x − ∂u
∂y , with boundary condition that 

the boundary of the cavity is the zero streamfunction. Contours of the 
streamfunction, i.e. streamlines, are presented in the distributed field 
results, such as Fig. 1, in order to clarify the role of convection in the 
emergent temperature / density fields. 

2.2.2. Solution methodology and convergence 
The PDE engine used is Comsol Multiphysics v. 5.6, implementing 

the Galerkin finite element method. An exemplar solution for Gr = 2 ×
105 with grid convergence found by using an extremely fine mesh with 
26,254 elements (236064 degrees of freedom) is shown in Fig. 1. A mesh 
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resolution study was conducted with a representative gravity group, Gr 
= 1011, shown in Table 1. The emergent Nusselt number was unchanged 
to four significant digits with quadrupling the number of elements. The 
extremely fine mesh is used in all studies, with the exception of those 
reporting distributed temperature and streamfunction profiles, which 
use the quadrupled, finest refinement mesh described in Table 1. 

Al-Mashhadani et al. [13] solved a parallel “two fluid” model for 
mass transfer dynamics in forced convection with injected microbubbles 
in airlift loop bioreactors. As illustrated in Zimmerman [14], such steady 
state buoyant convection problems must be solved by parametric 
continuation in the nonlinearity parameter Gr = gh3/

νκ
. The approach 

of parametric continuation is to use the solution to the previous gravity 
group Gr as the initial solution for the next gravity group parameter 
value to be solved, at a minimum. The relative convergence tolerance is 
set to 10−6, although nearly all solutions have relative tolerance of 
10−12, because the parametric solver uses as the preconditioning stiff-
ness matrix, the converged stiffness matrix from the earlier solution. 

Generally, only one Newton iteration is needed to pass the tolerance 
level set to 10−6, by an abundant margin. For highly nonlinear problems, 
this methodology insures that the initial solution guess is in the basin of 
attraction of the Newton solver for the Galerkin finite element method 
implemented by Comsol Multiphysics. It also assists in the identification 
of bifurcation points, for which the steps in the nonlinearity parameter, 
say Gr here, become very small in the approach to a bifurcation point. 
For a “pitchfork” bifurcation, no steady solution can be found on the 
other side of the bifurcation, as it is unstable. 

2.3. Parametric sweep for the effects of cavity size and phase fraction on 
emergent heat flux 

For a fixed liquid, such as water, Gr has the interpretation of being 
controllable by changing the size of the cavity. For instance, with water, 
Gr = 1013 corresponds to a side of h = 52.7 cm for the square domain. 
Typically, the parametric continuation for (4)-(5) takes 200–300 loga-
rithmic steps to achieve Gr ~ 1013. Because of the cubic dependence on h 
in Gr, for most of the parametric continuation, the hot wall-cold wall 
domain is very small, achieving microfluidic scales around Gr ~ 104–6. 
Fig. 1 is representative of this range. 

The Prandtl number for water can be found from the NIST database 
of liquid properties and represented as a cubic spline interpolation 
function. The steady state of the model equations (4) and (5) are solved 
by the Galerkin finite element method for the hot wall-cold wall prob-
lem, where the hot wall is held at fixed temperature T1 = 373K and cold 
wall T0 = 273K, on the unit square with upper and lower boundaries as 
no flux surfaces. This is described in Section 3.2 of Zimmerman [14] for 
the simpler convection situation with constant Prandtl number for water 
and vanishing NMpemba, defined in Fig. 2. 

k̂ is the unit vector in the positive (antiparallel gravity) direction. 
ρ̂(T) is the specific gravity of water, taken from Zimmerman [14] as an 
interpolation function via cubic splines. There are three dimensionless 
functions / parameters governing the dynamic similarity of the problem: 
(i) the Mpemba number is defined in the caption of Fig. 2, expressing the 
novel component of this buoyant convection analysis due to transport of 
the latent heat via the microbubble phase; (ii) the Prandtl number that is 
a function of the fluid and temperature; (iii) the buoyancy group that 
gives the relative importance of gravitation to dissipative mechanisms. 

Pr(T)=
μ(T)cp(T)

κ(T)
; Gr =

ρ2
0cp,0gh3

μ0κ0

=
gh3

ν0α0

(5)  

3. Results and discussion 

This section is organized as follows. In Section 3.1, the base case of 
the range of cavity length scales is explored with graphical snapshots of 
the emergent flow regimes, particularly showing the key feature of 
water – the emergence of a stable stratification with the bottom stratum 
at approximately 4 ◦C, the maximum density of water – a non- 
Boussinesq fluid. Most buoyant convection models use a monotonic 
dependence of density on temperature as the equation of state, leading 

Fig. 1. Streamfunction and temperature profile for the steady state solution to 
(4) for water with Gr = 2 × 105 (h = 1.43 mm) in the hot wall-cold wall 
problem on a unit square. No microbubble phase, i.e. ϕ = Red represents 100 ◦C 
and blue 0 ◦C. There are 21 streamlines, equally spaced contours of the 
streamfunction. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Mesh Resolution study with Gr = 2 × 1011 and no microbubble phase fraction.  

No. of 
elements 

No. of degrees of 
freedom 

Average element 
quality 

Nusselt 
number 

26,254 236,064  0.8692  69.2838 
105,016 938,841  0.8693  69.2790  

Fig. 2. NMpemba = F′
(T)

ρ0cp,0 plotted against absolute temperature for water, along 
with the exponential fit, where the “0” reference state are the properties of 
water at 20 ◦C. Air saturation is assumed by using the solubility curve. 
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to a characteristic Rayleigh number controlling the dynamics, and no 
emergence of a stable stratification. In Section 3.2, the role of micro-
bubble phase fraction in varying the emergent Nusselt number is 
explored, with the base case of no microbubbles used to evaluate the 
predicted additional heat transfer flux due to the microbubble phase 
fraction, particularly to test whether the scaling analysis that predicts 
proportionality [2], holds in this scenario. 

Sections 3.3-3.5 are introduced to assess some of the idealizations in 
the central model, equations (2). Section 3.3 explores the superficial 
effects on the liquid density of dissolved air if the liquid is saturated. 
Section 3.4 derives a simple mass transfer model that gives the principle 
dynamics for gas exchange due to local gas solubility dependence on 
local temperature, thereby either augmenting or diminishing the local 
microbubble phase fraction. A mass balance, assuming saturation of the 
dissolved gases, is implemented so that the microbubble phase fraction 
becomes heterogeneous and spatially dependent. Zimmerman [3] pro-
posed this mechanism of dissolution decreases heat transfer rates while 
cooling, but increases them while heating, because of the direction of the 
microbubble phase fraction change. Section 3.5 evaluates the level of 
approximation in the Nusselt number emergent from the simulations 
due to the Boussinesq approximation, by comparison to a compressible 
continuity equation. 

3.1. The effects of varying cavity length scale, with no microbubble phase. 

Fig. 1 and Fig. 3 present a set of steady state solutions for streamlines 
and temperature profiles for parametric series of gravity group Gr = (2 
× 106, 2 × 106, 2 × 109, 2 × 1011, 2 × 1013) which span the equivalent 
side length of millimeter to half meter scale. This parametric series is a 
subset of the 200–300 solutions swept so that convergence is found for 
each subsequent value via parametric continuation. Of course, the 
reason parametric continuation is necessary is that gravity group Gr is a 
proxy for the level of nonlinearity in the dynamics. Highly nonlinear 
solutions are difficult to find without starting nearby in the basin of 
attraction for the solution via the multidimensional Newton’s method 
employed for iterative convergence by the PDE engine. 

Fig. 1 has the equivalent topology to concentric circles for stream-
lines consistent with the canonical lid driven cavity problem (see Zim-
merman [15]) and a temperature profile moderately different from the 
linear temperature gradient of pure conduction. The hot (red) regime 
has started to extend over the top, while the cold (blue) regime is 
spreading over the bottom of the domain. On average, the vertical 
profile is now density stably stratified, i.e. hot less dense water over cold 
more dense water. Fig. 3(a) continues this development with further 
spreading of the hot zone at the top and the cold zone at the bottom, as 

(c) Gr=2 1011(a)  Gr=2 106

(b) Gr=2 109 (d) Gr=2 1013

Fig. 3. Steady state solutions with a parametric series in gravity group (Gr = 2 × 106, 2 × 109, 2 × 1011, 2 × 1013) which can be thought of as simply changing the 
length of the side to (h = 3.1 mm, 3.1 cm, 14.3 cm, 66.0 cm) with ϕ = All four values of ϕ = 0, 0.02, 0.1, and 0.2 that were trialled have visually identical temperature 
and streamfunction profiles. Red represents T = 373 K and dark blue T = 273 K. The black streamlines are 21 uniformly spaced level sets of streamfunction from zero 
(the walls) to the maximum value (different in each case). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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the streamlines become asymmetric. Fig. 3(b) shows that as Gr in-
creases, the development of the stable stratification becomes dominant. 
The hot wall has a very thin boundary layer that is hot liquid, practically 
partitioned from the main stratified shear flow by an interposed cold 
layer. The wall boundary layer become thinner and thinner at the higher 
Gr group values in the bottom panels of Fig. 3. By Gr ~ 1013, the 
stratification seems nearly total, with barely visible boundary layers 
near the hot and cold walls. 

Simulation above Gr ~ 1013 requires refining the mesh further, 
especially near the hot and cold walls to resolve the thinning boundary 
layers, and re-starting parametric continuation from very low Gr values 
– computationally expensive. Although these four simulations were 
conducted with ϕ = 0, it should be noted that all four microbubble phase 
fractions result in visually indistinguishable flow and temperature pro-
files. The streamlines in the final two frames of Fig. 3 all rise along the 
hot wall, but then change direction, splitting off horizontally. As the 
flow approaches the top corner along the hot wall, the flow rapidly re-
verses before splitting off the upper horizontal flows. This flow reversal 
must be indicative of high shear rates. Seemingly the opposite dynamic 
occurs in the bottom left corner, but without such a rapid reversal, as the 
liquid layer along the bottom wall is largely a 4 ◦C stratum, as it is the 
most dense. Nonetheless, the region where liquid temperature is less 
than 4 ◦C is a very thin boundary layer along the bottom of the cold wall. 

The classic textbook of Turner [16], [§7.4.3] calls this scenario 
convection in a slot, when the vertical walls are differentially heated. 
However, this canonical scenario is analyzed for a simple fluid for which 
density decreases monotonically with temperature, such as an ideal gas, 
called a Boussinesq fluid. Therefore, the Rayleigh number at fixed 
Prandtl number with a fixed geometry, is the controlling parameter. The 
qualitative description of the buoyant convective flow matches our ob-
servations with increasing gravity group Gr. 

Our literature search has found no journal article that studies water 
and includes the non-Boussinesq regime around 4 ◦C internal density 
maximum in the laminar regime. Otto and Cierpka conducted the closest 
experimental study, focussing on laminar flow in stratified thermal en-
ergy storage systems, which for cost minimization use water as the 
storage liquid in general [17]. Qualitatively, the results in Fig. 3 agree 
with their conclusions: 

“Particle image velocimetry and temperature measurements at 
different heights were used obtain high-resolution vector fields of the 
entire wall jet flow and vertical temperature profiles… The velocim-
etry shows two laminar counter-directed jets next to the vertical sidewall. 
In regions with high temperature gradients, the wall jets slow down, and 
flow reversals occur next to them… Moreover, the wall jets are asym-
metric due to temperature-dependent fluid properties in conjunction 
with the ambient fluid stratification. Moreover, the wall jets are 
asymmetric due to temperature-dependent fluid properties in 
conjunction with the ambient fluid stratification. In the stratifica-
tion’s upper, hot part, the wall jet is thinner and faster than the 
bottom jet in the cold region.” 

For our purposes, it is sufficient that the base simulation agree 
qualitatively with the literature, as the aim is to assess the additional 
convective heat transfer due to the microbubble phase from the base 
case. Ultimately, these are coupled phenomena, but quantitative vali-
dation would require experiments conducted particularly including the 
non-Boussinesq behaviour of water, which is of little interest to energy 
storage directly. 

3.2. The effects of varying microbubble phase fraction. 

To distinguish among the heat transfer dynamics for variation of 
microbubble phase fraction, some other metric than the steady state 
temperature profile is necessary. The common metric is the Nusselt 
number, which has the interpretation of the total heat transfer across a 
boundary relative to the conductive heat transfer. At steady state, since 

there is no accumulation of heat in the domain, the total heat transfer 
across all boundaries nets to zero. As the upper and lower boundaries are 
no flux boundaries, the choice to compute the Nusselt number is arbi-
trary between the hot and the cold wall. For convenience we take the 
cold wall. The Nusselt number is then defined, as applied to this ge-
ometry, is 

Nu =

∫
∂B

qtotdS∫
∂B

qconddS
=

∫ 1

0
n̂⋅∇Tdy

∫ 1

0
ΔTdy

=
1

T1 − T0

∫ 1

0

∂T

∂x
dy (6) 

It should be noted that the conventional definition of the Nusselt 
number is the ratio Nuc =

∫
∂BqconvdS∫
∂BqconddS =

∫ 1
0 n̂⋅∇Tdy∫ 1

0 ΔTdy
= Nu−1. Here, the total 

heat flux is used in the definition because there are two convective terms 
implicit in equation (4), for which distinguishing on the boundary is not 
needed, nor readily achieved with user defined variables in Comsol 
Multiphysics, which employs intermediate terms in the finite element 
implementation – weak boundary terms – of Dirichlet conditions to 
compute the total, local heat flux more accurately than internal vari-
ables. Given that the interesting regime for human scale effects has Nu ≫ 

1, there is little difference in using either definition. 
Fig. 4 is the log-log plot of Nusselt number Nu against the gravity 

group Gr for four different values of microbubble phase fraction ϕ = 0, 
0.02, 0.1, and 0.2. It is clear that the heat transfer rate monotonically 
increases with microbubble phase fraction, as the curves are parallel, but 
too close to discern the variation with ϕ.This is better achieved by a 
relative comparison, which uses the ratio of the Nusselt number in the 
presence of microbubbles to the Nusselt number in absence of micro-
bubbles, Fig. 5. Fig. 5 clarifies that the predicted scaling of the additional 
microbubble mediated heat flux is nearly proportional to the micro-
bubble phase fraction for the maximum increase, which occurs in the 
microfluidic regime with Gr ~ 106. Thereafter, it is clear from the 
temperature / streamfunction profiles in Fig. 3 that the fluid becomes 
density stratified, with the strength of stratification increasing as Gr ~ 
1011. It is not clear from the profiles whether or not the stratification 
strength continues to rise above this level, as the profiles are only 
modestly different. The monotonic response to ϕ is apparent as the 
curves are non-intersecting and parallel in behavior. The maximum in-
creases are ~5%, 13%, 25%, 30% and 45% which are close to linearly 
related to ϕ. 

Of course, there is a rationale for why the stratification forms and 
then grows stronger. It is well known that in microfluidic transport, the 
surface area to volume of the fluid duct is very large. Zimmerman [15] 
analyzed the formation of stable stratification in solutions where the 
density is a strong function of solute concentration, including ideal so-
lutions as well as non-ideal, even non-monotonic mixing rules. In sce-
narios where stirring is introduced, if the stirring is sufficiently weak, 
then stable stratifications form that minimize the integrated density 
within the domain. As the stirring rate increases, the kinetic energy can 
lift the solute so that a steady solution achieves greater than the mini-
mum integrated density. In this heat transfer analogue, the stirring ki-
netic energy is injected proportional to the surface area of the cold wall, 
hence why the Nusselt number rises with increasing Gr. However, the 
total mass rises proportional to the volume of the duct. So eventually, 
the stirring force is insufficient to lift the mass to higher potential energy 
as Gr rises, so the temperature field (solute) is arranged to minimize the 
energy integral, i.e. the stable stratification suppresses convective mix-
ing / heat transport. 

The onset of the stable stratification corresponds with the maximum 
additional heat transfer in Fig. 5. With a fluid that does not have a non- 
monotonic density vs. temperature profile, [14] shows that a stable 
stratification does not develop at all with increasing Rayleigh number, in 
the laminar convection regime. We know from geophysics that ponds 
and lakes stratify with 4 ◦C water in the bottom layer, credited by bi-
ologists for the development of bacterial life, as the bottom of the pond 
does not freeze in winter. With low Rayeigh number (hence Gr) the flow 
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structure is dominated by a central convective roll. So this maximum 
feature should occur only if the convective roll “overshoots” with 
increasing Gr, what the heat transfer flux (Nusselt number) would be of 
the stable stratification, which suppresses convection and turbulence. 

Fig. 6 makes clear that increasing ϕ increases the strength of the 
stable stratification as it achieves lower average specific gravity – starts 
the formation of the stable stratification at lower Gr values and accel-
erates the stabilization with increasing ϕ and Gr. This is a direct 
consequence of better heat transfer, as the right frame of Fig. 6 illus-
trates. Average temperature also rises with increasing ϕ and Gr. The 

microfluidic range, Gr ~ 104−6, shows exponential increase in strength 
of the stable stratification / average temperature, before both level off in 
the millimeter scale, with a slowly rising plateau achieved in the meter 
scale. Zimmerman and Rees [18] studied the double diffusion problem 
with initial stable stratification, but strong sidewall heating. In the 
transient situation, the stable stratification can be overturned by suffi-
ciently strong heating, as the stratification strength depends on solute 
distribution. 

3.3. The effects of density variation due to air saturation. 

Since the likelihood that the microbubble phase, upon reaching 
steady state, has achieved an equilibrium with the liquid, is strong, this 
subsection is devoted to a superficial assessment of the impact of air 
saturation of water, through density variation, on the emergent heat flux 
through the cavity walls. As the microbubble phase is persistent, after a 
long enough time, the liquid should be air saturated at the locally 
distributed temperature and one atmosphere, presuming ambient con-
ditions outside the cavity and pressure equilibrium on the container 
walls. 

The change in specific gravity of water due to air saturation provides 
the essential physical property variation to assess its impact on emergent 
heat flux. Watanabe and Iizuka [19] carefully measured the change in 
specific gravity of water with saturated, dissolved air, as a function of 
water temperature. Their cubic polynomial correlation was used to 
modify ρ̂(T) for temperatures below 53 ◦C, the neutral change temper-
ature (they measured between 0 and 45 ◦C). Oxygen and nitrogen sol-
ubility fall off dramatically above 53 ◦C, so there is negligible 
contribution above this level. This translates into a piecewise cubic 
polynomial modifying equations (4). 

Δρ̂(T) =

⎧
⎪⎨
⎪⎩

−5.252 × 10−3 + 1.474 × 10−4T

− 3.0689 × 10−6T2

+ 4.0688 × 10−8T3, T < 326K

0,T > 326K

(7) 

As the average temperature in cavity the typically varies between 
323 K and 332 K (cf. Fig. 6) with increasing Gr in the range explored, the 

Fig. 4. Common logarithm of the Nusselt number plotted against the common logarithm of the gravity group Gr for four different values microbubble phase fraction 
ϕ = 0, 0.02, 0.1, and 0.2. The lowest curve is ϕ = 0, with Nusselt number monotonically increasing with ϕ. Because the log-log plot diminishes the distinguishability 
of small percentage differences in values, only this monotonic increase is a discernible trend. It should be noted that grid dependency becomes an issue for Gr > 1012, 
as the boundary layers near the hot and cold wall become very thin. 

Fig. 5. Fractional change in the ratio of Nusselt numbers for ϕ relative to ϕ = 0, 
plotted against the common logarithm of the gravity group Gr for three 
different values microbubble phase fraction ϕ = 0.02, 0.05, 0.1, 0.125, and 0.2. 
The lowest curve is ϕ = 0.02, with Nusselt number monotonically increasing 
with ϕ From the microfluidic scale of Gr > ~104, the additional convective flux 
due to the microbubble phase rises rapidly, peaking in the millimeter scale Gr >
~106, before plateauing with a minor decay over the next six decades, before 
grid dependency becomes an issue. 
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average effect of air saturation on changing density is typically around 
−6 × 10−4. However, it is the spatially distributed effect that is of 
concern in the free convection dynamics explored here. Fig. 7 illustrates 
that the maximum change in Nusselt number due to the density change 
from air-saturation is approximately a 3% decrease, which plateaus 
above Gr ~ 106. However, as found for all ϕ values, the change with 
Nusselt number is indistinguishable visually. Compare Fig. 8 with Fig. 5 
to see that there is no discernible relative difference to the effect of 
microbubble phase fraction ϕ. Zimmerman [2] argues that the thermal 
diffusivity increases with uniformly dispersed ϕ according to common 
mixing rules, but as in all length scales of interest, convection dominates 
the contribution to the Nusselt number, negligible effect will arise from 
considering the thermal diffusivity dependence on microbubble phase 
fraction. 

This is perhaps the largest buoyancy effect that is unaccounted for in 
this model – the effect of the two phase density on the phase fraction of 
microbubbles. However, the assumption underpinning the central 
treatment in this paper is that microbubble phase fraction is uniformly 
distributed spatially. Undoubtedly, for any real steady state convection 
with dispersed microbubbles, the volume increases in warm zones and 

decreases in cold zones due to the vaporization and condensation, 
respectively. Treating these two contributions to density variation 
would require adding the heat transport (and consequential changes to 
mass transport) effects of (4) to the bubbly flow and mass transport 
model of [13] – beyond the scope of this paper. What can, however, be 
implemented fairly easily as a modification to equations (3) or (4) is an 
approximation to the gas exchange between the microbubble phase and 
dissolution in the liquid, with a strong constraint that, like thermal 
equilibrium between the two phases, microbubbles are instantaneously 
in equilibrium with their surrounding liquid, as the liquid temperature 
changes. The consequences of this hypothesis are explored in the next 
subsection. 

3.4. Gas exchange between microbubbles and dissolution in the liquid 

The typical approach to describing dissolved gas composition at 
saturation is by using Henry’s Law – the partial pressure in the vapour 
phase in equilibrium with the concentration of the concentration in the 
liquid phase, which for dilute solutions is proportional, with the 

Fig. 6. (left) Volume-averaged specific density with Gr variation for selected ϕ values. (right) Volume-averaged temperature with Gr variation for selected ϕ values.  

Fig. 7. Modifying the specific gravity for the air saturation of water influence 
according to the correlation of Watanabe and Iizuka [19]. Fractional change in 
the ratio of Nusselt numbers for fixed ϕ, plotted against the common logarithm 
of the gravity group Gr for two different values microbubble phase fraction ϕ =

0.0, and 0.1. The lower curve is ϕ = 0. 

Fig. 8. Modifying the specific gravity for the air saturation of water influence 
according to the correlation of Watanabe and Iizuka [11]. Fractional change in 
the ratio of Nusselt numbers for ϕ relative to ϕ = 0, plotted against the common 
logarithm of the gravity group Gr for two different values microbubble phase 
fraction, ϕ = 0.1, and 0.2. The lower curve is ϕ = 0.1. 

W.B. Zimmerman                                                                                                                                                                                                                               



Applied Thermal Engineering 213 (2022) 118720

9

constant of proportionality called the Henry’s Law coefficient kH. The 
temperature dependence of kH is computable from thermodynamic 
analysis (Karbowiak et al., [20]), giving this form for all dissolved gases 
in equilibrium with a gaseous phase: 

kH = kθ
Hexp

[
−

ΔsolH

R

(
1

Tθ
−

1

T

)]
, (8)  

where R is the gas constant, ΔsolH is the enthalpy change on dissolution, 
and the θ subscript refers to a reference temperature where kH is known. 
Tromans [21] extended the chemical thermodynamics calculation of the 
temperature dependence to much higher temperatures than 100 ◦C. In 
general, the temperature dependence for saturated gases is very similar, 
which is especially true for oxygen and nitrogen, so that the shape of the 
curve (8) for oxygen is a proxy for air, with the absolute value well 
approximated by assuming a factor of 5 larger for air than oxygen. 

Zimmerman [3] argues that the Engineering Toolbox [22], which 
provides a graph (Fig. 9) of saturated DO s*(T) without actually 
explaining the origin of the data in the database explicitly, best describes 
the observation that dissolved oxygen vanishes as the boiling point of 
water is approached. This agrees with data points of Brucker [23] drawn 
from Winkler titrations, a method commonly used for assessing bio-
logical activity in ecological waters and wastewaters. The Winkler 
method expects that the (bio)chemical composition of the water is 
complex, but some prior knowledge of certain components is necessary 
to avoid false results. The Brucker [23] dataset is limited to [0 ◦C, 25 ◦C] 
as that characterizes most environmental waterways, with the notable 
single point exception – 100 ◦C. The Engineering Toolbox and Brucker 
[23] show the s*(T) level achieving 0 at 100 ◦C, with the Engineering 
Toolbox showing the rapid decline in s*(T) in the interval [80 ◦C, 
100 ◦C] as it diverges from Henry’s Law temperature dependence. 

Quoting the Engineering Toolbox [20]: 
“For maximum deaeration the water should be heated up to 100 ◦C 
at atmospheric pressure. This is common in steam systems where 
fresh water is supplied to the system through a heated deaeration 
tower on the top of the condensate receiver tank. It is also common to 
install deaeration devices on the hot sides of heat exchangers in 
heating distribution systems to force the dissolved air out of the 
system … When fresh water is heated up air bubbles start to form. 
The water can obviously not hold the dissolved air with increased 
temperature. At 100 ◦C water starts to boil – the bubbles are formed 
by evaporated water or steam. If the water is cooled down and then 
again reheated, bubbles will not appear until the water starts to boil. 
The water is deaerated.” 

This is the “received wisdom” that gently raising the temperature to 
100 ◦C deaerates, which is accord with two of the four sources of solu-
bility data in Fig. 3. This is the first connotation of boiling (i) as 
described in Section 2. Burridge and Linden [4] mention that for their ab 
origine experiments they boiled the water for the purpose of partial 
dearation. 

Dissolved gas solubility is a major unknown. Greater credence rests 
with the Engineering Toolbox [22] and the Winkler Method [23] as this 
information is experimentally driven and commonly practically applied. 
See Zimmerman [3]. 

The proposed description for the origin of additional heat transfer by 
dispersed microbubbles in this paper and its companions (Zimmerman 
[2,3]) has the virtues of being constructive and predictive. As presaged 
in the prior subsection, with no injection of microbubbles, a mass bal-
ance on dissolved gases and the microbubble phase fraction, presuming 
all the supersaturated gas migrates to the microbubble phase allows the 
determination of the microbubble phase fraction at a temperature T 
where Ttap is the temperature of the delivered cold tap water is found by 
Zimmerman [3] as 

ϕ(T) = ϕtap +
(
s*(Ttap

)
− s*(T)

) RT

PMw

(9)  

where ϕtap is the microbubble phase fraction before heating tap water. 
Mw is the molecular weight of the gas mixture. For convenience, Mw =

28.97g/mol is taken for air. This approach can be generalized to any 
initial microbubble phase fraction with forced convection of micro-
bubbles without assuming saturation of the liquid, to 

ϕ(T) = ϕ0 − s*(T)
RT

PMw

(10)  

where ϕ0 is the total initial equivalent volume fraction of air – both in 
the microbubble phase and dissolved in liquid water, without assuming 
saturation initially. Rather than treating the dynamics of mass transfer 
between the microbubble phase and concentration of dissolved gases as 
an additional transport equation, with the exchange term the explicit, 
this assumption allows the closure of the equations (4) with just the 
modification of the “Mpemba term”, viz.: 
DT

Dt
= ∇2T −ϕ(T)NMpemba(T)u⋅∇T (11) 

In some sense, this modification is the maximum expected deceleration 
of heat transfer possible by instantaneously decreasing the microbubble 
phase during cooling. Zimmerman [3] gives an argument for the 
convolution of heat transfer and mass transfer time scales that reflects 
the finite time scale for mass transfer due to the laminar boundary layer 
between the microbubble interface and the bulk. As both heat transfer 
and mass transfer are the result of molecular collisions, the timescales 
should be comparable. 

It was commented on in Section 3.1, concerning the flow and tem-
perature profiles shown in Fig. 3 that these profile were visually indis-
tinguishable, regardless of the variation of ϕ, yet the numerical values of 
the field variables themselves, as well as the Nusselt number, are 
dependent and sensitive to ϕ. Fig. 10 is an approach to quantifying this 
topological similitude for the streamfunction ψ and the temperature T 
fields. 

Moments of a distribution are a conventional means to assess its 
shape. In the case of the streamfunctions, it is clear that for low gravity 
group values, the topology of the streamlines are concentric circles, 
indicative of a central maximum. The position of the central maximum 
can be estimated by moments of the coordinates weighted by the 
normalized streamfunction: 

Fig. 9. Engineering Toolbox [20] solubility data for dissolved oxygen s*(T) in 
the liquid temperature range. 
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x =
1

ψ

∫

V

xψdV

y =
1

ψ

∫

V

yψdV

ψ =

∫

V

ψdV

(12) 

It should be noted that the streamfunction is inherently single-signed 
by the definition of the zero streamline as the boundary. As the 
streamfunction is parametrized by Gr, the global emergent values of (x,
y) varying only with Gr. Their position, as a trajectory in Gr, is shown in 
the parametric plot (Fig. 10 left) for the constant microbubble phase 
fraction model of Section 3.1 and the temperature dependent, inhomo-
geneous phase fraction model of equation (10). The value of ϕ0 = s*(0◦

C) RT
PMw selected is the minimum value for which the model adopting (10) 

is physically admissible. If a lower value is selected, then saturation 
cannot hold throughout the temperature range of the experiment, 
manifesting as equation (10) resulting in a range for which the phase 
fraction is negative. In such a case, the simplistic dependence relying on 
saturation holding everywhere would require relieving to an equilib-
rium condition with a low temperature, sub-saturated region(s) with no 
microbubble phase, in the first instance. 

Similarly, one can develop a notion of the non-uniformity or spread 
of the temperature profile to characterize its structure. Since the tem-
perature profile results in the distribution of the mass in the constant 
volume domain, a candidate global emergent feature is the moment of 
inertia of the mass distribution, defined here as: 

MI =
1

M

∫

V

(
(x − 0.5)2 + (y − 0.5)2

)
ρdV

M =

∫

V

ρdV

(13) 

Equation (13) tacitly assumes that the center of mass for the steady 
state density field ρ(T) is at the center of the square domain. Whether or 
not this holds, however, is immaterial to the interpretation that MI 
defined so defined is a global measure of the spread of the density 
profile. That the moment of inertia follows a universal curve for a given 
“average” ϕ, irrespective of the two models for phase fraction de-
pendency, re-inforces the universality of the topological transformations 
mapped out by Gr, with merely position on the trajectory dependent on 
the model and actual value of Gr. 

It should be noted that the additional Nusselt number follows the 

linearity approximation to ϕ0 proposed by Zimmerman [2] for its 
maximum value, with “near” linear behaviour the additional Nusselt 
number for higher Gr. 

It is not clear how to compare the two models. Undoubtedly, the 
additional heat transfer of the constant ϕ model of Section 3.1 should be 
higher than that of the temperature dependent microbubble phase 
fraction of Section 3.2. Only in the very highest temperature domain 
does ϕ ∼ ϕ0. So, given the sign of the additional heat convection 
mechanism due to phase change in (11), in colder regions, there would 
be expected to be less additional heat transfer from this mechanism. One 
candidate is to approximate the appropriate ϕ ∼ ϕ(T) for comparing the 
two models. The average temperature, however, is dependent on Gr in 
both models, so one phase fraction ϕ0 is insufficient to be “comparable” 

for the entire parameter space of Gr, in the laminar regime. 
Fig. 12 is one attempt to bracket the dissolved gas / microbubble 

exchange model for ϕ ∼ ϕ(T) with two values of the constant micro-
bubble phase fraction model. ϕ = 0.0284 is the low Gr approximation to 
ϕ ∼ ϕ(T). ϕ = 0.0316 is the high Gr value approximation, when ϕ0 =

Fig. 10. (left) Parametric plot of the “center of mass” for the streamfunction ψ while varying the gravity group Gr, see equation (12). (right) The moment of inertia 
MI defined in equation (13) variation with Gr. In both graphs, + refers to the phase fraction variation model with ϕ0 = s*(0◦C) RT

PMw, with s*(T) referring to saturated 
dissolved air. The solid curve is for constant microbubble phase fraction model of Section 3.1, of value ϕ = ϕ0. 

Fig. 11. The analogous graphic to Fig. 5 of Section 3.1 for the additional 
Nusselt number due to free convection with increasing gravity group Gr and 
three values of ϕ0, which has the interpretation of the microbubble phase 
fraction at sufficiently high temperature that the dissolved gases have evolved 
into the microbubble phase, with no dissolution, i.e. 100 ◦C in Fig. 9. 
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s*(0◦C) RT
PMw. These approximations are extracted by computing a poste-

riori the values of ϕ(T), for the simulations in Fig. 11. As seen in Fig. 12, 
the gas exchange has greater additional heat transfer than any of the 
range of average phase fractions – inhomogeneity allows for high heat 
transfer in through the hot regimes that can compensate for the higher 
resistance in the colder areas, on average. 

Perhaps the major takeaway message is that the trends predicted by 
the constant microbubble phase fraction all hold with this simplistic 
treatment of dissolved gas exchange with the microbubble phase, but the 
overall additional value is diminished relative to the maximum micro-
bubble phase fraction observable at the high temperatures near the hot 
wall. 

3.5. Assessing the Boussinesq approximation 

The rationale for the original adoption of the Boussinesq approxi-
mation is about the intended use of this modelling approach for com-
parison with experiments. After using the governing equations in [2] for 
the analysis of the Mpemba and Osborne [1] transient experiments, it is 
clear that extending these experiments to well controlled, systematically 
varied microbubble phase fractions, is a straightforward experiment. 
However, transient buoyant convection is not well studied. Adding 
compressibility effects to transient buoyant convection introduces sound 
waves as a mode of momentum transport. Given the speed of sound in 
water is much more rapid than vortical motions of the liquid, the tem-
poral resolution implications are severe. 

In general, numerical analysis that is only concerned with hydro-
dynamics in liquids excludes sound waves by assuming divergence-free 
velocity fields as the approximation to the continuity equation. How-
ever, adopting the compressible, transient continuity equation, can still 
be treated by numerical analysis to take hydrodynamic time steps that 
ignore fast sound wave momentum transport, by implementing stiff 
solvers, such as Gear’s Method, which incorporates backward time-
stepping (see Cooper, [25]). If stiff systems can be avoided by selection 
of the model equations, it is preferable to implementing stiff solvers, 
particularly when the rapid timescale dynamics are of no practical 

concern, such as sound waves emanating from this liquid-filled cavity. 
However, the more general compressible continuity equation for the 

steady state dynamics equations, ∇⋅ρ̂(T)u= 0, has no mode for sound 
wave emission, so the overall PDE system is not stiff. Comsol Multi-
physics v.5.6 implements this version of the Navier-Stokes equations as a 
built-in model variant, readily selected. The Bousinesq approximation 
(2) and the compressible variant were both simulated on the high res-
olution mesh described in Table 1, using the parametric solver, from Gr 
= 2 to 2 × 1013, for the base case of no microbubbles. 

Table 2 shows the numerical values of the Nusselt number found 
from the two simulations for the specific case of Gr = 2 × 1011. The 
difference is in the fourth significant digit, which is barely above the 
mesh resolution study of Table 1 in precision. There is, however, a 
noticeable difference in convergence properties of the two classes of 
simulation. The compressible model and Boussinesq model were similar 
in computational intensity up to Gr ~ 1012 in the parametric continu-
ation approach, taking a similar amount of time, with similar levels of 
iterations needed for convergence at intermediate Gr values. The 
computational intensity changed dramatically with higher Gr numbers. 
The compressible model achieved the full range in ~9 h on a 6 core Intel 
i5-8600 K processor at 3.6 GHz with 64 Gb RAM, requiring up to 20 Gb 
intermediate swell RAM. The Boussinesq model was abandoned at 24 h 
on the same processor with Gr ~ 1013, requiring intermediate RAM swell 
of ~40 Gb. Many more intermediate iterations of the stiffness matrix 
were required. 

Of course, inspection of Fig. 3 makes clear that at the highest Gr 
values computed, the shear in the thermal boundary layer becomes high 
and the temperature gradients large, potentially requiring mesh 
refinement for faster convergence as the boundary layers become even 
thinner. This insight is not new. A recent review [26] concludes that the 
Boussinesq equation is an acceptable approximation when the physical 
and thermodynamic properties of the fluid are permitted to vary with 
temperature, as is conducted here, by comparison to the weakly 
compressible and low Mach number approaches reviewed, for buoyant 
convective flows. For the purposes of the transient extension of the 
microbubble mediated heat transport model put forth here, the initial Gr 
number should be the main indicator of whether to adopt the Boussinesq 
approach which is not stiff, or the compressible approach, which has 
sound waves that add stiffness which would then be treated by a stiff 
solver to ignore the sound wave dynamics. 

4. Conclusions and outlook 

The hypothesis of proportionality between the additional heat 
transfer and the microbubble phase fraction holds within the micro-
fluidic range of flow cells, where convection dominates as proposed in 
[2] as due to scaling analysis. The prediction is found to hold only 
closely in the microfluidic regime of steady state buoyant convection. 
Monotonic increase but less than proportionality holds with larger flow 
cell characteristic lengths where stable stratification forms under steady 
state conditions. The formation of the stable stratification dominates the 
heat transfer dynamics, which could be alleviated by continuous 
microbubble injection and removal, such as in the airlift loop open 
system, frequently adopted for bioreactors [13]. 

Fig. 12. Additional Nusselt number computed by constant phase fraction 
simulations with ϕ = 0.0284 and ϕ = 0.0316, which bracket ϕ(T) at the low 
and high Gr values, respectively, for the gas exchange phase fraction model for 
ϕ0 = s*(0◦C) RT

PMw ∼ 0.53. It is observed that the gas exchange model has greater 
additional heat transfer than any in the range of values used for the constant 
phase fraction model. 

Table 2 
Emergent Nusselt number comparison of the compress-
ible and Boussinesq continuity models for Gr = 2 × 1011.  

Model Nusselt number 
Boussinesq  69.2790 
Compressible  69.2646  
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The buoyant heat transfer in a slot, with differential vertical side wall 
heating is a canonical heat transfer mode, and thus widely applied in the 
initial design phase for heat exchangers. Where the operational fluid is 
water in such slots, the addition of a long-lived dispersed microbubble 
phase is predicted by this paper to achieve faster heat transfer rates as 
proposed by [2] and consistent with accelerations found by [1]. The sole 
industrial applications currently known to rely on bubbles to mediate 
heat transfer are direct contact condensers and evaporators [89], but 
these do not achieve sufficient macromixing within the bubble phase to 
conduct the additional heat from hot liquid zones to cold liquid zones 
near the cold wall (e.g. condensers) with fine or coarse bubbles, as 
demonstrated by [6]. Hence, the immediate obvious application of this 
study is to direct contact condensers, which likely use water in the non- 
Boussinesq temperature range as the external cooling liquid. 

Including the effect of gas exchange between the microbubble phase 
and dissolved gases in the liquid, in the most simple treatment – 

requiring saturation of gases at all temperatures – does not qualitatively 
change the conclusions that the additional heat transfer at steady state 
due to microbubbles is linear in the microfluidic regime, and monotonic 
but diminishing gradually with increase phase fraction for larger do-
mains. This supports the letter of the hypothesis of Zimmerman [2] for 
the explanation of the Mpemba effect, and is certainly a strong support 
for the correlation. The microbubble phase fraction is shown to control 
the additional heat transfer, with increases of 5–45% predicted for the 
range of phase fractions of 2–20%. With the principle effects of disso-
lution captured, the above additional heat transfer ranges from 3 to 
30%. 

It has been noted by several participants of HEFAT 2021 that the 
Mpemba effect experiments are transient, but the simulations here are 
steady state. Certainly the extension to transient dynamics for equations 
(1) and (2) is very simple, although requiring substantial numerical 
analysis to establish consistent initial conditions. Nevertheless, the 
Mpemba and Osborne [1] findings show time scales for the onset of 
solidification of 30–60 min, by which it is simple to echo the observa-
tions of Burridge and Linden [4] that pseudo-steady stratifications that 
are predicted by the steady state simulations for centimetre scale and 
larger Gr must establish, providing a bottleneck on heat transfer, which 
becomes boundary layer controlled. Bregovic [24] found similar time-
scales for experiments with unboiled water, likely saturated in dissolved 
gases. Nevertheless, transient simulations would allow the assessment of 
whether microbubble mediation predicts the same scale heat transfer 
rates for such transient experiments. However, agreement on the 
appropriate protocols [3] so that our explanation for the origin of the 
effect is controlled – known microbubble phase fractions – is essential. 
Desai and co-workers [27,28,29] provide a prescription for estimating 
microbubble phase fraction by acoustic bubble spectrometry, which 
should be sufficient for initial state characterization. 

Zimmerman [2] identified several potential applications for this 
particular configuration, including heat storage in water tanks which are 
subject to buoyant convection alone. The closest to industrial usage are 
the potential application to desalination [30] or fracking produced 
water remediation [31], replacing direct contact evaporation and 
condensation. The latter is incorporated by the MIT spinout company 
Gradiant, mimicking the environmental desalination by solr heating for 
evaporation and overnight cooling for condensation. The scale of the 
parameters matches in all but the bubble phase, where conventional 
methods use bubbles with diameters 4 mm and larger. The additional 
convection from phase change only occurs with microbubble convec-
tion. It is fitting that the mechanism [23] likely responsible for Mpemba 
effect [1] rapidly chilling water be used for more sustainable water 
processing. 
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