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ABSTRACT

Parametric instability of Alfvén wave packets with monochromatic carrier wave in low-f plasma is studied using 1D
magnetohydrodynamic simulations. The results show spatial growth of incoming perturbations as they propagate through
the mother wave. For sufficiently short packets, the perturbations emerge downstream of the packet as small-amplitude reverse
Alfvén waves and forward slow magnetosonic waves. For larger packets, the perturbations reach non-linear amplitude while still
inside the mother wave. In this case, a downstream section of the mother wave collapses, but the remaining upstream section stays
largely intact and enters the phase of very slow evolution. The length-scale separating the linear and non-linear regimes, as well
as determining the size of the surviving section in the non-linear regime, is set by the Alfvén crossing time of the packet, the
growth rate of the parametric instability for the unmodulated carrier wave, and the amplitude of incoming perturbations. The
results are discussed in connection with the physics of solar wind.
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1 INTRODUCTION

Both the solar corona and its wind are subject to heating via
some non-thermal mechanism. The solar corona is extremely hot
compared to Sun’s photosphere, and the temperature of solar wind
decreases much slower than predicted in its adiabatic model (Gazis
et al. 1994). Heating by plasma waves emitted by the dynamic
Sun’s surface has been considered as one of such mechanisms.
Compressive magnetohydrodynamic (MHD) modes, like fast and
slow magnetosonic modes may rapidly convert their energy into heat
via non-linear steepening followed by development of shock waves
(e.g. Whitham 1974; Cohen & Kulsrud 1974) or collisionless Landau
damping (e.g. Montgomery & Tidman 1964; Barnes 1966; Kellogg
2020). However, the effectiveness of their dissipation is also a
drawback, as they cannot reach required large distances from the Sun.
In contrast, the phase speed of Alfvén waves does not depend on their
amplitude and so they do not steepen into shocks. They are also much
less affected by the collisionless dissipation. So in principle, they can
propagate large distances without attenuation, and the interplanetary
missions reveal that apart from the fast streams (advective waves), the
solar wind perturbations are dominated by Alfvén waves. However,
the effectiveness of Alfvén waves at energy transport may turn into
a disadvantage unless a suitable mechanism is found for converting
their energy into heat. It is believed that the parametric instability of
large-amplitude Alfvén wave may be such a mechanism.

The instability was discovered in 1960s by Galeev & Oraevskii
(1962) and Sagdeev & Galeev (1969), who studied the stability a
small-amplitude (linear) circularly polarized monochromatic Alfvén
wave (mother wave) to even smaller perturbations in the framework
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of 1D MHD. To simplify the analysis, they assumed high plasma
magnetization, which allowed them to identify and then retain only
the dominant coupling term in the perturbation equations. Under
these conditions, the perturbations are sound and Alfvén waves
(daughter waves). The instability develops under resonance con-
ditions involving wavenumbers and frequencies. Sagdeev & Galeev
(1969) also pointed the similarity between this problem and the
resonance interaction between three coupled harmonic oscillators.

Later, Goldstein (1978) and Derby (1978) independently analysed
this stability problem without using the simplifications of Sagdeev &
Galeev (1969). The daughter waves are no-longer sound and Alfvén
waves, but only resemble them. The original results by Sagdeev &
Galeev (1969) are recovered in the limit ?> <« b> < 1 (Derby 1978),
where b = a/c is the ratio of the sound speed a and the Alfvén speed
along the wave vector, c¢o = By/47m ,/po, there By is the magnitude
of magnetic field component along the wave vector, and py is the
unperturbed plasma density, and n = ||B 1 o||/Bo > 0 is the ratio of
the magnitudes of the transverse and longitudinal components of
the magnetic field in the mother wave. Jayanti & Hollweg (1993)
carried out detailed analysis of the solutions and derived analytical
approximations for the unstable modes. Ruderman & Simpson
(2004) used an alternative approach to this problem, by reducing the
original system of perturbation equations, which contains periodic
coefficients, to a system with constant coefficients.

In the non-linear phase, which has been studied with computer
simulations, the non-linear steepening of longitudinal perturbations
leads to formation of shock waves, resulting in efficient heating of
plasma (e.g. Del Zanna 2001). The parametric instability is also
considered as a driver for Alfvén turbulence in the solar wind
(see Bruno & Carbone 2013, and the references therein, Shoda &
Yokoyama 2018), which transfers energy to small scales where it
dissipates via collisionless mechanisms.
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The magnetic and velocity perturbations of the solar wind are dom-
inated by outgoing Alfvén waves, but the observations also suggest
a significant contribution by the ingoing waves (e.g. Goldstein et al.
1995; Bruno, Bavassano & Pietropaolo 1996), and the generation of
ingoing waves via the parametric instability of the outgoing ones is an
attractive mechanism. The numerical simulations have been naturally
extended from 1D to 2D and 3D to explore effects associated with the
increased dimensionality (e.g. Del Zanna, Velli & Londrillo 2001;
Del Zanna et al. 2015; Shoda & Yokoyama 2018; Primavera et al.
2019)

The investigation of the parametric instability has been ex-
tended to arc-polarized (Del Zanna 2001; Marriott & Ten-
erani 2024), weakly non-monochromatic waves (Malara & Velli
1996), and to the frameworks of relativistic MHD (Ishizaki &
Ioka 2024), two-fluid (e.g. Vihas & Goldstein 1991), hybrid
(e.g. Araneda et al. 2008), and fully kinetic models (e.g.
Gonzdlez, Innocenti & Tenerani 2023). Recently, Marriott &
Tenerani (2024) extended the investigation to Alfvén wave
packets.

Arc-polarized wave packets have been identified in the data
obtained with interplanetary probes (Lichtenstein & Sonett 1980;
Tsurutani et al. 1996; Riley et al. 1996). According to the statistical
analyses by Riley et al. (1996), essentially all such waves move
away from the Sun in the rest frame of the solar wind plasma,
which suggests that they are originated at or near the Sun. They
account for 5-10 per cent of the Ulysses data. The magnetic field
rotation is limited to 180° with no preferred helicity. So, the question
whether such packets decay via the parametric instability, and if
they do then how rapidly, is very relevant to the physics of solar
wind.

According to the semi-analytical study by Marriott & Tenerani
(2024), who solved numerically the boundary value problem for the
eigenmodes of the instability, such packets are still subjects to the
parametric instability, though with a weaker growth rate compared
to arc-polarized monochromatic waves. Moreover, the growth rate
scales like >~ [/L whenl/L — 0, where [ the linear size of the packet
and L is the size of the computational domain. This property seems
rather bizarre, particularly in the case of open boundary conditions
(BCs), because the wave interaction is fully local and hence should
be limited to the region occupied by the packet. Therefore, the growth
rate should not depend on L when L > /.

In this paper, we study the parametric instability of Alfvén wave
packets using 1D ideal MHD simulations. Section 2 provides the
relevant theoretical background to the problem. Section 3 describes
the method and the plasma parameters common to all the simulations
described in this paper. In Section 4, we present the results for
monochromatic circularly and arc-polarized Alfvén waves, which
provides a reference point for the main study of arc-polarized
wave packets described in Section 5. Section 6 contains the general
discussion of these results and their implications.

2 THEORETICAL BACKGROUND

In their analysis, Sagdeev & Galeev (1969) assume the transverse
magnetic field of the mother Alfvén wave in the form By =
A exp(i(koz — wp)t) + A* exp(—i(kox — wo)t), where A is a com-
plex amplitude vector. Although in the text, they describe the mother
wave as circularly polarized, this is a most general representation
of a monochromatic wave which allows all types of polarization,
from linear to circular, depending on A, which is not specified
in their work. The same description is used for daughter waves.
Then they show that the amplitudes of the daughter waves can have
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secular evolution (on the time-scale longer than the periods of their
oscillations) under the resonance conditions

wy=wy+w, ki=ko+k. (€))]

Here, {wo, ko}, {w+,k+}, {w,k} are the real frequencies and
wavenumbers of the mother Alfvén wave, the daughter Alfvén
wave, and the sound wave, respectively.! To simplify the discussion,
and without loss of generality, they assumed wy = coko, where
co = Bo//po > 0 is the Alfvén speed in the direction of the phase
vector.? This describes a forward wave in the rest frame of plasma.
Both positive and negative values of ky and wy are allowed. With
more accurate description, these two options correspond to opposite
polarizations and helicities of the mother wave.

This circular evolution of the daughter waves is an exponential
growth when the Alfvén daughter wave travels in the opposite
(reverse) direction to the mother wave, @, /k; = —cp, and the sound
wave travels in the same (forward) direction as the mother wave,
w = ak.

Quick inspection of equations (I-17 and I-18) in Sagdeev & Galeev
(1969), after accounting for several typos, shows that three more
resonances are also possible. So, altogether there four resonances
which can be combined into two pairs,

wi:w:tu)o, ki:kﬂ:ko, (2)
and
(I):E:*a):ta)(), Eisz:tko (3)

Since wy/ky = @ /ks, the pairs have the same phase speeds.
Repeating the calculations of Sagdeev & Galeev (1969) for the
new resonances yields basically the same results. For each of the
resonances, the instability occurs when the Alfvén daughter is a
reverse wave, and the sound wave is a forward wave, with the same
growth rate in all cases.

Goldstein (1978) and Derby (1978) start their analysis by intro-
ducing the mother Alfvén wave as a proper circularly polarized
transverse wave. To this aim, Goldstein (1978) uses complex Jones
vectors, whereas Derby (1978) introduces complex variables for
the transverse components of the magnetic field By = B, & iB;
and U+ = U, £iU,. For a circularly polarized monochromatic
transverse wave,

B, = B, B = Bre—i¢” ’ (4)

where the phase ¢ = kx — wt, and the complex amplitude B =
B €% . To incorporate the possible temporal exponential growth, the
frequency is assumed to be complex, w = w, + iy, where w, € R
is the proper frequency and y € R is the growth rate. B, € R is the
strength of the transverse magnetic field, k € R is the wavenumber,
and ¢, € R is the constant phase shift.

For the mother Alfvén wave, y = 0, and without any loss of
generality one may assume ¢; = 0. Hence, for its transverse magnetic
field, By + = By, 1 exp(Zi(kox — wot)). For the corresponding trans-
verse velocity Uy + = Uy | exp(Fi(kox — wot)), where wy/ko = co,
and Uy, 1 = Bo,1/./po, where py is the unperturbed uniform plasma
density.

The system of linearized equations for the perturbations u, b, and
p is solved using the method of Fourier transform. The calculations
reveal that, with one exception, its normal modes are not normal in

I'The notation is modified to align with the rest of the paper.
2Note the disappearance of the factor 1/4/47 via renormalization of the
magnetic field here and throughout this paper.
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the sense that they are not associated with a single frequency and a
single phase speed, but describe a co-existence (symbiosis) of three
subwaves whose frequencies and wavenumbers satisfy the resonance
conditions (2). One of the subwaves is longitudinal and controls the
variations of gas density, pressure, and the longitudinal component
of velocity. The other two subwaves are transverse, as they control
the variations of the transverse components of the magnetic field and
velocity.

If the longitudinal subwave is described by the harmonic

p=pe? + pret? ®)
where ¢ = kx — wt, then the perturbation equations dictate

U, = €% + ﬁjeiiq’* ,

b+ = bype'* + lﬁe*id’; ,

ut = i e + ﬁ;eﬂ‘d’; , (6)
where ¢ = kix — wyt. ki and w4 are still given by the resonance
conditions (2), but the frequencies are now allowed to be complex.

It is easy to see that the transverse perturbation is a sum of two
circularly polarized subwaves, one with

by =bye*, b_= l;je_"‘i’i ,

up =i e, u_= ﬁi€7i¢i , @)
and the other with

b, = b* e, b =b_e 0,

uy =it bo=id_e ", ®)

The complex amplitudes of the subwaves are related via

iy = (@/k)p .
5. — k+D@*+Qod—k) _
S Y
(@k* 4+ 20 — k) £ (@* — 20k — k) _
- — p, )
k(@ — k)@ +k +2)

Ut

where § = p/po, i = ii/co, b =b/By, k =k/ko, and & = w/wq
(Derby 1978).
The phase speeds are given by the dispersion equation®

@—h) [((@ 1B — 8@ — )@ — bR
2R + k- 36 + 12)} —0, (10)

where b = ap/co, where ay is the sound speed of the unperturbed
state. One root of equation (10) is the solution to (@ — k) = 0. The
corresponding phase speed is w/k = ¢y, the same as the phase speed
of the mother wave. Since the factor (& — k) also appears in the
denominator for the last two expressions in equation (9), this root
describes a pure transverse mode. Quick inspection of the perturba-
tion equations with vanishing density perturbation show that pure
transverse perturbations are allowed provided they have the same
phase function as the mother wave, by = by exp(xi(kox — wot)).
Thus, this solution amounts to variation of the amplitude and phase
shift of the mother wave. The other roots correspond to proper sym-
biotic modes. Strictly speaking, the symbiotic modes are dispersive,
as their phase speed v, = w/k depends on the wavenumber.

3Both in Goldstein (1978) and Derby (1978), the common factor (& — k) is
dropped as it is not relevant to the instability. However, it is still important
for the complete description of the normal modes of the system.
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Figure 1. Dispersion diagram for b> = 0.1 and 5 = 1. Top panel: the real
part of solutions to the dispersion equation (10) for @. The solid lines show
the stable modes where the imaginary part of @ vanishes. The dashed line
shows the real part of @ for two modes with complex conjugate values of
@. The black dot on this line shows the location with maximal |y|. Bottom
panel: the positive imaginary part of the complex conjugate roots (the growth
rate of the parametric instability) corresponding to the dashed line in the top
panel.

Equation (10) is symmetric with respect to the transformation
k— —k, @ > —@*. Since {k,®) and {—k, —@*} describe the
same longitudinal subwave, the same solutions appear twice on the
dispersion diagram, and hence one may limit their analysis to k > 0.
Fig. 1 illustrates the dispersion diagram for the case with b> = 0.1
and n = 1, explored in the simulations described in Sections 4 and
5. One can see that it is quite complicated and involves a number
of interesting bifurcations. The most important ones describes the
transitions between stable and unstable modes. Everywhere, except
the region 1.21 < k < 3.43, all the modes are stable and so one can
count exactly six different real solutions of the dispersion equation for
@. In the unstable region, there are two complex conjugate roots of the
dispersion equation, and in the plot of w, against k one can count only
five different dispersion curves. One may describe the instability as a
resonance interaction between between two symbiotic modes when
they have the same values of k and w,, and hence the same k. and
[OFT

The original results by Sagdeev & Galeev (1969) are recovered in
the limit n?> <« b> < 1 (Derby 1978). In this limit, the solutions to
the dispersion equation are approximately the double root to (& —
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k)2 = 0, the two roots to (& + k)? — 4) = 0, and the two roots to
(@* — b*k?) = 0. For the first four roots, the denominators in the last
two equations (9) vanish suggesting degeneration of corresponding
symbiotic modes into purely transverse waves. Since these roots
yield the phase speed v, = %y, these are Alfvén waves (Jayanti &
Hollweg 1993). For the last two roots, v, = Fa, the denominators
in equation (9) do not vanish, and the small value of n implies
degeneration of the corresponding symbiotic modes into the purely
longitudinal sound waves. The instability occurs at the intersection
point of the lines @ + k —2 = 0 and & = bk, which describe the
reverse Alfvén and forward sound waves, respectively. In the general
case with b < 1, this point stretches into a line segment, like the
dashed line in Fig. 1 (Jayanti & Hollweg 1993; Ruderman & Simpson
2004).

3 THE METHOD

In this study, we numerically solve the equations of compressible
ideal MHD in the form of conservation laws, which include the
continuity equation

ap
ot

the Euler equation

+V-(pU) =0, (11)

apU B|?
%+V-(pU®U—B®B)+V(p+”2” )=0, (12)

the energy equation
3 (pllU|? |B|*
ot ( y teet T

2
+v. K””g” Tt IIBIIZ) v- (U-B)B} =0, (13

the Faraday equation

9B
ﬁ—Vx(UxB):O, (14)

and the differential constraint
V-B=0. (15)

where p, p, en(p, p), and w(p, p) are the density, pressure, thermal
energy, and enthalpy of plasma respectively, U is the fluid velocity,
and B is the magnetic field. In this study, we use the equation of state
for ideal gas with the ratio of specific heats «, so ep, = p/(k — 1)
and w =« p/(k — 1), and use k = 5/3.

The simulations were carried out using a third-order finite-
difference scheme which is the Newtonian version of the scheme for
ideal relativistic MHD described in Komissarov & Phillips (2025),
which in turn was inspired by the code ECHO (Del Zanna et al. 2007).
For completeness, its key algorithms and some test simulations are
given in Appendix A.

In the setup of the simulations, all dependent variables are
functions of only x and #, so the wave vectors are aligned with the
x-axis, but the background (mean) magnetic field can be inclined
to it. In the equilibrium state, the mass density py =1, the x
component of the magnetic field B* = By = 1, and hence the Alfvén
speed in the x-direction is co = Bo/./po = 1. For consistency with
Marriott & Tenerani (2024), in all simulations the magnetization
parameter > = a/c3 = 0.1, and hence ap = +/0.1 and py = 0.06.
The corresponding speeds of the slow and fast modes are ¢, o = 0.22
and ¢y o = 1.43, respectively. The wave vector of the mother wave
points in the positive direction of the x-axis, and to simplify both the
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simulations and the analysis of their results, the problems are set in
the rest frame of the mother wave. Hence, the x-component of the
flow velocity is ug = —1.

4 MONOCHROMATIC WAVES

The case of monochromatic mother waves allows direct comparison
of our simulations with the theory of parametric instability and pre-
vious numerical studies, and hence serves to increase the confidence
in the results for wave packets. Moreover, it lays foundation for their
analysis.

4.1 Circularly polarized wave

In the initial solution, wave’s magnetic field is

By = Boe, + nBo(cos p(x)e, + singp(x)e;), (16)
where ¢(x) = kox, and the fluid velocity
Uy = —Bo/ /o - (17)

For consistency with Marriott & Tenerani (2024), we use the
same wavenumber ky = 4 and hence wy = 1. Fig. 1 shows the
corresponding dispersion diagram. The computational domain is
[0, 2] with n = 942 gridpoints and periodic BCs.

Here, and in the rest of the problems, the equilibrium solution
is perturbed via adding filtered flat white noise with the standard
deviation o, = 107 to the plasma density. To this aim, the FORTRAN
subroutine RANDOM_NUMBER(r) is used to generate pseudo-
random numbers r;,i = 1...n, one per each cell. Then each of them
is converted into another random number 7; using centred mean filter
with (2m + 1)-point stencil. Although not essential, this step allows
to filter out high-frequency noise which otherwise causes an initial
reduction in the perturbation amplitude due to numerical diffusion
(see Fig. B1 for an example of such reduction.). Finally, the initial
perturbation is computed via

8p; =20,4/32m + 1)(7 —0.5).

By trial and error, m = 8 is found to be optimal.

The line ‘a’ in Fig. 2 shows the time evolution for the rms value
of §p over the entire domain. At the linear phase of exponential
grows, the two-point estimation of the growth rate yields y = 1.64
(y/wo = 0.41).

Fig. 3 shows the numerical solution at r = 6 for 8p, the z-
component of the Elsésse variable z* = B + U/,/p, 8 p, and 8 p,,,
where p,, = ||B||?/2 is the magnetic pressure. The Elsisse variable
z " is originally designed to detect normal reverse Alfvén modes
in uniform magnetic field. Although in this problem the transverse
perturbations are not normal Alfvén modes, the variable vanishes in
the unperturbed state, zg = By + Up/,/po = 0, and for this reason,
it is still well suited for detection of transverse perturbations.

Simply by counting the maxima (or minima) of the curves, one
finds that the spectrum of the longitudinal perturbation peaks at
k; =9, and the spectrum of the transverse perturbations peaks at
k; = 5. These satisfy the resonance condition k_ = k — ko, when
k is identified with k; and k_ with k,, suggesting that z* captures
the subwave {w_, k_}. Plagging k = 9/4 into the dispersion equa-
tion (10) yields the real frequency @, = 0.457 and the growth rate
7 = 0.417, which is in a good agreement with the value found in the
simulations and is the same as the rounded to three significant digits
maximum growth rate reached at kne = 2.20. The phase speed in
the plasma frame v, = 0.2¢y and so this is a forward wave. In the
simulation frame, v}, = —0.8co.

MNRAS 542, 2510-2524 (2025)
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Figure 2. The rms value of the density perturbation as a function of time
for (a) the monochromatic circularly polarized wave (solid line), (b) the
monochromatic arc-polarized wave (dashed line), (c) the wave packet with
I/L = 7/10 and periodic BCs (dash—dotted line), (d) the wave packet with
I/L = 7/20 and periodic BCs (dash—dotted line), and (e) the same as in (c),
but with open BCs (dash—tripple-dotted line).

0.05

0

—-0.05

0 5x1072

—5x1072

Figure 3. Circularly polarized monochromatic wave in the model with
periodic BCs at t = 6. Top pane: 8p (solid line) and z* (dashed line). Bottom
panel: 8 p (solid line) and § p,, (dashed line).

Obviously, the longitudinal perturbations are not perfect harmon-
ics, suggesting that several modes grow with similar rates. The
periodic BCs and the length of the computational domain restrict the
problem to modes with integer wavenumbers. Of them, the closest
twotok = 9 (k =2.25)are k = 8 (k = 2) and k = 10 (k = 2.5). For
the former, = 0.410, and for the latter, = 0.367.

For k_ =5 (k = 5/4), the corresponding frequency &_ = @, —
1 = —0.54, and the phase speed in the plasma frame is v,_ =
—0.43¢y, so this transverse subwave is a reverse one. For the
other transverse subwave, IE+ =3.25, (k=13), &, = 1.46, and
vpy = 0.45¢y. This subwave is a forward one. In the simulation
frame, their phase speeds are v’p_ = —1.43¢y and v;,+ = —0.55¢y,

MNRAS 542, 2510-2524 (2025)
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Figure 4. Arc-polarized monochromatic wave in the model with periodic
BCs at t = 6. Top panel: §p (solid line) and z* (dashed line). Bottom panel:
8 p (solid line) and § p,, (dashed line).

respectively, and so both of them appear moving in the negative
direction. The ratio of real amplitudes of the transverse subwaves
|b,|/Ib_| = 0.55, and so the reverse subwave is only about twice as
strong as the forward subwave. This may explain the fact that the
reverse wave dominates in the z* data, although z™ is also naturally
biased towards reverse waves.

4.2 Arc-polarized wave

For the arc-polarized case, the magnetic field and velocity of the
equilibrium state is still described by equations (16) and (17), but
now the phase function is

¢(x) = sin(kox) , 18)

with kg = 4 as before. This is the same phase function as used in
Marriott & Tenerani (2024).

In Fig. 2, the evolution of the rms density perturbation in this
model is shown by the curve ‘b’. At the linear phase its growth
rate is y = 1.07 (y/wo = 0.27). This value is in agreement with
results obtained in Marriott & Tenerani (2024, see their fig. 6 for
[/L > 1). The same maxima counting as before yields k; = 8 and
4 (see Fig. 4). Although these wavenumbers differ from those found
in the model with circular polarization, they are still in agreement
with the resonance condition k_ = k — k. By tracing the motion of
individual peaks, the phase speeds in the plasma frame are v, = 0.19
for the longitudinal perturbation and v, = —0.50 for the transverse
perturbation. These are very similar to the phase speeds found for
the circularly polarized case. Overall, the results show only slight
changes compared to the case of circularly polarized mother wave,
which invites to look for at least an approximate analytic solution in
this case too.

5 ARC-POLARIZED WAVE PACKETS

The common way of introducing a wave packet via initial conditions
involves multiplication of the monochromatic carrier wave Ae’** by
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Figure 5. Transverse magnetic field of the reference arc-polarized wave
packet explored in the simulations. 6y is the angle between this field and the
y-axis.

the amplitude-modulating (envelope) function yx (x), which reduces
the wave amplitude to zero outside of the packet, f(x) = x(x)Ae’ kx|
However, Alfvén waves of compressible MHD keep invariant not
only u*, p, and p, but also the magnitudes of the magnetic field
and velocity. So attempting to introduce an Alfvén wave packet via
B, = nByx(x)e’*, like in Li, Fu & Dorfman (2022), would be a
mistake. Instead, the modulation has to be applied to the wave phase
(Marriott & Tenerani 2024). The choice of modulating functions
is wide. Marriott & Tenerani (2024) used the Gaussian envelope,
x(x) = exp[—(x/1)?], x € R. To prevent any potential complication
in the case of open BCs, we opted for the envelope with finite

support

2 19)

1 k. .
X(x)z{(—’_COSX)’ lf_ﬂ/keixin/ke.
0, otherwise

Hence for the arc-polarized packet, the magnetic field is still given
by equation (16), but the phase function is now

¢d(x) = x(x)sinkyx . (20)

For the main model, k, = k(/8, but models with smaller values are
also explored in Section 5.3. This packet is illustrated in Fig. 5. Some
simulations, not presented in the paper, were carried out using the
Gaussian envelope and their results are very similar.

5.1 Models with periodic boundary conditions

We started with the computational domain [—10, 10] with 3000
gridpoints and periodic BCs. The corresponding number of grid-
points per the wavelength of the carrier wave Ay = 27 /kg is almost
the same as in the simulations of the monochromatic waves. The
equilibrium is perturbed using the same algorithm as described in
Section 4.1. In Fig. 2, the growth of the density perturbation is
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shown by the curve ‘c’. The most interesting feature of the plot is
that the growth rate experiences large variations, with intervals of
relatively fast growth separated by intervals of much slower growth.
Inspection of the numerical solution reveals that both the longitudinal
and the transverse subwaves do not come in the form of wave packets
comoving with the mother-wave packet. Instead they are modulated
waves travelling away from the mother packet in the downstream
direction. They grow in amplitude while they are still inside the
mother wave, but this growth terminates when they separate from
it. When they re-emerge upstream due to the periodic BCs and
meet the mother wave again, this triggers the next episode of fast
growth.

To see this process clearly, we doubled the size of the compu-
tational domain, keeping the numerical resolution and the size of
the mother packet the same. Since this increases the distance the
daughter packets need to travel before meeting the mother wave for
the next time by about 2.5 times, the expectation is that the duration
of the low growth episodes increases by about the same factor. This
is confirmed by the simulations, as one can see in Fig. 2, where the
evolution of the rms value for density perturbations in this model is
shown by the line ‘d’.

Fig. 6 illustrates the dynamics of the daughter waves from
t =2 to 25 covering the second half of the initial fast growth,
the first episode of slow growth, and the first-half of the second
episode of fast growth. Quick inspection of this figure shows that
outside of the mother packet both the density and z* perturbations
propagate preserving their shape, allowing to determine where each
of the local peaks are later on with high degree of confidence.
By measuring their displacement between f = 10 and 15, it is
found that the phase speeds of the density and z* perturbations
are v, = —0.78 and v, = —2.0, respectively. In the plasma frame,
this corresponds to ¥, = ¢, and ¥+ = —co. Thus, these are the
normal forward slow-magnetosonic and reverse Alfvén modes. For
the slow modes, this is confirmed by the opposite variations of
gas and magnetic pressures (see Fig. 7). For the Alfvén modes,
by the lack of density variation (see Fig. 6) and the variation of
the magnetic field direction consistent with the variation of z*
(see Fig. 8).

5.2 Models with open boundary conditions

The results of simulations with periodic BCs suggest that in
simulations with BCs allowing the daughter waves to escape the
computational domain, the growth rate of the instability will be
limited to the first episode of the fast growth seen in the simulation
with periodic BCs. To check if this is the case, we repeated the
simulations with the zero-gradient BCs, where the values of all
dependent variables in the first (and the last) domain cell are copied
to the corresponding ghost cells. These BSs, sometimes called
‘outflow’, ‘free-flow’ or ‘open’ BCs, ensure high transparency of
the domain boundaries to smooth waves.

In Fig. 2, the growth of the density perturbation is shown by the
curve ‘e’. As one can see, for a while the growth of the rms value
of §p is indistinguishable from that in the model with the periodic
BCs. However starting from ¢ =& 10, (5p) first stops growing and then
drops down to approximately its initial value.

Fig. 9 shows the evolution of the density perturbation in this model.
By t = 6, the small density perturbations initially occupying the
whole domain are no longer present upstream of the mother packet.
They all have been advected by the incoming flow into the packet,
leaving behind (x > 4) and almost uniform flow. Between s = 10 and
15, this lack of incoming perturbations leads to an overall decrease in
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Figure 6. Arc-polarized wave packet in the model with perio

the amplitude of the perturbations inside the mother packet (—27 <
x <2m). By t = 20, all the initially amplified perturbations have
escaped from the domain via the downstream boundary, which results
in the drop of (§p) seen in Fig. 2. What remains is the steady-state
structure shown in the bottom panel of Fig. 9. It involves a monotonic
density increase in the downstream direction combined with a spatial
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dic BCs. Evolution of z* (left column) and 8o (right column).

oscillation with the wavenumber k = 2ky. Varying the numerical
resolution shows that the amplitude of this structure behaves like o<
Ax?3, demonstrating that the structure is a numerical artefact created
by the numerical diffusivity of our third-order accurate numerical
scheme.

Thus, the instability not just slows down but terminates.
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Figure 7. Arc-polarized wave packet in the model with periodic BCs.
Perturbations of the gas (solid line) and magnetic (dashed line) pressures
accompanying the density perturbations outside of the mother wave packet.
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Figure 8. Arc-polarized wave packet in the model with periodic BCs. Top
panel: the z-component of the Elsisse variable z. Bottom panel: the angle
0y between the transverse component of the magnetic field B and e,.

5.3 Models with the noisy boundary conditions

The results of the simulations with open BCs suggest that in the case
of continuously incoming density perturbations, the mother packet
will be followed by a trail of low-amplitude reverse Alfvén and
forward slow waves. To generate the perturbations at the upstream
(right) boundary, we use a stack of m pseudo-random numbers r;
obtained with the RANDOM _NUMBER(r) subroutine, and compute
their mean value 7. It is used to set the random density perturbation
with the standard deviation o, via

8p; = 20,v/3m(F —0.5).

At the next time-step, the first random number of the stack is removed
from it and a newly generated one is added to it, and a new value
of the perturbation is computed in the same way. This algorithm
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Figure9. Evolution of the density perturbation for arc-polarized wave packet
with open BCs. At t =40 (the bottom panel), the solution has reached
a steady-state. This panel also shows the gar pressure perturbation, §p =
p — po (dashed line), and the perturbation of the longitudinal component of
velocity, su* = u* — u (dot-dashed line).

serves to filter out the high-frequency noise that is not amplified
by mother wave but gets erased by the numerical diffusivity (in the
simulations, m = 32.). In addition, the x-component of the ghost
cells velocity is set u* = —cy, and the zero-gradient BCs are applied
to all other variables. At the downstream boundary, the zero-gradient
BCs are still applied to all variables. The computational domain is
x € [—30, 10] with 6000 gridpoints.

The results of simulation with such noisy BCs are consistent with
the expectations — the mother wave does leave behind a trail in
the form of modulated forward slow wave with the wavenumber
ks =~ 7.5 and modulated reverse Alfvén wave with the wavenumber
k. ~ 3 (see Fig.10). These wavenumbers approximately satisfy the
resonance condition of the parametric instability k_ = k — k.

For sufficiently long mother packets, one would expect the pertur-
bations to become non-linear inside the packet. The critical length-
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5x1074

t=60

Figure 10. Structure of the perturbations for the arc-polarized wave packet
with in the model with noisy BCs at + = 60 when the solution has reached a
quasi-stationary state in the statistical sense.

scale depends on the amplitude of incoming perturbations, the growth
rate of the instability, and the phase speed of the unstable mode. For
long packets, their inner structure is close to that of the unmodulated
carrier wave, and one would expect the instability growth rate to
be similar to that of the monochromatic case. The same applies to
the phase speeds of unstable modes. Since the modes of parametric
instability are symbiotic, it is the speed of the fastest subwave, the
reverse transverse subwave, that matters. In the rest frame of the
mother wave, its phase speed is of the order of the Alfvén speed ¢y
(see Section 4.1).* Taking the growth time as the Alfvén crossing
time of the packet 7, = [/c(, where [ is the half length of the packet,
the density perturbation reaches the density of the unperturbed state
when

e’ = po. @

where o, is standard deviation of the incoming density noise, and
y is the instability growth rate for the carrier wave of the packet.
Hence, the critical length is

= CxInPo/o) 22)

14

Substituting the values ¢y = pp = land 0, = 1073 used in our simu-
lations, one obtains /;,,x = 11.5. The actual half-length of the packet
explored so far is [ = w/k, = 2m < lyax, Which is consistent with
the perturbations remaining linear but quite close to the threshold.

To further verify equation (22) and to explore the non-linear
regime, we run additional simulations with k, = 1/4 (I = 4mx) and
1/6 (I = 6m). Fig. 11 shows the growth of density perturbations
in these models and in the case of monochromatic carrier wave. It
confirms that as / increases the growth rate approaches that of the
carrier wave, and so does the saturation level of perturbations.

Fig. 12 shows the numerical solutions for the three models at
t =70, well after the instability saturation point for all of them.
Whereas for k, = 1/2 and 1/4, the instability saturates at linear

4Goldstein (1978) notes that this is likely to be the case in general, particularly
forn < 1.
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Figure 11. Growth of rms (p) for wave packets of different lengths. The
lines represent the solutions for arc-polarized carrier wave (solid line) and
the wave packets with k, = 1/2 (dashed line), k, = 1/4 (dash—dotted line),
and k, = 1/6 (dash—triple-dotted line).

amplitudes, for k, = 1/6 it reaches the non-linear phase. The most
remarkable feature of the k, = 1/6 solution is the collapsed down-
stream section of the mother wave and its well-preserved upstream
section. The half-length of the preserved section is approximately 11,
which is very close to the value of /,,,x predicted by equation (22).
The discontinuity in the density distribution seen at x ~ 11 is a
forward fast shock, as evidenced by the correlated jumps in magnetic
and gas pressures. It chases down a fast rarefaction occupying the
section x € (11, 20) and is chased by a train of weaker fast shocks
occupying the section x € (0, 11). The section with x < —15 is
dominated by a train of forward slow shocks.

The dynamics of this collapse is illustrated in Fig. 13. First a
strong reverse Alfvén wave is emitted by the mother packet, which
is accompanied by a reduction in the amplitude of packet’s angular
oscillations in its trailing section. As the time increases, the amplitude
of emitted reverse Alfvén waves weakens and the packet enters the
phase of slow evolutions. It is hardly changed between ¢ = 50 and
the end of the simulations at r = 80.

6 DISCUSSION

Our results for arc-polarized Alfvén wave packets are in stark
disagreement with the results of semi-analytical study by Marriott &
Tenerani (2024), which yields a temporal instability similar to
the parametric instability of monochomatic Alfvén waves both for
periodic and open BCs, though at a lower growth rate. From the start
of their analysis, they assume that in the frame of the packet, the
perturbations have the form § f(x)e’®’, where both § f(x) and w are
complex. This describes a wave packet that neither changes its shape
nor moves relative to the mother wave, but only grows exponentially
in amplitude. In contrast, the evolution of perturbations found in
our simulations is much more dynamic and depends on the type of
applied BCs.

With the periodic BCs, the perturbation grows intermittently.
Interacting with the initial density noise, the mother wave emits
modulated forward slow magnetosonic and reverse Alfvén waves into
its downstream. These waves then re-emerge upstream via periodic
BCs and get amplified when they reunite with the mother wave.
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the domain size from L = 40 in the top row to L = 80 in the other rows.

Interestingly, the mean growth rate decreases with the size L of
the computational domain, approximately like oc L~!, which is in
agreement with the result by Marriott & Tenerani (2024). However,
the reason for such behaviour is different. In our simulations, the
mean growth rate decreases with L because the time required for the
daughter waves to reunite with their mother grows like >~ L.

With the open BCs, the initially generated daughter waves
no longer re-appear upstream, but leave the computation domain
through the downstream boundary. The amplitude of perturbations
inside the domain drops and the mother wave reaches a steady-
state structure where p, p, and u* exhibit spatial variations. These
variations get reduces with increased numerical resolution at the same
rate as the truncation errors of the scheme, implying that the structure
is purely numerical and associated with the numerical viscosity and
resistivity. When the density noise of the same standard deviation as
the initial one is constantly generated at the upstream boundary, the
solution does not settle to a steady state, and the mother wave packet
keeps emitting daughter waves.

The reason why the daughter waves do not behave as comoving
wave packets is connected to the reduction in the amplitude of
the carrier wave in the wings of the mother packet. Whether it is
modulated with the Gaussian function or our trigonometric function,
at sufficiently large but finite distance from the packet centre its
amplitude becomes so small that the carrier wave can no longer
be considered non-linear. When the total perturbation is small the

general solution of MHD equations reduces to a mixture of non-
interacting normal modes, and so the daughter waves become normal
slow magnetosonic and Alfvén waves which freely escape from the
mother packet given their negative phase speeds.

The mechanism of wave emission still appears to be related to the
parametric instability, as the emitted waves satisfy the resonance
condition k_ = k — kg, though not exactly. Apparently, all the
mother packets investigated in our study are sufficiently long for
the eigenmode of the instability to get established and amplified in
the central section of the packet, before splitting into normal MHD
modes in its trailing wing.

The results of all numerical experiments described in Section 5
are consistent with picture where the perturbations enter the mother
packet through its upstream wing and grow in amplitude as they
move through the packet. If the packet is relatively short, the packet
crossing time is also short and the perturbations remain linear when
they escape from the packet through its downstream wing. In this
case, one would expect the packet to decay slowly, on the time-scale
greatly exceeding 1/y, where y is the growth rate of the parametric
instability for monochromatic waves. Indeed, close inspection of
the simulation data show no evidence of the packet decay between
t = 20 and 80 for the models with k, = 1/2 and 1/4 presented in
Section 5.3.

When the length of the packet exceeds the critical value /,,x given
by equation (22), the packet crossing time is long enough for the
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Figure 13. Evolution of the mother packet in the model with k, = 1/6. The
angle 6, at t = 80 (solid line) and ¢ = 50 (dashed line).

perturbations to reach non-linear amplitude. However, even in this
case, the upstream section of the packet with the length [ < [«
avoids destruction and presumably also enters the phase of slow
decay. This may explain why arc-polarized Alfvén wave packets are
seen at large distances from the Sun (Riley et al. 1996), where they
are most likely generated.

In many numerical studies of various fluid instabilities, there
is no need to introduce initial perturbations or use noisy BCs
because the noise associated with truncation or rounding errors does
the job as well. So the fact that with open BCs, the instability
terminates and the mother packet settles to a steady state when
the initial density perturbation stop coming in from the upstream
(Section 5.2) is somewhat curious. As far as this limited effect of
the initial noise is concerned, the result is in agreement with the
understanding that the instability is not a stationary wave packet.
Its growth is spatial and once the amplitude of the incoming noise
drops, so does the amplitude of the perturbation inside the mother
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packet. For the same reason, the rounding errors play no role in
the simulations — with the double precision computations its level
is too low to be significant even if it is amplified while advected by
the flow across the mother packet. The same likely applies to the
noise that may emerge via the weak wave reflection off the open
boundaries.

Itis somewhat less clear with respect to the truncation errors of the
numerical scheme, which lead to the wavy steady-state structure in
the distributions of density, pressure, and longitudinal velocity inside
the mother packet (the bottom panel of Fig. 9). Presumably, this
wave does not have the properties required to trigger the instability.
This wave is driven by the spacial variation of numerical dissipation
associated with the oscillations of transverse magnetic field and
velocity in the carrier wave (this is why its wavenumber k = 2ky.).
This is not a compressive mode as itis ‘frozen’ into the mother packet
and hence moves with the Alfvén speed c( through the plasma.
The variations of p and u* are also incompatible with the ideal
compressive mode.

Our description of arc-polarized Alfvén waves is different from
that in a number of pioneering works (Barnes & Hollweg 1974;
Vasquez & Hollweg 1996; Del Zanna 2001). We simply set the radius
of the arc and its angular size, whereas they first set the time-averaged
(or phase-averaged) tangential magnetic field and then look for arcs
that yield this value. With the additional assumption of sinusoidal
variation for the component normal to the averaged field, the solution
may not exist, and when it does, the angular size of the arc is below
7. With our approach, there are no such complications and one may
choose an arc of any size.

Arelated issue is the type of polarization an Alfvén wave may have.
In the publications related to the topics, in addition to circularly and
arc-polarized waves, there is mentioning of linearly polarized Alfvén
waves, and spherically polarized Alfvén waves as well.

The term linear polarization is an approximate description of
Alfvén waves with such a small angular size of their arcs that they
are well approximated by a straight line. In this case, the variation
of the transverse component of the magnetic field is small, and in
this sense this is a linear wave. Non-linear linearly polarized Alfvén
wave is a contradiction in terms, as pointed out by Barnes & Hollweg
(1974, e.g.), but the notion of large-amplitude waves involving
variations of only magnitudes of transverse magnetic field and
velocity persevere. This could be connected to the linearly polarized
waves of incompressible MHD originally discovered by Alfvén
(1950), which propagate with the Alfvén speed and have identical
properties in both the linear and non-linear regimes. These solutions
can be combined to yield a circularly or arc-polarized mode, and only
this mode ‘survives’ in compressible MHD as wave propagating with
the Alfvén speed, whereas the pure linearly polarized modes turn into
slow magnetosonic waves. So in compressible MHD, initial solutions
describing strong amplitude perturbations of transverse magnetic
field and velocity inevitably move the problem under consideration
in the category of arbitrary non-linear wave unidentifiable with any
particular normal mode (e.g. Barnes & Hollweg 1974; Cohen &
Kulsrud 1974). Slightly different is the degenerate case of vanish-
ingly small transverse magnetic field. In this case, the Alfvén speed
becomes a double root of the dispersion equation (or equivalently
a double eigenvalue in the eigenvalue problem for the characteristic
matrix of the compressible MHD equations), and the corresponding
2D space of eigenvectors is the same as in incompressible MHD.
Hence, the small-amplitude waves are the same as in incompressible
MHD and can describe both linearly and circularly polarized waves.

The term ‘spherical polarization’ emerged from the observations
of solar wind perturbations which keep the magnitude of the
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magnetic field fairly constant but change its direction in arbitrary
way (Belcher & Davis 1971; Balogh et al. 1995), with the arc-
polarized events accounting to only up to 10percent of the data
(Riley et al. 1996). Such behaviour is inconsistent with the properties
of individual Alfvén waves in well-defined background (mean)
magnetic field and is indicative of strong Alfvén turbulence instead
(e.g. Barnes 1981).

Circular and arc polarizations are just special cases of the allowed
variation of the transverse magnetic field and velocity in Alfvén
waves. In ideal MHD, the tip of the transverse magnetic field may
travel along its circle in an arbitrary way, including jumps from one
point to another. For example, it can make several full turns before
jumping to another direction and tracing few small arcs.

The origin of Alfvén waves in the solar wind in general, and
their arc-polarized instances in particular, is not well-established
yet, although the dominance of modes moving away from the
Sun in the plasma frame (Goldstein et al. 1995) indicates solar
origin for most of them. The fluid motion on the Sun surface is
dominated by turbulent convection and the associated motion of
magnetic field foot-points must be quite random. So one would
expect the Alfvén waves generated there to be random from the
very beginning (Cranmer & van Ballegooijen 2005). This makes the
simple models of parametric instability for monochromatic Alfvén
waves not particularly relevant. In active regions, one may expect
quasi-periodic oscillations of magnetic flux tubes associated with
rapid restructuring of magnetic field via magnetic reconnection. Jess
et al. (2009) reported possible quasi-periodic motion on the time-
scale of hundreds of seconds and lasting few thousands of second
above a group of bright spots associated with local concentration
of magnetic field between convective granules of the Sun. Even if
this type of phenomena may produce Alfvén wave packets, there is
no physical reason for them to have a well-defined frequency of the
carrier wave. Riley et al. (1996) find a hint of the quasi-periodicity
in one of the arc-polarized events in the solar wind, but even in this
case, the noise level is quite high. So, future studies of the parametric
instability should focus on random waves. Given the resonant nature
of the instability, it is natural to expect a significant reduction of its
efficacy for such waves.

7 SUMMARY

In this paper, we described computer simulations of basic Alfvén
wave packets, constructed via modulation of monochromatic arc-
polarized carrier wave, with the aim to establish the role of the
parametric instability in their evolution. The initial setup utilizes
the inertial frame comoving with the packet, where the packet is
an exact steady-state solution of ideal MHD. This steady state is
perturbed via introducing small-amplitude density perturbations in
the form of white noise passed through a low-pass filter to remove
rapidly decaying via numerical diffusion high-frequency waves.
Some of the simulations are carried out with the standard periodic
and open BCs, but for the most important cases, the open BCs at
the upstream boundary are modified to turn them into a constant
source of low-frequency noise. In all these simulations, the plasma
magnetization is fixed to a?/c3 = 0.1, the transverse magnetic field
strength parameter is fixed to n = B, /By = 1 and the amplitude of
its angular oscillations is limited by 60°.

All the results consistently point to developing of the parametric
instability, but in the form of spatial growth of its daughter waves — the
incoming density perturbations trigger these waves in the upstream
wing of the packet, which then grow in amplitude while propagating
through the mother wave towards its downstream wing and then
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escape the packet in the form of normal reverse Alfvén and forward
slow MHD waves.

For sufficiently short packets, the perturbations emerge from the
packet as small-amplitude waves. Their wavenumbers are consistent
with the resonance condition of the parametric instability. The mother
packet remains virtually unchanged on the e-folding time-scale of
the instability.

For larger packets, the daughter waves reach non-linear amplitude
while still inside the mother packet. In this case, the growth rate of the
instability at the linear phase is very close to that for the unmodulated
carrier wave. At the non-linear phase, the mother wave collapses
starting from some position in the packet and then all the way to
its downstream end. However, its upstream section remains largely
intact. The critical packet length separating the linear and non-linear
regimes, as well as determining the size of the surviving section in
the non-linear regime, can be estimated using the model of spacial
growth based on the assumption that the e-folding length-scale is
given by the product of e-folding time-scale for the unmodulated
carrier wave and the Alfvén speed.

Ultimately, the simulations show that Alfvén packets can sur-
vive for much longer than one would expect from the results for
monochromatic Alfvén waves, which may explain why such packets
are found in the solar wind at large distances from the Sun.

The results of our simulations are in conflict with the results of
the semi-analytical study of arc-polarized Alfvén wave packets by
Marriott & Tenerani (2024), where the daughter waves are assumed
to be wave packets comoving with the mother wave.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.
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APPENDIX A: NUMERICAL SCHEME

Apart from the splitting algorithm, the numerical scheme used for
this simulations is the same as in Komissarov & Phillips (2025)
and borrows some key algorithms from the code ECHO developed
by Del Zanna et al. (2007) for relativistic MHD equations. It is a
third-order accurate finite-difference scheme employing the GLM
(Generalised Lagrange Multiplier) approach, third-order Runge—
Kutter time integration, and a third-order WENO reconstruction
algorithm.

The code integrates the evolution equations of MHD in the form
conservation laws which can be combined into a single vector
equation

d%q+V-F=0, (Al

where ¢ is the vector combining the conserved variables, and F is
the matrix combining corresponding flux tensors.

A1l GLM approach

To keep the magnetic field approximately divergence-free, we follow
the method called GLM (Munz et al. 2000; Dedner et al. 2002).
Hence, we introduce an additional dependent scalar variable ¢ and
replace the Faraday equation and the divergence-free condition with

4B+ VXE+4+ VD=0, (A2)

4P+V-B=—xd. (A3)

In the simulations, ¥ = 0.2/A¢, making the e-folding time for ¢
(without the term V- B) equal to 5 integration time-steps Af.

A2 Time integration

Since this is a finite-difference scheme, the numerical solution ¢ ; ,
describes the values of g at the gridpoints with coordinates (x;, y;, zx)
at the discrete time ¢". Here, we utilize Cartesian coordinates and uni-
form spatial grid with x; = x; +({ — DAx, y; = y1 + (j — DAYy,
and z; = z; + (k — 1)Az, where Ax = Ay = Az = h. These grid-
points can considered as central points of rectangular computational
cells with interfaces at xj+1 = x; £h/2, yj+12 =y; £h/2, and
Zk+12 = 2 £ h/2. The time grid is also uniform, " =ty + Atn
with At = Ch, where C is the Courant number. In the simulations,
C =0.5.
The finite-difference equations have the form

do

Fhle F(Q), (A4)

where Q is a 1D, 2D, or 3D array, depending on the dimensionality
of the problem. Each entry of this array is the vector g at the
corresponding gridpoint. F is an array of the same dimension and
size as Q. Each entry of this array is the numerical finite-difference
approximation for —V. f +SQ at the corresponding gridpoint,
where SQ is the vector of source terms. In the case of Cartesian
coordinates, the source terms emerge only in equation (A3). The

Figure A1. Numerical solution to the Brio & Wu (1988) test problem at r = 0.1.
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Figure A2. Numerical solution to the Ryu & Jones (1995) test problem at r = 0.08.

system of ordinary differential equations (A4) is integrated using
third-order Strong stability preserving version of the Runge—Kutta
method (Shu & Osher 1988). Hence,

At
ot =09+ ?(kl +ky +4k3), (A5)
where
ky = F(Q"),

ko = F(Q"+ Ay,
A
k=F (Q" + S+ kz)) :

The finite-difference approximation for V- f is computed in the
following steps:

(i) Conserved variables are converted into the primitive variables.
This is needed because interpolating conserved variables may yield
an unphysical state.

(ii) A third-order WENO interpolation (Komissarov & Phillips
2025) is used to setup Riemann problems at the cell interfaces.

(iii) HLL Riemann solver (Harten, Lax & van Leer 1983) is used
to find upwind flux densities f at the interfaces.

(iv) Central quartic polynomial interpolation is used to reconstruct
the distribution of f in each coordinate direction and hence to find a
third-order approximation for V- f (the DER operator in Del Zanna
et al. 2007). This works fine for smooth solutions, but may introduce

logo<dp>
-2

oscillations at shocks. To avoid this, the computational domain is
scanned for shock fronts and a ‘safety zone’ is set around them.
Within the safety zone, a second-order total-variation-diminishing
(TVD) interpolation is used instead of the WENO interpolation.

The code was tested using a number of test problems. Here, we
present some of the 1D tests, including the parametric instability of
monochromatic Alfvén waves with circular polarization.

APPENDIX B: TEST SIMULATIONS

B1 Brio & Wu problem

This is a Riemann problem with the left state p =1, p =1, u =0,
and B = (0.75, 1, 0) and the right state p = 0.1, p =0.125, u =
0, and B = (0.75, —1, 0). The computational domain is [0,1] with
400 gridpoints, and the initial discontinuity located at x = 0.5. The
numerical solution at # = 0.1 is shown in Fig. Al. This problem,
which was first solved by Brio & Wu (1988), has become a must
test for computational MHD in spite of the fact it involves a non-
evolutionary intermediate shock which is super-Alfvénic relative to
the upstream state and sub-Alfvénic relative to the downstream state.
This property leads to its disintegration when it is approached from
the downstream by an Alfvén wave (Falle & Komissarov 2001).

Figure B1. Parametric instability of circularly polarized monochromatic Alfvén wave for the models A and C from Del Zanna et al. (2001). Left panel: growth
of (p). The dash—dotted line shows exponential growth with the rate y = 0.41 (y /wo = 0.10). Right panel: evolution of parameter o¢.
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B2 Ryu & Jones problem

This is a Riemann problem from Ryu & Jones (1995) illustrated in
their fig. 1(a). Its left and right states are, respectively, (1) p = 20,
p=1u=(10,0,0), and B =(5By,5Byp,0) and 2) p=1, p =
1,u = (=10,0,0), and B = (5By, 5By, 0), with By = 1/+/47. The
computational domain is [0,1] with 400 gridpoints, and the initial
discontinuity located at x = 0.5. The numerical solution at r = 0.08
is shown in Fig. A2.

B3 Parametric instability of monochromatic circularly polarized
Alfvén waves

Since the topic of this study is the stability of large-amplitude Alfvén
waves, we repeated the 1D simulations of Del Zanna et al. (2001)
of monochromatic circularly polarized Alfvén waves in a domain
with periodic BCs, namely their models A and C. We used both the
original setup of Del Zanna et al. (2001), where u,, = 0, and the setup
in the rest frame of the mother wave. For both the setups, the results
are almost identical to the original.

Here, we present the results for the setup in the rest frame of the
mother wave. In the initial solution, py = 1,

Uo=—Bo//m . (B1)

with By = 1, ko = 4, and po = (Bo/y)BZ with y = 5/3 for both
these models. In the model A, 8 = 0.1 and n = 0.2, whereas in the
model C, By = 1.2 and n = 1. The computational domain is [0, 27 ]
with 942 computational cells and periodic BCs. This equilibrium
solution is perturbed via adding unfiltered flat white noise to py with
the mean deviation o, = 107,

Fig. B1 shows the time evolution of the rms value of density
perturbation (8p) and the cross-helicity

gt —g
TEt+E

where £* = (||z*||?) are the Elsisser energies of the forward
and reverse Alfvén waves and z* = du + 6B //p- These are in

By = nBo(1, cos(kox), sin(kox))

oe (B2

0.1

0.05
T

0
T
|

Figure B2. Parametric instability of circularly polarized monochromatic
Alfvén wave. Top panel: model A from Del Zanna et al. (2001). Numerical
solution at ¢+ = 40. Bottom panel: model C from Del Zanna et al. (2001).
Numerical solution at ¢ = 40.

agreement with the results by Del Zanna et al. (2001) presented
in their fig. 2 down to fine details. The same is true for the solutions
at the non-linear stage (t = 40) of the instability shown in Fig. B2 of
this paper and in the fig. 3 of Del Zanna et al. (2001).

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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