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AbstractÐAdverse effects of chemotherapy often require acute
hospital admissions, which can negatively impact patients’ well-
being and increase healthcare burden. Identifying the risk of
hospital utilisation could support prevention of patients’ dete-
rioration and alert medical teams about potential admissions.
This study uses patients’ clinical and demographic data, patient-
reported outcome measures, and time-series symptom severity
reports to predict the risk of hospital admissions and triage
events within 14 days from completed symptom severity report.
Hospital utilisation at any time during chemotherapy was also
predicted. The performance of long-short term memory (LSTM)
and extreme gradient boosting (XGBoost) models was compared.
Nested cross-validation enabled robust hyperparameter tuning
and model evaluation using unseen data. Patient representatives
and a clinical oncologist were consulted during the study design
to support its clinical relevance. LSTM outperformed XGBoost
at short-term predictions of hospital admission (balanced accu-
racy=0.780, AUC=0.845) and triage (balanced accuracy=0.706,
AUC=0.779). However, XGBoost performed better at long-term
predictions. The results suggest that LSTM processed complex
data with sudden fluctuations better than XGBoost. However,
classical ML might be sufficient for longer-term outcome pre-
dictions. If further explored, these models could prompt hospital
contact prior to patient’s deterioration and prevent admission or
alert medical team of potential hospitalisation.

Index TermsÐpatient-reported data, time-series data, LSTM,
hospital utilisation predictions

I. INTRODUCTION

Chemotherapy toxicity is associated with physical, psycho-

logical, and psychosocial symptoms negatively impacting pa-

tients’ quality of life (QoL). Adverse effects of chemotherapy

can lead to initial or prolonged hospitalisation, permanent

disability, life-threatening situations, or death [1]. Unplanned

healthcare utilisation during chemotherapy can be detrimental

to healthcare quality, through increased burden on hospitals.

Identifying symptoms that contribute to acute presentations to

hospitals of cancer patients can support planning for emer-

gency admissions, increase the quality of care, and reduce

healthcare costs [2]. Predictions of acute admissions may help

to prompt hospital contact, activate emergency alerts to the

medical team, and prevent patient deterioration [3].

Understanding symptom experiences and severity is possi-

ble due to the use of patient-reported data collected through-

out chemotherapy. Questionnaires, such as symptom severity

reports or patient-reported outcome measures (PROMs) can

capture patients’ perspective on their own health status [3].

These have been useful in clinical practice through increasing

patient involvement in shared treatment decision making.

There is also existing evidence that patient-reported data can

add predictive value to machine learning (ML) models [4],

[5]. However, there is limited research on deep learning (DL)

approaches applied on such data [6].

To explore the potential of DL models applied to time-series

patient-reported data, this study investigates the performance

of long-short term memory (LSTM) model, a type of recurrent

neural network (RNN), in the short-term predictions of acute

hospital admissions and triage events occurring within 14 days

from completing a symptom severity report. Predictions of

admissions and clinical triage events following a report at

any time during chemotherapy are also explored. All models

use time-series symptom severity reports and PROMs, as well

as static data, such as clinical and demographic information.

LSTM performances are compared with extreme gradient

boosting (XGBoost) [7], which acts as a baseline in this study.



A. Related work

Hospital utilisation is a common outcome in medical pre-

diction models [8], suggesting that AI has a potential to

support hospitals in improving healthcare quality. Hospital

utilisation predictions can involve detecting changes in data

happening over a long period of time, or sudden events.

According to a literature review conducted by Teo et al.,

[8] classical statistical and ML models can perform well in

predicting outcomes not limited in time (e.g., cardiovascular

disease readmission). However, the LSTM model was superior

in predicting outcomes that required capturing sudden changes

in patterns of data (e.g., intensive care unit readmissions).

Studies predicting hospital utilisation often use statistical

models, or classical ML methods [9], [10] with limited capa-

bility to capture complex dependencies and patterns in multi-

dimentional or time-series data [11]. There are existing studies

exploring DL models for predictions of oncology outcomes,

but the main focus has been on toxicity symptoms [12]±[14],

rather than hospital utilisation. These studies have used LSTM

model, which is the most common approach to process time-

series data in healthcare [11]. Of these studies, only Wang

et al., in a paper predicting head and neck cancer symptoms

[12], and its follow-up study [13] used patient-reported data.

Both studies described a common challenge of using longitu-

dinally collected patient-reported data, which is the irregularity

in patients’ reports. Therefore, they explored missing data

imputation techniques. Nevertheless, these techniques might

introduce bias and prevent the model from learning from

the patterns of missingness, which could hold information on

patients’ health status.

Furthermore, Wang et al., [13] have only used patient-

reported data without the inclusion of clinical or demographic

information. Combining time-series data with static data (e.g.,

demographic) adds a challenge in DL model development. A

simple approach is a repetition of the same static information

for each time-point generated by the same patient [11]. How-

ever, there are possibilities to use the DL network architecture

to handle static data inclusion more efficiently. Time-series

and static data can be processed by different network layers

as separate inputs. This is the most common approach in

medical outcome predictions using static and temporal data

[11]. For example, Li et al., [15] used a multi-modal fusion

approach that uses the representation of static data as the initial

hidden state of RNN. Another study put static input separately

through a fully connected layer, and time-series input though

LSTM and convolutional neural network layers, combining

both outputs at the end [16].

Cancer prediction and diagnosis models rarely include

patient-reported data [6], missing the information on patients’

perspective on their health. Even though such studies pre-

dict clinical outcomes, there is also no evidence of patient

or clinician engagement during the study design. Since the

development of AI models is not based on patients’ perspective

or clinical knowledge, it might not actually serve its purpose

or address needs of diverse group of people in an equal and

fair way. Involving patients and public input is essential not

only for the feasibility of novel models, but also for increasing

public trust in AI research [17].

B. Contributions

To our knowledge, there is no existing research predicting

chemotherapy toxicity related hospital utilisation using DL

models and time-series patient-reported data combined with

static clinical and demographic information. The proposed

approach uses LSTM models to predict admissions and triage

events within 14 days from the completion of a symptom

severity report. A successful system that can alert to potential

complications during chemotherapy can be extremely useful to

prevent serious complications or hospitalisation [3]. Therefore,

the main contribution of this study is the short-term prediction

of hospital utilisation based on longitudinal patient-reported

symptom severity reports using LSTM models. Admissions

and triage events happening at any time of the chemotherapy

were also predicted. In this study the information from missing

reports was used, and not imputed, providing the model with

an opportunity to learn from the irregularities in reporting.

This approach was decided following the consultations with

patient representatives and a clinical oncologist during the

study design. They suggested that the irregularity of reporting

might provide the information of patients’ health status (e.g.,

feeling too fatigued to report).

II. METHODS

A. Overall methodology

This study explores the performance of LSTM and XG-

Boost using clinical, demographic, and longitudinally col-

lected patient-reported data predicting admissions and triage

happening within 14 days from a completed symptom sever-

ity report (short-term predictions) and at any time during

chemotherapy (long-term predictions). Figure 1 illustrates the

overall methodology of this research. LSTM is the most

common model to process time-series data in healthcare [11],

so was selected as a DL model in this study. XGBoost is

a baseline model, as it is often compared to DL models

when predicting outcomes from numerical, tabular data [7].

XGBoost also performed very well in previous studies pre-

dicting hospital utilisation, outperforming other ML models

[18]. Patient representatives were consulted during the study

design to provide the patients’ perspective on the subject.

The decisions regarding outcomes and feature engineering

were influenced by these consultations. Furthermore, a clinical

oncologist was involved, which improved the robustness of the

design and its relevance to clinical practice.

B. Dataset

The data were collected from 256 patients initiating sys-

temic treatment for colorectal, breast, or gynecologic cancers

in an eRAPID clinical trial [3] at Leeds Cancer Centre (United

Kingdom) between January 22, 2015, and June 11, 2018.
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Fig. 1. Flow diagram illustrating data flow and the nested cross-validation (CV) pipeline for implementing LSTM and XGBoost models in this study.

The static data are clinical and demographic information de-

rived from electronic healthcare records. Time-series features

include symptom severity reports and PROMs. The patients

were asked to complete symptom severity reports weekly for

18 weeks. There were 3260 reports in total. Each included

multiple symptoms (pain, nausea, vomiting, diarrhoea, tem-

perature, chills, physical ability, appetite, fatigue, sore mouth,

indigestion, shortness of breath) and a scale for assessing

severity from 0 (no symptom) to 3 (severe). PROMs were

completed by participants at 4 time-points (baseline at the start

of the trial, and at 6-, 12-, and 18-week follow-up). For each

time-point, 6 variables were from Five-dimensional Visual

Analogue Scale (EQ-5D-VAS), including mobility, self-care,

usual activities, pain/discomfort, anxiety/depression, and self-

rated health status; 4 variables from Functional Assessment

of Cancer Therapy - General 28 items (FACT-G), including

aggregated scores of physical, social, emotional and functional

well-being; and 2 remaining variables were social and role

scale from EORTC Core QoL Questionnaire (QLQ-C30). See

eRAPID clinical trial report [3] for details on questionnaires.

C. Outcome variables

The outcomes of this study are the short-term and long-term

predictions of hospital utilisation:

Short-term predictions of hospital utilisation:

• Admission within 14 days (whether a patient was admit-

ted to hospital within 14 days from completing the report)

• Clinical triage within 14 days (whether a patient con-

tacted hospital within 14 days from completing the report)

Long-term predictions of hospital utilisation:

• Admission (whether a patient was admitted to hospital at

any time during chemotherapy, following the report)

• Clinical triage (whether a patient contacted hospital at

any time during chemotherapy, following the report)

The 14-day window of admission was chosen by a clinical

oncologist as a useful time frame for detecting symptom dete-

rioration in clinical practice, which would enable preparing

for or avoiding potential admission. These outcomes were

computed from the dates of admissions and triage episodes

during the clinical trial. A binary column was created to

indicate if the event happened (1) or not (0), following the

completion of the symptom report. The long-term predictions

don’t limit the time frame to any specific amount of days, so

the patterns in data can be less complex to capture [8].

D. Data pre-processing

1) Feature engineering: Since symptom severity reports

and PROMs were collected at different time-steps, a PROMs

value was allocated to each report depending on the time-step

of completion (for example, for each report completed between

baseline and 6 weeks, the PROMs collected at baseline were



allocated; for reports between 6 and 12 weeks, the PROMs

collected at 6 weeks were allocated). The static data were

kept separately during the data pre-processing stage for LSTM.

However, for XGBoost, to each report, repeated values of

patient’s static data were added. From all available features,

the selection of clinically relevant ones was performed by a

clinical oncologist.

2) Addressing irregularity in data: LSTM model requires

all data sequences to have the same length for each subject.

However, the number of reports submitted by each patient

varied due to missed or frequent reporting. The challenge

of irregularity can be addressed in 2 different ways: 1) by

aggregating the reports that were completed more than once

a week (e.g., taking average or the lowest score out of all

reports completed during that week) and imputing the missing

reports [12], or 2) by leaving the irregularity in data, padding

to longest sequence, and including a variable which indicates

the time interval between the current and previous report. Due

to a significant variability in frequency of reporting, option

1) would create too much synthetic data and would prevent

the model from learning on real data. Therefore, a variable

was created to indicate the number of days since the previous

report. It provides the opportunity for the model to learn from

the temporal pattern of reporting. Missing reports were not

imputed, but k-nearest neighbors (KNN, k=5) was used to

impute any sporadic missing data. There are very few cases

of missingness in this dataset. Three patients were outliers,

and therefore their data were removed. The longest sequence

(43 reports) was then selected and all sequences were padded

(filled with a particular value) to match its length within the

nested cross-validation loops. This is a common approach to

adjust the size of the data in DL model development [19].

E. Model implementation pipeline

1) LSTM model architecture: The model accepts 2 separate

inputs: static data (demographic and clinical information) and

time-series data (symptom severity reports and PROMs). The

LSTM layer processes time-series data, and outputs the hidden

representation of time-series sequences. The fully connected

layer receives the concatenated input of static data and the

LSTM output (processed temporal dependencies). The output

is converted by sigmoid activation to a probability for binary

classification. Therefore, final output is the binary prediction

of event not happening (0) or happening (1). The model archi-

tecture is presented in Figure 2. The hidden size, number of

layers, learning rate were established through hyperparameter

tuning. Due to large class imbalance in data (out of 3260

reports, there were: 640 admissions, 175 admission within 14

days, 1212 triage events, 454 triage events within 14 days),

class weight factor was set to 1.

2) Nested cross-validation: To ensure robust hyperparam-

eter optimisation, prevent data leakage and over-estimation of

results, the models were implemented through the loops of

nested cross-validation [20] (Figure 1). The hyperparameter

LSTM LSTM LSTM LSTM

Fully connected 

layer

t1 t2 t3 tn

Input: 

Time-series data

Final output:

Binary classification of event 

at each time-point 

LSTM output: 

Hidden representation of time-series data

Input: 

Static data

…

Fig. 2. Flow diagram illustrating the LSTM model. Time-series input is
processed through LSTM layer, which output is then passed through fully
connected layer, receiving separate static input. The model hyperparameters
were established during nested cross-validation process.

tuning was performed in the inner cross-validation loop and

in outer cross-validation loop model was evaluated on unseen

test set. In each loop a stratified split of patients to train

and test sets was completed. The continuous variables were

scaled to unit variance, and missing values were imputed with

KNN(k=5). The sequences were padded with -999 in order to

avoid confusion with zeros existing in the dataset. To further

avoid model learning from padded data, masking was applied

on padded values. All these steps were performed within loops

to avoid data leakage to test sets.

The hyperparameter tuning in the inner loop involved the

following hyperparameter sets: hidden size: [64, 128], number

of layers: [1, 2], and learning rate: [0.001, 0.0001]. The

number of inner folds was 2. Each iteration involved 20

epochs, but early stopping was introduced if the validation loss

was not improved in 5 epochs. In the outer loop, the model

with hyperparameters selected in the inner loop was trained

during 50 epochs and evaluated based on the average of the

performance metrics over 3 iterations. The model was trained

with ºBCEWithLogitsLossº loss function combining sigmoid

activation and binary cross-entropy loss, due to the required

binary output (event happening or not happening).

The pipeline for XGBoost was the same, with some ad-

justments. In each loop, the training set was balanced using

Synthetic Minority Oversampling Technique (SMOTE), to

help the model learn from the originally imbalanced data.

This step was unnecessary in LSTM, as the class weight

factor was adjusted. Furthermore, XGBoost does not require

as much running time as LSTM, so the nested cross-validation

included 5 iterations of both inner and outer loops. In LSTM,

to support code efficiency, the number of iterations was limited

[7]. Another difference between the 2 models was combining



static and temporal data. XGBoost cannot take 2 separate

inputs, so the static data was repeated for each time-step.

The hyperparameters grid for XGBoost involved: number of

estimators: [50, 100], learning rate: [0.01, 0.05], maximum

depth: [3, 4], subsample: [0.7, 0.8], and percentage of features

used for building each tree: [0.7, 0.8].

F. Evaluation metrics

The models were evaluated with 5 different performance

metrics. Balanced accuracy was selected as the main one, as

it is useful at assessing performance of models serving as a

screening system, being able to capture model’s bias towards

one class. Area under the ROC curve (AUC) was also used,

as it is a very common metric in ML studies. Even though

it is not recommended for imbalanced data, it can be used

for between-studies comparison. Recall and specificity are

considered as important metrics which explain the model’s

abilities to discriminate between classes. Plotted together, they

can help visualise if the model is struggling with a positive or

negative class. Accuracy was also reported due to its common

use in research, but is not discussed, as it is not relevant for

models tested on imbalanced data.

III. RESULTS

A. Short-term predictions

Table I and Figure 3 present all results for short-term

predictions of admission and triage. Overall, LSTM performed

better than XGBoost. Balanced accuracy indicated advantage

of using LSTM (0.780 for admission within 14 days and

0.706 for triage within 14 days) over XGBoost (0.545 for

admission within 14 days and 0.532 for triage within 14 days)

for short-term predictions. AUC of 0.845 suggests a very good

performance of LSTM for short-term admissions prediction,

which is also higher than the AUC of XGBoost (0.724). LSTM

for short-term predictions of triage also resulted with higher

AUC (0.779) than XGBoost (0.687). Specificity of LSTM pre-

dicting admission within 14 days is high (0.846), with lower

recall (0.715), suggesting that the model is slightly better at

detecting negative class. However, the overall performance is

balanced, as all metrics are considerably high. The specificity

of XGBoost (0.991), which means that the model is very good

at detecting negative class. However, it has an extremely low

recall of 0.098, suggesting that the model tends to predict

no admissions within 14 days from most reports, generating

a lot of false negative results. For triage, XGBoost has a

similar bias towards positive class, with recall of 0.085 and

specificity of 0.979. LSTM predicted triage within 14 days

with much higher recall (0.699), and lower specificity (0.712).

Overall, the results of LSTM are much more balanced than of

XGBoost, without bias towards any class.

Overall, short-term predictions of admissions had a higher

performance than of triage. However, balanced accuracy was

only slightly higher for admission within 14 days than triage

within 14 days for both LSTM and XGBoost, with the dif-

ference lower than 0.1. All other metrics consistently suggest

better performance of both models for short-term predictions

TABLE I
LSTM AND XGBOOST PERFORMANCE OF SHORT-TERM AND LONG-TERM

PREDICTIONS OF HOSPITAL UTILISATION.

Evaluation metric Model
Admission

within 14 days

Triage

within 14 days
Admission Triage

Balanced accuracy
LSTM 0.780 0.706 0.717 0.776

XGBoost 0.545 0.532 0.813 0.836

AUC
LSTM 0.845 0.779 0.775 0.839

XGBoost 0.724 0.687 0.939 0.917

Recall
LSTM 0.715 0.699 0.618 0.823

XGBoost 0.098 0.085 0.654 0.795

Specificity
LSTM 0.846 0.712 0.816 0.729

XGBoost 0.991 0.979 0.973 0.877

Accuracy
LSTM 0.836 0.709 0.773 0.765

XGBoost 0.943 0.853 0.914 0.912

Fig. 3. Plotted balanced accuracy, AUC, recall and specificity of LSTM and
XGBoost predicting admission and triage within 14 days.

of admissions than triage. It suggest that predicting admission

within 14 days led to fewer false negative and false positive

results than predicting triage within 14 days (Figure 3).

B. Long-term predictions

Figure 4 and Table I present the results of long-term hos-

pital utilisation predictions. Overall, the long-term predictions

were good for both models. However, unlike in short-term

predictions, XGBoost performed better than LSTM, achieving

higher balanced accuracy, AUC and specificity for both admis-

sion and triage predictions. Recall was very similar for both

models. XGBoost resulted with higher recall for admissions

prediction, and LSTM for triage prediction. The balanced

accuracy of 0.8.13 and AUC of 0.939 suggest that XGBoost

can successfully predict admission during chemotherapy with

a good performance. Similarly, balanced accuracy of 0.836

and AUC of 0.917 suggest a good performance of XGBoost

predicting clinical triage. The balanced accuracy for LSTM

was 0.717 (admission prediction), and 0.776 (triage predic-

tion) which is only slightly lower than for XGBoost. The

recall in predicting admission was moderate for both models

(between 0.6 and 0.7), suggesting a bias towards a negative

class. Models predicting triage had a higher performance than

predicting admissions, based on balanced accuracy. However,

the difference was lower than 0.1 for both models.



Fig. 4. Plotted balanced accuracy, AUC, recall and specificity of LSTM and
XGBoost predicting admission and triage.

IV. DISCUSSION

The results of this study indicate that LSTM model is

successful at short-term predictions of hospital utilisation and

its performance is superior to XGBoost. However, LSTM

performed slightly worse than XGBoost at predicting hospital

utilisation happening at any time during chemotherapy.

LSTM performing better than XGBoost in short-term hos-

pital predictions is consistent with literature suggesting that

DL models are able to process more complex and sudden

fluctuations in the dataset [8]. Therefore, in time-series sce-

narios where the outcomes happen shortly after the input

time-step, deep network architectures, such as LSTM, have

more potential to succeed. On the other hand, the performance

of long-term predictions of admission and triage was better

for XGBoost than LSTM. However, the difference in these

performances was not as high as for short-term predictions.

There is previous evidence that XGBoost often outperforms

DL models when predicting outcomes from numerical, tabular

data [7]. The complexity of sudden outcome following report

was removed in these scenario, which might have strengthen

the performance of XGBoost. Another explanation for the

differences in the model performances can be derived from

significance testing of the differences between variables for

each class of the outcomes. Table II presents the number

of variables which are statistically significantly different for

classes in each outcome. It indicates that more features differed

significantly for classes in admission and triage than for classes

in admission and triage within 14 days. These differences

might have provided a more structured discriminatory advan-

tage for XGBoost in predicting admission and triage. For

short-term predictions more complex dependencies in data

were necessary to process, which LSTM succeeded in.

The overall performance of all models is good, which can be

compared with other studies. Peterson et al., [10], predicted

emergency department visits and hospital admissions during

chemotherapy from clinical, demographic and patient-reported

data using ML models. The reported AUC for the best model

was 0.783, which is lower than the highest AUC of LSTM

TABLE II
NUMBER OF FEATURES WITHIN DIFFERENT SIGNIFICANCE LEVELS OF THE

DIFFERENCE BETWEEN CLASSES FOR EACH OUTCOME.

Admission
within 14 days

Triage
within 14 days

Admission Triage

p<0.001 14 16 20 21
p<0.01 6 6 8 8
p<0.05 5 6 1 4
p>0.05 18 15 14 10

for short-term admission predictions (0.845), and XGBoost for

admission during chemotherapy predictions (0.939). In another

study predicting emergency visits and hospital admissions

during cancer treatment [9], the AUC of gradient tree boosting

was 0.798, which is also lower, compared to the results in this

study. Good performance of these models might be the result

of robust design with nested cross-validation, as this approach

can reduce bias in model selection [21].

The strengths of this study include the prediction of an

outcome within the short time frame of patient-reported

symptom severity. If applied in clinical practice, such system

could help guide the identification of patient deterioration

and support to prevent hospital admission. The involvement

of patient representatives and a clinician in a study design

provided perspectives of stakeholders which is necessary for

any AI system to be included in clinical practice. Furthermore,

the model implementation with the nested cross-validation

pipeline enabled robust hyperparameter tuning and minimised

the risk of data leakage [20]. Additionally, multiple evaluation

metrics reported enable in-depth explanation of model perfor-

mance and between-study comparison.

The interpretation of the study should also consider its

limitations. The inherent bias of participant samples recruited

to clinical trials could affect the representability of the sample.

Therefore, future work should validate the models on an

external dataset. The sample size in this study is also relatively

small, which could have negatively affected the performance

of LSTM, as DL models require more data than classical ML

models [6]. Furthermore, even though LSTM and XGBoost

were implemented through the same pipeline, the differences

included the combination of static and time-series features,

and handling class imbalance. The discrepancies could have

affected the performance of the models, but were unavoidable

due to different model architectures. The number of iterations

was also inconsistent between the 2 models, which could have

prevented LSTM from learning effectively. In the future, the

trade-off between model efficiency and the robustness of the

design should be explored. Future work should also involve

more structured focus groups with patients and clinicians,

including the discussion around results interpretation.

V. CONCLUSION

This study used time-series patient reported data, as well as

static demographic and clinical information to predict hospital

utilisation during chemotherapy. LSTM model, by detecting

sudden changes in data, successfully predicted admissions and



triage events happening within 14 days from symptom severity

reports, outperforming XGBoost. However, admissions and

triage predictions at any time during chemotherapy resulted

with higher performance of XGBoost. It suggests that simple

ML models might be better for less complex predictions.

If further explored, this study could support reducing acute

hospital utilisation during chemotherapy by detecting risk of

deterioration in a timely manner. Furthermore, it encourages

patient and clinician involvement in AI research and supports

informed shared treatment decision-making.
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