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and Discriminatory

Accuracy for Estimating

Intersectional Inequalities

George Leckie1 , Andrew Bell2 , Juan Merlo3 ,

SV Subramanian4 , and Clare Evans5

Abstract

Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy

(MAIHDA) is a multilevel regression approach grounded in intersectionality

theory. It examines inequalities across intersections of social identities (e.g.,
gender, ethnicity, class) and is argued to provide more accurate predictions

of intersectional means than conventional methods that estimate group

means directly or via regressions with all interactions. This study evaluates
that claim using analytic expressions and an empirical illustration to compare

simple and MAIHDA-predicted means against population values. Predictive

accuracy is assessed via variance, correlation, bias, and mean squared
error. Results show that MAIHDA estimates generally outperform simple
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means, particularly when decomposing intersectional means into additive
and non-additive identity effects. The magnitude of the advantage depends

on inequality patterns and group sample sizes. MAIHDA is especially valuable

when inequalities are subtle or data for marginalized intersections are sparse
—conditions common in practice. These findings highlight MAIHDA’s prac-

tical relevance for quantitative intersectionality research.

Keywords

multilevel analysis of individual heterogeneity and discriminatory accuracy,

intersectionality, inequalities, multilevel models, predicted means, empirical
Bayes, posterior means

Introduction

Multilevel analysis of individual heterogeneity and discriminatory accuracy

(MAIHDA) is a recently developed multilevel regression modeling approach

designed to explore complex social inequalities in individual outcomes

(Evans et al. 2018). MAIHDA is motivated by intersectionality theory

(Collins and Bilge 2020; Crenshaw 1989), which observes that individuals’

lived experiences and outcomes are shaped by their positionalities within

complex and interlocking systems of oppression, including sexism, racism,

and socioeconomic inequality. MAIHDA quantifies inequalities across inter-

sections of multiple social identities and positionalities (e.g., gender, ethni-

city, and social class), rather than focusing on one axis of inequality at a

time. The growing adoption of MAIHDA reflects widespread interest in

quantitative methods that align with intersectionality’s demands for expan-

sive consideration of diversity (Bauer et al. 2021; McCall 2005; Merlo 2018).

While early applications were primarily in social epidemiology, MAIHDA

is increasingly being used across the social sciences, with applications in

criminology (Pina-Sánchez and Tura 2024; Tura et al. 2024), education

(Giaconi et al. 2024; Keller et al. 2023; Prior et al. 2022; Prior and Leckie

2024; Van Dusen et al. 2024), environmental justice (Alvarez et al. 2022),

gender studies (Ivert et al. 2020; Silva and Evans 2020), organizational

studies (Humbert 2024), psychiatry (Forrest et al. 2023), and social work

(Lister, Hewitt and Dickerson 2024; Pomeroy and Fiori 2025). For

example, Keller et al. (2023)—an application we will return to later—

applied MAIHDA to study intersectional inequalities in 15-year-old students’
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reading scores across four social identities: Gender, immigrant status, parental

education, and parental occupational status.

Evans et al. (2024a) present an introduction and tutorial on MAIHDA for

those completely new to the approach. Here, we summarize the key points.

MAIHDA was developed in response to perceived weaknesses of the conven-

tional approach to studying intersectionality, which typically involves esti-

mating linear regression models on social identities (Evans et al. 2018).

These weaknesses include the assumption that the effects of social identities

are additive, which may overlook how systems of oppression interact in more

complex, multiplicative ways. When interaction terms are considered, often

just a single two-way interaction is included. Including all possible interac-

tions, however, quickly leads to many regression coefficients, resulting in

overfitting and challenges with interpretation. Interpretation, if not overfit-

ting, is eased by predicting and comparing the mean outcome for each inter-

sectional group. We refer to these as simple means as they are equal to the

arithmetic means obtained by calculating the mean separately for each group.

The MAIHDA approach, in contrast, is grounded in the multilevel model-

ing framework (Raudenbush and Bryk 2002; Snijders and Bosker 2012). It

involves fitting a sequence of two multilevel regression models where indivi-

duals (level 1) are nested in intersectional social strata (level 2), henceforth

referred to as intersections. Thus, Intersection 1 might refer to native

female students with low parental education and low parental occupation.

Intersection 2 might then be native female students with low parental educa-

tion and low-to-middle parental occupation, and so on. For simplicity, we

focus on MAIHDA models for continuous outcomes, though MAIHDA

models can be applied to all outcome types.

The first multilevel model, henceforth referred to as MAIHDAModel 1, is

a two-level model without any covariates. The model estimates the overall

magnitude of intersectional inequalities in the data and predicts the mean

outcome for each intersection. This facilitates the identification of social iden-

tity combinations associated with the most and least favorable mean

outcomes.

The second multilevel model, henceforth referred to as MAIHDA Model

2, is a two-level model in which the social identity variables used to construct

the intersections are included as main-effect covariates. The model examines

the extent to which intersectional inequalities deviate from the simplest addi-

tive patterns of social identities—for example, whether the gender-based

mean outcome difference remains constant across different values of immi-

grant status, parental education, and parental occupational status. By asses-

sing these deviations, Model 2 can reveal hidden social processes that
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emerge only for specific social identity combinations, as well as quantify con-

sistent or typical patterns (e.g., women tend to experience worse outcomes

than men).

A central argument made by proponents of MAIHDA is that its intersec-

tional means provide more accurate predictions of the population means than

do simple means (Evans et al. 2018; Evans et al. 2024b). This claim is based

on earlier findings from the statistical literature on multilevel models

(Raudenbush and Bryk 2002; Snijders and Bosker 2012). However, these

findings and their implications are less well understood by applied research-

ers, especially, within the context of MAIHDA. Fundamentally, how much

more accurate are MAIHDA means than simple means? What does their rela-

tive accuracy depend on, and how does this vary across a wide range of pos-

sible scenarios? Most importantly, is the choice between simple and

MAIHDA means likely to affect conclusions in real-world research? These

questions and their answers matter. If the community of intersectional

researchers using MAIHDA unknowingly make incorrect choices—leading

to results that would have differed if a preferred approach had been used—

then they risk mischaracterizing inequalities, inefficiently targeting margina-

lized groups, and misallocating resources, all of which can have harmful con-

sequences for individuals and society.

The arguments in favor of MAIHDA predicted means over simple means

are typically based on two key points from the multilevel literature. First,

simple means exhibit high sampling variability when the number of indivi-

duals per intersection is low. Second, MAIHDA means address this issue

as they are defined as conditional expectations of the population given the

data, which shrink their predictions from the simple means toward

model-implied means—that is, the means predicted by the intercept and the

main effect covariates if included) (Raudenbush and Bryk 2002; Snijders

and Bosker 2012). Greater shrinkage is applied to the smallest intersections.

Shrinkage is viewed as beneficial because it protects against overinterpreting

extreme predictions that may have arisen due to chance (sampling variation).

When the models are estimated by frequentist methods (maximum likelihood

(MLE) or restricted maximum likelihood (REML)) these expectations are cal-

culated using empirical Bayes prediction. When Bayesian methods (Markov

chain Monte Carlo—MCMC) are used, the posterior distributions of the inter-

section means are estimated and are then summarized by their posterior

means.

Importantly, the means predicted by MAIHDA Model 1 and Model 2 also

differ from one another. This variation stems from the difference in their

model-implied means—or, in other words, the values toward which the
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predictions are shrunk. In Model 1, the model-implied means are simply the

overall or grand mean, so final predictions are shrunk toward this single

value. Thus, the final predictions are informed by both the data from that

intersection and the overall data. This shrinkage is therefore sometimes

referred to as partial pooling. In Model 2, the model-implied means are the

means implied by the estimated additive effects of the social identities used

to define the intersections. The predictions in Model 2 are therefore shrunk

toward these intersection-specific values. To the extent that the

MAIHDA-predicted means are preferable to the simple means, the Model 2

means are expected to be preferable to the Model 1 means, as they will lie

closer to the true population means for each intersection.

Several simulation studies have started to examine the predictive accuracy

of the MAIHDA means. Bell, Holman and Jones (2019) simulated data from

linear regression models, primarily without interaction terms, and compared

Type I error rates among simple means, MAIHDA Model 1, and Model 2

means. Their findings suggest that MAIHDA Model 2 means result in a

lower Type I error rate than both Model 1 and simple means.

Mahendran, Lizotte and Bauer (2022a, 2022b) expanded on this by simu-

lating data from linear and logistic regression models with various interaction

terms. They compared MAIHDA Model 2 means to simple means. For both

continuous and binary outcomes, they concluded that MAIHDA Model 2

means offer greater accuracy than simple means, particularly for smaller

intersection sizes.

Van Dusen et al. (2024) simulated data fromMAIHDAModel 2 and found

that Model 2 means outperform simple means, with the performance gap

widening as intersection sizes decrease.

While these studies consistently show that MAIHDA Model 2 means out-

perform simple means, they provide little insight into why this occurs, beyond

broadly attributing it to shrinkage. They also offer minimal exploration of

MAIHDA Model 1 means and do not examine how the relative merits of

all three means might vary based on the nature of the intersectional inequal-

ities being studied.

In this study, we aim to evaluate—and clearly demonstrate to the commu-

nity of quantitative intersectionality researchers—the claim that MAIHDA

means are more accurate than simple means. We seek to explain when and

why these different means diverge and to provide guidance on which to

report in practice. Specifically, we present and analyze analytical expressions

that describe how these means vary across intersections relative to the true

variance, and how they correlate with the true intersection means. We then

assess the statistical properties of each approach for a given intersection of
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interest, deriving and analyzing expressions for the bias, variance, and mean

squared error (MSE) of the three means based on random samples of indivi-

duals within that intersection. While these expressions are not themselves

new—since MAIHDA models are multilevel models—their interpretation

in the context of MAIHDA, and thus their relevance to intersectional

research, is novel. Across both sets of analyses, we examine how these prop-

erties vary as a function of the overall magnitude of intersectional inequal-

ities, the extent to which those inequalities follow an additive pattern, and

key data characteristics, including the mean and variability of intersection

sizes.

The Two Maihda Models

In this section, we provide a brief review of the two MAIHDA models.

Model 1: Empty, Null, or Unadjusted Model

Model 1 is a two-level model without any covariates. Let yij denote the

outcome for individual i (i = 1, . . . , nj) at intersection j (j = 1, . . . , J).

The model can then be written as:

yij = μj + eij (1)

where μj denotes the population or true mean outcome at intersection j—that

is, the mean outcome if the entire population of individuals at that intersection

were observed, rather than just a sample. The term eij is an individual residual

measuring how each individual’s outcome deviates from the true mean for

their intersection. The true mean is then specified as:

μj = β0 + uj (2)

where β0 is fixed-effect intercept measuring the overall mean or grand mean

across all intersections, and uj is a random effect measuring how each inter-

section’s true mean deviates from the overall mean. Substituting (2) into (1)

and rearranging gives the combined equation:

yij = β0 + uj + eij (3)

The intersection random effects and individual residuals are each assumed

normally distributed with constant variances σ2u and σ2e . Thus, σ
2
u is also the

variance of the true means about the overall mean.
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The overall magnitude of intersectional inequalities is measured by the

variance partition coefficient (VPC), which quantifies the proportion of

outcome variance that lies between the intersection means:

VPC =
σ2u

σ2u + σ2e
. (4)

The VPC can range from 0 to 1, with higher values indicating greater inter-

sectional inequalities. Most applications find VPCs ranging from 0.01 to 0.20,

suggesting that the studied social stratifications account for 1–20% of the

outcome variation (Evans et al. 2024a). Conversely, 80–99% of the variation

reflects other unmodeled individual characteristics.

When the models are estimated using frequentist methods (MLE or REML),

empirical Bayes prediction is applied post-estimation to assign values to the

random effects uj, which are then used to predict the intersection means μj.

In contrast, Bayesian methods (MCMC) estimate the posterior distributions

of the intersection means simultaneously with the model parameters, typically

summarizing them by their posterior means. Analyzing these intersection

means enables the identification of social identity combinations linked to the

most and least favorable outcomes. Henceforth, for simplicity, we refer to pre-

dicting the intersection means, without distinguishing between prediction and

estimation as defined under frequentist or Bayesian frameworks.

Model 2: Full, Main Effects, or Adjusted Model

Model 2 is a two-level model in which the social identity variables used to

construct the intersections are included as main-effect covariates. The

model can be written as:

yij = μj + eij (5)

μj = β0 + β1x1j + · · · + βpx pj + uj (6)

where x1j, . . . , x pj denotes the social identity variables (entered as dummy

variable covariates) used to define the intersections, β1, . . . , βp are the asso-

ciated fixed-effect regression coefficients capturing the additive patterns in

the intersection inequalities. The term uj is the intersection random effect,

measuring how each intersection’s true mean deviates from that implied by

the additive effects; in other words, it captures all two-way and higher-order

interaction variability. Thus, σ2u now measures the variance associated with

this non-additivity.

Leckie et al. 7



Substituting (6) into (5) gives the combined equation:

yij = β0 + β1x1j + · · · + βpx pj + uj + eij (7)

The extent to which the intersectional inequalities are additively patterned

is assessed via the proportion change in variance (PCV) statistic. The PCV

measures the reduction in intersection variance when moving from Model

1 to Model 2. This is given by:

PCV =
σ2u1 − σ2u2

σ2u1
(8)

where the 1 and 2 subscripts distinguish between the Model 1 and Model 2

intersection random effect variances. Thus, 1− PCV measures the degree

to which intersectional inequalities deviate from those implied by additivity

and, therefore, the extent to which hidden social processes may be at play,

occurring only for certain social identity combinations. Put differently, the

PCV accounts for how much of the overall inequality quantified by

Model 1 follows a consistent pattern (e.g., female students

consistently score higher than male students, regardless of other characteris-

tics), while 1− PCV accounts for departures from this pattern (e.g., gender

inequality is larger among immigrants).

The PCV can range from 0 to 1, with higher values indicating a greater

additive structure. When the PCV equals 0, there is no additive structure at

all, and Model 2 simplifies to Model 1. However, in practice, we typically

see a PCV that suggests a mix of additive (consistent) and interaction

(unique departures) inequality patterns. Most empirical applications find

PCVs ranging from 0.60 to 0.95, suggesting that 60–95% of the variation

in mean outcomes across intersections follows an additive pattern (Evans

et al. 2024a). Conversely, 5–40% of the variation reflects more complex inter-

action effects.

The individual residual variance eij, in contrast, does not change when

moving from Model 1 to Model 2, as the social identities are intersection-

level covariates and therefore do not explain outcome heterogeneity within

intersections.

As with Model 1, we can predict the intersection means μj. Additionally,

we can decompose each predicted mean outcome into its additive and non-

additive effect, allowing identification of specific intersections where non-

additivity occurs. To do this, a 95% confidence interval (for frequentist esti-

mation) or a 95% credible interval (for Bayesian estimation) is typically con-

structed around the non-additive effect uj to determine which intersections

8 Sociological Methods & Research 0(0)



significantly deviate from what would be expected under an additive model.

However, we do not explore this further here.

Illustrative Application

Keller et al. (2023) presented the first application of MAIHDA in educational

research. They applied MAIHDA to 5451 student reading performance scores

from the German sample of the Program for International Student Assessment

(PISA) 2018. They considered four social identities: gender (male, female),

immigrant status (native, immigrant), parental education (low, high, as mea-

sured by university entrance certificate), and parental occupational status

(low, low-middle, middle, middle-high, high). Combining these categories

resulted in 40 intersections ( = 2 × 2 × 2 × 5). Their descriptive statistics

showed that the mean and standard deviation (SD) of reading performance

were 498 and 106, respectively (versus the OECD average mean and SD of

485 and 105). Female students scored higher than male students, native stu-

dents outperformed immigrant students, students whose parents held a uni-

versity entrance certificate scored higher than those whose parents did not,

and students from families with higher occupational status achieved higher

scores (see their Table 1).

Table 1 presents their results from MAIHDA Model 1 and Model 2 esti-

mated using Bayesian MCMC methods (see their Table 3). The Model 1

VPC statistic reveals substantial intersectional inequalities: 16% of the vari-

ance in student achievement lies between the intersection means. The

Model 2 regression coefficients estimate the additive structure in the intersec-

tional means, and these results align with their descriptive statistics. The PCV

statistic shows that the additive structure accounts for 91% of the variation in

the intersection means, meaning that 9% of the variation reflects deviations—

both positive and negative—from the model-implied additive patterns of

inequality. In other words, variation associated with two-way and higher-

order interactions captured by the intersection random effect. Indeed, six of

their intersection means deviate by 10 or more points from additivity

(approximately 0.1 SD or more), but only one of these departures is statistic-

ally significant (see their Figure 4). Intersection 40, Female, native students

with university entrance certificate parents and high occupational status—

already the highest-scoring intersection in terms of additive effects—scored

around 15 points higher (0.15 SD) than what additivity would suggest.

Figure 1 shows the simple means and the MAIHDA Model 1 and Model 2

means for all 40 intersections, and where we have highlighted the six inter-

sections with 20 or fewer individuals. For most intersections, the means are

Leckie et al. 9



very similar across the three methods. However, as expected, the means for

smaller intersections (highlighted) notably vary across methods (see also

Table 2). Specifically, compared to the simple means, the MAIHDA

Model 1 means are shrunk toward the overall average. Relative to the

MAIHDA Model 1 means, the MAIHDA Model 2 means generally increase,

except for Intersection 35, which decreases. In the most extreme case,

Table 1. Results of MAIHDA Models 1 and 2 for reading achievement in the Keller

et al. (2023) study.

Model 1 Model 2

Est. SE Est. SE

Intercept 478.3 [464.3, 492.3] 468.4 [452.8, 483.3]

Gender

Female (Ref.) −

Male −25.6 [-36.5, -14.9]

Immigrant background

Native (Ref.) −

Immigrant −42.5 [-53.7, -30.9]

Highest parental education

Below uni. entrance certificate

(Ref.)

−

At least uni. entrance

certificate

29.8 [18.2, 42.0]

Highest parental occupation

status

Low (Ref.) −

Low to middle 10.1 [-5.9, 26.8]

Middle 27.6 [11.4, 44.6]

Middle to high 53.1 [35.2, 70.4]

High 62.6 [40.5, 81.2]

Intersection variance 1698.3 144.4

Student variance 9011.7 9021.2

VPC 15.9% 1.6%

PCV − 91.2%

Note: Table adapted from Table 3 of Keller et al. (2023). The model was estimated using Bayesian

MCMC methods. Est.: estimate; SE: standard error; Uni.: University; Ref.: reference category;

VPC: variance partition coefficient; PCV: proportional change in stratum variance; MAIHDA:

multilevel analysis of individual heterogeneity and discriminatory accuracy; MCMC: Markov chain

Monte Carlo.
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Intersection 39 (male, immigrant, low parental education, high occupational

status; n= 3), the three means are 362, 438, and 458, with a range of 96 points

(approximately 0.96 SD). These results clearly demonstrate that the different

prediction methods can yield substantively different results, especially when

intersection sizes are small.

Predicted Means

The predicted intersection means are a central output of an MAIHDA ana-

lysis, as they are typically used to identify the social identity combinations

associated with the most and least favorable mean outcomes (Evans et al.

2024b). In this section, we describe the three methods for predicting the

true intersection means: simple means, the MAIHDA Model 1 means, and

the MAIHDAModel 2 means. A key purpose of this section is to demonstrate

how shrinkage leads the MAIHDA Model 1 and Model 2 means to differ

from the simple means and from each other. It is worth reiterating that both

MAIHDA Model 1 and Model 2 are standard multilevel models, and so

the equations for their predicted means follow the formulations reported in

Figure 1. Predicted simple means, multilevel analysis of individual heterogeneity and
discriminatory accuracy (MAIHDA) model 1 means, and MAIHDA model 2 means for
all 40 intersections in the Keller et al. (2023) study. The six intersections with fewer
than n= 20 individuals are emphasized both in the plot and in Table 2. Additionally,
Intersection 37 is highlighted in the plot, as it is examined in more detail in Figure 2.
The simple means are defined in (9), the MAIHDA Model 1 means in (10), and the
MAIHDA Model 2 means in (14).
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the multilevel modeling literature (Raudenbush and Bryk 2002; Snijders and

Bosker 2012). Note that we use subscripts 1 and 2 to distinguish between the

parameters and terms associated with Model 1 and Model 2, respectively.

Simple Means

Averaging across nj individuals within intersection j yields the simple mean:

�y
.j =

1

nj

∑

nj

i=1

yij (9)

This is sometimes referred to as the cross-classification method. The

simple mean can also be obtained by estimating a linear regression of yij
on an intercept and J − 1 dummy variables (or no intercept and J dummy

variables) and predicting the fitted values, sometimes referred to as a fixed

effects dummy variable model. Alternatively, they can be derived by fitting

a linear regression of yij on the social identity variables that define the inter-

sections, fully interacting these variables. This is sometimes referred to as a

saturated fixed effects model, and was until MAIHDA the cutting edge for

quantitative intersectional analyses. For example, in the Keller et al. (2023)

study, this would involve entering the main effects of the four social identity

variables, and then all two-, three-, and four-way interactions terms.

MAIHDA Model 1 Means

The MAIHDA Model 1 mean for intersection j is defined as the conditional

expectation of the true intersection mean, given the observed simple mean for

that intersection:

μ̃1j ≡ E(μj|�y.j) = R1j�y
.j + (1− R1j)β1,0 (10)

where we use the tilde notation to help distinguish the predicted mean μ̃1j
from the true mean μj. Under frequentist estimation, we plug in the parameter

estimates, resulting in empirical Bayes predictions. Under Bayesian estima-

tion, we instead estimate the posterior distribution of μj and summarize it

using the posterior mean.

The term R1j is the reliability of the simple mean �y
.j as an estimate of the

true mean μj. These predictions are therefore reliability-weighted averages of

the simple means �y
.j and the model-implied or overall mean β1,0. The more

reliable �y
.j is as an estimate of μj, the more weight is given to �y

.j and the

less to β1,0. The Model 1 means can therefore be viewed as a prediction

12 Sociological Methods & Research 0(0)



Table 2. Predicted intersection means for the six intersections with fewer than n= 20 individuals in the Keller et al. (2023) study.

MAIHDA Model 1 MAIHDA Model 2

ID Size

Simple

mean Rel.

Model

implied mean

MAIHDA

mean Rel.

Model

implied mean

MAIHDA

mean

j Gender Migrant Education Occupation nj �y
.j Rj β0,1 μ̃j Rj x′jβ2 μ̃j

15 Female Immigrant Below UEC Mid to high 9 446 0.63 478 459 0.13 479 475

17 Female Native Below UEC High 8 536 0.60 478 512 0.11 531 532

19 Female Immigrant Below UEC High 3 412 0.36 478 456 0.05 489 485

35 Male Immigrant Below UEC Mid to high 11 471 0.67 478 473 0.15 453 456

37 Male Native Below UEC High 14 463 0.73 478 468 0.18 505 497

39 Male Immigrant Below UEC High 3 362 0.36 478 438 0.05 463 458

Note: Table adapted from Supplemental Table S3 of Keller et al. (2023). We calculated Rj for Models 1 and 2 by applying Equations (12) and (16) to the

estimates of σ2u and σ
2
e (Table 1) and nj. We then calculated �y

.j by rearranging and applying Equations (10) and (14) in terms of �y
.j, using the Model 1 and 2

values of Rj, μ̃j, and β0,1 and x
′
jβ2, respectively. Simple mean and reliability statistics are our own calculations. x′jβ2 = β2,0 + β2,1x1j + · · · + β2,px pj. The

full version of this table can be found in Supplemental Table S2 of the online supplements. Rel.: reliability UEC: University Entrance Certificate;

MAIHDA: multilevel analysis of individual heterogeneity and discriminatory accuracy.
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that starts with the simple mean and is then shrunk toward the overall mean.

The degree of shrinkage is given by:

μ̃1j − �y
.j = (R1j − 1)(�y

.j − β1,0) (11)

Therefore, shrinkage decreases as reliability increases, and it also

decreases as the difference between the simple mean and the overall mean

becomes smaller.

Reliability is calculated as the ratio of the true mean variance to the

observed mean variance, and thus varies from 0 to 1:

R1j =
Var(μj)

Var(�y
.j)

=
Var(β1,0 + u1j)

Var(β1,0 + u1j + �e
.j)

=
σ2u1

σ2u1 +
σ2e
nj

(12)

where �e
.j is the mean of the individual residuals:

�e
.j =

1

nj

∑

nj

i=1

eij (13)

Figure 2. Predicted simple mean, multilevel analysis of individual heterogeneity and
discriminatory accuracy (MAIHDA) model 1 mean, and MAIHDA model 2 mean for
intersection 37 in the Keller et al. (2023) study. The plot illustrates how the MAIHDA
Model 1 and Model 2 means are weighted averages of the simple mean and the
corresponding model-implied mean. Intersection 37 includes male, native students
with low parental education and high occupational status (n= 14).
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with variance σ2e / nj. Note that we do not add a 1 subscript to �e.j or σ
2
e , as these

terms do not change when moving from Model 1 to Model 2. Reliability can

also be interpreted as the squared correlation between �y
.j and μj, that is, as the

R-squared or coefficient of determination for predicting μj from �y
.j. From this

expression, we see that reliability increases with the Model 1 VPC, the mag-

nitude of intersectional inequalities, and nj, the number of individuals at an

intersection. This suggests that as VPC or nj increase, both �y
.j and μ̃j will con-

verge toward μj.

MAIHDA Model 2 Means

The MAIHDA Model 2 mean for intersection j is given by the conditional

expectation of the true mean, given the simple mean and the covariates for

that intersection:

μ̃2j ≡ E(μj|�y.j, x1j, . . . , x pj)

= R2j�y
.j + (1− R2j)(β2,0 + β2,1x1j + · · · + β2,px pj) (14)

where R2j is the reliability of the simple mean �y
.j as an estimate of the true

mean μj, conditional on the additive effects of the multiple social identities.

Thus, the Model 2 means are also weighted averages of the simple means

�y
.j and the model-implied means, but where the latter are now given by the

fixed-part of the model β2,0 + β2,1x1j + · · · + β2,px pj. Because the additive

model implies a different mean for every intersection, the shrinkage is now

towards a different point for every intersection rather than the single

common point β1,0. The degree of shrinkage is now given by:

μ̃2j − �y
.j = (R2j − 1){�y

.j − (β2,0 + β2,1x1j + · · · + β2,px pj)} (15)

and, therefore, again decreases as the now conditional reliability increases,

and again increases as the difference between the simple mean and the

model-implied mean increases.

The expression for the conditional reliability takes the same form as before:

R2j =
Var(μj|x1j, . . . , x pj)
Var(�y

.j|x1j, . . . , x pj)

=
Var(β2,0 + β2,1x1j + · · · + β2,px pj|x1j, . . . , x pj)
Var(β2,0 + β2,1x1j + · · · + β2,px pj|x1j, . . . , x pj)

=
σ2u2

σ2u2 +
σ2e
nj

(16)
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However, the conditional reliabilities will have lower values than the uncon-

ditional reliabilities as σ2u2 < σ2u1. Specifically, as the explanatory power of the

additive effects of the social identity variables increases, σ2u2 decreases, resulting

in lower values of R2j. Consequently, when computing the MAIHDA means,

the shrinkage factor in Model 2 is stronger than in Model 1,

|R2j − 1| > |R1j − 1|. However, because Model 2 typically shrinks the simple

means toward more realistic values than Model 1—since the model-implied

means in Model 2, based on additive effects, are generally more accurate for

most intersections than the overall mean used in Model 1—the Model 2

shrinkage factors are typically applied to smaller differences between

the simple means and model-implied means than in Model 1. Whether the

resulting degree of shrinkage is generally larger or smaller in Model 1 or

Model 2 depends on the specific application. In the presence of a very

strong two-way interaction, the model-implied means from a more complex

model that includes this interaction at a fixed-effect covariate will be even

more realistic. However, even when Model 2 is misspecified by omitting this

interaction, its model-implied means will generally provide more realistic

values to shrink toward than simply shrinking to the overall intercept from

Model 1.

Illustrative Application

Figure 2 focuses on the simple mean and the MAIHDAmeans from Models 1

and 2 for Intersection 37 (male, native, low parental education, high occupa-

tional status; n= 14) [Keller et al. (2023)]. The plot illustrates how the

MAIHDA means for Models 1 and 2 (triangles) are reliability-weighted

averages of the simple mean (circles) and their respective model-implied

means (squares). For Model 1, the model-implied mean is the overall

mean, whereas for Model 2, it is the mean implied by the estimated additive

effects of being male, native, low parental education and high occupational

status.

In Model 1, the reliability of the simple mean is low (0.73) as it is based on

only 14 individuals, and the simple mean of 463 is some 15 points lower than

the model-implied mean of 478. As a result, the simple mean is shrunk

upwards by 4 points towards the model-implied mean, resulting in a Model

1 MAIHDA mean of 468.

In Model 2, the conditional reliability of the simple mean is very low

(0.18), and the simple mean of 463 is some 42 points lower than the

model-implied mean of 505. As a result, the prediction is shrunk upwards
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by a very large 35 points towards the model-implied mean, resulting in a

Model 2 MAIHDA mean of 497.

Reconsider the different predicted means for the six intersections plotted in

Figure 1 and listed in Table 2. In Model 1, the MAIHDA means represent the

simple means shrunk toward the overall model-implied mean of 478. The reli-

abilities and therefore the degree of multiplicative shrinkage vary as a func-

tion of intersection size from 0.36 to 0.73. In Model 2, the MAIHDA means

are instead shrunk toward intersection-specific model-implied means derived

from the additive model specification. The conditional reliabilities vary from

0.05 to 0.18. As expected, in both models, the MAIHDA means fall between

the simple means and the model-implied means.

Analytic Expressions

Thus far, we have defined the Simple Means as well as the MAIHDAModel 1

and Model 2 means, shown that they yield different results, and demonstrated

that these differences can be substantial—particularly for small intersectional

groups—in a real-world setting. The remainder of the paper aims to evaluate

and clarify the statistical properties of these three approaches to predicting

intersectional group means. In doing so, we address our motivating questions:

How much more accurate are MAIHDA means compared to simple means?

What factors influence their relative accuracy? And, most importantly, is the

choice between simple and MAIHDA means likely to affect conclusions in

real-world research?

We use analytic expressions rather than simulations because they allow us

to precisely identify the sources of divergence between the approaches and to

assess their performance efficiently across a wide range of scenarios, in a way

that prior simulation-based studies have struggled to do so. As with simula-

tion studies, however, analytic approaches require specification of a “true”

model or data-generating process (DGP) to serve as a benchmark. It is there-

fore important that the assumed DGP be a plausible reflection of reality.

MAIHDA Model 1 would be a poor choice, as it assumes no consistent

(additive) patterns in intersectional inequalities. The simple means model is

even less plausible, as it treats each intersectional group as entirely independ-

ent—an “island”—offering no information about any other group. In contrast,

MAIHDA Model 2 provides a far more realistic basis, combining additive

structure in intersectional inequalities with intersection-specific deviations.

Empirical studies often find that 60–95% of the variation in intersectional

inequalities is accounted for by additive effects, supporting the assumptions

embedded in Model 2. Moreover, via shrinkage, MAIHDA Model 2

Leckie et al. 17



leverages information across groups, reflecting the idea that every intersec-

tional group shares information with others. We therefore assume that the

true DGP follows MAIHDA Model 2.

Of course, the true DGP is unknown in any applied study and will

vary from case to case. It will also inevitably differ from MAIHDA

Model 2 in some respects. The key point is that Model 2 will more

closely resemble most real-world DGPs than either Model 1 or the

Simple Means model.

Statistical Properties of the Distribution of Predicted

Intersection Means

We begin our comparison of the statistical properties of three approaches to

predicting intersection means by focusing on the big picture—how the

approaches vary in capturing the distribution of intersection means.

We start by presenting analytical expressions for the variance of the

intersection means across the distribution of intersections. We then graphic-

ally demonstrate how these variances change with intersection size and how

these relationships are influenced by the Model 1 VPC, the Model 2 PCV, and

the variability of intersection sizes. We operationalize the latter in terms of

the coefficient of variation (CV) of intersection sizes, defined as the ratio

of the SD of intersection sizes to the mean. A CV of 0 means all intersections

are of equal size. But most applications have unequal intersection sizes and so

CVs greater than 0. Finally, we provide analytical expressions for the

correlation between each set of means and the true means, and illustrate

these correlations graphically in a parallel manner. We do not present analyt-

ical expressions for the expectation of each set of means as in all cases the

expectation is equal to the mean of the intersection means.

The analytic expressions we present follow from results in the statistical

literature on multilevel models. To derive all expressions, we specify the

true model as Model 2 and assume that the regression coefficients, intersec-

tion random effect variance, and individual residual variance are known, with

only the true mean for each intersection being unknown. Thus, all derivations

are done in terms of the true parameter values of Model 2, rather than in terms

of frequentist or Bayesian estimators. Additionally, we assume many inter-

sections of equal size. We present full derivations in the online supplements.

We use simulation to address the case of varying intersection sizes. For plot-

ting purposes, we consider the case where the mean and SD of the outcome

are 0 and 1, respectively.
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Variance of the Predicted Means Across the Distribution of

Intersections

Let σ2μ denote the variance of the true means. The variance of each set of pre-

dicted means can then be written as:

Simple : Var(�y
.j) = σ2μ +

σ2e
n

(17)

Model 1 : Var(μ̃1j) = R1σ
2
μ (18)

Model 2 : Var(μ̃2j) = σ2μ − (1− R2)σ
2
u2 (19)

where we continue to use 1 and 2 subscripts to distinguish between the Model

1 and Model 2 parameters, with the exception for σ2e , as σ
2
e1 = σ2e2. Since we

assume balanced data, we omit the j subscript from n, R1 and R2.

Figure 3 shows the true variance and the variances of the Simple, Model 1,

and Model 2 predicted means, plotted against intersection size. The figure is

based on a Model 1 VPC of 0.15, a Model 2 PCV of 0.90, and a CV of

intersection sizes of 0, indicating equal intersection sizes. These VPC and

PCV values are similar to those reported in Keller et al. (VPC= 0.16 and

PCV= 0.91). The CV value differs from that reported in Keller et al.,

where the CV was 0.98. We plot the four variances against intersection

size only up to n = 100 because the differences between the variances dimin-

ish as intersection size increases. In Keller et al., the sizes of the 40 intersec-

tions ranged from 3 to 512 students, with a median of 93. Six intersections

had fewer than 20 students, and three had fewer than 10.

Given the Model 1 VPC of 0.15 and an outcome variance of 1, it follows

that the variance of the true means is also 0.15. This variance remains con-

stant regardless of intersection size. In contrast, the variance of the simple

means is initially much larger but decreases as intersection size increases,

eventually converging to the true variance. This follows from the expression:

Var(�y
.j) = σ2μ + σ2e / n. As n � ∞, the term σ2e / n � 0, leading to

Var(�y
.j) � σ2μ. In words, the variance of the simple means is equal to the

sum of the true variance and the sampling variance in the simple mean.

The latter tends to 0 as the number of individuals per intersection increases.

Thus, with sufficiently large intersection sizes, the variance of the simple

means approaches that of the true means. However, when intersection sizes

are smaller, the variance of the simple means overestimates the true variance.

The variance of the Model 1 means is smaller than the true variance when

n is small, but it increases and converges to the true variance as intersection
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size increases. This follows from the expression: Var(μ̃1j) = R1σ
2
μ. As

n � ∞, the term R1 � 1, leading to Var(μ̃1j) � σ2μ. Thus, with sufficiently

large intersection sizes, the reliabilities approach 1, and so the variance of the

Model 1 means also closely approximates the variance of the true means. The

fact that the variance of the Model 1 means is smaller than the true variance

reflects the conservative nature of shrinkage—shrinkage leads to an under-

estimation of the true variance, particularly when intersection size is small.

Importantly, for any given intersection size, while the variance of the

Model 1 means is biased downward, it remains closer to the true variance

than the variance of the simple means, which is biased upward.

The variance of the Model 2 means is slightly smaller than the true vari-

ance when n is small, but it increases and converges to the true variance as

intersection size increases. Compared to Model 1, the variance of the

Model 2 means remains close to the true variance even at the smallest inter-

section sizes. This is because the PCV is 0.90, indicating that 90% of the vari-

ation in the Model 2 means is captured by additive social identity effects,

which are identified using data pooled across all intersections, and therefore

reliably. Only 10% of the variation stems from intersection-specific

Figure 3. Variance of the simple means (17), MAIHDA model 1 means (18), and
MAIHDA model 2 means (19) across the distribution of intersections, plotted against
intersection size. The plot assumes a Model 1 VPC of 0.15, a Model 2 PCV of 0.90,
and equal intersection sizes. MAIHDA: multilevel analysis of individual heterogeneity
and discriminatory accuracy; PCV: proportion change in variance; VPC: variance
partition coefficient.
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deviations, which are identified separately for each intersection. As a result,

relatively little data per intersection is required for the variance of the

Model 2 means to approximate the true variance.

In summary, the variance of the simple means is biased upwards, whereas

the variances of the Model 1 and Model 2 means are biased downwards. The

magnitude of all three biases decreases as intersection size increases.

However, the variance of the Model 2 means is always closest to the variance

of the true means (i.e., shows the smallest bias). Thus, regardless of intersec-

tion size, the Model 2 means are the preferred means to report. These results

have implications for the reporting of tables of intersection means.

Figure 3 was plotted using specific values for the Model 1 VPC, Model 2

PCV, and CV of intersection size. Supplemental Figures S1, S2, and S3 in the

online supplements explore how this plot changes as each of these factors

varies. The key finding is that the relative ranking of the three methods of pre-

diction remains unchanged. However, the advantage of the Model 2 mean

over the simple mean is most pronounced when intersectional inequalities

Figure 4. Correlation between the simple means and the true means (20), MAIHDA
model 1 means and the true means (21), and MAIHDA model 2 means and the true
means (22), across the distribution of intersections, plotted against intersection size.
The plot assumes a Model 1 VPC of 0.15, a Model 2 PCV of 0.90, and equal
intersection sizes. The line plots for the simple means and the MAHDA Model 1
means lie on top of one another. MAIHDA: multilevel analysis of individual
heterogeneity and discriminatory accuracy; PCV: proportion change in variance; VPC:
variance partition coefficient.
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are less pronounced (low VPC), when inequalities follow a largely additive

pattern (high PCV), and when intersections vary in size (high CV).

Correlation Between the Predicted and True Means Across the

Distribution of Intersections

The correlation of each set of predicted means with the true means is given

by:

Simple : Corr(�y
.j, μj) =

���

R1

√
(20)

Model 1 : Corr(μ̃1j, μj) =
���

R1

√
(21)

Model 2 : Corr(μ̃2j, μj) =
�����������������������

PCV+ R2(1− PCV)
√

(22)

The higher the correlation, the more the set of predicted means reflect the

distribution of true means.

Figure 4 shows the correlation between each set of predicted means and

the true means, plotted against intersection size. The figure is based on a

Model 1 VPC of 0.15, a Model 2 PCV of 0.90, and a CV of intersection

size of 0, indicating equal intersection sizes.

The correlation between the simple means and the true means is initially

much smaller than 1 but increases as intersection size grows, eventually

converging to a correlation of 1. The low correlation at smaller intersection

sizes reflects the low reliability of the simple means as a predictor of the

true means when intersection sizes are small. As n � ∞, R1 � 1, leading

to Corr(�y
.j, μj) � 1. Thus, with sufficiently large intersection sizes, the cor-

relation between the simple means and the true means approaches 1.

Figure 4 shows the correlation between the Model 1 means and the true

means is identical to the correlation between the simple means and the true

means (their respective line plots lie on top of one another). This is

because, in the current case of equal intersection sizes, the Model 1 means

are just the simple means shrunk towards the overall mean by a common reli-

ability statistic. The two correlations will diverge when we allow the intersec-

tion sizes to vary (as seen in Supplemental Figure S6 and discussed below).

The correlation between the Model 2 means and the true means also con-

verges to a correlation of 1 as intersection sizes increase. Compared to Model

1, the correlation between the Model 2 means and the true means remains

close to 1 even at the smallest intersection sizes. This is due to the PCV

being 0.90, which means that 90% of the variation in the Model 2 means is
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explained by additive social identity effects, identified using data pooled

across all intersections, and therefore reliably. Only 10% of the variation

stems from intersection-specific deviations, which are identified separately

for each intersection. As a result, relatively little data per intersection is

needed for the correlation between the Model 2 means and the true means

to be close to 1.

In summary, all three correlations are biased downwards but approach 1 as

intersection size increases. The correlation between the Model 2 means and

the true means consistently shows the smallest bias. Therefore, the Model

2 means are the preferred predictor to report, regardless of intersection size.

Figure 4 was plotted using specific values for the Model 1 VPC, Model 2

PCV, and CV of intersection size. Supplemental Figures S4, S5, and S6 in the

online supplements explore how this plot changes as each of these factors

varies. The key finding is that the Model 2 means remain the preferred pre-

dictor. However, similar to the variance of the predicted means, the advantage

of this predictor is most pronounced when intersectional inequalities are less

pronounced (low VPC), when inequalities follow a largely additive pattern

(high PCV), and when intersections vary in size (high CV).

Statistical Properties of Predicted Intersection Mean

for a Given Intersection

In this section, we continue to address the same two key questions: Which set

of predicted means—Simple, Model 1, or Model 2—is most appropriate to

report, and does this choice depend on the nature of intersectional inequal-

ities—magnitude and additivity—being studied and the size of the data?

However, our goal here is to examine the statistical properties of the predicted

mean for a given intersection across random samples of individuals from that

intersection. This contrast, the previous section where we focused on the stat-

istical properties of the distribution of predicted intersection means across the

population of intersections.

We focus on the bias, variance, and MSE of each predictor for a given

intersection. Bias measures the difference between the average predicted

mean for a given intersection and its true value. A high bias, whether positive

or negative, means the predictor consistently over- or under-predicts.

Variance here reflects how much the predicted intersection mean varies

across different samples of individuals. In other words, if we were to repeat

a sampling process multiple times from the same intersection population,

how varied would our predictions be? High variance indicates that the
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model is overly sensitive to the specific individuals randomly selected for the

sample. Importantly, when comparing predictors there is typically a bias-

variance tradeoff whereby the only way to reduce the variance is by introdu-

cing bias. The MSE therefore combines both bias and variance to assess

overall prediction accuracy, with a lower MSE indicating better predictive

performance.

We begin by presenting analytic expressions for the bias, variance, and

MSE. As in the previous section, the analytic expressions we present

follow from results in the statistical literature on multilevel models. We

again present full derivations in the online supplements. After presenting ana-

lytic expressions for bias, variance, and MSE, we graphically illustrate how

these properties change as a function of the difference between the true inter-

section mean and the model-implied mean and how these relationships are

influenced by intersection size, the Model 1 VPC, and the Model 2 PCV.

To derive all expressions, we continue to specify the true model as Model

2 and assume that the regression coefficients, intersection random effect vari-

ance, and individual residual variance are known, with only the true mean for

each intersection being unknown. For plotting purposes, we again consider

the case where the mean and SD of the outcome are 0 and 1, respectively.

Bias

For each predictor, the bias for intersection j measures the difference

between the expected value for the predicted mean and the true mean for

that intersection:

Simple : bias(�y
.j|μj) = 0 (23)

Model 1 : bias(μ̃1j|μj) = −(1− R1j)(μj − β1,0) (24)

Model 2 : bias(μ̃2j|μj)

= −(1− R2j){μj − (β2,0 + β2,1x1j + · · · + β2,px pj)} (25)

where the 1 and 2 subscripts continue to distinguish between the Model 1 and

Model 2 parameters.

Figure 5 presents the bias of each predictor as a function of the difference

between the true mean μj and the model-implied mean for that intersection:

β1,0 in Model 1 or β2,0 + β2,1x1j + · · · + β2,px pj in Model 2. The figure

assumes an intersection size of 10 individuals, a Model 1 VPC of 0.15, and

a Model 2 PCV of 0.90. It follows that the Model 1 and 2 reliabilities are
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0.64 and 0.15. Notably, in the Keller et al. study, six of the 40 intersections

had fewer than 20 students, and three had fewer than 10 students. The x-axis

range of the plots for the Simple and Model 1 bias are limited to the expected

middle 95% of differences from Model 1, given by ±Φ−1(0.975)
����

σ2u1

√

.

Similarly, the x-axis range for the plot of the Model 2 bias is restricted to

the expected middle 95% of differences from Model 2, given by

±Φ−1(0.975)
����

σ2u2

√

. We apply these limits to avoid disproportionately long

bias lines (and variance and MSE lines in Figures 6 and 7) at the extremes,

which could distract the reader from the main patterns within the central

range of the data.

The simple mean is an unbiased predictor of the true mean, meaning that,

averaging across repeated samples, the simple mean equals the true mean.

The Model 1 mean is a biased predictor. The bias is a negative linear func-

tion of the difference between the true mean μj and the model-implied mean

Figure 5. Bias of the simple mean (23), MAIHDA model 1 mean (24), and MAIHDA
model 2 mean (25) across repeated samples of individuals for a given intersection,
plotted against the difference between the true mean and the model-implied mean for
that intersection. The plot assumes an intersection size of 10 individuals, a Model 1
VPC of 0.15, and a Model 2 PCV of 0.90. The Model 1 model-implied mean
corresponds to the overall mean, while the Model 2 model-implied mean reflects the
additive effects of the social identities defining the intersection. The bias of the
MAIHDA Model 2 mean is shown over a narrower range due to smaller differences
between the true and model-implied means in this model. MAIHDA: multilevel
analysis of individual heterogeneity and discriminatory accuracy; PCV: proportion
change in variance; VPC: variance partition coefficient.
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β1,0, where the latter is simply the overall mean. Specifically, this difference is

scaled by−(1− R1j), which is negative and, in this illustration takes the value

−0.36 (with a possible range from −1 to 0). As a result, the sign of the dif-

ference is reversed, and its magnitude is reduced. Consequently, when the

true mean exceeds the model-implied mean, the Model 1 mean is biased

downward, whereas when the true mean is lower than the model-implied

mean, the bias is upward. Thus, the Model 1 is biased toward the

model-implied mean. This once again reflects the conservative nature of

shrinkage.

The Model 2 mean is also a biased predictor of the true mean, with the mag-

nitude of its bias again following a negative linear relationship with the differ-

ence between the true mean μj and the model-implied mean

β2,0 + β2,1x1j + · · · + β2,px pj. However, unlike in Model 1, the model-implied

Figure 6. Variance of the simple mean (26), MAIHDA model 1 mean (27), and
MAIHDA model 2 mean (28) across repeated samples of individuals for a given
intersection, plotted against the difference between the true mean and the
model-implied mean for that intersection. The plot assumes an intersection size of 10
individuals, a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The Model 1
model-implied mean corresponds to the overall mean, while the Model 2
model-implied mean reflects the additive effects of the social identities defining the
intersection. The bias of the MAIHDA Model 2 mean is shown over a narrower range
due to smaller differences between the true and model-implied means in this model.
MAIHDA: multilevel analysis of individual heterogeneity and discriminatory accuracy;
PCV: proportion change in variance; VPC: variance partition coefficient.
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mean is now an intersection-specific mean, determined by the additive effects

of the relevant social identity characteristics. As a result, these model-implied

means are typically closer to the true means than in Model 1. This increases the

first term in absolute magnitude and decreases the second term in the expres-

sion for the bias. Specifically, the first term, −(1− R2j), is now −0.85. It is

now closer to −1 because the conditional reliability R2j is always lower than

the unconditional reliability R1j. This results in a larger per-unit multiplicative

bias, making the slope of the linear bias relationship steeper than before.

However, the decrease in the second term—the deviation between the true

and model-implied mean—means this increased multiplier is applied to

smaller differences than in Model 1, making the range over which the linear

bias relationship operates narrower (note the narrower range of the line plot

for Model 2 in Figure 5). The net effect is that the Model 2 mean is expected

Figure 7. Mean squared error of the simple mean (29), MAIHDA model 1 mean
(30), and MAIHDA model 2 mean (31) across repeated samples of individuals for a
given intersection, plotted against the difference between the true mean and the
model-implied mean for that intersection. The plot assumes an intersection size of 10
individuals, a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The Model 1
model-implied mean corresponds to the overall mean, while the Model 2
model-implied mean reflects the additive effects of the social identities defining the
intersection. The bias of the MAIHDA Model 2 mean is shown over a narrower range
due to smaller differences between the true and model-implied means in this model.
MAIHDA: multilevel analysis of individual heterogeneity and discriminatory accuracy;
PCV: proportion change in variance; VPC: variance partition coefficient.
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to be a less biased predictor of the true mean for a given intersection than the

Model 1 mean. Nevertheless, the Model 2 mean remains a biased predictor, and

one that is biased towards additivity. That is, the predicted intersection means

will conform more to additivity than they do in actuality.

In summary, the simple mean is an unbiased predictor of the true intersec-

tion mean, whereas the Model 1 and Model 2 means are both biased towards

their respective model-implied means with the Model 1 means, on average,

exhibiting greater bias.

Supplemental Figures S7, S8, and S9 in the online supplements explore

how the results shown in Figure 5 change as a function of intersection size,

Model 1 VPC, and Model 2 PCV. The key finding is that the simple mean

remains the preferred predictor as it is always unbiased (when averaged

across repeated samples), whereas the Model 1 and Model 2 means exhibit

bias in all cases except when the true and model-implied means are equal.

Variance

For each predictor, the variance for intersection j measures the variability of

the prediction (their “consistency”) across random samples of individuals

from that intersection:

Simple : Var(�y
.j|μj) =

σ2e
nj

(26)

Model 1 : Var(μ̃1j|μj) = R2
1j

σ2e
nj

(27)

Model 2 : Var(μ̃2j|μj) = R2
2j

σ2e
nj

(28)

Figure 6 presents the variance of each predictor for the true mean of inter-

section j as a function of the difference between the true mean and the

model-implied mean for that intersection. The plot’s range is again restricted

to the expected middle 95% of differences for each model. As with the bias

figure, the analysis assumes an intersection size of 10 individuals, a Model 1

VPC of 0.15, and a Model 2 PCV of 0.90.

The variance of each predictor is constant. For the simple mean, the vari-

ance is given by the sampling variance across repeated samples,
σ2e
nj
. The vari-

ance of the Model 1 mean is obtained by multiplying this sampling variance

by the squared reliability, R2
1j which in this illustration is 0.38. As R1j < 1, the
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Model 1 mean exhibits less variation across repeated samples than the simple

mean—specifically, 62% less. The variance of the Model 2 mean follows the

same general form as the Model 1 mean. However, because the conditional

reliability is lower than the unconditional reliability, R2j < R1j, the variance

of the Model 2 mean is even smaller than that of Model 1. In this illustration,

R2
2j = 0.0225, meaning the variance of the Model 2 mean is 97.5% smaller

than that of the simple mean.

In summary, the Model 2 mean has the lowest variance (the most consist-

ency) across repeated samples, followed by the Model 1 mean, with the

simple mean exhibiting the highest variance (least consistency). Thus, the

Model 2 means to a much greater extent replicate themselves across repeated

samples. The simple means do not.

Supplemental Figures S10, S11, and S12 explore how the results shown in

Figure 6 change as a function of the intersection size, Model 1 VPC, and

Model 2 PCV. The key finding is that the Model 2 mean remains the preferred

predictor in terms of having the smallest variance. However, its advantage

over the simple mean is most pronounced when the intersection size is

small, intersectional inequalities are less pronounced (low VPC), and when

these inequalities follow a largely additive structure (high PCV).

Mean Squared Error

For each predictor, the MSE for intersection j reflects both its variance and

bias. As a result, the MSE provides a measure of the predictor’s overall accur-

acy. A lower MSE indicates a more accurate predictor. Specifically, the MSE

is defined as the sum of the variance and the bias squared:

Simple : MSE(�y
.j|μj) =

σ2e
nj

(29)

Model 1: MSE(μ̃1j|μj) = R2
1j

σ2e
nj

+ (1− R1j)
2(μj − β1,0)

2 (30)

Model 2 : MSE(μ̃2j|μj) = R2
2j

σ2e
nj

+ (1− R2j)
2{μj − (β2,0 + β2,1x1j + · · · + β2,px pj)}

2

(31)

Figure 7 presents the MSE of each predictor for the true mean of intersec-

tion j as a function of the difference between the true mean and the
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model-implied mean for that intersection. The plot’s range is again restricted

to the expected middle 95% of differences for each model, and the analysis

continues to assume an intersection size of 10 individuals, a Model 1 VPC

of 0.15, and a Model 2 PCV of 0.90.

The MSE for the simple mean is equal to its variance, as its bias is zero.

The MSE for the Model 1 mean follows a quadratic function of the differ-

ence between the true mean and the model-implied mean, μj − β1,0, where the

model-implied mean is simply the overall mean. The MSE reaches its

minimum when the true mean matches the model-implied mean, at which

point it equals the variance of the Model 1 mean, R2
1j

σ2e
nj
. As the true mean devi-

ates from the model-implied mean, the MSE increases.

Similarly, the MSE for the Model 2 mean is also a quadratic function of the

difference between the true mean and the model-implied mean. However, in

this case, the model-implied mean represents the intersection-specific mean,

determined by the additive effects of the relevant social identity characteris-

tics, β2,0 + β2,1x1j + · · · + β2,px pj. As with the Model 1 mean, the MSE is

minimized when the true mean matches the model-implied mean, at

which point it equals the variance of the Model 2 mean, R2
2j

σ2e
nj
. Since this vari-

ance is lower than that of the Model 1 mean, the MSE for Model 2 at this point

is also lower.

While the MSE of the Model 2 mean increases more rapidly than that of

the Model 1 mean as the true mean increasingly deviates from the

model-implied mean, this effect is mitigated by the fact that the

model-implied means in Model 2 are generally much closer to the true

means than those in Model 1. As a result, the MSE for the Model 2 mean

will almost always be smaller than that for the Model 1 mean for a given

intersection.

In summary, when the model-implied mean is closer to the true mean, both

the Model 1 and, especially, Model 2 predictors exhibit lower MSE than the

simple mean. As the model-implied mean deviates further from the true mean,

the MSE for both models increases. However, the ranking of prediction

method remains consistent, except in cases of extreme deviations. For

instance, consider an intersection with a very low true mean of −0.7.

Across repeated samples of 10 individuals, the MSE for the Model 1 mean

at that intersection (0.099) would actually exceed that of the simple mean

(0.085). However, the MSE for the Model 2 mean would be significantly

lower.

Supplemental Figures S13, S14, and S15 explore how the results shown in

Figure 7 change as a function of the intersection size, Model 1 VPC, and

Model 2 PCV. The key finding is that the Model 2 mean remains the preferred
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predictor in terms of the lowest MSE. However, its advantage over the simple

mean is most pronounced when intersection sizes are small, intersectional

inequalities are less pronounced (low VPC), and the inequalities follow an

additive structure (high PCV). These results align with the variance patterns

observed earlier.

Discussion

This article examines the claim that the predicted intersection means derived

from MAIHDA analysis provide better predictions of population intersection

means than the simple arithmetic means. This claim is made in many applica-

tions of MAIHDA (Evans et al. 2024b) based on findings from the statistical

literature on multilevel models, but until now this claim has not been formally

explored in the context of MAIHDA analyses.

Our conclusion is that the predicted means from MAIHDA Model 2 are

statistically more accurate than those from MAIHDA Model 1, and both out-

perform the simple means. This conclusion assumes that Model 2—which

treats the additive main effects as fixed effects and all remaining two-way

and higher-order interaction variability as an intersection-specific random

effect—adequately represents the true DGP, a point we elaborate on below.

Specifically, the Model 2 means exhibit the closest variance to, and the

highest correlation with, the true means. While the Model 2 mean for a

given intersection is biased (unlike the simple mean), it displays much

lower variance across repeated samples, resulting in a lower MSE and, there-

fore, greater predictive accuracy. In essence, we accept a slight bias toward

additivity in exchange for a substantial reduction in statistical noise. The

improved statistical accuracy of the Model 2 means over the simple means

arises from their ability to optimally combine the imprecise, intersection-

specific simple means with precise, model-implied means that draw on infor-

mation from all intersections.

This ranking of prediction methods holds across several key factors,

including intersection size, the magnitude of these inequalities as measured

by the VPC, the extent to which inequalities are driven by the additive

effects of the social identities that form the intersections, as indicated by

the PCV, and the variation in intersection sizes, measured by the CV.

Importantly, when all intersection sizes are large, the differences between

the three methods diminish, making even the simple means reasonably accur-

ate. However, when at least some intersection sizes are small, the difference

in predicted intersection means become pronounced, particularly when the

VPC is low and the PCV is high. Crucially, small intersection sizes, low
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VPCs, and high PCVs are very common in empirical MAIHDA applications

(Evans et al. 2024a). Indeed, the intersections of the very greatest interest—

those representing multiply marginalized groups—tend to be the very smal-

lest, and so most sensitive to choice of prediction method.

Our analytical expressions are derived under the assumption that Model 2

is the DGP. In any real-world application, however, Model 2 can only

approximate the unknown true DGP. Consequently, the greater the diver-

gence of the real-world DGP from Model 2, the more likely it is that a

more complex model could yield statistically more accurate estimates of

intersectional means. For instance, in a particular application where a specific

two-way interaction—such as that between gender and race—is substantial

and supported by sufficient data, the true DGP might be better approximated

by modeling this interaction as a fixed effect regression coefficient, rather

than implicitly treating it as random, as in our current formulation.

However, the increase in predictive accuracy from specifying such a

two-way interaction as fixed is likely to be relatively small compared to

that achieved with the MAIHDA Model 2 means—and certainly smaller

than the gains observed when moving from Simple Means to MAIHDA

Model 1 means, and then to Model 2. The intuition is that, in most applica-

tions, the additive main effects in MAIHDA Model 2 account for approxi-

mately 60–95% of the variation in intersectional inequalities—a substantial

to very large majority. This leaves limited room for further improvements

in predictive accuracy by explicitly modeling specific interactions rather

than absorbing them into the random effect. We illustrate this argument

using a specific fixed two-way interaction DGP in the online supplements.

Nonetheless, it is important to further explore these and other arguments.

In particular, it will likely be most informative to examine how the increase in

predictive accuracy for a given intersection varies depending on how that

intersection is involved in the specific two-way interaction. A key challenge

in such explorations is that, as the true model becomes more complex, analyt-

ical derivations become increasingly difficult. In these cases, simulation

studies will likely be necessary to assess the statistical properties of the result-

ing approaches.

As our analytic expressions relate to these true parameters, we have largely

abstracted from the choice of estimation method. However, for the purpose of

inference, this choice is important, as different estimation methods—frequen-

tist approaches such as MLE and REML followed by empirical Bayes predic-

tion, versus Bayesian methods such as MCMC—differ in how they propagate

uncertainty in the estimated parameters into the predicted intersection effects.

ML does not propagate uncertainty in the estimation of any model
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parameters. REML propagates uncertainty in the regression coefficients but

not in the variance components. In contrast, Bayesian methods propagate

uncertainty in all parameters. As a result, in any applied analysis, REML—

and especially MLE—tend to understate uncertainty around the predicted

intersection means. This would be expected to lead to Type I errors of infer-

ence—declaring particular intersections to show statistically significant

deviations from additivity when they don’t. In this regard, Bayesian

methods are preferable for MAIHDA analyses. Here too, simulation studies

could be used to explore and quantify these differences and their implications.

While we focused on MAIHDA models for continuous outcomes, we see

no reason why our findings will not apply more generally to MAIHDA

models for binary (Evans et al. 2024b; Mahendran, Lizotte and Bauer

2022b) or other categorical, count, or survival outcomes. Similarly, we see

no reason why they will not also apply to longitudinal MAIHDA models

which fit separate mean trajectories for each intersection (Bell et al. 2024),

or other random slope models. Future studies should confirm these intuitions.

Our findings are also applicable when MAIHDA is used beyond intersection-

ality research, in the broader study of high-dimensional interactions among

multiple categorical variables. Such applications have been termed multicate-

gorical MAIHDA, to distinguish them from those focused specifically on

intersectionality (Evans 2024; Rodriguez-Lopez et al. 2023).

Viewed more broadly, MAIHDA applies shrinkage to simple means

through multilevel modeling. When recast as a linear regression of the

outcome on a full set of intersection dummy variables, this process shrinks

the estimated coefficients toward the overall mean, effectively functioning

as a form of regularized regression. This perspective highlights the potential

of alternative approaches—such as LASSO, Ridge regression, or elastic net

—to achieve similar goals whether for continuous or other outcome types

(Hastie, Tibshirani and Wainwright 2015). By fitting these models and

using their predicted values, one will typically again obtain improved esti-

mates of intersection means over the simple means. Future work might there-

fore also explore how these regularization methods compare to MAIHDA in

terms of predictive accuracy and interpretability.

We have highlighted the benefits of shrinkage for predicting intersection

means. However, shrinkage introduces a potential theoretical tension.

Intersectionality emphasizes that unique combinations of social identities

give rise to distinct lived experiences and, consequently, different outcomes.

Yet, shrinkage pulls estimates for specific intersections toward the overall

pattern across all intersections, which may seem to undermine the uniqueness

of those experiences. This is the bias–variance tradeoff. To achieve greater
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predictive accuracy, we must accept some bias in exchange for substantially

reduced variance. In our analysis, we have used minimization of the MSE as

the criterion for balancing bias and variance. However, we acknowledge that

some intersectionality researchers may wish to prioritize unbiasedness over

predictive accuracy. In such cases, simple means may be preferable.

In sum, for optimal prediction of intersection means, we recommend using

MAIHDA Model 2 over both Model 1 and simple means, especially when

inequalities are subtle—whether in magnitude or due to hidden processes

affecting specific combinations of social identities—and when data for

certain intersections, such as those representing multiply marginalized

groups, is limited.
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