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Larmor radiation as a witness to the Unruh effect
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We discuss the emission of radiation from general sources in quantum scalar, electromagnetic, and
gravitational fields using the Rindler coordinate frame, which is suitable for uniformly accelerated
observers, in the Minkowski vacuum. In particular, we point out that to recover, from the point of view of
uniformly accelerated observers in the interaction picture, the usual Larmor radiation, which is independent
of the choice of the vacuum state, it is necessary to incorporate the Unruh effect assuming the Minkowski
vacuum. Thus, the observation of classical Larmor radiation in the Minkowski vacuum could be seen as
vindicating the Unruh effect in the sense that it is not correctly recovered in the uniformly accelerated frame

unless the Unruh effect is taken into account.
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I. INTRODUCTION

Quantum mechanics (QM) and special relativity (SR),
each in their own way have profoundly changed our
understanding of nature. While classic determinism had
to give way to the inherent uncertainties of quantum
superpositions, space and time were eventually understood
as just parts of a more fundamental stage, the spacetime, on
which mass-energy equivalence opened the way for
“matter” to no longer be conserved. In view of these
shifts in the paradigm separately promoted by QM and SR,
it should not come as a surprise that their combination into
the successful framework of quantum field theory (QFT)
would lead to novel effects which defy our intuition. The
relative (hence, nonfundamental) nature of the quantum
particle concept is possibly one of the most underappre-
ciated revelations of QFT. It probably finds its utmost
realization in the Unruh effect [1], according to which the
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usual vacuum state of a QFT in Minkowski spacetime—
i.e., the state that inertial observers describe as the absence
of real particles—is “seen” as a thermal bath of particles by
uniformly accelerated observers. This effect is closely
related to the Hawking effect, which leads to the evapo-
ration of black holes [2,3].

Despite the rigorous derivations of the Unruh effect in
QFT using different approaches [see Refs. [4-7] ], its reality
(or consequences) are frequently put into question [see, e.g.,
Refs. [8—14] ]—not rarely due to misconceptions about its
precise meaning. These debates have motivated several
proposals for observing signatures of the acceleration
radiation in the laboratory [see, e.g., Refs. [15-25] and
references therein]. In considering these proposals, it is
important to keep in mind that the Unruh effect is not an
additional ingredient which is assumed on top of QFT in the
inertial frame; this is an effect that must be taken into
account when interpreting standard inertial-frame QFT
results from the perspective of uniformly accelerated
observers. In other words, without the Unruh thermal bath
in the uniformly accelerated frame, uniformly accelerated
observers would not be able to explain the phenomena that
inertial observers in the usual vacuum successfully describe
with the standard QFT. The Unruh effect in QFT is
analogous to inertial forces, also known as fictitious forces,
in Newtonian mechanics: one needs to take the inertial

Published by the American Physical Society
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forces into account in the non-inertial frame in order to
correctly describe the motion of particles which inertial
observers successfully describe using Newton’s laws with-
out these “extra” forces. Similarly, one needs to take the
Unruh effect into account to use QFT in a uniformly
accelerated frame in order to correctly describe the results
of QFT in an inertial frame. This analogy clarifies what
constitutes an “observation” of the Unruh effect in any
inertial lab-based experiment: it means measuring an effect
in the inertial frame which uniformly accelerated observers
can only account for by using the Unruh thermal bath.

The main purpose of this paper is to explain further the
fact that usual classical radiation (as measured in inertial
frames), such as Larmor radiation [26,27], can be consid-
ered as such an observation of the Unruh effect. This has
already been pointed out in the literature with particular
sources and worldlines [28-35]; here, we present a general
proof valid not only for the electromagnetic field with
general charge distributions but also for the scalar and
graviton fields.

Building on the observation of Unruh and Wald that the
emission of a quantum in the inertial frame corresponds to
either the emission or absorption of a quantum to or from
the Unruh thermal bath in the uniformly accelerated frame
[36], we show here that, at first order in perturbation theory,
the interaction probability (i.e., the sum of emission and
absorption probabilities) of a classical source according to
uniformly accelerated observers, in the presence of the
Unruh thermal bath, gives exactly the emission probability
needed to reproduce classical radiation from the inertial
perspective. The quantum nature of the Unruh effect is
reflected in the fact that this agreement is only possible by
assuming that radiation is made of quanta, whose energy E
and frequency v are related by Planck’s formula, E = hv,
with & being Planck’s constant.

The rest of the paper is organized as follows. In Sec. I,
we expand the massless Klein-Gordon scalar field using
the Unruh modes and their complex conjugates, which are
eigenfunctions of the boost Killing vector field and are
positive- and negative-frequency solutions with respect to
inertial time translations—and, as such, can be used to
define the vacuum state, representing absence of particles
according to inertial observers. In Sec. III, we relate the
Unruh modes with the Rindler modes, which are eigen-
functions of the boost Killing vector field with support in a
Rindler wedge—hence, related to quantization in the

uniformly accelerated frame. Then, in Sec. IV, we calculate

the following two quantities: (i) the probability P%) for a

classical source to emit a quantum of the field, from the
inertial-frame perspective, and (ii) the probability Pi(ft) for
the same classical source to absorb or emit a quantum from
or to the Unruh thermal bath, from the uniformly accel-
erated perspective. These two quantities turn out to be
exactly the same, provided the source is completely

contained in the Rindler wedge (so that it can be fully

described in the uniformly accelerated frame). Section V is
devoted to extending the result in Sec. IV to the electro-
magnetic and graviton fields. Finally, in Sec. VI, we present
our final considerations and discussion. In Appendix A we
confirm for the scalar case that the classical radiation
formula is found in the Heisenberg picture in any vacuum
state, and in Appendix B we show, also for the scalar case,
how the classical radiation formula is reproduced in the
Fulling vacuum state as well in the interaction picture. We
adopt the metric signature (4, —, —, —) and natural units, in
which i =c = 1.

II. THE UNRUH MODES AS THE BOOST
EIGENFUNCTIONS

We begin by considering the Unruh effect for the free
massless scalar field. This quantum field is naturally
expanded in terms of the momentum eigenstates as [37]

. &Ik
P = | Gk

(A @a+ fF el (1)

with x = (£,x) = (t,z.x, ), k = (k.,,k ), and k = ||k
where

’

FR(x) = emikirikx = poikitikzrik x| (2)

The annihilation and creation operators, @, and &f(, satisfy
ay, a;,] = (27)*2k6%) (k — k'), (3)

with all other commutators among them vanishing. The
Minkowski vacuum, |Oy;), is defined by

a|0y) =0 for all k. (4)

The Unruh modes, introduced in Unruh’s original paper
[1], can be characterized as the superpositions of f* (x) that
are eigenfunctions of the boost transformation in the
z-direction. To see this, we first define the rapidity in
the z-direction by

(5)

where a(>0) and 9 have the dimensions of acceleration
and time, respectively. Then,

k =k, cosh ad, (6)
k, =k, sinh a9, (7)
where k; = ||k, ||. The commutator (3) can be written as

[ay. a))] = 162°a'8(9 — 9)8@ (k, —K'), (8)
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where & is the rapidity for k', and the measure for the
integration over k can be written as

&Pk

(2m)2k 16 Tom 10k ©)

Now, we define the Unruh modes by [38,39]

@k (x) = a/°° =09 X ()49, (10)

which can be inverted as

& (x) = ! /00 ey @k (x)dw. (11)

2za
[See Ref. [40] for a similar formula for the Unruh modes for
the spinor field.] Under the boost transformation para-
metrized by f,

(t,z) > ( cosh afp — z sinh a3, —t sinh aff + z cosh ap),

(12)
we have f¥(x) — f¥(x), where

k', =k, and k. =k, sinh[a(d+ p)].

This transformation can be undone in the integral in
Eq. (10) by letting 9 — 9 — . Thus, under the boost
transformation (12), the Unruh modes transform as
U@k (x) > e Py(@ki) (x). That is, the Unruh modes
are indeed eigenfunctions of the boost transformation in
the z-direction.

It is clear from Eqs. (10) and (11) that the Unruh modes
form a (generalized) basis for the space of positive-
frequency solutions to the Klein-Gordon equation.
Hence, one can expand the quantum field ¢(x) in terms
of the Unruh modes:

/koi/ mkl
167%a

+ uokD) (x )b(}mkl } (13)

)2((1),kl)

Substituting Eq. (11) into Eq. (1) with Eq. (9) and
identifying the coefficients of u(*kK.)(x) as Z)(m,kﬁ in
Eq. (13), we find

~ a

bwx,) = o e a, dy. (14)

Then, we find from Eq. (8),

A

[,y iy i) = 87°ad(0 = )P (k ~ k). (15)

Since the operators lA)(w,k ) are superpositions of ay, the
Minkowski vacuum state is annihilated by them:

bipi,)lOm) =0 forallw and k;.  (16)

III. THE UNRUH MODES IN RINDLER
COORDINATES

In this section we show that the definition (10) of the
Unruh modes agrees with the standard definition as linear
combinations of the Rindler modes [41]. Then we review
some aspects of the Unruh effect. First we define the
Rindler coordinates and Rindler wedges. Right Rindler
coordinates, 7 and &, are defined by the relations

t = a~'e sinh ar, (17)
z=a"'e® cosh ar. (18)
The constant a is the proper acceleration of the worldline

defined by £ =0 and x| = constant. These coordinates,
together with x |, cover the right Rindler wedge defined by

z > |t|. Left Rindler coordinates, 7 and &, are defined by
t = a~'e® sinh a7, (19)

z = —a"'e% cosh az. (20)

These coordinates, together with x |, cover the left Rindler
wedge defined by z < —[z|.

The Unruh modes (10) can be expressed in
Rindler coordinates given by Egs. (17)—(20), using
Egs. (6) and (7), as

I/t(w’kl-)(x) — ge~lot /oo e—iwsﬂ'(kl_/a) exp(aé) sinh as+ikj_-xj_ds’
(21)
in the right Rindler wedge, and

S ® . .
u(“’qu) (X) = qel®? / e—ia}s—i(kL/a)exp(af) sinh aH»szdes’

—0o0

(22)

in the left Rindler wedge. Using the formula [[42],
Eq. 10.32.7]

o 2
/ elws pix sinh asde — E 7m)/2aKlw/u( ) for x > 0, (23)

and its complex conjugate, where K, (x) is the modified
Bessel function of the second kind, and recalling that
K, (x) = K_,(x), we find
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u(waki) (x) =

2em@/2a K ,a,/a( “5) —iot+ik, X1 ip the right Rindler wedge,

2e ‘”‘”/Z“K,w/a( af) Wik X, in the left Rindler wedge.

(24)

This equation is valid for all real values of @. Now, we define the right and left Rindler modes, v®:®*1) (x) and v @K1 (x),

respectively, for @ > 0 by

u(w,kl) ()C) _ e—ﬂw/au(—w,—kL) (x)

U(R:“"kﬁ(x) —

U(L:(ukj_)(x) —

Then,

ot YT 5)
0

U(L:“"kﬁ(x) _

The right Rindler modes are positive-frequency with
respect to the Killing vector field d/dr, whereas the left
Rindler modes are positive-frequency with respect to the
Killing vector field d/07. The Unruh modes can be
expressed in terms of the Rindler modes by inverting the
relations (25) and (26) for @ > 0 as

v(R:w.kl) (x) 4 e—/tw/av(L:w.—kL) (x)

ul@k)(x) = , 29
( ) VA e—Zmu/a ( )
u(—w,kL)(x) _ ,U(L:m,kL) (x) + e—zzm/av(R:w,—kL) (x) (30)
V1= e—27m)/a
The scalar field ¢(x) can be written as
$(x) = Pr(x) + ¢ (%), (31)
where
dzkl co A
d [ (R k) b o
/1677 a/) |V (x) R:wk,)
4 pRwky) (x)];ZR . kl)} (32)

and similarly for $L( ). By substituting Eqgs. (29) and (30)
into Eq. (13) and comparing the resultlng express10n with
Eq. (32), the annihilation operators b (R:wk,)
can be expressed as

and b(L wky)

0
8s1nh(ﬂa)/a)[(lw/a( af) —iwFtik X,

1— e—2na)/a ’ (25)
(—a),kL)< )_ —rw/a (w,—kL)( )
u x)—e u X
1— e—2ﬂa}/a (26)
in the right Rindler wedge, (27)
in the left Rindler wedge,
in the right Rindler wedge,
28
in the left Rindler wedge. (28)
|
; b, = e b,,
" k) 33
(R k) 1= e—27rw/a ( )
~ I;(—w k)~ e_m/ai?-(r K,)
bLiok,) =— —— 34
(L:wk,) 1 _e—Zﬂw/a ( )

All right Rindler operators, {b R:ok,)» IQ(R ok, } com-
mute with all left Rindler operators, {b(L:w’k ) lAJ(TL:kaM},
and these operators satisfy

o LT — 5 ht
[b(R:|(u|,kL)v b(R:\w’\,k’l)} = [b(]_;\w\ k) b(L|w’\ K )]
= 87%aé(|o| - |o')6 (kL - K).  (35)

The Fulling vacuum, |0g), is defined by

I;(R:a),kL)|0F> = I;(L:a).kl)|OF> =0. (36)
Thus, there are no “Rindler panicles,” i.e., particles created
by the operators BZR:m,k ) or b(L ok, ) in this state. Then we

find, from Eq. (33),

<0M|b R:wk )b(R:(u’.k’L)|0M>

872a
= ela 1 8w —a)6@ (k| —K). (37)
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Now, let us define the operator A by

1 [ )
\/%[) dw/dszF(“”kﬁb(R:w.kL)’ (38)

where F(w,k;) is a continuous and square-integrable
function. Then

AA = [Tdo [ @riF@xOP. (9)
0
and
F(o,k
(O] ATA|Oy) / dw/cﬂkﬂ ZZM i)ll . (40)

Thus, the expected number of the “Rindler particles” with
given Rindler energy (i.e., the energy associated with the
boost Killing vector field d/dr) is given by the Bose-
Einstein distribution function with temperature a/2z. This
is a manifestation of the well-known Unruh effect: the
Minkowski vacuum, |0y;), is a thermal state with temper-
ature a/2z with respect to the energy corresponding to the
boost Killing vector field, d/0drz, i.e., the Rindler energy, in
the right Rindler wedge.

IV. RADIATION BY A CLASSICAL SOURCE
THROUGH THE UNRUH EFFECT

In the Heisenberg picture, analysis of radiation from a
classical source does not depend on the quantum state
because it reduces to solving the classical field equation
(see Appendix A). Thus, the radiation can be discussed in
the purely classical context, as is well known. However,
perhaps surprisingly, to analyze such a process of radiation
in the interaction picture in the Rindler frame, it is crucial to
take the Unruh effect into account as the present authors
have emphasized in the context of the uniformly accel-
erated source. In this section we explain this fact for a
general classical source [43].

The classical source is introduced by adding the follow-
ing term in the Lagrangian density:

Lin(x) = j(0)(x), (41)

with the corresponding interaction action,

%F/%wm. (42)

Then, in the interaction picture, this interaction adds to the
final state the following one-particle part:

1m=i/ﬂ@ﬂﬂmmfx (43)

d’k
— ~ k AT 0 , 44
where j(k) is the 4-dimensional Fourier transform of j(x):

30 = [ oe-kass (45)
The final state to first order is

1) = (14 iAwr)[Om) + |1p). (46)

where the forward-scattering amplitude Ay, satisfies
2 Im -Afor = <1p|1p>’ (47)

so that (f|f) =1 to first order.
The emission probability can be found as an integral
over k:

M
Pgm) = <1p|1p>

3
- | gl (43)

The Minkowski particle number operator is defined as

N—/ ki
(27)32k K
=5 / dw / kb, bk, (49)

The first expression for N can be used to show that
(fIN|f) = (1p|]1p) = P That is, the one-particle emis-
sion probability is equal to the expected Minkowski-particle
number in the final state at first order in perturbation theory.
Equation (49) can be regarded as a classical result in the
following sense: If we Fourier-transform the energy density
of the emitted wave, divide each k-component by k,
and integrate the result over k, then we obtain this
expression [44].

Now, if the classical source j(x) has support only in the
right Rindler wedge, then the same process can be
described as follows. The field ¢(x) restricted to the right
Rindler wedge is the field ¢y (x) given by Eq. (32). Recall
that the Minkowski vacuum is seen as a thermal bath of
temperature a/2z with respect to the energy associated
with the Killing vector field d/0z. We define the emission
and absorption amplitudes by

(‘r‘n*ki) = <OF‘B(R:w.kL)Sim|0F>
: -
= o [ H I g, (50)
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w.k | P
’Ae(lbs = <0F|Sintb-(rR:w.kl)|OF>
1
:2—/j(x)v<R:‘”*ki>(x)\/—gd4x, (51)
T

respectively, where g is the determinant of the metric g, in
Minkowski (and Rindler) spacetime. If the initial state was
the Fulling vacuum, then the emission probability would

be found using the expansion (32) of the field g[;R and
the commutation relation (15), with B(m_k ) replaced by

A

biriwk.):

P = [1310/0g) |
1 wk )|2
. / da)/aﬂklM w1 (52)

:87ta

Since the Minkowski vacuum is the thermal state of
temperature a/2x with respect to the Rindler energy, the
interaction probability for the Minkowski vacuum is

(w.ky) (w.k,)
(R) |"4 ‘ |Aabg |
Pim 872 a/ /koJ-< e—Zﬂw/a 27[(1)/!1 -1/

(53)
The first and second terms in the integrand above
represent the (spontaneous and induced) emission [with
(1 — e 2m@/a)=1 =1 4 (¢?™/¢ —1)71] and absorption,
respectively.

Now, as Unruh and Wald have shown [36], both the
emission and absorption of a particle in the thermal bath of
temperature a/2z in the Rindler wedge are seen as
emission of a particle in Minkowski spacetime. Hence,

we expect that Pi(rlft)

= Pé?ﬁ) . To demonstrate this equality,

we use the expansion of ¢)(x) in terms of the Unruh modes,
i.e., Eq. (13), in Eq. (43). Thus, we find

i 0 N B
P = | 40 [ @KV @K, 00 (54)

where

R (w. k) :/j< Y ¥ (x) =g d'x.  (55)

Since the classical source j(x) has support only in the
right Rindler wedge by assumption, we have from Egs. (29)
and (30),

2 o
/71 _ e—Zﬂm/a Aém’kL)’ (56)

I®(w, k) =

B 2 o
IO k,) = 2rwla _ | e, (57)
with @ > 0. Thus, we find
w ky) }
) .
|1p 8” dCO d k —Zlm) b(m~ki)
A mq k) R
+ 7,__*:2% — b(_wym] |On).- (58)

P by Eq. (15), where P i

ll'lt nt

given by Eq. (53). Thus, we indeed find PR = £m> given

nt
by Eq. (48).

Then, we have (1p|lp) =

V. THE ELECTROMAGNETIC AND
GRAVITATIONAL CASES

In this section we briefly discuss the electromagnetic and
gravitational fields coupled to a classical source and show
that the results for the massless scalar field presented in the
previous sections hold for these fields as well. This will be
the generalization of some results for the uniformly
accelerated sources coupled to the electromagnetic field
[33] and gravitational field [35] [see also Ref. [34]].

A. The electromagnetic case

The Lagrangian density with the interaction term
between the quantum field and a classical current is
given by

1. .

'Cim =V g _ZF,uz/F”U - j”(x)Aﬂ(x) ’ (59)

~V,A,
and e,(,i) by

where F - V,,Aﬂ. We define the anti-symmetric

(H)
tensors €,y

€tl| - z!) - 1 (60)
6)%) = —e%) =1, (61)

with all other components vanishing. In Rindler coordi-
nates, we have

e(!) = eéﬂ> = 24, (62)

with all other components vanishing.
Two physical modes with momentum k can be chosen as

AL (x) = — el VP R (), (63)

ki
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AR () = %eﬁ)vvﬂ‘ (x). (64)

These modes are transverse, V"A,(,P:k> = 0, and satisfy the

orthonormality condition for the transverse modes,

—l/ APTKIRY, AP g5y = (27)32k87P60) (K — k),
z

(65)

where V, = 6,, - ﬁy and where X is a t = constant
Cauchy surface. Then, the quantum electromagnetic field
Aﬂ (x) with complete gauge fixing is

. d’k (P:K), \n APK) s
A”(X):/(z”)SZkZ |:Aﬂ (X)aep:k) + Ay (x)a(P:k):|’

P=LI

(60)
where the operators dp.y) and a a(P k)’ P =111, satisfy

i) lp. o] = (27)*2k8pp ) (k = K),  (67)

with all other commutators among them vanishing, which
is a consequence of the orthonormality condition (65). The
Minkowski vacuum state [Oy;) is annihilated by & p.y), i.e.,
a(p:x)|Om) = 0, for all P and k.

The one-photon state which the classical current j*(x)
generates is

'1p>:‘i/ J(0)A, () Onr)x
L SN n
—_/mﬂ(k)k [e’”'k A1) T € k“a H K) 110wm),
(68)
where j# (k) is the Fourier transform of j#(x) defined in the

same way as j(k) is defined from j(x) in Eq. (45). Then, the
emission probability is

P&V =(1p|1p)
4’k
(27)72k

(69)

One can verify the following formula (for £, # 0), e.g., in
the Lorentz frame with k' = k* =k, and k* = k¥’ = 0:

1 v .
+ = (k,,k,, + kyk,,),

6‘,(4@ k* G(H}) k/} + e!(jl—) k® ez(jt’_) k/)’ 5

_ 2
uf - _kJ_g;w

(70)

Tk e kee ) kP ef ke k)7 (k).

where the vector ¥ is obtained by multiplying the x- and
y-components of k* by —1. Since k,j*(k) = 0, we find

(pltp) = = [ g P @0, ()

as is well known.
We define the Rindler modes by

" 1
A(RI: .kl)(x) _1

¢ E(E)V’W(R:‘”’ki)(x), (72)

ko~

1 J—)V/I,U(R:w.kL)(x)_

(RI:w k)
A X)=—¢€
H ( ) kL /ll

(73)

Since the differential operators efy V* and efﬁvl commute
with the operations for defining the Unruh and Rindler
modes from the modes f*(x), the relationship between the
right Rindler modes A(RP ka)(x), P=1I11I, and the
Minkowski modes A,S )(x) is exactly the same as that
between v(R:@k1)(x) and f¥(x). Hence, the quantum field
Aﬂ (x) in the right Rindler wedge can be expanded in the
same way as in the scalar case (32):

d’k | (RP:wk ), 7
A, (x) = 0 [A Db
Rﬂ ) /167ra/ o () (RP:w.k )

T(RP:wk ), N2t
+ Ay Hx X)b gp. wkl)}

(74)

where the operators E(Rp:w,kL) and I;(I satisfy the

RP:wk,)
commutation relations

[I;(RP:w,kL) BIRP’ o K’ )] = 871'2[15PP/5(Q)—(1)/)5(2)<1(J_ _k/J_)’
(75)

with all other commutators among them vanishing. Then,
exactly as in the scalar case, we find

d-k
<1p|1p>:/8 £ [ do
n’a P LI

(P:o.k (P .k
|'Ae 5 | |Aabs 5 | (76)
1— e—Zﬂ(u/a 2Jra)/a 1
where
. 1 B P N
Gk =5 [ AR ) gt ()
y1
Pk, 1 (RP:w.k )
Ak = [ AR ) gt (08)
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with the same interpretation of Eq. (76) in terms of the
Unruh effect as in the scalar case.

B. The gravitational case

The Lagrangian density 51(521; for the linearized gravita-
tional field coupled to a classical stress-energy tensor is

1
——Lgn =

1
~Vh, VR
/_g 2

— V,hy, VP e
1
+ (Vah”“ -3 wh> V,h+ kT h,,  (19)

where h = h*, and k = v/8zG. Two physical modes with
momentum k can be chosen as

HEW (x) = % G + 24,0 (KISR). (80)

where
—Gu — k,k, /K2 if y,v=xory,
Gulk.) = { e = Kk KL | (81)
0 otherwise,
and

() (L)

(I:Kk)
b (%) = —=— [exm €5 T eva B
V2K3 #

5|V ). (82)
These modes satisfy the de Donder condition,
: 1 .
Vit =2V hE) = 0, (83)

and the normalization condition for the modes satisfying
Eq. (83),

l/ |:h(P/3 k/)lw%ah/(u[i:k) _ %h(P/:k/>$ah<P:k>:| dze
= (27)%2k8"P50) (k' — k). (84)

Then, the emission probability from the classical stress-
energy tensor T+(x) is

d’k
(pltp) = [ i > AT

P=L1I

. (85)

where
AR = / ()R (x) =g s, (86)

Define the Fourier transform of 7#/(x) by

T (k) = / T (x)ei . (87)

(Note that /=g = 1 here.) Then,

3
(1p[1p) = &2 / K S, (T (k). (88)

(27)32k
where
1
Syu/la = 5 (g;w + 25]}41/)(916 + 2‘]/16)
2
+ = || ka kﬁe(H)k}/e( )k (89)
kL

By working in the Lorentz frame where k* = k¥ = 0 so that
k' = k* = k, (with the assumption that k|, # 0) and using
k, T+ (k) = 0, we find

TR (W)S,0s0 (KT (K) = THRIT (K) = 5 TIIT (K),

(90)

where 7 (k) = T*,(k). Thus, the emission probability is

3
(1p|1p) =/(d—k

27)32k

THRTL 0 -5 TOT(0)|

©n

as is well known.
The physical right Rindler modes can be chosen as

i 1 .
R (x) = — (g + 24, (k)Jp®Ri@kD (x), (92)

V2
IIR:w.k 1 a w
)= el el | 9wt ),

(93)

The modes h<HR k) (x) were found in Ref. [45] up to a

normalization factor whereas the modes h (R-o ki)( ) were

obtained in Ref. [35] by a gauge transformatlon from the
modes given in Ref. [45] up to a normalization factor. The
tensors in Eq. (92) and the differential operator in Eq. (93)
commute with the operations for defining the Unruh and
Rindler modes from the Minkowski modes. Hence, the
relationship between the description of the emission proc-
ess in Minkowski spacetime and the interaction of the
classical source with the thermal bath is exactly the same as
in the scalar case. Thus, just like in the scalar case, if we
define the emission and absorption amplitudes in the right
Rindler wedge as
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Gk = [ TR ) ygate, (04
T

Ak =5 [ ) =g, 95)

respectively, then Eq. (76) for (1p|lp) holds as in the
electromagnetic case together with its interpretation in
terms of the Unruh effect.

VI. DISCUSSION

We have shown that what uniformly accelerated observ-
ers interpret as interaction of an arbitrary charge distribu-
tion with the Unruh thermal bath is interpreted by inertial
observers as emission of radiation by the same charge
distribution. All calculations were performed in first-order
perturbation theory, which means that the inertial-frame
result corresponds to classical radiation—once one accepts
that the latter consists of quanta of energy satisfying
Planck’s energy—frequency relation. This result, obtained
for the scalar, electromagnetic, and graviton fields, cor-
roborates the claim that classical radiation observed in the
inertial frame can already be considered as an “observa-
tion” of the Unruh effect in the same sense that, in
Newtonian mechanics, the planetary motion in the inertial
frame can be considered to be providing evidence of the
inertial forces, e.g., the centrifugal force, in the rotating
frame. This observation has already been made in the
literature for the case of pointlike sources in specific
trajectories [28—35]. Here, the observation is extended to
arbitrary currents for the scalar, electromagnetic, and
gravitational fields. In our view, the analysis presented
here proves, beyond any doubt, that classical radiation seen
by inertial observers, with the only extra assumption that it
is constituted by quanta of energy, is a testimony to the
existence of the Unruh thermal bath in the uniformly
accelerated frame. Those who dispute this observation
would have to reproduce the radiation from the classical
source in a uniformly accelerated frame without using the
Unruh effect.
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APPENDIX A: RADIATION IN THE
HEISENBERG PICTURE

In this appendix, we discuss radiation of massless scalar
field in four dimensions from a classical source in the
Heisenberg picture. This confirms that the radiation for-
mula from a classical source does not depend on the
quantum state.

The field equation for the Heisenberg operator for a
massless scalar field, ¢y (x), with a classical source term

J(x), is
(A1)

where we assume j(x) to be compactly supported. The
retarded Green’s function Gg(x,x’) satisfying

0,Gr(x,x') = 6% (x — x') (A2)
is given by
GR()C x/) — ie(l— t/)/ I’k {e—ik(x—x’) _ eik~(x—x’)]
’ (27r)32k ’
(A3)

where 6 is the Heaviside step function.

Let ¢)(x) be the quantum field without the source j(x)
that agrees with ¢by;(x) in the past of the source. Then the
field ¢hy(x) at a time in the future of the source is

S

Fi(x) = B(x) + p (x), (Ad)
where
¢@m=/wmamww
3
=i [ G e s =T he, (a9

where j(k) is the Fourier transform of j(x) defined by
Eq. (45). Here we have used the fact that the source j(x) is
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real. Thus, if we expand the fields ¢y (x) and $(x) as

Bulo) = [ rlae s vae. (a0
3= [ o e a7
(27)32k
in the future of the source, then we have
atl = ay + ij(k). (A8)

We assume that the Heisenberg state |H) satisfies
(HlaxH) = 0 for all k. The initial and final number

operators, N @) and M), are defined by

. &Ik
N = /ma};ak, (A9)
. &Sk,
N = / ok al'all, (A10)

Then, the initial and final particle numbers, (H|N|H) and

(H|NVY)|H), are ill-defined in general, but their difference,
i.e., the increase in the particle number, is well-defined and
state independent. It is given by

AN = (H|ND|H) -

/ &Pk
(27) 32k

Thus, the increase in the particle number is independent of
the state and agrees with the classical result.

(H|NVO[H)

(A11)

APPENDIX B: EMISSION FROM A CLASSICAL
SOURCE IN THE FULLING VACUUM

In this appendix, we analyze the emission process from a
classical source in the Fulling vacuum state in the inter-
action picture. We find that the classical result is repro-
duced differently compared to the case with the Minkowski
vacuum state.

The final state to first order in perturbation theory is

1) = (14 iAg,) |0g) + [1p®)), (B1)

where the final 1-particle state is

|1p®R)) 82 / da)/dzkl.A“’kl Rk, 0 (B2)

and where the forward-scattering amplitude Ay, satisfies

2 Im Ag,, = (1p®[1p®)). (B3)

[See Eq. (46) for the case with the Minkowski vacuum.]
We find

(1p®)|1p®)) = dw/dzkllAwkl *. (B4)

872a J,

The right Rindler particle number operator is

. o0 AT A
—/0 dw/dzklb(R:w.kL)b(RWkL)’ (BS)

and similarly for the left Rindler particle number N,
Then, we have (Ip®[F®|1pR)) = (1p®)|1p®)) and
(1p®)|N®)|1p®)) = 0. Then, by Eq. (B1), we find

(FINEIIf) = (1pM]1p®), (B6)

(fINED]f) = 0. (B7)

Thus, the particle-emission probability is equal to the
expected Rindler particle number in the final state rather
than the expected Minkowski particle number.

Now let us find the increase in the expected Minkowski
particle number in the interaction picture and verify that it
agrees with the Heisenberg picture, which gives the
classical result as seen in Appendix A. The Fulling vacuum
is not the Minkowski vacuum, and hence, the expected
Minkowski particle number is nonzero. (In fact it is
infinite.) First from Eqs. (33) and (34) we find that the
Fulling vacuum |Og) has the following expectation values
for the Unruh modes:

872a

m&(ﬁ)—a)/)é(z) (kJ_ —kﬁ_)

(Og[b{,, 1 Dot ac,) |OF) =

(B8)
Notice the similarity of this equation with Eq. (37). We also
find, using Egs. (33), (34), and (35),
T
(1B g1, Bt | TP)
<1P B[blk: o) P R: a0 1D®)
\/(1 _ e—2ﬂ\w\/a>(1 _ e—27z|(u’|/a>
, 87a8(|o] - |o/))5%) (k, ~ K )
\/(eZJt\m\/a _ 1)(62n\m’\/a _ 1)

(1p®[1p®)),  (BY)
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(1p®) |bz_\w\,kl)b(-\w/\,kl> [1p®))

<1p(R)|bZR;|w'|_kl)b(R:\w\,kL)|1p(R>>
\/ (e2rlolfa _ 1(e2elo/l/a _ 1)

n 87%as(|w| - |o'[)6%) (k| — k')
\/(62ﬂ|w|/u _1)(e2rlol/a _ 1)

(1p®[1p®R)). (B10)

Using the expression (B2) for the state |[Ip®)) and the
commutation relations (35), we obtain

|, o'| K’}
(PP bty o,y [ 1)) = AL AG

(B11)

Substituting this equation into Egs. (B9) and (B10) and
using the expression (B1), we find to lowest nontrivial
order,

i T
18 (yacy P aaie) L) = Oplb (i i, Pijor i) [OF)

(‘l’(;l)‘vkL)Agr;}/‘*kl>

. , (B12)
\/(1 _ e—2ﬂ'\w|/u)(1 _ e—Zﬂ\m’\/a)

T

.
181y bitor 1) 1) = (Ol 1,y il e, ) [OF)

(lolky) g(o'l.K))
= A 7 Aen : (B13)

\/(eZJr\w\/a _ 1)(e2zr\a/\/a _ 1)

Then, from the second expression in Eq. (49) for the
Minkowski particle number operator, N, we find, using

|A‘(3|1_flll’|sh)| _ |A'(|“’|’kL)

abs

>

(FINIf) = (0g|N|0g) = LX)

int *

(B14)

where Pi(ft)

is given by Eq. (53), which was shown to be

equal to Péﬁﬁ), which in turn is equal to the classical result

[see Eq. (48)]. Thus, inertial observers in the Fulling
vacuum will witness usual Larmor radiation being emitted
from classical sources over the nontrivial particle content
they experience. The corresponding Minkowski particles,
as described by inertial observers, should be associated
with the emission of Rindler particles, as described by
uniformly accelerated observers at 0 K.
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