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A B S T R A C T 

Parametric instability of Alfvén wave packets with monochromatic carrier wave in low- β plasma is studied using 1D 

magnetohydrodynamic simulations. The results show spatial growth of incoming perturbations as they propagate through 

the mother wave. For sufficiently short packets, the perturbations emerge downstream of the packet as small-amplitude reverse 
Alfvén waves and forward slow magnetosonic waves. For larger packets, the perturbations reach non-linear amplitude while still 
inside the mother wave. In this case, a downstream section of the mother wave collapses, but the remaining upstream section stays 
largely intact and enters the phase of very slow evolution. The length-scale separating the linear and non-linear regimes, as well 
as determining the size of the surviving section in the non-linear regime, is set by the Alfvén crossing time of the packet, the 
growth rate of the parametric instability for the unmodulated carrier wave, and the amplitude of incoming perturbations. The 
results are discussed in connection with the physics of solar wind. 
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 I N T RO D U C T I O N  

oth the solar corona and its wind are subject to heating via
ome non-thermal mechanism. The solar corona is extremely hot
ompared to Sun’s photosphere, and the temperature of solar wind
ecreases much slower than predicted in its adiabatic model (Gazis
t al. 1994 ). Heating by plasma waves emitted by the dynamic
un’s surface has been considered as one of such mechanisms.
ompressive magnetohydrodynamic (MHD) modes, like fast and

low magnetosonic modes may rapidly convert their energy into heat
ia non-linear steepening followed by development of shock waves
e.g. Whitham 1974 ; Cohen & Kulsrud 1974 ) or collisionless Landau
amping (e.g. Montgomery & Tidman 1964 ; Barnes 1966 ; Kellogg
020 ). However, the effectiveness of their dissipation is also a
rawback, as they cannot reach required large distances from the Sun.
n contrast, the phase speed of Alfvén waves does not depend on their
mplitude and so they do not steepen into shocks. They are also much
ess affected by the collisionless dissipation. So in principle, they can
ropagate large distances without attenuation, and the interplanetary
issions reveal that apart from the fast streams (advective waves), the

olar wind perturbations are dominated by Alfvén waves. However,
he effectiveness of Alfvén waves at energy transport may turn into
 disadvantage unless a suitable mechanism is found for converting
heir energy into heat. It is believed that the parametric instability of
arge-amplitude Alfvén wave may be such a mechanism. 

The instability was discovered in 1960s by Galeev & Oraevskii
 1962 ) and Sagdeev & Galeev ( 1969 ), who studied the stability a
mall-amplitude (linear) circularly polarized monochromatic Alfvén
ave (mother wave) to even smaller perturbations in the framework
 E-mail: s.s.komissarov@leeds.ac.uk 
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f 1D MHD. To simplify the analysis, they assumed high plasma
agnetization, which allowed them to identify and then retain only

he dominant coupling term in the perturbation equations. Under
hese conditions, the perturbations are sound and Alfvén waves
daughter waves). The instability develops under resonance con-
itions involving wavenumbers and frequencies. Sagdeev & Galeev
 1969 ) also pointed the similarity between this problem and the
esonance interaction between three coupled harmonic oscillators. 

Later, Goldstein ( 1978 ) and Derby ( 1978 ) independently analysed
his stability problem without using the simplifications of Sagdeev &
aleev ( 1969 ). The daughter waves are no-longer sound and Alfvén
aves, but only resemble them. The original results by Sagdeev &
aleev ( 1969 ) are recovered in the limit η2 � b2 � 1 (Derby 1978 ),
here b = a/c0 is the ratio of the sound speed a and the Alfvén speed

long the wave vector, c0 = B0 / 4 π
√ 

ρ0 , there B0 is the magnitude
f magnetic field component along the wave vector, and ρ0 is the
nperturbed plasma density, and η = ||B ⊥ , 0 || /B0 > 0 is the ratio of
he magnitudes of the transverse and longitudinal components of
he magnetic field in the mother wave. Jayanti & Hollweg ( 1993 )
arried out detailed analysis of the solutions and derived analytical
pproximations for the unstable modes. Ruderman & Simpson
 2004 ) used an alternative approach to this problem, by reducing the
riginal system of perturbation equations, which contains periodic
oefficients, to a system with constant coefficients. 

In the non-linear phase, which has been studied with computer
imulations, the non-linear steepening of longitudinal perturbations
eads to formation of shock waves, resulting in efficient heating of
lasma (e.g. Del Zanna 2001 ). The parametric instability is also
onsidered as a driver for Alfvén turbulence in the solar wind
see Bruno & Carbone 2013 , and the references therein, Shoda &
okoyama 2018 ), which transfers energy to small scales where it
issipates via collisionless mechanisms. 
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1 The notation is modified to align with the rest of the paper. 
2 Note the disappearance of the factor 1 /

√ 

4 π via renormalization of the 
magnetic field here and throughout this paper. 
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The magnetic and velocity perturbations of the solar wind are dom-
nated by outgoing Alfvén waves, but the observations also suggest 
 significant contribution by the ingoing waves (e.g. Goldstein et al. 
995 ; Bruno, Bavassano & Pietropaolo 1996 ), and the generation of
ngoing waves via the parametric instability of the outgoing ones is an 
ttractive mechanism. The numerical simulations have been naturally 
xtended from 1D to 2D and 3D to explore effects associated with the
ncreased dimensionality (e.g. Del Zanna, Velli & Londrillo 2001 ; 
el Zanna et al. 2015 ; Shoda & Yokoyama 2018 ; Primavera et al.
019 ) 
The investigation of the parametric instability has been ex- 

ended to arc-polarized (Del Zanna 2001 ; Marriott & Ten- 
rani 2024 ), weakly non-monochromatic waves (Malara & Velli 
996 ), and to the frameworks of relativistic MHD (Ishizaki & 

oka 2024 ), two-fluid (e.g. Vi˜ nas & Goldstein 1991 ), hybrid 
e.g. Araneda et al. 2008), and fully kinetic models (e.g. 
onzález, Innocenti & Tenerani 2023 ). Recently, Marriott & 

enerani ( 2024 ) extended the investigation to Alfvén wave 
ackets. 
Arc-polarized wave packets have been identified in the data 

btained with interplanetary probes (Lichtenstein & Sonett 1980 ; 
surutani et al. 1996 ; Riley et al. 1996 ). According to the statistical
nalyses by Riley et al. ( 1996 ), essentially all such waves move
way from the Sun in the rest frame of the solar wind plasma,
hich suggests that they are originated at or near the Sun. They

ccount for 5–10 per cent of the Ulysses data. The magnetic field
otation is limited to 180◦ with no preferred helicity. So, the question 
hether such packets decay via the parametric instability, and if 

hey do then how rapidly, is very relevant to the physics of solar 
ind. 
According to the semi-analytical study by Marriott & Tenerani 

 2024 ), who solved numerically the boundary value problem for the
igenmodes of the instability, such packets are still subjects to the 
arametric instability, though with a weaker growth rate compared 
o arc-polarized monochromatic waves. Moreover, the growth rate 
cales like � l/L when l/L → 0, where l the linear size of the packet
nd L is the size of the computational domain. This property seems
ather bizarre, particularly in the case of open boundary conditions 
BCs), because the wave interaction is fully local and hence should 
e limited to the region occupied by the packet. Therefore, the growth
ate should not depend on L when L > l. 

In this paper, we study the parametric instability of Alfvén wave 
ackets using 1D ideal MHD simulations. Section 2 provides the 
elevant theoretical background to the problem. Section 3 describes 
he method and the plasma parameters common to all the simulations
escribed in this paper. In Section 4 , we present the results for
onochromatic circularly and arc-polarized Alfvén waves, which 

rovides a reference point for the main study of arc-polarized 
ave packets described in Section 5 . Section 6 contains the general
iscussion of these results and their implications. 

 T H E O R E T I C A L  BAC K G RO U N D  

n their analysis, Sagdeev & Galeev ( 1969 ) assume the transverse
agnetic field of the mother Alfvén wave in the form B 0 , ⊥ 

= 

A exp ( i( k0 z − ω0 ) t) + A 

∗ exp ( −i( k0 x − ω0 ) t), where A is a com-
lex amplitude vector. Although in the text, they describe the mother 
ave as circularly polarized, this is a most general representation 
f a monochromatic wave which allows all types of polarization, 
rom linear to circular, depending on A , which is not specified 
n their work. The same description is used for daughter waves. 
hen they show that the amplitudes of the daughter waves can have
ecular evolution (on the time-scale longer than the periods of their
scillations) under the resonance conditions 

+ 

= ω0 + ω , k+ 

= k0 + k . (1) 

ere, { ω0 , k0 } , { ω+ 

, k+ 

} , { ω, k} are the real frequencies and
avenumbers of the mother Alfvén wave, the daughter Alfvén 
ave, and the sound wave, respectively. 1 To simplify the discussion, 

nd without loss of generality, they assumed ω0 = c0 k0 , where 
0 = B0 /

√ 

ρ0 > 0 is the Alfvén speed in the direction of the phase
ector. 2 This describes a forward wave in the rest frame of plasma.
oth positive and negative values of k0 and ω0 are allowed. With 
ore accurate description, these two options correspond to opposite 

olarizations and helicities of the mother wave. 
This circular evolution of the daughter waves is an exponential 

rowth when the Alfvén daughter wave travels in the opposite 
reverse) direction to the mother wave, ω+ 

/k+ 

= −c0 , and the sound
ave travels in the same (forward) direction as the mother wave,
 = ak. 
Quick inspection of equations (I-17 and I-18) in Sagdeev & Galeev

 1969 ), after accounting for several typos, shows that three more
esonances are also possible. So, altogether there four resonances 
hich can be combined into two pairs, 

± = ω ± ω0 , k± = k ± k0 , (2) 

nd 

¯ ± = −ω ± ω0 , k̄± = −k ± k0 . (3) 

ince ω±/k± = ω̄∓/k̄∓, the pairs have the same phase speeds. 
epeating the calculations of Sagdeev & Galeev ( 1969 ) for the
ew resonances yields basically the same results. For each of the
esonances, the instability occurs when the Alfvén daughter is a 
everse wave, and the sound wave is a forward wave, with the same
rowth rate in all cases. 
Goldstein ( 1978 ) and Derby ( 1978 ) start their analysis by intro-

ucing the mother Alfvén wave as a proper circularly polarized 
ransverse wave. To this aim, Goldstein ( 1978 ) uses complex Jones
ectors, whereas Derby ( 1978 ) introduces complex variables for 
he transverse components of the magnetic field B± = By ± iBz 

nd U± = Uy ± iUz . For a circularly polarized monochromatic 
ransverse wave, 

+ 

= ˆ B eiφ , B− = ˆ B∗e−iφ∗
, (4) 

here the phase φ = kx − ωt , and the complex amplitude ˆ B = 

⊥ 

eiφs . To incorporate the possible temporal exponential growth, the 
requency is assumed to be complex, ω = ωr + iγ , where ωr ∈ R 

s the proper frequency and γ ∈ R is the growth rate. B⊥ 

∈ R is the
trength of the transverse magnetic field, k ∈ R is the wavenumber,
nd φs ∈ R is the constant phase shift. 

For the mother Alfvén wave, γ = 0, and without any loss of
enerality one may assume φs = 0. Hence, for its transverse magnetic 
eld, B0 , ± = B0 , ⊥ 

exp ( ±i( k0 x − ω0 t)). For the corresponding trans- 
erse velocity U0 , ± = U0 , ⊥ 

exp ( ±i( k0 x − ω0 t)), where ω0 /k0 = c0 , 
nd U0 , ⊥ 

= B0 , ⊥ 

/
√ 

ρ0 , where ρ0 is the unperturbed uniform plasma 
ensity. 
The system of linearized equations for the perturbations u , b , and 
is solved using the method of Fourier transform. The calculations 

eveal that, with one exception, its normal modes are not normal in
MNRAS 542, 2510–2524 (2025)
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Figure 1. Dispersion diagram for b2 = 0 . 1 and η = 1. Top panel: the real 
part of solutions to the dispersion equation ( 10 ) for ˜ ω . The solid lines show 

the stable modes where the imaginary part of ˜ ω vanishes. The dashed line 
shows the real part of ˜ ω for two modes with complex conjugate values of 
˜ ω . The black dot on this line shows the location with maximal | γ | . Bottom 

panel: the positive imaginary part of the complex conjugate roots (the growth 
rate of the parametric instability) corresponding to the dashed line in the top 
panel. 
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he sense that they are not associated with a single frequency and a
ingle phase speed, but describe a co-existence (symbiosis) of three
ubwaves whose frequencies and wavenumbers satisfy the resonance
onditions ( 2 ). One of the subwaves is longitudinal and controls the
ariations of gas density, pressure, and the longitudinal component
f velocity. The other two subwaves are transverse, as they control
he variations of the transverse components of the magnetic field and
elocity. 

If the longitudinal subwave is described by the harmonic 

= ˆ ρeiφ + ˆ ρ∗e−iφ∗
, (5) 

here φ = kx − ωt , then the perturbation equations dictate 

ux = ˆ ux e
iφ + ˆ u∗

x e
−iφ∗

, 

b± = 

ˆ b±eiφ± + ˆ b∗
∓e−iφ∗∓ , 

 ± = ˆ u±eiφ± + ˆ u∗
∓e−iφ∗∓ , (6) 

here φ± = k±x − ω±t . k± and ω± are still given by the resonance
onditions ( 2 ), but the frequencies are now allowed to be complex.
t is easy to see that the transverse perturbation is a sum of two
ircularly polarized subwaves, one with 

b+ 

= 

ˆ b+ 

eiφ+ , b− = ˆ b∗
+ 

e−iφ∗+ , 

+ 

= ˆ u+ 

eiφ+ , u− = ˆ u∗
+ 

e−iφ∗+ , (7) 

nd the other with 

b+ 

= 

ˆ b∗
−eiφ∗− , b− = ˆ b−e−iφ− , 

+ 

= ˆ u∗
−eiφ∗− , b− = ˆ u−e−iφ− , (8) 

he complex amplitudes of the subwaves are related via 

˜ ux = ( ˜ ω / ˜ k ) ˜ ρ , 

˜ b± = η
( ˜ k ± 1)( ˜ ω2 ± (2 ˜ ω − ˜ k ) 
˜ k ( ˜ ω − ˜ k )( ˜ ω + ˜ k ± 2) 

˜ ρ , 

˜ ± = −η
( ˜ ω ̃

 k2 + 2 ˜ ω − ˜ k ) ± ( ˜ ω2 − 2 ˜ ω ̃

 k − ˜ k ) 
˜ k ( ˜ ω − ˜ k )( ˜ ω + ˜ k ± 2) 

˜ ρ , (9) 

here ˜ ρ = ˆ ρ/ρ0 , ˜ u = ˆ u /c0 , ˜ b = ˆ b /B0 , ˜ k = k/k0 , and ˜ ω = ω/ω0 

Derby 1978 ). 
The phase speeds are given by the dispersion equation 3 

( ˜ ω − ˜ k )
[ 
(( ˜ ω + ˜ k )2 − 4)( ˜ ω − ˜ k )( ˜ ω2 − b2 ˜ k2 ) 

−η2 ˜ k2 ( ˜ ω3 + ˜ k ̃  ω2 − 3 ˜ ω + ˜ k )
] 

= 0 , (10) 

here b = a0 /c0 , where a0 is the sound speed of the unperturbed
tate. One root of equation ( 10 ) is the solution to ( ˜ ω − ˜ k ) = 0. The
orresponding phase speed is ω/k = c0 , the same as the phase speed
f the mother wave. Since the factor ( ˜ ω − ˜ k ) also appears in the
enominator for the last two expressions in equation ( 9 ), this root
escribes a pure transverse mode. Quick inspection of the perturba-
ion equations with vanishing density perturbation show that pure
ransverse perturbations are allowed provided they have the same
hase function as the mother wave, b± = ˆ b± exp ( ±i( k0 x − ω0 t)).
hus, this solution amounts to variation of the amplitude and phase
hift of the mother wave. The other roots correspond to proper sym-
iotic modes. Strictly speaking, the symbiotic modes are dispersive,
s their phase speed vp = ω/k depends on the wavenumber. 
NRAS 542, 2510–2524 (2025)

 Both in Goldstein ( 1978 ) and Derby ( 1978 ), the common factor ( ˜ ω − ˜ k ) is 
ropped as it is not relevant to the instability. However, it is still important 
or the complete description of the normal modes of the system. 

t  
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t

Equation ( 10 ) is symmetric with respect to the transformation
˜ 
 → − ˜ k , ˜ ω → − ˜ ω∗. Since { ˜ k , ˜ ω } and {− ˜ k , − ˜ ω∗} describe the
ame longitudinal subwave, the same solutions appear twice on the
ispersion diagram, and hence one may limit their analysis to k ≥ 0.
ig. 1 illustrates the dispersion diagram for the case with b2 = 0 . 1
nd η = 1, explored in the simulations described in Sections 4 and
 . One can see that it is quite complicated and involves a number
f interesting bifurcations. The most important ones describes the
ransitions between stable and unstable modes. Everywhere, except
he region 1 . 21 < ˜ k < 3 . 43, all the modes are stable and so one can
ount exactly six different real solutions of the dispersion equation for
˜  . In the unstable region, there are two complex conjugate roots of the
ispersion equation, and in the plot of ωr against ˜ k one can count only
ve different dispersion curves. One may describe the instability as a
esonance interaction between between two symbiotic modes when
hey have the same values of k and ωr , and hence the same k± and
±,r . 
The original results by Sagdeev & Galeev ( 1969 ) are recovered in

he limit η2 � b2 � 1 (Derby 1978 ). In this limit, the solutions to
he dispersion equation are approximately the double root to ( ˜ ω −
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˜ 
 )2 = 0, the two roots to (( ˜ ω + ˜ k )2 − 4) = 0, and the two roots to
˜ ω2 − b2 ˜ k2 ) = 0. For the first four roots, the denominators in the last

wo equations ( 9 ) vanish suggesting degeneration of corresponding 
ymbiotic modes into purely transverse waves. Since these roots 
ield the phase speed vp = ±c0 , these are Alfvén waves (Jayanti &
ollweg 1993 ). For the last two roots, vp = ±a, the denominators

n equation ( 9 ) do not vanish, and the small value of η implies
egeneration of the corresponding symbiotic modes into the purely 
ongitudinal sound waves. The instability occurs at the intersection 
oint of the lines ˜ ω + ˜ k − 2 = 0 and ˜ ω = b ˜ k , which describe the 
everse Alfvén and forward sound waves, respectively. In the general 
ase with b < 1, this point stretches into a line segment, like the
ashed line in Fig. 1 (Jayanti & Hollweg 1993 ; Ruderman & Simpson
004 ). 

 T H E  M E T H O D  

n this study, we numerically solve the equations of compressible 
deal MHD in the form of conservation laws, which include the 
ontinuity equation 

∂ρ

∂t 
+ ∇ ·( ρU ) = 0 , (11) 

he Euler equation 

∂ρU 

∂t 
+ ∇ · ( ρU ⊗ U − B ⊗ B ) + ∇

(
p + ||B ||2 

2 

)
= 0 , (12) 

he energy equation 

∂ 

∂t 

(
ρ||U ||2 

2 
+ eth + ||B ||2 

2 

)

+∇ ·
[(

ρ||U ||2 
2 

+ w + ||B ||2 
)

U − (U · B )B 

]
= 0 , (13) 

he Faraday equation 

∂ B 

∂t 
− ∇ ×(U × B ) = 0 , (14) 

nd the differential constraint 

 ·B = 0 . (15) 

here ρ, p , eth ( ρ, p ), and w ( ρ, p ) are the density, pressure, thermal
nergy, and enthalpy of plasma respectively, U is the fluid velocity, 
nd B is the magnetic field. In this study, we use the equation of state
or ideal gas with the ratio of specific heats κ , so eth = p/ ( κ − 1)
nd w = κp/ ( κ − 1), and use κ = 5 / 3. 

The simulations were carried out using a third-order finite- 
ifference scheme which is the Newtonian version of the scheme for
deal relativistic MHD described in Komissarov & Phillips ( 2025 ), 
hich in turn was inspired by the code ECHO (Del Zanna et al. 2007 ).
or completeness, its key algorithms and some test simulations are 
iven in Appendix A . 
In the setup of the simulations, all dependent variables are 

unctions of only x and t , so the wave vectors are aligned with the
 -axis, but the background (mean) magnetic field can be inclined 
o it. In the equilibrium state, the mass density ρ0 = 1, the x
omponent of the magnetic field Bx = B0 = 1, and hence the Alfvén
peed in the x -direction is c0 = B0 /

√ 

ρ0 = 1. For consistency with
arriott & Tenerani ( 2024 ), in all simulations the magnetization 

arameter b2 = a2 
0 /c

2 
0 = 0 . 1, and hence a0 =

√ 

0 . 1 and p0 = 0 . 06.
he corresponding speeds of the slow and fast modes are cs, 0 = 0 . 22
nd cf , 0 = 1 . 43, respectively. The wave vector of the mother wave
oints in the positive direction of the x -axis, and to simplify both the
imulations and the analysis of their results, the problems are set in
he rest frame of the mother wave. Hence, the x -component of the
ow velocity is ux 

0 = −1. 

 M O N O C H RO M AT I C  WAV ES  

he case of monochromatic mother waves allows direct comparison 
f our simulations with the theory of parametric instability and pre-
ious numerical studies, and hence serves to increase the confidence 
n the results for wave packets. Moreover, it lays foundation for their
nalysis. 

.1 Circularly polarized wave 

n the initial solution, wave’s magnetic field is 

B 0 = B0 e x + ηB0 (cos φ( x)e y + sin φ( x)e z ) , (16) 

here φ( x) = k0 x, and the fluid velocity 

 0 = −B 0 /
√ 

ρ0 . (17) 

or consistency with Marriott & Tenerani ( 2024 ), we use the
ame wavenumber k0 = 4 and hence ω0 = 1. Fig. 1 shows the
orresponding dispersion diagram. The computational domain is 
0 , 2 π ] with n = 942 gridpoints and periodic BCs. 

Here, and in the rest of the problems, the equilibrium solution
s perturbed via adding filtered flat white noise with the standard
eviation σρ = 10−5 to the plasma density. To this aim, the FORTRAN

ubroutine RANDOM NUMBER( r) is used to generate pseudo- 
andom numbers ri , i = 1 . . . n , one per each cell. Then each of them
s converted into another random number r̄i using centred mean filter 
ith (2 m + 1)-point stencil. Although not essential, this step allows

o filter out high-frequency noise which otherwise causes an initial 
eduction in the perturbation amplitude due to numerical diffusion 
see Fig. B1 for an example of such reduction.). Finally, the initial
erturbation is computed via 

ρi = 2 σρ

√ 

3(2 m + 1) (r̄i − 0 . 5) . 

y trial and error, m = 8 is found to be optimal. 
The line ‘a’ in Fig. 2 shows the time evolution for the rms value

f δρ over the entire domain. At the linear phase of exponential
rows, the two-point estimation of the growth rate yields γ = 1 . 64
 γ /ω0 = 0 . 41). 

Fig. 3 shows the numerical solution at t = 6 for δρ, the z -
omponent of the Elsässe variable z + = B + U /

√ 

ρ, δp, and δpm 

, 
here pm 

= ||B ||2 / 2 is the magnetic pressure. The Elsässe variable
z + is originally designed to detect normal reverse Alfvén modes 
n uniform magnetic field. Although in this problem the transverse 
erturbations are not normal Alfvén modes, the variable vanishes in 
he unperturbed state, z + 

0 = B0 + U0 /
√ 

ρ0 = 0, and for this reason, 
t is still well suited for detection of transverse perturbations. 

Simply by counting the maxima (or minima) of the curves, one
nds that the spectrum of the longitudinal perturbation peaks at 
l = 9, and the spectrum of the transverse perturbations peaks at
t = 5. These satisfy the resonance condition k− = k − k0 , when
 is identified with kl and k− with kt , suggesting that z+ captures 
he subwave { ω−, k−} . Plagging ˜ k = 9 / 4 into the dispersion equa-
ion ( 10 ) yields the real frequency ˜ ωr = 0 . 457 and the growth rate
˜ = 0 . 417, which is in a good agreement with the value found in the
imulations and is the same as the rounded to three significant digits
aximum growth rate reached at ˜ kmax = 2 . 20. The phase speed in

he plasma frame vp = 0 . 2 c0 and so this is a forward wave. In the
imulation frame, v′ 

p = −0 . 8 c0 . 
MNRAS 542, 2510–2524 (2025)
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Figure 2. The rms value of the density perturbation as a function of time 
for (a) the monochromatic circularly polarized wave (solid line), (b) the 
monochromatic arc-polarized wave (dashed line), (c) the wave packet with 
l/L = π/ 10 and periodic BCs (dash–dotted line), (d) the wave packet with 
l/L = π/ 20 and periodic BCs (dash–dotted line), and (e) the same as in (c), 
but with open BCs (dash–tripple-dotted line). 

Figure 3. Circularly polarized monochromatic wave in the model with 
periodic BCs at t = 6. Top pane: δρ (solid line) and z+ (dashed line). Bottom 

panel: δp (solid line) and δpm (dashed line). 
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Figure 4. Arc-polarized monochromatic wave in the model with periodic 
BCs at t = 6. Top panel: δρ (solid line) and z+ (dashed line). Bottom panel: 
δp (solid line) and δpm (dashed line). 
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Obviously, the longitudinal perturbations are not perfect harmon-
cs, suggesting that several modes grow with similar rates. The
eriodic BCs and the length of the computational domain restrict the
roblem to modes with integer wavenumbers. Of them, the closest
wo to k = 9 ( ˜ k = 2 . 25) are k = 8 ( ˜ k = 2) and k = 10 ( ˜ k = 2 . 5). For
he former, ˜ γ = 0 . 410, and for the latter, ˜ γ = 0 . 367. 

For k− = 5 ( ˜ k = 5 / 4), the corresponding frequency ˜ ω− = ˜ ωr −
 = −0 . 54, and the phase speed in the plasma frame is vp− =
0 . 43 c0 , so this transverse subwave is a reverse one. For the

ther transverse subwave, ˜ k+ 

= 3 . 25, ( k = 13), ˜ ω+ 

= 1 . 46, and
p+ 

= 0 . 45 c0 . This subwave is a forward one. In the simulation
rame, their phase speeds are v′ 

p− = −1 . 43 c0 and v′ 
p+ 

= −0 . 55 c0 ,
NRAS 542, 2510–2524 (2025)
espectively, and so both of them appear moving in the negative
irection. The ratio of real amplitudes of the transverse subwaves
˜ b+ 

| / | ˜ b−| = 0 . 55, and so the reverse subwave is only about twice as
trong as the forward subwave. This may explain the fact that the
everse wave dominates in the z+ data, although z+ is also naturally
iased towards reverse waves. 

.2 Arc-polarized wave 

or the arc-polarized case, the magnetic field and velocity of the
quilibrium state is still described by equations ( 16 ) and ( 17 ), but
ow the phase function is 

( x) = sin ( k0 x) , (18) 

ith k0 = 4 as before. This is the same phase function as used in
arriott & Tenerani ( 2024 ). 
In Fig. 2 , the evolution of the rms density perturbation in this
odel is shown by the curve ‘b’. At the linear phase its growth

ate is γ = 1 . 07 ( γ /ω0 = 0 . 27). This value is in agreement with
esults obtained in Marriott & Tenerani ( 2024 , see their fig. 6 for
/L � 1). The same maxima counting as before yields kl = 8 and
 (see Fig. 4 ). Although these wavenumbers differ from those found
n the model with circular polarization, they are still in agreement
ith the resonance condition k− = k − k0 . By tracing the motion of

ndividual peaks, the phase speeds in the plasma frame are vp = 0 . 19
or the longitudinal perturbation and vp− = −0 . 50 for the transverse
erturbation. These are very similar to the phase speeds found for
he circularly polarized case. Overall, the results show only slight
hanges compared to the case of circularly polarized mother wave,
hich invites to look for at least an approximate analytic solution in

his case too. 

 ARC-POLARI ZED  WAV E  PAC K ETS  

he common way of introducing a wave packet via initial conditions
nvolves multiplication of the monochromatic carrier wave Aeikx by
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Figure 5. Transverse magnetic field of the reference arc-polarized wave 
packet explored in the simulations. θy is the angle between this field and the 
y -axis. 
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he amplitude-modulating (envelope) function χ ( x), which reduces 
he wave amplitude to zero outside of the packet, f ( x) = χ ( x) Aeikx .
owever, Alfvén waves of compressible MHD keep invariant not 
nly ux , ρ, and p, but also the magnitudes of the magnetic field
nd velocity. So attempting to introduce an Alfvén wave packet via 
⊥ 

= ηB0 χ ( x) eikx , like in Li, Fu & Dorfman ( 2022 ), would be a
istake. Instead, the modulation has to be applied to the wave phase

Marriott & Tenerani 2024 ). The choice of modulating functions 
s wide. Marriott & Tenerani ( 2024 ) used the Gaussian envelope,
( x) = exp [ −( x/l)2 ], x ∈ R. To prevent any potential complication

n the case of open BCs, we opted for the envelope with finite 
upport 

( x) =
{ (1 + cos ke x) 

2 
, if − π/ke ≤ x ≤ π/ke 

0 , otherwise 
. (19) 

ence for the arc-polarized packet, the magnetic field is still given 
y equation ( 16 ), but the phase function is now 

( x) = χ ( x) sin k0 x . (20) 

or the main model, ke = k0 / 8, but models with smaller values are
lso explored in Section 5.3 . This packet is illustrated in Fig. 5 . Some
imulations, not presented in the paper, were carried out using the 
aussian envelope and their results are very similar. 

.1 Models with periodic boundary conditions 

e started with the computational domain [ −10 , 10] with 3000
ridpoints and periodic BCs. The corresponding number of grid- 
oints per the wavelength of the carrier wave λ0 = 2 π/k0 is almost
he same as in the simulations of the monochromatic waves. The 
quilibrium is perturbed using the same algorithm as described in 
ection 4.1 . In Fig. 2 , the growth of the density perturbation is
hown by the curve ‘c’. The most interesting feature of the plot is
hat the growth rate experiences large variations, with intervals of 
elatively fast growth separated by intervals of much slower growth. 
nspection of the numerical solution reveals that both the longitudinal 
nd the transverse subwaves do not come in the form of wave packets
omoving with the mother-wave packet. Instead they are modulated 
aves travelling away from the mother packet in the downstream 

irection. They grow in amplitude while they are still inside the
other wave, but this growth terminates when they separate from 

t. When they re-emerge upstream due to the periodic BCs and
eet the mother wave again, this triggers the next episode of fast

rowth. 
To see this process clearly, we doubled the size of the compu-

ational domain, keeping the numerical resolution and the size of 
he mother packet the same. Since this increases the distance the
aughter packets need to travel before meeting the mother wave for
he next time by about 2.5 times, the expectation is that the duration
f the low growth episodes increases by about the same factor. This
s confirmed by the simulations, as one can see in Fig. 2 , where the
volution of the rms value for density perturbations in this model is
hown by the line ‘d’. 

Fig. 6 illustrates the dynamics of the daughter waves from 

 = 2 to 25 covering the second half of the initial fast growth,
he first episode of slow growth, and the first-half of the second
pisode of fast growth. Quick inspection of this figure shows that
utside of the mother packet both the density and z+ perturbations 
ropagate preserving their shape, allowing to determine where each 
f the local peaks are later on with high degree of confidence.
y measuring their displacement between t = 10 and 15, it is

ound that the phase speeds of the density and z+ perturbations 
re v′ 

ρ = −0 . 78 and v′ 
z+ = −2 . 0, respectively. In the plasma frame,

his corresponds to ˜ vρ = cs and ˜ vz+ = −c0 . Thus, these are the 
ormal forward slow-magnetosonic and reverse Alfvén modes. For 
he slow modes, this is confirmed by the opposite variations of
as and magnetic pressures (see Fig. 7 ). For the Alfvén modes,
y the lack of density variation (see Fig. 6 ) and the variation of
he magnetic field direction consistent with the variation of z + 

see Fig. 8 ). 

.2 Models with open boundary conditions 

he results of simulations with periodic BCs suggest that in 
imulations with BCs allowing the daughter waves to escape the 
omputational domain, the growth rate of the instability will be 
imited to the first episode of the fast growth seen in the simulation
ith periodic BCs. To check if this is the case, we repeated the

imulations with the zero-gradient BCs, where the values of all 
ependent variables in the first (and the last) domain cell are copied
o the corresponding ghost cells. These BSs, sometimes called 
outflow’, ‘free-flow’ or ‘open’ BCs, ensure high transparency of 
he domain boundaries to smooth waves. 

In Fig. 2 , the growth of the density perturbation is shown by the
urve ‘e’. As one can see, for a while the growth of the rms value
f δρ is indistinguishable from that in the model with the periodic
Cs. However starting from t ≈ 10, 〈 δρ〉 first stops growing and then
rops down to approximately its initial value. 
Fig. 9 shows the evolution of the density perturbation in this model. 

y t = 6, the small density perturbations initially occupying the
hole domain are no longer present upstream of the mother packet.
hey all have been advected by the incoming flow into the packet,

eaving behind ( x > 4) and almost uniform flow. Between t = 10 and
5, this lack of incoming perturbations leads to an overall decrease in
MNRAS 542, 2510–2524 (2025)



2516 S. S. Komissarov

M

Figure 6. Arc-polarized wave packet in the model with periodic BCs. Evolution of z+ (left column) and δρ (right column). 
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he amplitude of the perturbations inside the mother packet ( −2 π <

 <2 π ). By t = 20, all the initially amplified perturbations have
scaped from the domain via the downstream boundary, which results
n the drop of 〈 δρ〉 seen in Fig. 2 . What remains is the steady-state
tructure shown in the bottom panel of Fig. 9 . It involves a monotonic
ensity increase in the downstream direction combined with a spatial
NRAS 542, 2510–2524 (2025)
scillation with the wavenumber k = 2 k0 . Varying the numerical
esolution shows that the amplitude of this structure behaves like ∝
x3 , demonstrating that the structure is a numerical artefact created

y the numerical diffusivity of our third-order accurate numerical
cheme. 

Thus, the instability not just slows down but terminates. 
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Figure 7. Arc-polarized wave packet in the model with periodic BCs. 
Perturbations of the gas (solid line) and magnetic (dashed line) pressures 
accompanying the density perturbations outside of the mother wave packet. 

Figure 8. Arc-polarized wave packet in the model with periodic BCs. Top 
panel: the z- component of the Elsässe variable z + . Bottom panel: the angle 
θy between the transverse component of the magnetic field B ⊥ and e y . 
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with open BCs. At t = 40 (the bottom panel), the solution has reached 
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.3 Models with the noisy boundary conditions 

he results of the simulations with open BCs suggest that in the case
f continuously incoming density perturbations, the mother packet 
ill be followed by a trail of low-amplitude reverse Alfvén and 

orward slow waves. To generate the perturbations at the upstream 

right) boundary, we use a stack of m pseudo-random numbers ri 

btained with the RANDOM NUMBER( r) subroutine, and compute 
heir mean value r̄ . It is used to set the random density perturbation
ith the standard deviation σρ via 

ρi = 2 σρ

√ 

3 m (r̄ − 0 . 5) . 

t the next time-step, the first random number of the stack is removed
rom it and a newly generated one is added to it, and a new value
f the perturbation is computed in the same way. This algorithm 
erves to filter out the high-frequency noise that is not amplified
y mother wave but gets erased by the numerical diffusivity (in the
imulations, m = 32.). In addition, the x -component of the ghost
ells velocity is set ux = −c0 , and the zero-gradient BCs are applied
o all other variables. At the downstream boundary, the zero-gradient 
Cs are still applied to all variables. The computational domain is
 ∈ [ −30 , 10] with 6000 gridpoints. 
The results of simulation with such noisy BCs are consistent with

he expectations – the mother wave does leave behind a trail in
he form of modulated forward slow wave with the wavenumber 
s ≈ 7 . 5 and modulated reverse Alfvén wave with the wavenumber 
a ≈ 3 (see Fig. 10 ). These wavenumbers approximately satisfy the 
esonance condition of the parametric instability k− = k − k0 . 

For sufficiently long mother packets, one would expect the pertur- 
ations to become non-linear inside the packet. The critical length- 
MNRAS 542, 2510–2524 (2025)
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Figure 10. Structure of the perturbations for the arc-polarized wave packet 
with in the model with noisy BCs at t = 60 when the solution has reached a 
quasi-stationary state in the statistical sense. 
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cale depends on the amplitude of incoming perturbations, the growth
ate of the instability, and the phase speed of the unstable mode. For
ong packets, their inner structure is close to that of the unmodulated
arrier wave, and one would expect the instability growth rate to
e similar to that of the monochromatic case. The same applies to
he phase speeds of unstable modes. Since the modes of parametric
nstability are symbiotic, it is the speed of the fastest subwave, the
everse transverse subwave, that matters. In the rest frame of the
other wave, its phase speed is of the order of the Alfvén speed c0 

see Section 4.1 ). 4 Taking the growth time as the Alfvén crossing
ime of the packet τa = l/c0 , where l is the half length of the packet,
he density perturbation reaches the density of the unperturbed state
hen 

ρe
γ τa = ρ0 , (21) 

here σρ is standard deviation of the incoming density noise, and
is the instability growth rate for the carrier wave of the packet.

ence, the critical length is 

max = cx ln ( ρ0 /σρ) 

γ
. (22) 

ubstituting the values c0 = ρ0 = 1 and σρ = 10−5 used in our simu-
ations, one obtains lmax = 11 . 5. The actual half-length of the packet
xplored so far is l = π/ke = 2 π < lmax , which is consistent with
he perturbations remaining linear but quite close to the threshold. 

To further verify equation ( 22 ) and to explore the non-linear
egime, we run additional simulations with ke = 1 / 4 ( l = 4 π ) and
 / 6 ( l = 6 π ). Fig. 11 shows the growth of density perturbations
n these models and in the case of monochromatic carrier wave. It
onfirms that as l increases the growth rate approaches that of the
arrier wave, and so does the saturation level of perturbations. 

Fig. 12 shows the numerical solutions for the three models at
 = 70, well after the instability saturation point for all of them.

hereas for ke = 1 / 2 and 1 / 4, the instability saturates at linear
NRAS 542, 2510–2524 (2025)

 Goldstein ( 1978 ) notes that this is likely to be the case in general, particularly 
or η � 1. 

I  

m  

i  

B  
mplitudes, for ke = 1 / 6 it reaches the non-linear phase. The most
emarkable feature of the ke = 1 / 6 solution is the collapsed down-
tream section of the mother wave and its well-preserved upstream
ection. The half-length of the preserved section is approximately 11,
hich is very close to the value of lmax predicted by equation ( 22 ).
he discontinuity in the density distribution seen at x ≈ 11 is a

orward fast shock, as evidenced by the correlated jumps in magnetic
nd gas pressures. It chases down a fast rarefaction occupying the
ection x ∈ (11 , 20) and is chased by a train of weaker fast shocks
ccupying the section x ∈ (0 , 11). The section with x < −15 is
ominated by a train of forward slow shocks. 
The dynamics of this collapse is illustrated in Fig. 13 . First a

trong reverse Alfvén wave is emitted by the mother packet, which
s accompanied by a reduction in the amplitude of packet’s angular
scillations in its trailing section. As the time increases, the amplitude
f emitted reverse Alfvén waves weakens and the packet enters the
hase of slow evolutions. It is hardly changed between t = 50 and
he end of the simulations at t = 80. 

 DI SCUSSI ON  

ur results for arc-polarized Alfvén wave packets are in stark
isagreement with the results of semi-analytical study by Marriott &
enerani ( 2024 ), which yields a temporal instability similar to

he parametric instability of monochomatic Alfvén waves both for
eriodic and open BCs, though at a lower growth rate. From the start
f their analysis, they assume that in the frame of the packet, the
erturbations have the form δf ( x) eiωt , where both δf ( x) and ω are
omplex. This describes a wave packet that neither changes its shape
or moves relative to the mother wave, but only grows exponentially
n amplitude. In contrast, the evolution of perturbations found in
ur simulations is much more dynamic and depends on the type of
pplied BCs. 

With the periodic BCs, the perturbation grows intermittently.
nteracting with the initial density noise, the mother wave emits
odulated forward slow magnetosonic and reverse Alfvén waves into

ts downstream. These waves then re-emerge upstream via periodic
Cs and get amplified when they reunite with the mother wave.
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Figure 12. The packet length effect on the solutions for arc-polarized wave packet in the model with noisy BCs at the phase of saturation ( t = 70). Left column: 
mass density ρ; and right column: the angle θy between the transverse component of the magnetic field and the y -axis. The dashed lines in these plots show the 
initial envelopes of the mother packets. Top row: ke = 1 / 2 ( l = 2 π ); middle row: ke = 1 / 4 ( l = 4 π ); and bottom row: ke = 1 / 6 ( l = 6 π ). Note the change in 
the domain size from L = 40 in the top row to L = 80 in the other rows. 
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nterestingly, the mean growth rate decreases with the size L of
he computational domain, approximately like ∝ L−1 , which is in 
greement with the result by Marriott & Tenerani ( 2024 ). However,
he reason for such behaviour is different. In our simulations, the 
ean growth rate decreases with L because the time required for the

aughter waves to reunite with their mother grows like � L . 
With the open BCs, the initially generated daughter waves 

o longer re-appear upstream, but leave the computation domain 
hrough the downstream boundary. The amplitude of perturbations 
nside the domain drops and the mother wave reaches a steady- 
tate structure where ρ, p, and ux exhibit spatial variations. These 
ariations get reduces with increased numerical resolution at the same 
ate as the truncation errors of the scheme, implying that the structure
s purely numerical and associated with the numerical viscosity and 
esistivity. When the density noise of the same standard deviation as
he initial one is constantly generated at the upstream boundary, the 
olution does not settle to a steady state, and the mother wave packet
eeps emitting daughter waves. 

The reason why the daughter waves do not behave as comoving 
ave packets is connected to the reduction in the amplitude of

he carrier wave in the wings of the mother packet. Whether it is
odulated with the Gaussian function or our trigonometric function, 

t sufficiently large but finite distance from the packet centre its
mplitude becomes so small that the carrier wave can no longer 
e considered non-linear. When the total perturbation is small the 
eneral solution of MHD equations reduces to a mixture of non-
nteracting normal modes, and so the daughter waves become normal 
low magnetosonic and Alfvén waves which freely escape from the 
other packet given their negative phase speeds. 
The mechanism of wave emission still appears to be related to the

arametric instability, as the emitted waves satisfy the resonance 
ondition k− = k − k0 , though not exactly. Apparently, all the 
other packets investigated in our study are sufficiently long for 

he eigenmode of the instability to get established and amplified in
he central section of the packet, before splitting into normal MHD
odes in its trailing wing. 
The results of all numerical experiments described in Section 5 

re consistent with picture where the perturbations enter the mother 
acket through its upstream wing and grow in amplitude as they
ove through the packet. If the packet is relatively short, the packet

rossing time is also short and the perturbations remain linear when
hey escape from the packet through its downstream wing. In this
ase, one would expect the packet to decay slowly, on the time-scale
reatly exceeding 1 /γ , where γ is the growth rate of the parametric
nstability for monochromatic waves. Indeed, close inspection of 
he simulation data show no evidence of the packet decay between
 = 20 and 80 for the models with ke = 1 / 2 and 1 / 4 presented in
ection 5.3 . 
When the length of the packet exceeds the critical value lmax given

y equation ( 22 ), the packet crossing time is long enough for the
MNRAS 542, 2510–2524 (2025)
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Figure 13. Evolution of the mother packet in the model with ke = 1 / 6. The 
angle θy at t = 80 (solid line) and t = 50 (dashed line). 
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erturbations to reach non-linear amplitude. However, even in this
ase, the upstream section of the packet with the length l � lmax 

voids destruction and presumably also enters the phase of slow
ecay. This may explain why arc-polarized Alfvén wave packets are
een at large distances from the Sun (Riley et al. 1996 ), where they
re most likely generated. 

In many numerical studies of various fluid instabilities, there
s no need to introduce initial perturbations or use noisy BCs
ecause the noise associated with truncation or rounding errors does
he job as well. So the fact that with open BCs, the instability
erminates and the mother packet settles to a steady state when
he initial density perturbation stop coming in from the upstream
Section 5.2 ) is somewhat curious. As far as this limited effect of
he initial noise is concerned, the result is in agreement with the
nderstanding that the instability is not a stationary wave packet.
ts growth is spatial and once the amplitude of the incoming noise
rops, so does the amplitude of the perturbation inside the mother
NRAS 542, 2510–2524 (2025)
acket. For the same reason, the rounding errors play no role in
he simulations – with the double precision computations its level
s too low to be significant even if it is amplified while advected by
he flow across the mother packet. The same likely applies to the
oise that may emerge via the weak wave reflection off the open 
oundaries. 
It is somewhat less clear with respect to the truncation errors of the

umerical scheme, which lead to the wavy steady-state structure in
he distributions of density, pressure, and longitudinal velocity inside
he mother packet (the bottom panel of Fig. 9 ). Presumably, this
ave does not have the properties required to trigger the instability.
his wave is driven by the spacial variation of numerical dissipation
ssociated with the oscillations of transverse magnetic field and
elocity in the carrier wave (this is why its wavenumber k = 2 k0 .).
his is not a compressive mode as it is ‘frozen’ into the mother packet
nd hence moves with the Alfvén speed c0 through the plasma.
he variations of ρ and ux are also incompatible with the ideal
ompressive mode. 

Our description of arc-polarized Alfvén waves is different from
hat in a number of pioneering works (Barnes & Hollweg 1974 ;
asquez & Hollweg 1996 ; Del Zanna 2001 ). We simply set the radius
f the arc and its angular size, whereas they first set the time-averaged
or phase-averaged) tangential magnetic field and then look for arcs
hat yield this value. With the additional assumption of sinusoidal
ariation for the component normal to the averaged field, the solution
ay not exist, and when it does, the angular size of the arc is below
. With our approach, there are no such complications and one may

hoose an arc of any size. 
A related issue is the type of polarization an Alfvén wave may have.

n the publications related to the topics, in addition to circularly and
rc-polarized waves, there is mentioning of linearly polarized Alfvén
aves, and spherically polarized Alfvén waves as well. 
The term linear polarization is an approximate description of

lfvén waves with such a small angular size of their arcs that they
re well approximated by a straight line. In this case, the variation
f the transverse component of the magnetic field is small, and in
his sense this is a linear wave. Non-linear linearly polarized Alfvén
ave is a contradiction in terms, as pointed out by Barnes & Hollweg

 1974 , e.g.), but the notion of large-amplitude waves involving
ariations of only magnitudes of transverse magnetic field and
elocity persevere. This could be connected to the linearly polarized
aves of incompressible MHD originally discovered by Alfvén

 1950 ), which propagate with the Alfvén speed and have identical
roperties in both the linear and non-linear regimes. These solutions
an be combined to yield a circularly or arc-polarized mode, and only
his mode ‘survives’ in compressible MHD as wave propagating with
he Alfvén speed, whereas the pure linearly polarized modes turn into
low magnetosonic waves. So in compressible MHD, initial solutions
escribing strong amplitude perturbations of transverse magnetic
eld and velocity inevitably move the problem under consideration

n the category of arbitrary non-linear wave unidentifiable with any
articular normal mode (e.g. Barnes & Hollweg 1974 ; Cohen &
ulsrud 1974 ). Slightly different is the degenerate case of vanish-

ngly small transverse magnetic field. In this case, the Alfvén speed
ecomes a double root of the dispersion equation (or equivalently
 double eigenvalue in the eigenvalue problem for the characteristic
atrix of the compressible MHD equations), and the corresponding

D space of eigenvectors is the same as in incompressible MHD.
ence, the small-amplitude waves are the same as in incompressible
HD and can describe both linearly and circularly polarized waves.
The term ‘spherical polarization’ emerged from the observations

f solar wind perturbations which keep the magnitude of the
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agnetic field fairly constant but change its direction in arbitrary 
ay (Belcher & Davis 1971 ; Balogh et al. 1995 ), with the arc-
olarized events accounting to only up to 10 per cent of the data
Riley et al. 1996 ). Such behaviour is inconsistent with the properties
f individual Alfvén waves in well-defined background (mean) 
agnetic field and is indicative of strong Alfvén turbulence instead 

e.g. Barnes 1981 ). 
Circular and arc polarizations are just special cases of the allowed 

ariation of the transverse magnetic field and velocity in Alfvén 
aves. In ideal MHD, the tip of the transverse magnetic field may

ravel along its circle in an arbitrary way, including jumps from one
oint to another. For example, it can make several full turns before
umping to another direction and tracing few small arcs. 

The origin of Alfvén waves in the solar wind in general, and
heir arc-polarized instances in particular, is not well-established 
et, although the dominance of modes moving away from the 
un in the plasma frame (Goldstein et al. 1995 ) indicates solar
rigin for most of them. The fluid motion on the Sun surface is
ominated by turbulent convection and the associated motion of 
agnetic field foot-points must be quite random. So one would 

xpect the Alfvén waves generated there to be random from the 
ery beginning (Cranmer & van Ballegooijen 2005 ). This makes the 
imple models of parametric instability for monochromatic Alfvén 
aves not particularly relevant. In active regions, one may expect 
uasi-periodic oscillations of magnetic flux tubes associated with 
apid restructuring of magnetic field via magnetic reconnection. Jess 
t al. ( 2009 ) reported possible quasi-periodic motion on the time-
cale of hundreds of seconds and lasting few thousands of second 
bove a group of bright spots associated with local concentration 
f magnetic field between convective granules of the Sun. Even if
his type of phenomena may produce Alfvén wave packets, there is
o physical reason for them to have a well-defined frequency of the
arrier wave. Riley et al. ( 1996 ) find a hint of the quasi-periodicity
n one of the arc-polarized events in the solar wind, but even in this
ase, the noise level is quite high. So, future studies of the parametric
nstability should focus on random waves. Given the resonant nature 
f the instability, it is natural to expect a significant reduction of its
fficacy for such waves. 

 SU M M A RY  

n this paper, we described computer simulations of basic Alfvén 
ave packets, constructed via modulation of monochromatic arc- 
olarized carrier wave, with the aim to establish the role of the
arametric instability in their evolution. The initial setup utilizes 
he inertial frame comoving with the packet, where the packet is
n exact steady-state solution of ideal MHD. This steady state is
erturbed via introducing small-amplitude density perturbations in 
he form of white noise passed through a low-pass filter to remove
apidly decaying via numerical diffusion high-frequency waves. 
ome of the simulations are carried out with the standard periodic 
nd open BCs, but for the most important cases, the open BCs at
he upstream boundary are modified to turn them into a constant 
ource of low-frequency noise. In all these simulations, the plasma 
agnetization is fixed to a2 /c2 

0 = 0 . 1, the transverse magnetic field
trength parameter is fixed to η = B⊥ 

/B0 = 1 and the amplitude of
ts angular oscillations is limited by 60◦. 

All the results consistently point to developing of the parametric 
nstability, but in the form of spatial growth of its daughter waves – the
ncoming density perturbations trigger these waves in the upstream 

ing of the packet, which then grow in amplitude while propagating 
hrough the mother wave towards its downstream wing and then 
scape the packet in the form of normal reverse Alfvén and forward
low MHD waves. 

For sufficiently short packets, the perturbations emerge from the 
acket as small-amplitude waves. Their wavenumbers are consistent 
ith the resonance condition of the parametric instability. The mother 
acket remains virtually unchanged on the e -folding time-scale of 
he instability. 

For larger packets, the daughter waves reach non-linear amplitude 
hile still inside the mother packet. In this case, the growth rate of the

nstability at the linear phase is very close to that for the unmodulated
arrier wave. At the non-linear phase, the mother wave collapses 
tarting from some position in the packet and then all the way to
ts downstream end. However, its upstream section remains largely 
ntact. The critical packet length separating the linear and non-linear 
egimes, as well as determining the size of the surviving section in
he non-linear regime, can be estimated using the model of spacial
rowth based on the assumption that the e -folding length-scale is
iven by the product of e -folding time-scale for the unmodulated
arrier wave and the Alfvén speed. 

Ultimately, the simulations show that Alfvén packets can sur- 
ive for much longer than one would expect from the results for
onochromatic Alfvén waves, which may explain why such packets 

re found in the solar wind at large distances from the Sun. 
The results of our simulations are in conflict with the results of

he semi-analytical study of arc-polarized Alfvén wave packets by 
arriott & Tenerani ( 2024 ), where the daughter waves are assumed

o be wave packets comoving with the mother wave. 
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PPENDIX  A :  N U M E R I C A L  SCHEME  

part from the splitting algorithm, the numerical scheme used for
his simulations is the same as in Komissarov & Phillips ( 2025 )
nd borrows some key algorithms from the code ECHO developed
y Del Zanna et al. ( 2007 ) for relativistic MHD equations. It is a
hird-order accurate finite-difference scheme employing the GLM
Generalised Lagrange Multiplier) approach, third-order Runge–
utter time integration, and a third-order WENO reconstruction

lgorithm. 
NRAS 542, 2510–2524 (2025)

Figure A1. Numerical solution to the Brio 
The code integrates the evolution equations of MHD in the form
onservation laws which can be combined into a single vector
quation 

t q + ∇ · F = 0 , (A1) 

here q is the vector combining the conserved variables, and F is
he matrix combining corresponding flux tensors. 

1 GLM approach 

o keep the magnetic field approximately divergence-free, we follow
he method called GLM (Munz et al. 2000 ; Dedner et al. 2002 ).
ence, we introduce an additional dependent scalar variable � and

eplace the Faraday equation and the divergence-free condition with

t B + ∇ × E + ∇� = 0 , (A2) 

t � + ∇ · B = −κ� . (A3) 

n the simulations, κ = 0 . 2 /�t , making the e-folding time for �
without the term ∇ · B ) equal to 5 integration time-steps �t . 

2 Time integration 

ince this is a finite-difference scheme, the numerical solution q n i,j ,k 

escribes the values of q at the gridpoints with coordinates ( xi , yj , zk )
t the discrete time tn . Here, we utilize Cartesian coordinates and uni-
orm spatial grid with xi = x1 + ( i − 1) �x, yj = y1 + ( j − 1) �y,
nd zk = z1 + ( k − 1) �z, where �x = �y = �z = h . These grid-
oints can considered as central points of rectangular computational
ells with interfaces at xi±1 / 2 = xi ± h/ 2, yj±1 / 2 = yj ± h/ 2, and
k±1 / 2 = zk ± h/ 2. The time grid is also uniform, tn = t0 + �tn

ith �t = C h , where C is the Courant number. In the simulations,
 = 0 . 5. 
The finite-difference equations have the form 

d Q 

d t 
= F ( Q ) , (A4) 

here Q is a 1D, 2D, or 3D array, depending on the dimensionality
f the problem. Each entry of this array is the vector q at the
orresponding gridpoint. F is an array of the same dimension and
ize as Q . Each entry of this array is the numerical finite-difference
pproximation for −∇ · f + SQ 

at the corresponding gridpoint,
here SQ 

is the vector of source terms. In the case of Cartesian
oordinates, the source terms emerge only in equation ( A3 ). The
& Wu ( 1988 ) test problem at t = 0 . 1. 

ctober 2025
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Figure A2. Numerical solution to the Ryu & Jones ( 1995 ) test problem at t = 0 . 08. 
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ystem of ordinary differential equations ( A4 ) is integrated using
hird-order Strong stability preserving version of the Runge–Kutta 
ethod (Shu & Osher 1988 ). Hence, 

n + 1 = Qn + �t 

6 
( k1 + k2 + 4 k3 ) , (A5) 

here 

k1 = F ( Qn ) , 

k2 = F ( Qn + �t k1 ) , 

k3 = F
(
Qn + �t 

4 
( k1 + k2 )

)
. 

The finite-difference approximation for ∇ · f is computed in the 
ollowing steps: 

(i) Conserved variables are converted into the primitive variables. 
his is needed because interpolating conserved variables may yield 
n unphysical state. 

(ii) A third-order WENO interpolation (Komissarov & Phillips 
025 ) is used to setup Riemann problems at the cell interfaces. 
(iii) HLL Riemann solver (Harten, Lax & van Leer 1983 ) is used

o find upwind flux densities f at the interfaces. 
(iv) Central quartic polynomial interpolation is used to reconstruct 

he distribution of f in each coordinate direction and hence to find a 
hird-order approximation for ∇ · f (the DER operator in Del Zanna 
t al. 2007 ). This works fine for smooth solutions, but may introduce
igure B1. Parametric instability of circularly polarized monochromatic Alfvén w
f 〈 ρ〉 . The dash–dotted line shows exponential growth with the rate γ = 0 . 41 ( γ /ω
scillations at shocks. To avoid this, the computational domain is 
canned for shock fronts and a ‘safety zone’ is set around them.

ithin the safety zone, a second-order total-variation-diminishing 
TVD) interpolation is used instead of the WENO interpolation. 

The code was tested using a number of test problems. Here, we
resent some of the 1D tests, including the parametric instability of
onochromatic Alfvén waves with circular polarization. 

PPENDI X  B:  TEST  SI MULATI ONS  

1 Brio & Wu problem 

his is a Riemann problem with the left state p = 1, ρ = 1, u = 0 ,
nd B = (0 . 75 , 1 , 0) and the right state p = 0 . 1, ρ = 0 . 125, u =
 , and B = (0 . 75 , −1 , 0). The computational domain is [0,1] with
00 gridpoints, and the initial discontinuity located at x = 0 . 5. The
umerical solution at t = 0 . 1 is shown in Fig. A1 . This problem,
hich was first solved by Brio & Wu ( 1988 ), has become a must

est for computational MHD in spite of the fact it involves a non-
volutionary intermediate shock which is super-Alfvénic relative to 
he upstream state and sub-Alfvénic relative to the downstream state. 
his property leads to its disintegration when it is approached from

he downstream by an Alfvén wave (Falle & Komissarov 2001 ). 
MNRAS 542, 2510–2524 (2025)

ave for the models A and C from Del Zanna et al. ( 2001 ). Left panel: growth 

0 = 0 . 10). Right panel: evolution of parameter σE . 

29 O
ctober 2025
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Figure B2. Parametric instability of circularly polarized monochromatic 
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solution at t = 40. Bottom panel: model C from Del Zanna et al. ( 2001 ). 
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2 Ryu & Jones problem 

his is a Riemann problem from Ryu & Jones ( 1995 ) illustrated in
heir fig. 1(a). Its left and right states are, respectively, (1) p = 20,
= 1, u = (10 , 0 , 0), and B = (5 B0 , 5 B0 , 0) and (2) p = 1, ρ =

, u = ( −10 , 0 , 0), and B = (5 B0 , 5 B0 , 0), with B0 = 1 /
√ 

4 π . The
omputational domain is [0,1] with 400 gridpoints, and the initial
iscontinuity located at x = 0 . 5. The numerical solution at t = 0 . 08
s shown in Fig. A2 . 

3 Parametric instability of monochromatic circularly polarized 
lfvén waves 

ince the topic of this study is the stability of large-amplitude Alfvén
aves, we repeated the 1D simulations of Del Zanna et al. ( 2001 )
f monochromatic circularly polarized Alfvén waves in a domain
ith periodic BCs, namely their models A and C. We used both the
riginal setup of Del Zanna et al. ( 2001 ), where ux = 0, and the setup
n the rest frame of the mother wave. For both the setups, the results
re almost identical to the original. 

Here, we present the results for the setup in the rest frame of the
other wave. In the initial solution, ρ0 = 1, 

B 0 = ηB0 (1 , cos ( k0 x) , sin ( k0 x)) , U 0 = −B 0 /
√ 

ρ0 , (B1) 

ith B0 = 1, k0 = 4, and p0 = (β0 /γ ) B2 
0 with γ = 5 / 3 for both

hese models. In the model A, β = 0 . 1 and η = 0 . 2, whereas in the
odel C, β0 = 1 . 2 and η = 1. The computational domain is [0 , 2 π ]
ith 942 computational cells and periodic BCs. This equilibrium

olution is perturbed via adding unfiltered flat white noise to ρ0 with
he mean deviation σρ = 10−4 . 

Fig. B1 shows the time evolution of the rms value of density
erturbation 〈 δρ〉 and the cross-helicity 

E = E+ − E−

E+ + E− , (B2) 

here E± = 〈||z ±||2 〉 are the Elsässer energies of the forward
nd reverse Alfvén waves and z ± = δu ± δB /

√ 

ρ. These are in
NRAS 542, 2510–2524 (2025)

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reus
greement with the results by Del Zanna et al. ( 2001 ) presented
n their fig. 2 down to fine details. The same is true for the solutions
t the non-linear stage ( t = 40) of the instability shown in Fig. B2 of
his paper and in the fig. 3 of Del Zanna et al. ( 2001 ). 
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