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The Statistical Advantages of MAIHDA for Estimating Intersectional Inequalities 

ABSTRACT 

Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) is a 

multilevel regression modeling approach rooted in intersectionality theory. It is used to examine 

inequalities across intersections of multiple social identities (e.g., gender, ethnicity, social class). 

Proponents argue that MAIHDA provides more accurate predictions of population means for 

these groups than the conventional approach of calculating the simple arithmetic mean for each 

intersectional group—either directly or via a linear regression model that includes all possible 

interactions between the social identities. In this study, we aim to evaluate and demonstrate the 

validity of this claim to the community of quantitative intersectionality researchers. We do so by 

analytically comparing the variance and correlation of simple and MAIHDA-predicted means 

with population means. Additionally, we assess the bias, variance, and mean squared error in 

predicting the mean of a given intersection. Our findings show that MAIHDA-based means 

outperform simple means, particularly when using the MAIHDA means that decompose 

intersectional means into additive and non-additive effects of social identities. However, the 

relative advantage of MAIHDA means depends on the nature of the intersectional inequalities 

and the sizes of the intersectional groups being studied. MAIHDA’s benefits are most 

pronounced when inequalities are subtle or when data on certain intersections, such as those for 

marginalized groups, are sparse. These conditions are common in practice, highlighting the 

practical significance of our findings. 

 

Keywords: MAIHDA, intersectionality, inequalities, multilevel models, predicted means, 

empirical Bayes, posterior means 
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INTRODUCTION 

Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) is a 

recently-developed multilevel regression modeling approach designed to explore complex social 

inequalities in individual outcomes (Evans, Williams, Onnela, and Subramanian 2018). 

MAIHDA is motivated by intersectionality theory (Collins and Bilge 2020; Crenshaw 1989), 

which observes that individuals’ lived experiences and outcomes are shaped by their 

positionalities within complex and interlocking systems of oppression, including sexism, racism, 

and socioeconomic inequality. MAIHDA quantifies inequalities across intersections of multiple 

social identities and positionalities (e.g., gender, ethnicity, and social class), rather than focusing 

on one axis of inequality at a time. The growing adoption of MAIHDA reflects widespread 

interest in quantitative methods that align with intersectionality’s demands for expansive 

consideration of diversity (Bauer et al. 2021; McCall 2005; Merlo 2018).  

While early applications were primarily in social epidemiology, MAIHDA is increasingly 

being used across the social sciences, with applications in criminology (Pina-Sánchez and Tura 

2024; Tura et al. 2024), education (Giaconi et al. 2024; Keller et al. 2023; Prior and Leckie 2024; 

Prior et al. 2022; van Dusen et al. 2024), environmental justice (Alvarez et al. 2022), gender 

studies (Ivert et al. 2020; Silva and Evans 2020), organizational studies (Humbert 2024), 

psychiatry (Forrest et al. 2023), and social work (Lister, Hewitt, and Dickerson 2024; Pomeroy 

and Fiori 2025). For example, Keller et al. (2023)—an application we will return to later—

applied MAIHDA to study intersectional inequalities in 15-year-old students’ reading scores 

across four social identities: gender, immigrant status, parental education, and parental 

occupational status.  
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Evans et al. (2024) present an introduction and tutorial on MAIHDA for those completely 

new to the approach. Here, we summarize the key points. MAIHDA was developed in response 

to perceived weaknesses of the conventional approach to studying intersectionality, which 

typically involves estimating linear regression models on social identities (Evans et al., 2018). 

These weaknesses include the assumption that the effects of social identities are additive, which 

may overlook how systems of oppression interact in more complex, multiplicative ways. When 

interaction terms are considered, often just a single two-way interaction is included. Including all 

possible interactions, however, quickly leads to many regression coefficients, resulting in 

overfitting and challenges with interpretation. Interpretation, if not overfitting, is eased by 

predicting and comparing the mean outcome for each intersectional group. We refer to these as 

simple means as they are equal to the arithmetic means obtained by calculating the mean 

separately for each group. 

The MAIHDA approach, in contrast, is grounded in the multilevel modelling framework 

(Raudenbush and Byrk, 2002; Snijders and Bosker, 2012). It involves fitting a sequence of two 

multilevel regression models where individuals (level 1) are nested in intersectional social strata 

(level 2), henceforth referred to as intersections. Thus, Intersection 1 might refer to native female 

students with low parental education and low parental occupation. Intersection 2 might then be 

native female students with low parental education and low-to-middle parental occupation, and 

so on. For simplicity, we focus on MAIHDA models for continuous outcomes, though MAIHDA 

models can be applied to all outcome types.  

The first multilevel model, henceforth referred to as MAIHDA Model 1, is a two-level 

model without any covariates. The model estimates the overall magnitude of intersectional 

inequalities in the data and predicts the mean outcome for each intersection. This facilitates the 
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identification of social identity combinations associated with the most and least favorable mean 

outcomes.  

The second multilevel model, henceforth referred to as MAIHDA Model 2, is a two-level 

model in which the social identity variables used to construct the intersections are included as 

main-effect covariates. The model examines the extent to which intersectional inequalities 

deviate from the simplest additive patterns of social identities—for example, whether the gender-

based mean outcome difference remains constant across different values of immigrant status, 

parental education, and parental occupational status. By assessing these deviations, Model 2 can 

reveal hidden social processes that emerge only for specific social identity combinations, as well 

as quantify consistent or typical patterns (e.g., women tend to experience worse outcomes than 

men). 

A central argument made by proponents of MAIHDA is that its intersectional means 

provide more accurate predictions of the population means than do simple means (Evans et al. 

2018; Evans et al. 2024b). This claim is based on earlier findings from the statistical literature on 

multilevel models (Raudenbush and Bryk, 2002; Snijders and Bosker, 2012). However, these 

findings and their implications are less well understood by applied researchers especially within 

the context of MAIHDA. Fundamentally, how much more accurate are MAIHDA means than 

simple means? What does their relative accuracy depend on, and how does this vary across a 

wide range of possible scenarios? Most importantly, is the choice between simple and MAIHDA 

means likely to affect conclusions in real-world research? These questions and their answers 

matter. If the community of intersectional researchers using MAIHDA unknowingly make 

incorrect choices—leading to results that would have differed if a preferred approach had been 

used—then they risk mischaracterizing inequalities, inefficiently targeting marginalized groups, 
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and misallocating resources, all of which can have harmful consequences for individuals and 

society.  

The arguments in favor of MAIHDA predicted means over simple means are typically 

based on two key points from the multilevel literature. First, simple means exhibit high sampling 

variability when the number of individuals per intersection is low. Second, MAIHDA means 

address this issue as they are defined as conditional expectations of the population given the data, 

which shrink their predictions from the simple means toward model-implied means—that is, the 

means predicted by the intercept and the main effect covariates if included) (Raudenbush and 

Bryk, 2002; Snijders and Bosker, 2012). Greater shrinkage is applied to the smallest 

intersections. Shrinkage is viewed as beneficial because it protects against overinterpreting 

extreme predictions that may have arisen due to chance (sampling variation). When the models 

are estimated by frequentist methods (MLE or REML) these expectations are calculated using 

empirical Bayes prediction. When Bayesian methods (MCMC) are used, the posterior 

distributions of the intersection means are estimated and are then summarized by their posterior 

means. 

Importantly, the means predicted by MAIHDA Model 1 and Model 2 also differ from one 

another. This variation stems from the difference in their model-implied means—or, in other 

words, the values toward which the predictions are shrunk. In Model 1, the model-implied means 

are simply the overall or grand mean, so final predictions are shrunk toward this single value. 

Thus, the final predictions are informed by both the data from that intersection and the overall 

data. This shrinkage is therefore sometimes referred to as partial pooling. In Model 2, the model-

implied means are the means implied by the estimated additive effects of the social identities 

used to define the intersections. The predictions in Model 2 are therefore shrunk toward these 
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intersection-specific values. To the extent that the MAIHDA-predicted means are preferable to 

the simple means, the Model 2 means are expected to be preferable to the Model 1 means, as 

they will lie closer to the true population means for each intersection. 

Several simulation studies have started to examine the predictive accuracy of the 

MAIHDA means. Bell, Holman, and Jones (2019) simulated data from linear regression models, 

primarily without interaction terms, and compared Type I error rates among simple means, 

MAIHDA Model 1, and Model 2 means. Their findings suggest that MAIHDA Model 2 means 

result in a lower Type I error rate than both Model 1 and simple means.  

Mahendran, Lizotte, and Bauer (2022a, 2022b) expanded on this by simulating data from 

linear and logistic regression models with various interaction terms. They compared MAIHDA 

Model 2 means to simple means. For both continuous and binary outcomes, they concluded that 

MAIHDA Model 2 means offer greater accuracy than simple means, particularly for smaller 

intersection sizes. 

Van Dusen et al. (2024) simulated data from a MAIHDA Model 2 and found that Model 2 

means outperform simple means, with the performance gap widening as intersection sizes 

decrease.  

While these studies consistently show that MAIHDA Model 2 means outperform simple 

means, they provide little insight into why this occurs, beyond broadly attributing it to shrinkage. 

They also offer minimal exploration of MAIHDA Model 1 means and do not examine how the 

relative merits of all three means might vary based on the nature of the intersectional inequalities 

being studied. 

In this study, we aim to evaluate—and clearly demonstrate to the community of 

quantitative intersectionality researchers—the claim that MAIHDA means are more accurate 
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than simple means. We seek to explain when and why these different means diverge and to 

provide guidance on which to report in practice. Specifically, we present and analyze analytical 

expressions that describe how these means vary across intersections relative to the true variance, 

and how they correlate with the true intersection means. We then assess the statistical properties 

of each approach for a given intersection of interest, deriving and analyzing expressions for the 

bias, variance, and mean squared error (MSE) of the three means based on random samples of 

individuals within that intersection. While these expressions are not themselves new—since 

MAIHDA models are multilevel models—their interpretation in the context of MAIHDA, and 

thus their relevance to intersectional research, is novel. Across both sets of analyses, we examine 

how these properties vary as a function of the overall magnitude of intersectional inequalities, 

the extent to which those inequalities follow an additive pattern, and key data characteristics, 

including the mean and variability of intersection sizes. 

 

THE TWO MAIHDA MODELS 

In this section, we provide a brief review of the two MAIHDA models.  

 

Model 1: Empty, Null, or Unadjusted Model 

Model 1 is a two-level model without any covariates. Let 𝑦𝑖𝑗  denote the outcome for individual 𝑖 
(𝑖 = 1, … , 𝑛𝑗) at intersection 𝑗 (𝑗 = 1, … , 𝐽). The model can then be written as: 

 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 (1) 

where 𝜇𝑗 denotes the population or true mean outcome at intersection 𝑗—that is, the mean 

outcome if the entire population of individuals at that intersection were observed, rather than just 
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a sample. The term 𝑒𝑖𝑗 is an individual residual measuring how each individual’s outcome 

deviates from the true mean for their intersection. The true mean is then specified as: 

 𝜇𝑗 = 𝛽0 + 𝑢𝑗  (2) 

where 𝛽0 is fixed-effect intercept measuring the overall mean or grand mean across all 

intersections, and 𝑢𝑗 is a random effect measuring how each intersection’s true mean deviates 

from the overall mean. Substituting (2) into (1) and rearranging gives the combined equation: 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑗  + 𝑒𝑖𝑗. (3) 

 The intersection random effects and individual residuals are each assumed normally distributed 

with constant variances 𝜎𝑢2 and 𝜎𝑒2. Thus, 𝜎𝑢2 is also the variance of the true means about the 

overall mean. 

The overall magnitude of intersectional inequalities is measured by the Variance Partition 

Coefficient (VPC), which quantifies the proportion of outcome variance that lies between the 

intersection means: 

 VPC = 𝜎𝑢2𝜎𝑢2+𝜎𝑒2. (4) 

The VPC can range from 0 to 1, with higher values indicating greater intersectional inequalities. 

Most applications find VPCs ranging from 0.01 to 0.20, suggesting that the studied social 

stratifications account for 1-20% of the outcome variation (Evans et al. 2024a). Conversely, 80-

99% of the variation reflects other unmodelled individual characteristics. 

When the models are estimated using frequentist methods (MLE or REML), empirical 

Bayes prediction is applied post-estimation to assign values to the random effects 𝑢𝑗, which are 

then used to predict the intersection means 𝜇𝑗. In contrast, Bayesian methods (MCMC) estimate 

the posterior distributions of the intersection means simultaneously with the model parameters, 

typically summarizing them by their posterior means. Analyzing these intersection means 
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enables the identification of social identity combinations linked to the most and least favorable 

outcomes. Henceforth, for simplicity, we refer to predicting the intersection means, without 

distinguishing between prediction and estimation as defined under frequentist or Bayesian 

frameworks. 

 

Model 2: Full, Main Effects, or Adjusted Model 

Model 2 is a two-level model in which the social identity variables used to construct the 

intersections are included as main-effect covariates. The model can be written as: 

 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 (5) 

 𝜇𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗 + 𝑢𝑗  (6) 

where 𝑥1𝑗, … , 𝑥𝑝𝑗 denotes the social identity variables (entered as dummy variable covariates) 

used to define the intersections, 𝛽1, … , 𝛽𝑝 are the associated fixed-effect regression coefficients 

capturing the additive patterns in the intersection inequalities. The term 𝑢𝑗 is the intersection 

random effect, measuring how each intersection’s true mean deviates from that implied by the 

additive effects; in other words, it captures all two-way and higher-order interaction variability. 

Thus, 𝜎𝑢2 now measures the variance associated with this non-additivity. 

 Substituting (6) into (5) gives the combined equation: 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗 + 𝑢𝑗  + 𝑒𝑖𝑗. (7) 

The extent to which the intersectional inequalities are additively patterned is assessed via 

the Proportion Change in Variance (PCV) statistic. The PCV measures the reduction in 

intersection variance when moving from Model 1 to Model 2. This is given by: 

 PCV = 𝜎𝑢12 −𝜎𝑢22𝜎𝑢12  (8) 
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where the 1 and 2 subscripts distinguish between the Model 1 and Model 2 intersection random 

effect variances. Thus, 1 − PCV measures the degree to which intersectional inequalities deviate 

from those implied by additivity and, therefore, the extent to which hidden social processes may 

be at play, occurring only for certain social identity combinations. Put differently, the PCV 

accounts for how much of the overall inequality quantified by Model 1 follows a consistent 

pattern (e.g., female students consistently score higher than male students, regardless of other 

characteristics), while 1 − PCV accounts for departures from this pattern (e.g., gender inequality 

is larger among immigrants). 

The PCV can range from 0 to 1, with higher values indicating a greater additive structure. 

When the PCV equals 0, there is no additive structure at all, and Model 2 simplifies to Model 1. 

However, in practice, we typically see a PCV that suggests a mix of additive (consistent) and 

interaction (unique departures) inequality patterns. Most empirical applications find PCVs 

ranging from 0.60 to 0.95, suggesting that 60-95% of the variation in mean outcomes across 

intersections follows an additive pattern (Evans et al. 2024a). Conversely, 5-40% of the variation 

reflects more complex interaction effects. 

The individual residual variance 𝑒𝑖𝑗, in contrast, does not change when moving from 

Model 1 to Model 2, as the social identities are intersection-level covariates and therefore do not 

explain outcome heterogeneity within intersections. 

As with Model 1, we can predict the intersection means 𝜇𝑗. Additionally, we can 

decompose each predicted mean outcome into its additive and non-additive effect, allowing 

identification of specific intersections where non-additivity occurs. To do this, a 95% confidence 

interval (for frequentist estimation) or a 95% credible interval (for Bayesian estimation) is 

typically constructed around the non-additive effect 𝑢𝑗 to determine which intersections 



ESTIMATING INTERSECTIONAL INEQUALITIES 11 

significantly deviate from what would be expected under an additive model. However, we do not 

explore this further here. 

 

Illustrative Application: Keller et al. (2023) 

Keller et al. (2023) presented the first application of MAIHDA in educational research. They 

applied MAIHDA to 5,451 student reading performance scores from the German sample of the 

Programme for International Student Assessment (PISA) 2018. They considered four social 

identities: gender (male, female), immigrant status (native, immigrant), parental education (low, 

high, as measured by university entrance certificate), and parental occupational status (low, low-

middle, middle, middle-high, high). Combining these categories resulted in 40 intersections (=2 × 2 × 2 × 5). Their descriptive statistics showed that the mean and standard deviation (SD) of 

reading performance were 498 and 106, respectively (versus the OECD average mean and SD of 

485 and 105). Female students scored higher than male students, native students outperformed 

immigrant students, students whose parents held a university entrance certificate scored higher 

than those whose parents did not, and students from families with higher occupational status 

achieved higher scores (see their Table 1).  

Table 1 presents their results from MAIHDA Model 1 and Model 2 estimated using 

Bayesian Markov chain Monte Carlo (MCMC) methods (see their Table 3). The Model 1 VPC 

statistic reveals substantial intersectional inequalities: 16% of the variance in student 

achievement lies between the intersection means. The Model 2 regression coefficients estimate 

the additive structure in the intersectional means, and these results align with their descriptive 

statistics. The PCV statistic shows that the additive structure accounts for 91% of the variation in 

the intersection means, meaning that 9% of the variation reflects deviations—both positive and 
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negative—from the model-implied additive patterns of inequality. In other words, variation 

associated with two-way and higher-order interactions captured by the intersection random 

effect. Indeed, six of their intersection means deviate by 10 or more points from additivity 

(approximately 0.1 SD or more), but only one of these departures is statistically significant (see 

their Figure 4). Intersection 40, Female, native students with university entrance certificate 

parents and high occupational status—already the highest-scoring intersection in terms of 

additive effects—scored around 15 points higher (0.15 SD) than what additivity would suggest. 

Figure 1 shows the simple means and the MAIHDA Model 1 and Model 2 means for all 

40 intersections, and where we have highlighted the six intersections with 20 or fewer 

individuals. For most intersections, the means are very similar across the three methods. 

However, as expected, the means for smaller intersections (highlighted) notably vary across 

methods (see also Table 2). Specifically, compared to the simple means, the MAIHDA Model 1 

means are shrunk toward the overall average. Relative to the MAIHDA Model 1 means, the 

MAIHDA Model 2 means generally increase, except for Intersection 35, which decreases. In the 

most extreme case, Intersection 39 (male, immigrant, low parental education, high occupational 

status; n = 3), the three means are 362, 438, and 458, with a range of 96 points (approximately 

0.96 SD). These results clearly demonstrate that the different prediction methods can yield 

substantively different results, especially when intersection sizes are small. 

 

PREDICTED MEANS 

The predicted intersection means are a central output of a MAIHDA analysis, as they are 

typically used to identify the social identity combinations associated with the most and least 

favorable mean outcomes (Evans et al., 2024b). In this section, we describe the three methods for 
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predicting the true intersection means: simple means, the MAIHDA Model 1 means, and the 

MAIHDA Model 2 means. A key purpose of this section is to demonstrate how shrinkage leads 

the MAIHDA Model 1 and Model 2 means to differ from the simple means and from each other. 

It is worth reiterating that both MAIHDA Model 1 and Model 2 are standard multilevel models, 

and so the equations for their predicted means follow the formulations reported in the multilevel 

modeling literature (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Note that we use 

subscripts 1 and 2 to distinguish between the parameters and terms associated with Model 1 and 

Model 2, respectively. 

 

Simple Means 

Averaging across 𝑛𝑗 individuals within intersection 𝑗 yields the simple mean: 

 𝑦̅.𝑗 = 1𝑛𝑗 ∑ 𝑦𝑖𝑗𝑛𝑗𝑖=1  (9) 

This is sometimes referred to as the cross-classification method. The simple mean can also be 

obtained by estimating a linear regression of 𝑦𝑖𝑗  on an intercept and 𝐽 − 1 dummy variables (or 

no intercept and 𝐽 dummy variables) and predicting the fitted values, sometimes referred to as a 

fixed effects dummy variable model. Alternatively, they can be derived by fitting a linear 

regression of 𝑦𝑖𝑗  on the social identity variables that define the intersections, fully interacting 

these variables. This is sometimes referred to as a saturated fixed effects model, and was until 

MAIHDA the cutting edge for quantitative intersectional analyses. For example, in the Keller et 

al. (2023) study, this would involve entering the main effects of the four social identity variables, 

and then all two-, three-, and four-way interactions terms. 

 

MAIHDA Model 1 Means 
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The MAIHDA Model 1 mean for intersection 𝑗 is defined as the conditional expectation of the 

true intersection mean, given the observed simple mean for that intersection: 

 𝜇̃1𝑗 ≡ E(𝜇𝑗|𝑦̅.𝑗) = 𝑅1𝑗 𝑦̅.𝑗 + (1 − 𝑅1𝑗)𝛽1,0 (10) 

where we use the tilde notation to help distinguish the predicted mean 𝜇̃1𝑗 from the true mean 𝜇𝑗. 

Under frequentist estimation, we plug in the parameter estimates, resulting in empirical Bayes 

predictions. Under Bayesian estimation, we instead estimate the posterior distribution of 𝜇𝑗 and 

summarize it using the posterior mean. 

The term 𝑅1𝑗 is the reliability of the simple mean 𝑦̅.𝑗 as an estimate of the true mean 𝜇𝑗. 

These predictions are therefore reliability weighted averages of the simple means 𝑦̅.𝑗 and the 

model-implied or overall mean 𝛽1,0. The more reliable 𝑦̅.𝑗 is as an estimate of 𝜇𝑗, the more 

weight is given to 𝑦̅.𝑗 and the less to 𝛽1,0. The Model 1 means can therefore be viewed as a 

prediction that starts with the simple mean and is then shrunk toward the overall mean. The 

degree of shrinkage is given by: 

 𝜇̃1𝑗 − 𝑦̅.𝑗 = (𝑅1𝑗 − 1)(𝑦̅.𝑗 − 𝛽1,0) (11) 

Therefore, shrinkage decreases as reliability increases, and it also decreases as the difference 

between the simple mean and the overall mean becomes smaller. 

Reliability is calculated as the ratio of the true mean variance to the observed mean 

variance, and thus varies from 0 to 1: 

 𝑅1𝑗 = Var(𝜇𝑗)Var(𝑦̅.𝑗) = Var(𝛽1,0+𝑢1𝑗)Var(𝛽1,0+𝑢1𝑗+𝑒̅.𝑗) = 𝜎𝑢12𝜎𝑢12 +𝜎𝑒2𝑛𝑗 (12) 

where 𝑒.̅𝑗 is the mean of the individual residuals: 

 𝑒.̅𝑗 = 1𝑛𝑗 ∑ 𝑒𝑖𝑗𝑛𝑗𝑖=1  (13) 
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with variance 𝜎𝑒2 𝑛𝑗⁄ . Note that we do not add a 1 subscript to 𝑒.̅𝑗 or 𝜎𝑒2, as these terms do not 

change when moving from Model 1 to Model 2. Reliability can also be interpreted as the squared 

correlation between 𝑦̅.𝑗 and 𝜇𝑗, that is, as the R-squared or coefficient of determination for 

predicting 𝜇𝑗 from 𝑦̅.𝑗 . From this expression, we see that reliability increases with the Model 1 VPC, the magnitude of intersectional inequalities, and 𝑛𝑗, the number of individuals at an 

intersection. This suggests that as VPC or 𝑛𝑗 increase, both 𝑦̅.𝑗 and 𝜇̃𝑗 will converge toward 𝜇𝑗. 

 

MAIHDA Model 2 Means 

The MAIHDA Model 2 mean for intersection 𝑗 is given by the conditional expectation of the true 

mean, given the simple mean and the covariates for that intersection: 

 𝜇̃2𝑗 ≡ E(𝜇𝑗|𝑦̅.𝑗 , 𝑥1𝑗, … , 𝑥𝑝𝑗) = 𝑅2𝑗𝑦̅.𝑗 + (1 − 𝑅2𝑗)(𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗) (14) 

where 𝑅2𝑗 is the reliability of the simple mean 𝑦̅.𝑗 as an estimate of the true mean 𝜇𝑗, conditional 

on the additive effects of the multiple social identities. Thus, the Model 2 means are also 

weighted averages of the simple means 𝑦̅.𝑗 and the model-implied means, but where the latter are 

now given by the fixed-part of the model 𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗. Because the additive 

model implies a different mean for every intersection, the shrinkage is now towards a different 

point for every intersection rather than the single common point 𝛽1,0. The degree of shrinkage is 

now given by: 

 𝜇̃2𝑗 − 𝑦̅.𝑗 = (𝑅2𝑗 − 1){𝑦̅.𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)} (15) 

and, therefore, again decreases as the now conditional reliability increases, and again increases as 

the difference between the simple mean and the model-implied mean increases. 

The expression for the conditional reliability takes the same form as before: 
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 𝑅2𝑗 = Var(𝜇𝑗 |𝑥1𝑗, … , 𝑥𝑝𝑗)Var(𝑦̅.𝑗 |𝑥1𝑗 , … , 𝑥𝑝𝑗) = Var(𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗|𝑥1𝑗, … , 𝑥𝑝𝑗)Var(𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗|𝑥1𝑗, … , 𝑥𝑝𝑗) = 𝜎𝑢22𝜎𝑢22 +𝜎𝑒2𝑛𝑗  (16) 

However, the conditional reliabilities will have lower values than the unconditional 

reliabilities as 𝜎𝑢22 < 𝜎𝑢12 . Specifically, as the explanatory power of the additive effects of the 

social identity variables increases, 𝜎𝑢22  decreases, resulting in lower values of 𝑅2𝑗. Consequently, 

when computing the MAIHDA means, the shrinkage factor in Model 2 is stronger than in Model 

1, |𝑅2𝑗 − 1| > |𝑅1𝑗 − 1|. However, because Model 2 typically shrinks the simple means toward 

more realistic values than Model 1—since the model-implied means in Model 2, based on 

additive effects, are generally more accurate for most intersections than the overall mean used in 

Model 1—the Model 2 shrinkage factors are typically applied to smaller differences between the 

simple means and model-implied means than in Model 1. Whether the resulting degree of 

shrinkage is generally larger or smaller in Model 1 or Model 2 depends on the specific 

application. In the presence of a very strong two-way interaction, the model-implied means from 

a more complex model that includes this interaction at a fixed-effect covariate will be even more 

realistic. However, even when Model 2 is misspecified by omitting this interaction, its model-

implied means will generally provide more realistic values to shrink toward than simply 

shrinking to the overall intercept from Model 1. 

 

Illustrative Application: Keller et al. (2023) 

Figure 2 focuses on the simple mean and the MAIHDA means from Models 1 and 2 for 

Intersection 37 (male, native, low parental education, high occupational status; n = 14). The plot 

illustrates how the MAIHDA means for Models 1 and 2 (triangles) are reliability-weighted 

averages of the simple mean (circles) and their respective model-implied means (squares). For 



ESTIMATING INTERSECTIONAL INEQUALITIES 17 

Model 1, the model-implied mean is the overall mean, whereas for Model 2, it is the mean 

implied by the estimated additive effects of being male, native, low parental education and high 

occupational status. 

In Model 1, the reliability of the simple mean is low (0.73) as it is based on only 14 

individuals, and the simple mean of 463 is some 15 points lower than the model-implied mean of 

478. As a result, the simple mean is shrunk upwards by 4 points towards the model-implied 

mean, resulting in a Model 1 MAIHDA mean of 468. 

In Model 2, the conditional reliability of the simple mean is very low (0.18), and the 

simple mean of 463 is some 42 points lower than the model-implied mean of 505. As a result, the 

prediction is shrunk upwards by a very large 35 points towards the model-implied mean, 

resulting in a Model 2 MAIHDA mean of 497. 

Reconsider the different predicted means for the six intersections plotted in Figure 1 and 

listed in Table 2. In Model 1, the MAIHDA means represent the simple means shrunk toward the 

overall model-implied mean of 478. The reliabilities and therefore the degree of multiplicative 

shrinkage vary as a function of intersection size from 0.36 to 0.73. In Model 2, the MAIHDA 

means are instead shrunk toward intersection-specific model-implied means derived from the 

additive model specification. The conditional reliabilities vary from 0.05 to 0.18. As expected, in 

both models, the MAIHDA means fall between the simple means and the model-implied means. 

 

ANALYTIC EXPRESSIONS 

Thus far, we have defined the Simple Means as well as the MAIHDA Model 1 and Model 2 

means, shown that they yield different results, and demonstrated that these differences can be 

substantial—particularly for small intersectional groups—in a real-world setting. The remainder 



ESTIMATING INTERSECTIONAL INEQUALITIES 18 

of the paper aims to evaluate and clarify the statistical properties of these three approaches to 

predicting intersectional group means. In doing so, we address our motivating questions: How 

much more accurate are MAIHDA means compared to simple means? What factors influence 

their relative accuracy? And, most importantly, is the choice between simple and MAIHDA 

means likely to affect conclusions in real-world research? 

We use analytic expressions rather than simulations because they allow us to precisely 

identify the sources of divergence between the approaches and to assess their performance 

efficiently across a wide range of scenarios, in a way that prior simulation-based studies have 

struggled to do so. As with simulation studies, however, analytic approaches require specification 

of a “true” model or data-generating process (DGP) to serve as a benchmark. It is therefore 

important that the assumed DGP be a plausible reflection of reality. 

MAIHDA Model 1 would be a poor choice, as it assumes no consistent (additive) 

patterns in intersectional inequalities. The Simple Means model is even less plausible, as it treats 

each intersectional group as entirely independent—an “island”—offering no information about 

any other group. In contrast, MAIHDA Model 2 provides a far more realistic basis, combining 

additive structure in intersectional inequalities with intersection specific deviations. Empirical 

studies often find that 60–95% of the variation in intersectional inequalities is accounted for by 

additive effects, supporting the assumptions embedded in Model 2. Moreover, via shrinkage, 

MAIHDA Model 2 leverages information across groups, reflecting the idea that every 

intersectional group shares information with others. We therefore assume that the true DGP 

follows MAIHDA Model 2. 

Of course, the true DGP is unknown in any applied study and will vary from case to case. 

It will also inevitably differ from MAIHDA Model 2 in some respects. The key point is that 



ESTIMATING INTERSECTIONAL INEQUALITIES 19 

Model 2 will more closely resemble most real-world DGPs than either Model 1 or the Simple 

Means model. 

 

STATISTICAL PROPERTIES OF THE DISTRIBUTION OF PREDICTED INTERSECTION 

MEANS  

We begin our comparison of the statistical properties of three approaches to predicting 

intersection means by focusing on the big picture—how the approaches vary in capturing the 

distribution of intersection means. 

We start by presenting analytical expressions for the variance of the intersection means 

across the distribution of intersections. We then graphically demonstrate how these variances 

change with intersection size and how these relationships are influenced by the Model 1 VPC, 

the Model 2 PCV, and the variability of intersection sizes. We operationalize the latter in terms of 

the Coefficient of Variation (CV) of intersection sizes, defined as the ratio of the standard 

deviation of intersection sizes to the mean. A CV of 0 means all intersections are of equal size. 

But most applications have unequal intersection sizes and so CVs greater than 0. Finally, we 

provide analytical expressions for the correlation between each set of means and the true means, 

and illustrate these correlations graphically in a parallel manner. We do not present analytical 

expressions for the expectation of each set of means as in all cases the expectation is equal to the 

mean of the intersection means. 

The analytic expressions we present follow from results in the statistical literature on 

multilevel models. To derive all expressions, we specify the true model as Model 2 and assume 

that the regression coefficients, intersection random effect variance, and individual residual 

variance are known, with only the true mean for each intersection being unknown. Thus, all 
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derivations are done in terms of the true parameter values of Model 2, rather than in terms of 

frequentist or Bayesian estimators. Additionally, we assume many intersections of equal size. We 

present full derivations in the Supplemental Material. We use simulation to address the case of 

varying intersection sizes. For plotting purposes, we consider the case where the mean and SD of 

the outcome are 0 and 1, respectively.  

 

Variance of the Predicted Means Across the Distribution of Intersections 

Let 𝜎𝜇2 denote the variance of the true means. The variance of each set of predicted means can 

then be written as: 

Simple: Var(𝑦̅.𝑗) = 𝜎𝜇2 + 𝜎𝑒2𝑛  (17) 

Model 1: Var(𝜇̃1𝑗) = 𝑅1𝜎𝜇2 (18) 

Model 2:  Var(𝜇̃2𝑗) = 𝜎𝜇2 − (1 − 𝑅2)𝜎𝑢22  (19) 

where we continue to use 1 and 2 subscripts to distinguish between the Model 1 and Model 2 

parameters, with the exception for 𝜎𝑒2, as 𝜎𝑒12 = 𝜎𝑒22 . Since we assume balanced data, we omit the 𝑗 subscript from 𝑛, 𝑅1 and 𝑅2. 

Figure 3 shows the true variance and the variances of the Simple, Model 1, and Model 2 

predicted means, plotted against intersection size. The figure is based on a Model 1 VPC of 0.15, 

a Model 2 PCV of 0.90, and a CV of intersection sizes of 0, indicating equal intersection sizes. 

These VPC and PCV values are similar to those reported in Keller et al. (VPC = 0.16 and PCV = 

0.91). The CV value differs from that reported in Keller et al., where the CV was 0.98. We plot 

the four variances against intersection size only up to 𝑛 = 100 because the differences between 

the variances diminish as intersection size increases. In Keller et al., the sizes of the 40 
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intersections ranged from 3 to 512 students, with a median of 93. Six intersections had fewer 

than 20 students, and three had fewer than 10. 

Given the Model 1 VPC of 0.15 and an outcome variance of 1, it follows that the variance 

of the true means is also 0.15. This variance remains constant regardless of intersection size. In 

contrast, the variance of the simple means is initially much larger but decreases as intersection 

size increases, eventually converging to the true variance. This follows from the expression: Var(𝑦̅.𝑗) = 𝜎𝜇2 + 𝜎𝑒2 𝑛⁄ . As 𝑛 → ∞, the term 𝜎𝑒2 𝑛⁄ → 0, leading to Var(𝑦̅.𝑗) → 𝜎𝜇2. In words, the 

variance of the simple means is equal to the sum of the true variance and the sampling variance 

in the simple mean. The latter tends to 0 as the number of individuals per intersection increases. 

Thus, with sufficiently large intersection sizes, the variance of the simple means approaches that 

of the true means. However, when intersection sizes are smaller, the variance of the simple 

means overestimates the true variance. 

The variance of the Model 1 means is smaller than the true variance when 𝑛 is small, but 

it increases and converges to the true variance as intersection size increases. This follows from 

the expression: Var(𝜇̃1𝑗) = 𝑅1𝜎𝜇2. As 𝑛 → ∞, the term 𝑅1 → 1, leading to Var(𝜇̃1𝑗) → 𝜎𝜇2. Thus, 

with sufficiently large intersection sizes, the reliabilities approach 1, and so the variance of the 

Model 1 means also closely approximates the variance of the true means. The fact that the 

variance of the Model 1 means is smaller than the true variance reflects the conservative nature 

of shrinkage—shrinkage leads to an underestimation of the true variance, particularly when 

intersection size is small. Importantly, for any given intersection size, while the variance of the 

Model 1 means is biased downward, it remains closer to the true variance than the variance of 

the simple means, which is biased upward. 



ESTIMATING INTERSECTIONAL INEQUALITIES 22 

The variance of the Model 2 means is slightly smaller than the true variance when 𝑛 is 

small, but it increases and converges to the true variance as intersection size increases. Compared 

to Model 1, the variance of the Model 2 means remains close to the true variance even at the 

smallest intersection sizes. This is because the PCV is 0.90, indicating that 90% of the variation 

in the Model 2 means is captured by additive social identity effects, which are identified using 

data pooled across all intersections, and therefore reliably. Only 10% of the variation stems from 

intersection-specific deviations, which are identified separately for each intersection. As a result, 

relatively little data per intersection is required for the variance of the Model 2 means to 

approximate the true variance. 

In summary, the variance of the simple means is biased upwards, whereas the variances 

of the Model 1 and Model 2 means are biased downwards. The magnitude of all three biases 

decreases as intersection size increases. However, the variance of the Model 2 means is always 

closest to the variance of the true means (i.e., shows the smallest bias). Thus, regardless of 

intersection size, the Model 2 means are the preferred means to report. These results have 

implications for the reporting of tables of intersection means.  

Figure 3 was plotted using specific values for the Model 1 VPC, Model 2 PCV, and CV 

of intersection size. Figures S1, S2, and S3 in the Supplemental Material explore how this plot 

changes as each of these factors varies. The key finding is that the relative ranking of the three 

methods of prediction remains unchanged. However, the advantage of the Model 2 mean over 

the simple mean is most pronounced when intersectional inequalities are less pronounced (low 

VPC), when inequalities follow a largely additive pattern (high PCV), and when intersections 

vary in size (high CV). 
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Correlation Between the Predicted and True means Across the Distribution of Intersections 

The correlation of each set of predicted means with the true means is given by: 

Simple: Corr(𝑦̅.𝑗 , 𝜇𝑗) = √𝑅1 (20) 

Model 1: Corr(𝜇̃1𝑗 , 𝜇𝑗) = √𝑅1 (21) 

Model 2:  Corr(𝜇̃2𝑗 , 𝜇𝑗) = √PCV + 𝑅2(1 − PCV) (22) 

The higher the correlation, the more the set of predicted means reflect the distribution of true 

means. 

Figure 4 shows the correlation between each set of predicted means and the true means, 

plotted against intersection size. The figure is based on a Model 1 VPC of 0.15, a Model 2 PCV 

of 0.90, and a CV of intersection size of 0, indicating equal intersection sizes. 

The correlation between the simple means and the true means is initially much smaller 

than 1 but increases as intersection size grows, eventually converging to a correlation of 1. The 

low correlation at smaller intersection sizes reflects the low reliability of the simple means as a 

predictor of the true means when intersection sizes are small. As 𝑛 → ∞, 𝑅1 → 1, leading to Corr(𝑦̅.𝑗 , 𝜇𝑗) → 1. Thus, with sufficiently large intersection sizes, the correlation between the 

simple means and the true means approaches 1. 

Figure 4 shows the correlation between the Model 1 means and the true means is 

identical to the correlation between the simple means and the true means (their respective line 

plots lie on top of one another). This is because, in the current case of equal intersection sizes, 

the Model 1 means are just the simple means shrunk towards the overall mean by a common 

reliability statistic. The two correlations will diverge when we allow the intersection sizes to vary 

(as seen in Supplemental Figure S6 and discussed below).  
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The correlation between the Model 2 means and the true means also converges to a 

correlation of 1 as intersection sizes increase. Compared to Model 1, the correlation between the 

Model 2 means and the true means remains close to 1 even at the smallest intersection sizes. This 

is due to the PCV being 0.90, which means that 90% of the variation in the Model 2 means is 

explained by additive social identity effects, identified using data pooled across all intersections, 

and therefore reliably. Only 10% of the variation stems from intersection-specific deviations, 

which are identified separately for each intersection. As a result, relatively little data per 

intersection is needed for the correlation between the Model 2 means and the true means to be 

close to 1. 

In summary, all three correlations are biased downwards but approach 1 as intersection 

size increases. The correlation between the Model 2 means and the true means consistently 

shows the smallest bias. Therefore, the Model 2 means are the preferred predictor to report, 

regardless of intersection size. 

Figure 4 was plotted using specific values for the Model 1 VPC, Model 2 PCV, and CV 

of intersection size. Figures S4, S5, and S6 in the Supplemental Material explore how this plot 

changes as each of these factors varies. The key finding is that the Model 2 means remain the 

preferred predictor. However, similar to the variance of the predicted means, the advantage of 

this predictor is most pronounced when intersectional inequalities are less pronounced (low 

VPC), when inequalities follow a largely additive pattern (high PCV), and when intersections 

vary in size (high CV). 

 

STATISTICAL PROPERTIES OF PREDICTED INTERSECTION MEAN FOR A GIVEN 

INTERSECTION 
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In this section, we continue to address the same two key questions: Which set of predicted means 

– Simple, Model 1, or Model 2 – is most appropriate to report, and does this choice depend on 

the nature of intersectional inequalities – magnitude and additivity – being studied and the size of 

the data? However, our goal here is to examine the statistical properties of the predicted mean for 

a given intersection across random samples of individuals from that intersection. This contrasts 

the previous section where we focused on the statistical properties of the distribution of predicted 

intersection means across the population of intersections. 

We focus on the bias, variance, and mean squared error (MSE) of each predictor for a 

given intersection. Bias measures the difference between the average predicted mean for a given 

intersection and its true value. A high bias, whether positive or negative, means the predictor 

consistently over- or under-predicts. Variance here reflects how much the predicted intersection 

mean varies across different samples of individuals. In other words, if we were to repeat a 

sampling process multiple times from the same intersection population, how varied would our 

predictions be? High variance indicates that the model is overly sensitive to the specific 

individuals randomly selected for the sample. Importantly, when comparing predictors there is 

typically a bias-variance tradeoff whereby the only way to reduce the variance is by introducing 

bias. The MSE therefore combines both bias and variance to assess overall prediction accuracy, 

with a lower MSE indicating better predictive performance. 

We begin by presenting analytic expressions for the bias, variance, and MSE. As in the 

previous section, the analytic expressions we present follow from results in the statistical 

literature on multilevel models. We again present full derivations in the Supplemental Material. 

After presenting analytic expressions for bias, variance, and MSE, we graphically illustrate how 

these properties change as a function of the difference between the true intersection mean and the 
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model-implied mean and how these relationships are influenced by intersection size, the Model 1 

VPC, and the Model 2 PCV.  

To derive all expressions, we continue to specify the true model as Model 2 and assume 

that the regression coefficients, intersection random effect variance, and individual residual 

variance are known, with only the true mean for each intersection being unknown. For plotting 

purposes, we again consider the case where the mean and SD of the outcome are 0 and 1, 

respectively. 

 

Bias 

For each predictor, the bias for intersection 𝑗 measures the difference between the expected value 

for the predicted mean and the true mean for that intersection: 

Simple: bias(𝑦̅.𝑗|𝜇𝑗) = 0 (23) 

Model 1: bias(𝜇̃1𝑗|𝜇𝑗) = −(1 − 𝑅1𝑗)(𝜇𝑗 − 𝛽1,0) (24) 

Model 2: bias(𝜇̃2𝑗|𝜇𝑗) = −(1 − 𝑅2𝑗){𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)} (25) 

where the 1 and 2 subscripts continue to distinguish between the Model 1 and Model 2 

parameters. 

Figure 5 presents the bias of each predictor as a function of the difference between the 

true mean 𝜇𝑗 and the model-implied mean for that intersection: 𝛽1,0 in Model 1 or 𝛽2,0 +𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗 in Model 2. The figure assumes an intersection size of 10 individuals, a 

Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. It follows that the Model 1 and 2 reliabilities 

are 0.64 and 0.15. Notably, in the Keller et al. study, six of the 40 intersections had fewer than 20 

students, and three had fewer than 10 students. The x-axis range of the plots for the Simple and 

Model 1 bias are limited to the expected middle 95% of differences from Model 1, given by 
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±Φ−1(0.975)√𝜎𝑢12 . Similarly, the x-axis range for the plot of the Model 2 bias is restricted to 

the expected middle 95% of differences from Model 2, given by ±Φ−1(0.975)√𝜎𝑢22 . We apply 

these limits to avoid disproportionately long bias lines (and variance and MSE lines in Figures 6 

and 7) at the extremes, which could distract the reader from the main patterns within the central 

range of the data. 

The simple mean is an unbiased predictor of the true mean, meaning that, averaging 

across repeated samples, the simple mean equals the true mean. 

The Model 1 mean is a biased predictor. The bias is a negative linear function of the 

difference between the true mean 𝜇𝑗 and the model-implied mean 𝛽1,0, where the latter is simply 

the overall mean. Specifically, this difference is scaled by −(1 − 𝑅1𝑗), which is negative and, in 

this illustration takes the value -0.36 (with a possible range from -1 to 0). As a result, the sign of 

the difference is reversed, and its magnitude is reduced. Consequently, when the true mean 

exceeds the model-implied mean, the Model 1 mean is biased downward, whereas when the true 

mean is lower than the model-implied mean, the bias is upward. Thus, the Model 1 is biased 

toward the model-implied mean. This once again reflects the conservative nature of shrinkage. 

The Model 2 mean is also a biased predictor of the true mean, with the magnitude of its 

bias again following a negative linear relationship with the difference between the true mean 𝜇𝑗 

and the model-implied mean 𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗. However, unlike in Model 1, the 

model-implied mean is now an intersection-specific mean, determined by the additive effects of 

the relevant social identity characteristics. As a result, these model-implied means are typically 

closer to the true means than in Model 1. This increases the first term in absolute magnitude and 

decreases the second term in the expression for the bias. Specifically, the first term, −(1 − 𝑅2𝑗), 

is now -0.85. It is now closer to -1 because the conditional reliability 𝑅2𝑗 is always lower than 
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the unconditional reliability 𝑅1𝑗. This results in a larger per-unit multiplicative bias, making the 

slope of the linear bias relationship steeper than before. However, the decrease in the second 

term—the deviation between the true and model-implied mean—means this increased multiplier 

is applied to smaller differences than in Model 1, making the range over which the linear bias 

relationship operates narrower (note the narrower range of the line plot for Model 2 in Figure 5). 

The net effect is that the Model 2 mean is expected to be a less biased predictor of the true mean 

for a given intersection than the Model 1 mean. Nevertheless, the Model 2 mean remains a 

biased predictor, and one that is biased towards additivity. That is, the predicted intersection 

means will conform more to additivity than they do in actuality. 

In summary, the simple mean is an unbiased predictor of the true intersection mean, 

whereas the Model 1 and Model 2 means are both biased towards their respective model-implied 

means with the Model 1 means, on average, exhibiting greater bias. 

Figures S7, S8, and S9 in the Supplemental Material explore how the results shown in 

Figure 5 change as a function of intersection size, Model 1 VPC, and Model 2 PCV. The key 

finding is that the simple mean remains the preferred predictor as it is always unbiased (when 

averaged across repeated samples), whereas the Model 1 and Model 2 means exhibit bias in all 

cases except when the true and model-implied means are equal. 

 

Variance 

For each predictor, the variance for intersection 𝑗 measures the variability of the prediction (their 

“consistency”) across random samples of individuals from that intersection: 

Simple: Var(𝑦̅.𝑗|𝜇𝑗) = 𝜎𝑒2𝑛𝑗  (26) 

Model 1: Var(𝜇̃1𝑗|𝜇𝑗) = 𝑅1𝑗2 𝜎𝑒2𝑛𝑗  (27) 
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Model 2: Var(𝜇̃2𝑗|𝜇𝑗) = 𝑅2𝑗2 𝜎𝑒2𝑛𝑗  (28) 

Figure 6 presents the variance of each predictor for the true mean of intersection 𝑗 as a 

function of the difference between the true mean and the model-implied mean for that 

intersection. The plot’s range is again restricted to the expected middle 95% of differences for 

each model. As with the bias figure, the analysis assumes an intersection size of 10 individuals, a 

Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. 

The variance of each predictor is constant. For the simple mean, the variance is given by 

the sampling variance across repeated samples, 𝜎𝑒2𝑛𝑗 . The variance of the Model 1 mean is obtained 

by multiplying this sampling variance by the squared reliability, 𝑅1𝑗2  which in this illustration is 

0.38. As 𝑅1𝑗 < 1, the Model 1 mean exhibits less variation across repeated samples than the 

simple mean —specifically, 62% less. The variance of the Model 2 mean follows the same 

general form as the Model 1 mean. However, because the conditional reliability is lower than the 

unconditional reliability, 𝑅2𝑗 < 𝑅1𝑗 , the variance of the Model 2 mean is even smaller than that 

of Model 1. In this illustration, 𝑅2𝑗2 = 0.0225, meaning the variance of the Model 2 mean is 

97.5% smaller than that of the simple mean. 

In summary, the Model 2 mean has the lowest variance (the most consistency) across 

repeated samples, followed by the Model 1 mean, with the simple mean exhibiting the highest 

variance (least consistency). Thus, the Model 2 means to a much greater extent replicate 

themselves across repeated samples. The simples means do not. 

Figures S10, S11, and S12 explore how the results shown in Figure 6 change as a 

function of the intersection size, Model 1 VPC, and Model 2 PCV. The key finding is that the 

Model 2 mean remains the preferred predictor in terms of having the smallest variance. 
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However, its advantage over the simple mean is most pronounced when the intersection size is 

small, intersectional inequalities are less pronounced (low VPC), and when these inequalities 

follow a largely additive structure (high PCV). 

 

Mean Squared Error 

For each predictor, the mean squared error (MSE) for intersection 𝑗 reflects both its variance and 

bias. As a result, the MSE provides a measure of the predictor’s overall accuracy. A lower MSE 

indicates a more accurate predictor. Specifically, The MSE is defined as the sum of the variance 

and the bias squared: 

Simple: MSE(𝑦̅.𝑗|𝜇𝑗) = 𝜎𝑒2𝑛𝑗  (29) 

Model 1: MSE(𝜇̃1𝑗|𝜇𝑗) = 𝑅1𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅1𝑗)2(𝜇𝑗 − 𝛽1,0)2
 (30) 

Model 2: MSE(𝜇̃2𝑗|𝜇𝑗) = 𝑅2𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅2𝑗)2{𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)}2
 (31) 

Figure 7 presents the MSE of each predictor for the true mean of intersection 𝑗 as a 

function of the difference between the true mean and the model-implied mean for that 

intersection. The plot’s range is again restricted to the expected middle 95% of differences for 

each model, and the analysis continues to assume an intersection size of 10 individuals, a Model 

1 VPC of 0.15, and a Model 2 PCV of 0.90. 

The MSE for the Simple Mean is equal to its variance, as its bias is zero. 

The MSE for the Model 1 mean follows a quadratic function of the difference between 

the true mean and the model-implied mean, 𝜇𝑗 − 𝛽1,0, where the model-implied mean is simply 

the overall mean. The MSE reaches its minimum when the true mean matches the model-implied 
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mean, at which point it equals the variance of the Model 1 mean, 𝑅1𝑗2 𝜎𝑒2𝑛𝑗 . As the true mean 

deviates from the model-implied mean, the MSE increases.  

Similarly, the MSE for the Model 2 mean is also a quadratic function of the difference 

between the true mean and the model-implied mean. However, in this case, the model-implied 

mean represents the intersection-specific mean, determined by the additive effects of the relevant 

social identity characteristics, 𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗. As with the Model 1 mean, the MSE 

is minimized when the true mean matches the model-implied mean, at which point it equals the 

variance of the Model 2 mean, 𝑅2𝑗2 𝜎𝑒2𝑛𝑗  . Since this variance is lower than that of the Model 1 

mean, the MSE for Model 2 at this point is also lower. 

While the MSE of the Model 2 mean increases more rapidly than that of the Model 1 

mean as the true mean increasingly deviates from the model-implied mean, this effect is 

mitigated by the fact that the model-implied means in Model 2 are generally much closer to the 

true means than those in Model 1. As a result, the MSE for the Model 2 mean will almost always 

be smaller than that for the Model 1 mean for a given intersection. 

In summary, when the model-implied mean is closer to the true mean, both the Model 1 

and, especially, Model 2 predictors exhibit lower MSE than the simple mean. As the model-

implied mean deviates further from the true mean, the MSE for both models increases. However, 

the ranking of prediction method remains consistent, except in cases of extreme deviations. For 

instance, consider an intersection with a very low true mean of -0.7. Across repeated samples of 

10 individuals, the MSE for the Model 1 mean at that intersection (0.099) would actually exceed 

that of the simple mean (0.085). However, the MSE for the Model 2 mean would be significantly 

lower. 
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Figures S13, S14, and S15 explore how the results shown in Figure 7 change as a 

function of the intersection size, Model 1 VPC, and Model 2 PCV. The key finding is that the 

Model 2 mean remains the preferred predictor in terms of the lowest MSE. However, its 

advantage over the simple mean is most pronounced when intersection sizes are small, 

intersectional inequalities are less pronounced (low VPC), and the inequalities follow an additive 

structure (high PCV). These results align with the variance patterns observed earlier. 

 

DISCUSSION 

This article examines the claim that the predicted intersection means derived from a MAIHDA 

analysis provide better predictions of population intersection means than the simple arithmetic 

means. This claim is made in many applications of MAIHDA (Evans et al. 2024b) based on 

findings from the statistical literature on multilevel models, but until now this claim has not been 

formally explored in the context of MAIHDA analyses. 

Our conclusion is that the predicted means from MAIHDA Model 2 are statistically more 

accurate than those from MAIHDA Model 1, and both outperform the simple means. This 

conclusion assumes that Model 2—which treats the additive main effects as fixed effects and all 

remaining two-way and higher-order interaction variability as an intersection-specific random 

effect—adequately represents the true data-generating process (DGP), a point we elaborate on 

below. Specifically, the Model 2 means exhibit the closest variance to, and the highest correlation 

with, the true means. While the Model 2 mean for a given intersection is biased (unlike the 

simple mean), it displays much lower variance across repeated samples, resulting in a lower 

MSE and, therefore, greater predictive accuracy. In essence, we accept a slight bias toward 

additivity in exchange for a substantial reduction in statistical noise. The improved statistical 
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accuracy of the Model 2 means over the simple means arises from their ability to optimally 

combine the imprecise, intersection-specific simple means with precise, model-implied means 

that draw on information from all intersections. 

This ranking of prediction methods holds across several key factors, including 

intersection size, the magnitude of these inequalities as measured by the variance partitioning 

coefficient (VPC), the extent to which inequalities are driven by the additive effects of the social 

identities that form the intersections, as indicated by the proportion change in variance (PCV), 

and the variation in intersection sizes, measured by the coefficient of variation (CV).  

Importantly, when all intersection sizes are large, the differences between the three 

methods diminish, making even the simple means reasonably accurate. However, when at least 

some intersection sizes are small, the difference in predicted intersection means become 

pronounced, particularly when the VPC is low and the PCV is high. Crucially, small intersection 

sizes, low VPCs, and high PCVs are very common in empirical MAIHDA applications (Evans et 

al. 2024a). Indeed, the intersections of very greatest interest—those representing multiply 

marginalized groups—tend to be the very smallest, and so most sensitive to choice of prediction 

method. 

Our analytical expressions are derived under the assumption that Model 2 is the data-

generating process (DGP). In any real-world application, however, Model 2 can only 

approximate the unknown true DGP. Consequently, the greater the divergence of the real-world 

DGP from Model 2, the more likely it is that a more complex model could yield statistically 

more accurate estimates of intersectional means. For instance, in a particular application where a 

specific two-way interaction—such as that between gender and race—is substantial and 

supported by sufficient data, the true DGP might be better approximated by modeling this 
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interaction as a fixed effect regression coefficient, rather than implicitly treating it as random, as 

in our current formulation. 

However, the increase in predictive accuracy from specifying such a two-way interaction 

as fixed is likely to be relatively small compared to that achieved with the MAIHDA Model 2 

means—and certainly smaller than the gains observed when moving from Simple Means to 

MAIHDA Model 1 means, and then to Model 2. The intuition is that, in most applications, the 

additive main effects in MAIHDA Model 2 account for approximately 60–95% of the variation 

in intersectional inequalities—a substantial to very large majority. This leaves limited room for 

further improvements in predictive accuracy by explicitly modelling specific interactions rather 

than absorbing them into the random effect. We illustrate this argument using a specific fixed 

two-way interaction DGP in the Supplemental Materials. 

Nonetheless, it is important to further explore these and other arguments. In particular, it 

will likely be most informative to examine how the increase in predictive accuracy for a given 

intersection varies depending on how that intersection is involved in the specific two-way 

interaction. A key challenge in such explorations is that, as the true model becomes more 

complex, analytical derivations become increasingly difficult. In these cases, simulation studies 

will likely be necessary to assess the statistical properties of the resulting approaches. 

As our analytic expressions relate to these true parameters, we have largely abstracted 

from choice of estimation method. However, for the purpose of inference, this choice is 

important, as different estimation methods—frequentist approaches such as maximum likelihood 

(MLE) and restricted maximum likelihood (REML) followed by empirical Bayes prediction, 

versus Bayesian methods such as MCMC—differ in how they propagate uncertainty in the 

estimated parameters into the predicted intersection effects. ML does not propagate uncertainty 
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in the estimation of any model parameters. REML propagates uncertainty in the regression 

coefficients but not in the variance components. In contrast, Bayesian methods propagate 

uncertainty in all parameters. As a result, in any applied analysis, REML—and especially 

MLE—tend to understate uncertainty around the predicted intersection means. This would be 

expected to lead to Type I errors of inference—declaring particular intersections to show 

statistically significant deviations from additivity when they don’t. In this regard, Bayesian 

methods are preferable for MAIHDA analyses. Here too, simulation studies could be used to 

explore and quantify these differences and their implications. 

While we focused on MAIHDA models for continuous outcomes, we see no reason why 

our findings will not apply more generally to MAIHDA models for binary (Evans et al. 2024b; 

Mahendran et al. 2022b) or other categorical, count, or survival outcomes. Similarly, we see no 

reason why they will not also apply to longitudinal MAIHDA models which fit separate mean 

trajectories for each intersection (Bell et al. 2024), or other random slope models. Future studies 

should confirm these intuitions. Our findings are also applicable when MAIHDA is used beyond 

intersectionality research, in the broader study of high-dimensional interactions among multiple 

categorical variables. Such applications have been termed multicategorical MAIHDA, to 

distinguish them from those focused specifically on intersectionality (Evans, 2024; Rodriguez‐

Lopez, Leckie, Kaufman, & Merlo, 2023). 

Viewed more broadly, MAIHDA applies shrinkage to simple means through multilevel 

modeling. When recast as a linear regression of the outcome on a full set of intersection dummy 

variables, this process shrinks the estimated coefficients toward the overall mean, effectively 

functioning as a form of regularized regression. This perspective highlights the potential of 

alternative approaches—such as LASSO, Ridge regression, or elastic net—to achieve similar 
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goals whether for continuous or other outcome types (Hastie, Tibshirani, and Wainwright, 2015). 

By fitting these models and using their predicted values, one will typically again obtain 

improved estimates of intersection means over the simple means. Future work might therefore 

also explore how these regularization methods compare to MAIHDA in terms of predictive 

accuracy and interpretability. 

We have highlighted the benefits of shrinkage for predicting intersection means. 

However, shrinkage introduces a potential theoretical tension. Intersectionality emphasizes that 

unique combinations of social identities give rise to distinct lived experiences and, consequently, 

different outcomes. Yet, shrinkage pulls estimates for specific intersections toward the overall 

pattern across all intersections, which may seem to undermine the uniqueness of those 

experiences. This is the bias–variance tradeoff. To achieve greater predictive accuracy, we must 

accept some bias in exchange for substantially reduced variance. In our analysis, we have used 

minimization of the MSE as the criterion for balancing bias and variance. However, we 

acknowledge that some intersectionality researchers may wish to prioritize unbiasedness over 

predictive accuracy. In such cases, simple means may be preferable. 

In sum, for optimal prediction of intersection means, we recommend using MAIHDA 

Model 2 over both Model 1 and simple means, especially when inequalities are subtle—whether 

in magnitude or due to hidden processes affecting specific combinations of social identities—and 

when data for certain intersections, such as those representing multiply marginalized groups, is 

limited. 
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TABLES 

Table 1. 

Results of MAIHDA Models 1 and 2 for reading achievement in the Keller et al. (2023) study. 

 Model 1 Model 2 

 Est. SE Est. SE 

Intercept 478.3 [464.3, 492.3] 468.4 [452.8, 483.3] 

Gender     

  Female (Ref.)   −  

  Male   -25.6 [-36.5, -14.9] 

Immigrant background     

  Native (Ref.)   −  

  Immigrant   -42.5 [-53.7, -30.9] 

Highest parental education     

  Below uni. entrance certificate (Ref.)   −  

  At least uni. entrance certificate   29.8 [18.2, 42.0] 

Highest parental occupation status     

  Low (Ref.)   −  

  Low to middle   10.1 [-5.9, 26.8] 

  Middle   27.6 [11.4, 44.6] 

  Middle to high   53.1 [35.2, 70.4] 

  High   62.6 [40.5, 81.2] 

Intersection variance 1698.3  144.4  

Student variance 9011.7  9021.2  
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VPC 15.9%  1.6%  

PCV −  91.2%  

Note. Table adapted from Table 3 of Keller et al. (2023). The model was estimated using 

Bayesian Markov chain Monte Carlo (MCMC) methods. Est. = estimate; SE = Standard Error; 

Uni. = University; Ref. = reference category; VPC = variance partition coefficient; PCV = 

proportional change in stratum variance.  
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Table 2. 

Predicted intersection means for the six intersections with fewer than 𝑛 = 20 individuals in the Keller et al. (2023) study. 

       MAIHDA Model 1 MAIHDA Model 2 

  

ID Gender Migrant Education Occupation Size Simple 

mean 

Rel. Model  

implied 

mean 

MAIHDA 

Mean 

Rel. Model 

implied 

mean 

MAIHDA 

mean 

𝑗     𝑛𝑗 𝑦̅.𝑗 𝑅𝑗 𝛽0,1 𝜇̃𝑗 𝑅𝑗 𝐱𝑗′𝛃2 𝜇̃𝑗 

15 Female Immigrant Below UEC Mid to high 9 446 0.63 478 459 0.13 479 475 

17 Female Native Below UEC High 8 536 0.60 478 512 0.11 531 532 

19 Female Immigrant Below UEC High 3 412 0.36 478 456 0.05 489 485 

35 Male Immigrant Below UEC Mid to high 11 471 0.67 478 473 0.15 453 456 

37 Male Native Below UEC High 14 463 0.73 478 468 0.18 505 497 

39 Male Immigrant Below UEC High 3 362 0.36 478 438 0.05 463 458 

Note. Table adapted from Table S3 of Keller et al. (2023). We calculated 𝑅𝑗 for Model 1 and 2 by applying Equations (12) and (16) to 

the estimates of 𝜎𝑢2 and 𝜎𝑒2 (Table 1) and 𝑛𝑗. We then calculated 𝑦̅.𝑗  by rearranging and applying Equations (10) and (14) in terms of 
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𝑦̅.𝑗, using the Model 1 and 2 values of 𝑅𝑗, 𝜇̃𝑗, and 𝛽0,1 and 𝐱𝑗′𝛃2, respectively. Rel. – Reliability. Simple mean and reliability statistics 

are our own calculations; UEC = University Entrance Certificate. 𝐱𝑗′𝛃2 = 𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗. 
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FIGURES 

Figure 1. 

Predicted simple means, MAIHDA Model 1 means, and MAIHDA Model 2 means for all 40 

intersections in the Keller et al. (2023) study. The six intersections with fewer than n = 20 

individuals are emphasized both in the plot and in Table 2. Additionally, Intersection 37 is 

highlighted in the plot, as it is examined in more detail in Figure 2. The simple means are defined 

in (9), the MAIHDA Model 1 means in (10), and the MAIHDA Model 2 means in (14). 
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Figure 2. 

Predicted simple mean, MAIHDA Model 1 mean, and MAIHDA Model 2 mean for Intersection 

37 in the Keller et al. (2023) study. The plot illustrates how the MAIHDA Model 1 and Model 2 

means are weighted averages of the simple mean and the corresponding model-implied mean. 

Intersection 37 includes male, native students with low parental education and high occupational 

status (n = 14). 
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Figure 3. 

Variance of the simple means (17), MAIHDA Model 1 means (18), and MAIHDA Model 2 

means (19) across the distribution of intersections, plotted against intersection size. The plot 

assumes a Model 1 VPC of 0.15, a Model 2 PCV of 0.90, and equal intersection sizes. 
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Figure 4. 

Correlation between the simple means and the true means (20), MAIHDA Model 1 means and 

the true means (21), and MAIHDA Model 2 means and the true means (22), across the 

distribution of intersections, plotted against intersection size. The plot assumes a Model 1 VPC 

of 0.15, a Model 2 PCV of 0.90, and equal intersection sizes. The line plots for the simple means 

and the MAHDA Model 1 means lie on top of one another. 
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Figure 5. 

Bias of the simple mean (23), MAIHDA Model 1 mean (24), and MAIHDA Model 2 mean (25) 

across repeated samples of individuals for a given intersection, plotted against the difference 

between the true mean and the model-implied mean for that intersection. The plot assumes an 

intersection size of 10 individuals, a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The 

Model 1 model-implied mean corresponds to the overall mean, while the Model 2 model-implied 

mean reflects the additive effects of the social identities defining the intersection. The bias of the 

MAIHDA Model 2 mean is shown over a narrower range due to smaller differences between the 

true and model-implied means in this model. 
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Figure 6. 

Variance of the simple mean (26), MAIHDA Model 1 mean (27), and MAIHDA Model 2 mean 

(28) across repeated samples of individuals for a given intersection, plotted against the difference 

between the true mean and the model-implied mean for that intersection. The plot assumes an 

intersection size of 10 individuals, a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The 

Model 1 model-implied mean corresponds to the overall mean, while the Model 2 model-implied 

mean reflects the additive effects of the social identities defining the intersection. The bias of the 

MAIHDA Model 2 mean is shown over a narrower range due to smaller differences between the 

true and model-implied means in this model. 
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Figure 7. 

Mean squared error of the simple mean (29), MAIHDA Model 1 mean (30), and MAIHDA 

Model 2 mean (31) across repeated samples of individuals for a given intersection, plotted 

against the difference between the true mean and the model-implied mean for that intersection. 

The plot assumes an intersection size of 10 individuals, a Model 1 VPC of 0.15, and a Model 2 

PCV of 0.90. The Model 1 model-implied mean corresponds to the overall mean, while the 

Model 2 model-implied mean reflects the additive effects of the social identities defining the 

intersection. The bias of the MAIHDA Model 2 mean is shown over a narrower range due to 

smaller differences between the true and model-implied means in this model. 
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Supplemental Material 

These Supplemental Materials are organized into three sections. The first section presents full 

derivations of all analytic expressions included in the main text. The second section explores 

how our main results vary as a function of the VPC, PCV, and the coefficient of variation of 

intersection size. The third section examines how our results are affected when the true data-

generating process is more complex than MAIHDA Model 2, specifically by including a fixed 

two-way interaction between two of the social identities that define the intersections. 
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S1. Derivations of all analytic expressions 

To derive all expressions, we specify the true model as Model 2 and assume that the regression 

coefficients, random intersection variance, and individual residual variance are known, with only 

the true mean for each intersection being unknown. See the article for the definition of all terms. 

All expressions given in this section are also shown for ease of comparison in Table S1. 

 

PREDICTED MEANS 

The predicted means are given as follows: 

 

Simple Means 

𝑦̅.𝑗 = 1𝑛𝑗 ∑ 𝑦𝑖𝑗
𝑛𝑗

𝑖=1  

 

MAIHDA Model 1 Means 𝜇̃1𝑗 = 𝑅1𝑗𝑦̅.𝑗 + (1 − 𝑅1𝑗)𝛽1,0 

See Equation 3.41 in Raudenbush and Bryk (2002, p.46). 

 

MAIHDA Model 2 Means 𝜇̃2𝑗 = 𝑅2𝑗 𝑦̅.𝑗 + (1 − 𝑅2𝑗)(𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗) 

See Equation 3.48 in Raudenbush and Bryk (2002, p.48). 

See Equation 2.56 in McCulloch, Searle, and Neuhaus (2008). 
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VARIANCE OF THE PREDICTED MEANS ACROSS THE DISTRIBUTION OF 

INTERSECTIONS 

The variance of each set of predicted means can be derived as follows: 

 

Simple. Var(𝑦̅.𝑗) = Var(𝜇𝑗 + 𝑒.̅𝑗) 

= 𝜎𝜇2 + 𝜎𝑒2𝑛  

See Equation 3.6 in Raudenbush and Bryk (2002, p.40). 

See Equation 4.13 in Snijders and Bosker (2012, p.61). 

 

Model 1. Var(𝜇̃1𝑗) = Var{𝑅1𝑦̅.𝑗 + (1 − 𝑅1)𝛽0} = Var(𝑅1𝑦̅.𝑗) = 𝑅12Var(𝑦̅.𝑗) 

= 𝑅12 (𝜎𝜇2 + 𝜎𝑒2𝑛 ) 

= 𝑅1 ( 𝜎𝜇2𝜎𝜇2 + 𝜎𝑒2𝑛 ) (𝜎𝜇2 + 𝜎𝑒2𝑛 ) 

= 𝑅1𝜎𝜇2 

See last equation in Rabe-Hesketh and Skondal (2021, p123). 

See first equation in Skrondal and Rabe-Hesketh (2004, p.233). 
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Model 2. Var(𝜇̃2𝑗) = Var{𝑅2𝑦̅.𝑗 + (1 − 𝑅2)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)} = Var{𝑅2𝑦̅.𝑗 + (1 − 𝑅2)(𝑦̅.𝑗 − 𝑢2𝑗 − 𝑒.̅𝑗)} = Var{𝑅2𝑦̅.𝑗 + 𝑦̅.𝑗 − 𝑢2𝑗 − 𝑒.̅𝑗 − 𝑅2𝑦̅.𝑗 + 𝑅2𝑢2𝑗 + 𝑅2𝑒.̅𝑗} = Var{𝑦̅.𝑗 − 𝑢2𝑗 − 𝑒.̅𝑗 + 𝑅2𝑢2𝑗 + 𝑅2𝑒.̅𝑗} = Var{𝜇𝑗 − 𝑢2𝑗 + 𝑅2𝑢2𝑗 + 𝑅2𝑒.̅𝑗} = Var{𝜇𝑗 + (𝑅2 − 1)𝑢2𝑗 + 𝑅2𝑒.̅𝑗} = Var{𝜇𝑗 + (𝑅2 − 1)𝑢2𝑗} + 𝑅22Var{𝑒.̅𝑗} = Var(𝜇𝑗) + 2(𝑅2 − 1)Cov(𝜇𝑗 , 𝑢2𝑗) + (𝑅2 − 1)2Var(𝑢2𝑗) + 𝑅22Var{𝑒.̅𝑗} 

= 𝜎𝜇2 + 2(𝑅2 − 1)𝜎𝑢2 + (𝑅2 − 1)2𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 + {2(𝑅2 − 1) + (𝑅2 − 1)2}𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 + {2𝑅2 − 2 + (𝑅2 − 1)2}𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 + (2𝑅2 − 2 + 𝑅22 − 2𝑅2 + 1)𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 + (𝑅22 − 1)𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 − 𝜎𝑢2 + 𝑅22𝜎𝑢2 + 𝑅22 𝜎𝑒2𝑛  

= 𝜎𝜇2 − 𝜎𝑢2 + 𝑅22 (𝜎𝑢2 + 𝜎𝑒2𝑛 ) 

= 𝜎𝜇2 − 𝜎𝑢2 + 𝑅2 ( 𝜎𝑢2𝜎𝑢2 + 𝜎𝑒2𝑛 ) (𝜎𝑢2 + 𝜎𝑒2𝑛 ) 
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= 𝜎𝜇2 − 𝜎𝑢2 + 𝑅2𝜎𝑢2 = 𝜎𝜇2 + 𝑅2𝜎𝑢2 − 𝜎𝑢2 = 𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22  = 𝜎𝜇2 − (1 − 𝑅2)𝜎𝑢22  
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CORRELATION BETWEEN THE PREDICTED AND TRUE MEANS ACROSS THE 

DISTRIBUTION OF INTERSECTIONS 

The correlation of each set of predicted means with the true means can be derived as follows: 

Simple 

Corr(𝑦̅.𝑗 , 𝜇𝑗) = Cov(𝑦̅.𝑗 , 𝜇𝑗)√Var(𝑦̅.𝑗)√Var(𝜇𝑗) 

= Cov(𝑦̅.𝑗 , 𝜇𝑗)√𝜎𝜇2 + 𝜎𝑒2𝑛 √𝜎𝜇2 

= Cov(𝜇𝑗 + 𝑒.̅𝑗 , 𝜇𝑗)√𝜎𝜇2 + 𝜎𝑒2𝑛 √𝜎𝜇2  

= Cov(𝜇𝑗, 𝜇𝑗)√𝜎𝜇2 + 𝜎𝑒2𝑛 √𝜎𝜇2 

= 𝜎𝜇2√𝜎𝜇2 + 𝜎𝑒2𝑛 √𝜎𝜇2 

= √𝜎𝜇2√𝜎𝜇2 + 𝜎𝑒2𝑛  

= √ 𝜎𝜇2𝜎𝜇2 + 𝜎𝑒2𝑛  

= √𝑅1 
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Model 1 

Corr(𝜇̃1𝑗 , 𝜇𝑗) = Cov(𝜇̃1𝑗 , 𝜇𝑗)√Var(𝜇̃1𝑗)√Var(𝜇𝑗) 

= Cov(𝜇̃1𝑗, 𝜇𝑗)√𝑅1𝜎𝜇2√𝜎𝜇2  

= Cov{𝑅1𝑦̅.𝑗 + (1 − 𝑅1)𝛽0, 𝜇𝑗}√𝑅1𝜎𝜇2√𝜎𝜇2  

= Cov{𝑅1𝑦̅.𝑗 , 𝜇𝑗}√𝑅1𝜎𝜇2√𝜎𝜇2  

= 𝑅1Cov(𝑦̅.𝑗 , 𝜇𝑗)√𝑅1𝜎𝜇2√𝜎𝜇2  

= 𝑅1Cov(𝜇𝑗 + 𝑒.̅𝑗 , 𝜇𝑗)√𝑅1𝜎𝜇2√𝜎𝜇2  

= 𝑅1Cov{𝜇𝑗 , 𝜇𝑗}√𝑅1𝜎𝜇2√𝜎𝜇2  

= 𝑅1𝜎𝜇2√𝑅1𝜎𝜇2√𝜎𝜇2 

= 𝑅1𝜎𝜇2√𝑅1√𝜎𝜇2√𝜎𝜇2 

= 𝑅1𝜎𝜇2√𝑅1𝜎𝜇2 

= 𝑅1√𝑅1 

= √𝑅1 
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Model 2 

Corr(𝜇̃2𝑗, 𝜇𝑗) = Cov(𝜇̃2𝑗 , 𝜇𝑗)√Var(𝜇̃2𝑗)√Var(𝜇𝑗) 

= Cov(𝜇̃2𝑗 , 𝜇𝑗)√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2 

= Cov{𝑅2𝑦̅.𝑗 + (1 − 𝑅2)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗), 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝑅2(𝜇𝑗 − 𝑒.̅𝑗) + (1 − 𝑅2)(𝜇𝑗 − 𝑢2𝑗), 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝑅2(𝜇𝑗 − 𝑒.̅𝑗), 𝜇𝑗} + Cov{(1 − 𝑅2)(𝜇𝑗 − 𝑢2𝑗), 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝑅2𝜇𝑗 − 𝑅2𝑒.̅𝑗 , 𝜇𝑗} + Cov{𝜇𝑗 − 𝑢2𝑗 − 𝑅2𝜇𝑗 + 𝑅2𝑢2𝑗 , 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝑅2𝜇𝑗 , 𝜇𝑗} + Cov{𝜇𝑗 − 𝑢2𝑗 − 𝑅2𝜇𝑗 + 𝑅2𝑢2𝑗 , 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝑅2𝜇𝑗 , 𝜇𝑗} + Cov{𝜇𝑗 , 𝜇𝑗} + Cov{−𝑢2𝑗 , 𝜇𝑗} + Cov{−𝑅2𝜇𝑗 , 𝜇𝑗 } + Cov{𝑅2𝑢2𝑗 , 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= 𝑅2Cov{𝜇𝑗 , 𝜇𝑗} + Cov{𝜇𝑗 , 𝜇𝑗} − Cov{𝑢2𝑗 , 𝜇𝑗} − 𝑅2Cov{𝜇𝑗 , 𝜇𝑗} + 𝑅2Cov{𝑢2𝑗 , 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  

= Cov{𝜇𝑗 , 𝜇𝑗} − Cov{𝑢2𝑗 , 𝜇𝑗} + 𝑅2Cov{𝑢2𝑗 , 𝜇𝑗}√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2  
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= 𝜎𝜇2 − 𝜎𝑢22 + 𝑅2𝜎𝑢22√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2 

= 𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22√𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22 √𝜎𝜇2 

= √𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22√𝜎𝜇2  

= √𝜎𝜇2 + (𝑅2 − 1)𝜎𝑢22𝜎𝜇2  

= √𝜎𝑢12 + (𝑅2 − 1)𝜎𝑢22𝜎𝑢12  

= √𝜎𝑢12 + 𝑅2𝜎𝑢22 − 𝜎𝑢22𝜎𝑢12  

= √𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 + 𝑅2𝜎𝑢22𝜎𝑢12  

= √𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 + 𝑅2 (𝜎𝑢22 + 𝜎𝑢12 − 𝜎𝑢12𝜎𝑢12 ) 

= √𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 + 𝑅2 (𝜎𝑢12𝜎𝑢12 + 𝜎𝑢22 − 𝜎𝑢12𝜎𝑢12 ) 

= √𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 + 𝑅2 (𝜎𝑢12𝜎𝑢12 − 𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 ) 

= √PCV + 𝑅2(1 − PCV) 

  



ESTIMATING INTERSECTIONAL INEQUALITIES 10 

BIAS 

For each predictor, the bias for intersection 𝑗 can be derived as follows: 

 

Simple bias(𝑦̅.𝑗|𝜇𝑗) = 𝐸(𝑦̅.𝑗|𝜇𝑗) − 𝜇𝑗 = 𝐸(𝜇𝑗 + 𝑒.̅𝑗|𝜇𝑗) − 𝜇𝑗  = 𝜇𝑗 − 𝜇𝑗 = 0 

Model 1 bias(𝜇̃1𝑗|𝜇𝑗) = 𝐸(𝜇̃1𝑗|𝜇𝑗) − 𝜇𝑗 = E{𝑅1𝑦̅.𝑗 + (1 − 𝑅1)𝛽0|𝜇𝑗} − 𝜇𝑗 = E{𝑅1(𝜇𝑗 + 𝑒.̅𝑗) + (1 − 𝑅1)𝛽0|𝜇𝑗} − 𝜇𝑗 = 𝑅1𝜇𝑗 + (1 − 𝑅1)𝛽0 − 𝜇𝑗 = (𝑅1 − 1)(𝜇𝑗 − 𝛽0) = −(1 − 𝑅1)(𝜇𝑗 − 𝛽0) 

Model 2 bias(𝜇̃2𝑗|𝜇𝑗) = 𝐸(𝜇̃2𝑗|𝜇𝑗) − 𝜇𝑗 = E{𝑅2𝑗 𝑦̅.𝑗 + (1 − 𝑅2𝑗)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)|𝜇𝑗} − 𝜇𝑗  = E{𝑅2𝑗 (𝜇𝑗 + 𝑒.̅𝑗) + (1 − 𝑅2𝑗)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)|𝜇𝑗} − 𝜇𝑗 = 𝑅2𝑗𝜇𝑗 + (1 − 𝑅2𝑗)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗) − 𝜇𝑗  = (𝑅2𝑗 − 1){𝜇𝑗 − (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)} = −(1 − 𝑅2𝑗){𝜇𝑗 − (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)} 
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VARIANCE 

The variance we derive here is the sampling variance of the predicted mean for a particular 

intersection, with true mean 𝜇𝑗, across repeated samples of individuals from that intersection. For 

each predictor, the variance for intersection 𝑗 can be derived as follows: 

 

Simple Var(𝑦̅.𝑗|𝜇𝑗) = Var(𝜇𝑗 + 𝑒.̅𝑗|𝜇𝑗) 

= 𝜎𝑒2𝑛𝑗  

 

Model 1 Var(𝜇̃1𝑗|𝜇𝑗) = Var{𝑅1𝑗𝑦̅.𝑗 + (1 − 𝑅1𝑗)𝛽0|𝜇𝑗} = Var(𝑅1𝑗 𝑦̅.𝑗|𝜇𝑗) = 𝑅1𝑗2 Var(𝑦̅.𝑗|𝜇𝑗) 

= 𝑅1𝑗2 𝜎𝑒2𝑛𝑗  

 

See last equation in Skrondal and Rabe-Hesketh (2004, p.233). Some rearranging is required. 

Note also that this equation is for Var(𝑢̃1𝑗|𝑢1𝑗), but when all parameters are assumed known (as 

they are here), Var(𝜇̃1𝑗|𝜇𝑗) = Var(𝑢̃1𝑗|𝑢1𝑗). 

 

Model 2 Var(𝜇̃2𝑗|𝜇𝑗) = Var{𝑅2𝑗 𝑦̅.𝑗 + (1 − 𝑅2𝑗)(𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)|𝜇𝑗} 
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= Var(𝑅2𝑗 𝑦̅.𝑗|𝜇𝑗) = 𝑅2𝑗2 Var(𝑦̅.𝑗|𝜇𝑗) 

= 𝑅2𝑗2 𝜎𝑒2𝑛𝑗  
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MEAN SQUARED ERROR 

For each predictor, the mean squared error (MSE) for intersection 𝑗 can be derived as follows: 

 

Simple MSE(𝑦̅.𝑗|𝜇𝑗) = Var(𝑦̅.𝑗|𝜇𝑗) + {bias(𝑦̅.𝑗|𝜇𝑗)}2
 

= 𝜎𝑒2𝑛𝑗 + 02 

= 𝜎𝑒2𝑛𝑗  

 

Model 1 MSE(𝜇̃1𝑗|𝜇𝑗) = Var(𝜇̃1𝑗|𝜇𝑗) + {bias(𝜇̃1𝑗|𝜇𝑗 )}2
 

= 𝑅1𝑗2 𝜎𝑒2𝑛𝑗 + {−(1 − 𝑅1𝑗)(𝜇𝑗 − 𝛽0)}2
 

= 𝑅1𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅1𝑗)2(𝜇𝑗 − 𝛽0)2
 

 

Model 2 MSE(𝜇̃2𝑗|𝜇𝑗) = Var(𝜇̃2𝑗|𝜇𝑗) + {bias(𝜇̃2𝑗|𝜇𝑗)}2
 

= 𝑅2𝑗2 𝜎𝑒2𝑛𝑗 + [−(1 − 𝑅2𝑗){𝜇𝑗 − (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)}] 2 

= 𝑅2𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅2𝑗)2{𝜇𝑗 − (𝛽0 + 𝛽1𝑥1𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗)}2
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S2. Further Results 

STATISTICAL PROPERTIES OF THE DISTRIBUTION OF PREDICTED INTERSECTION 

MEANS 

Variance of the Predicted Means Across the Distribution of Intersections 

Figure 3 was plotted using specific values for the Model 1 VPC, Model 2 PCV, and CV of 

intersection size: 0.15, 0.90, and 0, respectively. Figures S1, S2, and S3 examine how this plot 

changes as each of these factors varies. We use simulation to address the case of varying 

intersection sizes.  Here, we state the key findings. In all three cases, the relative ranking of the 

three methods of prediction remains unchanged, regardless of the VPC, PCV, or CV of 

intersection size. Specifically, the variance of the Model 2 means consistently lies closest to the 

true variance, followed by the variance of the Model 1 means, and finally the variance of the 

Simple means. 

1. Effect of VPC: As the VPC increases (from 0.01 to 0.15 to 0.50), the variances of all 

three sets of predicted means become closer to one another and closer to the true variance 

(Figure S1). This is because, as the VPC rises, the simple means become a more reliable 

predictor of the true means. 

2. Effect of PCV: As the PCV increases (from 0.50 to 0.90 to 0.99), the variances of the 

simple and Model 1 means remain constant, while the variance of the Model 2 means 

gets closer to the true variance (Figure S2). This makes sense, as the PCV reflects the 

explanatory power of the additive social identity effects, which are only explicitly 

incorporated into the calculation in the Model 2 means. 

3. Effect of CV of intersection sizes: As the CV of intersection sizes increases (from 0 to 1 

to 2), the variances of all three predicted means become less similar to each other (Figure 
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S3). Thus, choice of prediction method is more consequential when intersection sizes 

become more unequal. 

In conclusion, the Model 2 means continue to be the preferred predictor, regardless of changes in 

the VPC, PCV, or CV of intersection size. However, the relative advantage of this predictor is 

most pronounced when intersectional inequalities are less pronounced and when intersections 

vary in size. 

 

Correlation Between the Predicted and True means Across the Distribution of Intersections 

Figure 4 was plotted using specific values for the Model 1 VPC, Model 2 PCV, and CV of 

intersection size: 0.15, 0.90, and 0, respectively. Figures S4, S5, and S6 examine how this plot 

changes as each of these factors varies. Here, we provide a summary of the key findings. In all 

three cases, the Model 2 means show the highest correlation with the true means, regardless of 

the VPC, PCV, or CV of intersection size. 

1. As the VPC increases, the correlations between all three sets of predicted means and the 

true means approach 1 (Figure S4). This makes sense, as an increase in the VPC reflects a 

reduction in the sampling variability or error in the simple means, which in turn increases 

the variability in the Model 1 and 2 means, as reflected in higher reliability statistics. As 

the variances approach the true variance the correlations approach the true correlation. 

2. As the PCV increases, the correlation between the simple and true means and the 

correlation between the Model 1 and true means remain constant, while the correlation 

between the Model 2 means and true means moves closer 1 (Figure S5). This makes 

sense, as the PCV reflects the explanatory power of the additive social identity effects, 

which are only explicitly incorporated into the calculation the Model 2 means. 
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3. As the CV of intersection sizes increases, the correlations between each set of means and 

the true means decrease. Importantly, the correlations between the simple means and 

Model 1 means and the true means are no longer equal; they begin to diverge, with the 

gap widening as the CV increases. Specifically, the correlation between the Model 1 

means and the true means now exceeds the correlation between the simple means and the 

true means. Thus, the simple means perform as well as the Model 1 means only in the 

rather artificial situation of equal intersection sizes. When intersection sizes vary, the 

Model 1 means are preferred over the simple means. However, the Model 2 means 

continue to be preferred over both the simple means and the Model 1 means. 

In conclusion, the Model 2 means continue to be the preferred predictor, regardless of changes in 

the VPC, PCV, or CV of intersection sizes. However, the relative advantage of this predictor is 

most pronounced when intersectional inequalities are less pronounced and when intersections 

vary in size. 
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STATISTICAL PROPERTIES OF PREDICTED INTERSECTION MEAN FOR A GIVEN 

INTERSECTION 

Bias 

Figure 5 was generated using specific values for intersection size, Model 1 VPC, and Model 2 

PCV: 10, 0.15, and 0.90, respectively. Figures S7, S8, and S9 explore how this plot changes 

when these factors vary. Below, we summarize the key findings. 

 The simple mean remains unbiased in all cases. The bias of the Model 1 mean as a 

function of the difference between the true and model-implied mean follows a steeper linear 

trend than that of the Model 2 mean. However, the bias in the Model 2 mean operates over a 

narrower range of differences. 

1. Effect of Intersection Size: For a given difference between the true and model-implied 

mean, increasing the intersection size (from 5 to 10 to 50 individuals) rapidly reduces the 

magnitude of the Model 1 bias, whereas the Model 2 bias declines more gradually 

(Figure S7). 

2. Effect of VPC: As the VPC increases (from 0.01 to 0.15 to 0.50), the bias in the Model 1 

mean decreases more rapidly than the bias in the Model 2 mean (Figure S8). 

3. Effect of PCV: Increasing the PCV (from 0.50 to 0.90 to 0.99) does not affect the bias of 

the Model 1 mean (Figure S9). However, for the Model 2 mean, the bias relationship with 

the difference between the true and model-implied mean strengthens, though this effect is 

mitigated by a more restricted range of differences. 

In conclusion, the simple mean remains the preferred predictor in terms of bias, as it is always 

unbiased, whereas the Model 1 and Model 2 means exhibit bias in all cases except when the true 

and model-implied means are equal. 
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Variance 

Figure 6 was generated using specific values for the intersection size, Model 1 VPC, and Model 

2 PCV: 10, 0.15, and 0.90, respectively. Figures S10, S11, and S12 explore how this plot changes 

when these factors vary. Below, we summarize the key findings. 

1. Effect of Intersection Size: As the intersection size increases, the variance of the simple 

mean decreases rapidly (Figure S10). The variance of the Model 1 mean also decreases, 

but at a slower rate. In contrast, the variance of the Model 2 mean increases, as the 

squared reliability term 𝑅2𝑗2  grows more rapidly than the decrease in the simple mean 

variance term 𝜎𝑒2 𝑛𝑗⁄ . 

2. Effect of VPC: As the VPC increases, the variance of the simple mean decreases, whereas 

the variance of both the Model 1 and 2 means increases (Figure S11). 

3. Effect of PCV: Increasing the PCV does not affect the variance of simple mean or the 

Model 1 mean, but it decreases the variance of the Model 2 mean (Figure S12). 

In conclusion, the Model 2 mean remains the preferred predictor in terms of having the smallest 

variance, regardless of changes in the intersection size, VPC, or PCV. However, its relative 

advantage is most pronounced when the intersection size is small, intersectional inequalities are 

less pronounced, and when these inequalities follow a largely additive structure. 
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Mean Squared Error 

Figure 7 was plotted using specific values for the intersection size, Model 1 VPC, and Model 2 

PCV: 10, 0.15, and 0.90, respectively. Figures S13, S14, and S15 explore how this plot changes 

when these factors vary. Below, we summarize the key findings. 

The MSE of the simple mean remains constant and equal to its variance, as the simple 

mean is always unbiased. 

1. Effect of Intersection Size: As the intersection size increases, the MSE of all three 

predictors decreases and converges toward 0 (Figure S13). 

2. Effect of VPC: As the VPC increases, the MSE of the Simple mean decreases, whereas 

the MSE of the Model 1 mean, and to a lesser extent, the Model 2 mean, increases 

(Figure S14). 

3. Effect of PCV: Increasing the PCV does not affect the MSE of the Simple mean or the 

Model 1 mean, but it reduces the MSE of the Model 2 mean (Figure S15). 

In conclusion, the Model 2 mean remains the preferred predictor in terms of the lowest MSE, 

regardless of changes in the intersection size, VPC, or PCV. However, its advantage is most 

pronounced when intersection sizes are small, intersectional inequalities are less pronounced, 

and the inequalities follow an additive structure. These results align with the variance patterns 

observed earlier. 
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S3. A More Complex Data Generating Process with a Two-Way Fixed Interaction 

INTRODUCTION 

In the main text, we used analytic expressions to compare the statistical properties of Simple 

Means, MAIHDA Model 1 means, and MAIHDA Model 2 means against the true intersection 

means. As with simulation studies, this approach required specifying a “true” model or data-

generating process (DGP) to serve as a benchmark; we assumed Model 2 to be the true DGP. Our 

results showed that MAIHDA Model 2 means were the most accurate, followed by Model 1 

means, with Simple Means performing worst. We also demonstrated that the differences between 

these three approaches become particularly pronounced when intersection sizes are small. 

A natural question is how our results would change if the true model were more complex 

than MAIHDA Model 2. In the main text, we considered an example in which the DGP includes 

a two-way interaction as a fixed effect, rather than capturing it implicitly through the intersection 

random effect. We argued that while fitting a so-called MAIHDA Model 3—which includes this 

two-way interaction as a fixed effect—would naturally yield more accurate predictions than 

MAIHDA Model 2, the improvement would likely be marginal compared to the substantial gains 

observed when moving first from Simple Means to MAIHDA Model 1 means, and then from 

MAIHDA Model 1 means to MAIHDA Model 2 means. 

In this section, we illustrate the argument with a single simple example. There is clear 

value in conducting more extensive investigations that examine a wider range of potential 

deviations from the Model 2 DGP, and we encourage others to pursue this. 

 

MAIHDA MODEL 3 
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Suppose the true model is more complex than MAIHDA Model 2 in that it additionally includes 

a fixed two-way interaction between two of the social identity variables that define the 

intersections. We refer to this expanded model as MAIHDA Model 3. All other social identity 

variables are included as additive main effects, as in previous models. For simplicity, we 

consider the case of two binary social identity variables, denoted 𝑥1𝑗 and 𝑥2𝑗. The model can be 

written as: 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 𝜇𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽3𝑥3𝑗 ⋯ + 𝛽𝑝𝑥𝑝𝑗 + 𝛽𝑝+1𝑥1𝑗𝑥2𝑗 + 𝑢𝑗 𝑢𝑗~𝑁(0, 𝜎𝑢2) 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

where 𝑥1𝑗𝑥2𝑗 represents the additional fixed two-way interaction term and 𝛽𝑝+1 denotes its 

coefficient. All other terms are as in MAIHDA Model 2. 

 

THE SOCIAL IDENTITY VARIABLES 

For simplicity, we consider the case where 𝑥1𝑗 and 𝑥2𝑗 are independent (e.g., gender and 

ethnicity) and each has a prevalence of 0.5. We also assume 𝑥1𝑗 and 𝑥2𝑗 are independent of all 

remaining social identity variables in the model. For ease of exposition, we represent all 

additional social identities using a single composite variable 𝑧𝑗∗. 𝑧𝑗∗ = 𝛽3𝑥3𝑗 ⋯ + 𝛽𝑝𝑥𝑝𝑗 

Thus, allows us to rewrite the model more simply as: 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 𝜇𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 1𝑧𝑗∗ + 𝛽𝑝+1𝑥1𝑗𝑥2𝑗 + 𝑢𝑗 𝑢𝑗~𝑁(0, 𝜎𝑢2) 
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𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

Note, the regression coefficient on 𝑧𝑗∗ is equal to 1. We choose to rescale 𝑧𝑗∗ to have variance 1 

and so now specify a regression coefficient 𝛽𝑧. 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 𝜇𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽𝑧𝑧𝑗 + 𝛽𝑝+1𝑥1𝑗𝑥2𝑗 + 𝑢𝑗 𝑢𝑗~𝑁(0, 𝜎𝑢2) 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒2) 

 

SPECIFYING THE TRUE PARAMETER VALUES 

Overview 

We specify MAIHDA Model 3 as the true model and then derive the values implied for 

MAIHDA Models 1 and 2 from it. The true parameter values for MAIHDA Model 3 are 

summarized in the table below, along with the variance partition coefficients (VPCs), conditional 

reliabilities, and proportion change in variances (PCVs). As in the main text, we assume many 

intersections of equal size. We showed there that the choice of approach matters most when 

intersection size is small. We therefore focus on the case of 10 individuals per intersection. 

Corresponding implied values for Models 1 and 2 are also listed. The remainder of this section 

details how these true values were specified. 

Variable Parameter Model 1 Model 2 Model 3 

1 𝛽0 0.000 -0.3576 -0.2980 𝑥1𝑗 𝛽1  0.3576 0.2384 𝑥2𝑗 𝛽2  0.3576 0.2384 
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𝑥3𝑗 𝛽3  0.2598 0.2598 𝑥1𝑗𝑥2𝑗 𝛽4   0.2384 𝑢𝑗 𝜎𝑢2 0.1500 0.0186 0.0150 𝑒𝑖𝑗 𝜎𝑒2 0.8500 0.8500 0.8500 

 VPC 0.1500 0.0214 0.0173 

 PCV vs. M1  0.8763 0.9000 

 𝑅 = 𝜎𝑢2𝜎𝑢2 + 𝜎𝑒210 
0.6383 0.1792 .15 

Note: 

 

Outcome Mean and Variance, and Model 1 and 3 VPC and PCV 

We specify the true parameter values for MAIHDA Model 3 such that the individual outcome 

variable has a mean of 0 and a variance of 1.  

We start by setting the MAIHDA Model 3 intersection variance 𝜎𝑢32 = 0.015 and 

individual variance 𝜎𝑒32 = 0.85. None of the models include individual-level covariates (the 

intersection defining social identities operate at the intersection level). It therefore follows that 𝜎𝑒12 = 𝜎𝑒22 = 𝜎𝑒32 = 𝜎𝑒2 = 0.85. Then we set the Model 3 proportional change in variance (PCV) 

to 0.90. This implies 𝜎𝑢12 = 0.15 and therefore that the Model 1 VPC is 0.15 as is variance of the 

true means 𝜎𝜇2 = 𝜎𝑢12 = 0.15. Given this, the variance explained by the fixed part of Model 3 is 

therefore 𝜎𝜇2 − 𝜎𝑢32 = 0.15 − 0.015 = 0.135. We decompose this into two equal parts of 0.0675 

each. 

The first part corresponds to the variance associated with 𝑥1𝑗, 𝑥2𝑗, and their interaction 𝑥1𝑗𝑥2𝑗. The second part corresponds to the variance associated with all remaining social identity 
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variables as captured by the compositive variable 𝑥3𝑗. Because we have assumed that 𝑥1𝑗 and 𝑥2𝑗 

are independent of the remaining social identity variables, there is no covariance between these 

two components. Thus, half the variance attributed to the fixed effects covariates is due to just 

two social identity variables and their interaction. That is, we have made the effects of the 

variables involving the two-way interaction large. Below we will also make the effect of the 

interaction itself large. 

Next we calculate the true values for the regression coefficients of these fixed-effects 

regression coefficients consistent with this information. 

 

The Variance of the First Component of the Fixed Part of the Model 

The variance of the first component of the fixed part of MAIHDA model 3 is given by: 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽𝑝+1𝑥1𝑗𝑥2𝑗) == 𝛽12𝑉𝑎𝑟(𝑥1𝑗) + 𝛽22𝑉𝑎𝑟(𝑥2𝑗) + 𝛽𝑝+12 𝑉𝑎𝑟(𝑥1𝑗𝑥2𝑗) + 2𝛽1𝛽𝑝+1𝐶𝑜𝑣(𝑥1𝑗, 𝑥1𝑗𝑥2𝑗)+ 2𝛽2𝛽𝑝+1𝐶𝑜𝑣(𝑥2𝑗, 𝑥1𝑗𝑥2𝑗) 

Recall that the prevalence of 𝑥1𝑗 and 𝑥2𝑗 are 𝑞1 = 𝑞2 = 0.5. It follows that: 𝑉𝑎𝑟(𝑥1𝑗) = 𝑞1𝑞1 = 0.5 × 0.5 = 0.25 𝑉𝑎𝑟(𝑥2𝑗) = 𝑞2𝑞2 = 0.5 × 0.5 = 0.25 𝑉𝑎𝑟(𝑞1𝑗𝑞2𝑗) = 𝑞1𝑞2(1 −  𝑞1𝑞2) = 0.5 × 0.5(1 −  0.5 × 0.5) = 1.875 𝐶𝑜𝑣(𝑥1𝑗, 𝑥1𝑗𝑥2𝑗) = 𝑞1𝑞2(1 − 𝑞1) = 0.5 × 0.5(1 − 0.5) 𝐶𝑜𝑣(𝑥2𝑗, 𝑥1𝑗𝑥2𝑗) = 𝑞1𝑞2(1 − 𝑞2) = 0.5 × 0.5(1 − 0.5) 

Substituting these results into the expression for the first component of the fixed part gives: 
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𝑉𝑎𝑟(𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽𝑝+1𝑥1𝑗𝑥2𝑗)= 𝛽120.25 + 𝛽220.25 + 𝑉𝑎𝑟(𝛽2𝑥3𝑗 + ⋯ + 𝛽𝑝𝑥𝑝𝑗) + 𝛽𝑝+12 0.1875+ 2𝛽1𝛽𝑝+10.125 + 2𝛽2𝛽𝑝+10.125 

For simplicity, we assume 𝛽1 = 𝛽2 = 𝛽𝑝+1. We refer to this common coefficient as 𝛽. We note 

that this suggests a large positive interaction effect. The table below presents the expected value 

of the outcome as a function of the four combinations of 𝑥1𝑗 and 𝑥2𝑗 . Thus when either 𝑥1𝑗 = 1 or 𝑥2𝑗 = 1 the expected outcome increases by 𝛽, but when both 𝑥1𝑗 = 1 and 𝑥2𝑗 = 1 the expected outcomes increases by 3𝛽 rather than 2𝛽. 
 

Combination 𝑥1𝑗 𝑥2𝑗 𝑥1𝑗𝑥2𝑗 𝐸(𝑦𝑖𝑗|𝑥1𝑗, 𝑥2𝑗) 

1 0 0 0 𝛽0 

2 0 1 0 𝛽0 + 𝛽 

3 1 0 0 𝛽0 + 𝛽 

4 1 1 1 𝛽0 + 3𝛽 

 

Imposing this common coefficient in the expression for the first component of the MAIHDA 

Model 3 fixed part gives: 𝑉𝑎𝑟(𝛽0 + 𝛽𝑥1𝑗 + 𝛽𝑥2𝑗 + 𝛽𝑥1𝑗𝑥2𝑗) = 𝛽20.25 + 𝛽20.25 + 𝛽20.1875 + 2𝛽20.125 + 2𝛽20.12= 𝛽20.25 + 𝛽20.25 + 𝛽20.1875 + 𝛽20.250 + 𝛽20.250= 𝛽2( 0.25 + 0.25 + 0.1875 + 0.250 + 0.250) 

Recall, that we set the variance of the fixed-part of the model associated with 𝑥1𝑗 and 𝑥2𝑗 to 

equal 0.0675. Substituting in this value gives: 
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0.0675 = 𝛽2(1.1875) 

Rearranging gives the true value for the common coefficient: 

𝛽 = √0.06751.1875 = .23841582 

 

The Variance of the Second Component of the Fixed Part of the Model 

The variance of the second component of the fixed part of MAIHDA Model 3 is given by: 𝑉𝑎𝑟(𝛽z𝑧𝑗) = 𝛽z2𝜎𝑧2 

For simplicity we let 𝑧𝑗 be a standard normal variate. 𝑉𝑎𝑟(𝛽𝑧𝑧𝑗) = 𝛽z2 

Recall, that the variance of this second-component is also set equal to 0.0675 so that the two 

components have equal explanatory power. Substituting in this value gives: 0.0675 = 𝛽z2 

Rearranging gives 𝛽𝑧 =  √0.0675 = .25980762 

 

The Intercept 

Recall that we wish the mean outcome to be 0. To derive the true value for the intercept we first 

note: 0 = E(𝛽0 + 𝛽𝑥1𝑗 + 𝛽𝑥2𝑗 + 𝛽𝑥1𝑗𝑥2𝑗 + 𝛽𝑧zj) = 𝛽0 + 0.5𝛽 + 0.5𝛽 + 0.25𝛽 + 0𝛽𝑧 = 𝛽0 + 1.25𝛽 

Rearranging gives: 
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𝛽0 = −1.25𝛽 = −1.25 × 0.23841582 = −.29801977 

For simplicity, we assume balanced data. 

The Implied Parameter Values for Model 2 

We know straight away that the MAIHDA Model 2 residual variance is 𝜎𝑒2 = 0.85. We 

also know that 𝛽𝑧 = .2598076. The latter is identical to the Model 3 𝛽𝑧 as we have assumed 𝑥1𝑗 

and 𝑥2𝑗 are independent of all other social identities and therefore 𝑧𝑗0. We just need to find 𝛽 and 

then we can calculate the variance associated with the fixed-part of the model which in turn will 

allow us to calculate the variance associated with the intersection random effect. 

We derive the MAIHDA Model 2 regression coefficients implied by the MAIHDA Model 

3 DGP by simulating a very large data set according to MAIHDA Model 3, then fitting 

MAIHDA Model 2 to these data. We then used these estimates as the implied values for Model 2. 

We obtained 𝛽0 = 𝛽 = −.3576237. We note that we also obtained 𝛽𝑧 = 0.2598076 which is, as 

expected, identical to the MAIHDA Model 3 𝛽𝑧.  

Thus, the variance of the fixed-part of the model is given by: 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽z𝑥z𝑗) = 𝑉𝑎𝑟(𝛽 + 𝛽𝑥1𝑗 + 𝛽𝑥2𝑗 + 𝛽z𝑥z𝑗)= 𝑉𝑎𝑟(𝛽𝑥1𝑗) + 𝑉𝑎𝑟(𝛽𝑥2𝑗) + 𝑉𝑎𝑟(𝛽z𝑥z𝑗)= 𝛽2𝑉𝑎𝑟(𝑥1𝑗) + 𝛽2𝑉𝑎𝑟(𝑥2𝑗) + 𝛽𝑧2𝑉𝑎𝑟(zj) = 0.25𝛽2 + 0.25𝛽2 + 1𝛽𝑧2 = 0.5𝛽2 + 𝛽𝑧2 

Substituting in the implied parameter values gives 0.5𝛽2 + 𝛽𝑧2 = 0.5(−0.3576237)2 + (0.2598076)2 
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= .13144734 

It follows that the MAIHDA Model 2 intersection variance is: 𝜎𝑢2 = 0.15 − .13144734 = .01855266 

This then allows us to calculate the MAIHDA Model 2 VPC, reliability coefficient, and PCV 

versions Model 1.  

 

STATISTICAL PROPERTIES OF THE DISTRIBUTION OF PREDICTED INTERSECTION 

MEANS  

Recall from the main text that our goal in this section of the results is the big picture—how the 

approaches vary in capturing the distribution of intersection means. 

Variance 

The expression for the variance of MAIHDA Model 3 means takes the same form as that for 

Model 2. Specifically, it equals the variance of the true means minus one minus the conditional 

reliability for that model, multiplied by the intersection variance for that model. For ease of 

comparison, we reproduce below the expressions for the variance of the Simple Means, 

MAIHDA Model 1 means, and MAIHDA Model 2 means, as presented in the main text. 

Simple: Var(𝑦̅.𝑗) = 𝜎𝜇2 + 𝜎𝑒2𝑛   

Model 1: Var(𝜇̃1𝑗) = 𝑅1𝜎𝜇2  

Model 2:  Var(𝜇̃2𝑗) = 𝜎𝜇2 − (1 − 𝑅2)𝜎𝑢22   

Model 3:  Var(𝜇̃3𝑗) = 𝜎𝜇2 − (1 − 𝑅3)𝜎𝑢32   

Substituting the true and implied parameter values from the overview table yields the variance 

associated with each approach. 
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Approach Value 

True 0.1500 

Simple means 0.2350 

MAIHDA Model 1 means 0.0957 

MAIHDA Model 2 means 0.1348 

MAIHDA Model 3 means 0.1373 

 

The variance of the true intersection means is 0.1500. The variance of the Simple Means 

is higher, at 0.2350, indicating an upward bias. In contrast, the variance of the MAIHDA Model 

1 means is lower, at 0.0957, reflecting a downward bias. The variance of the MAIHDA Model 2 

means is 0.1348; although larger than that of Model 1, it still slightly underestimates the true 

variance. The variance of the MAIHDA Model 3 means is slightly higher again, at 0.1370, 

representing only a very modest reduction in the downward bias. 

Thus, as expected, in the presence of a fixed two-way interaction in the DGP, MAIHDA 

Model 3—which accounts for this interaction—produces the most accurate predicted means in 

terms of matching the variance of the true means. However, the improvement over Model 2 is 

marginal. Our central findings remain: MAIHDA Model 2 means are substantially more accurate 

than those from Model 1, which in turn outperform the Simple Means. 

 

Correlation 

The expression for the correlation of the MAIHDA Model 3 means with the true means takes the 

same form as that for Model 2. Specifically, it is equal to the square root of the sum of the PCV 

and the conditional reliability, multiplied by one minus the conditional PCV. For ease of 
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comparison, we also repeat the corresponding expressions for the Simple Means, MAIHDA 

Model 1 means, and MAIHDA Model 2 means. 

Simple: Corr(𝑦̅.𝑗 , 𝜇𝑗) = √𝑅1  

Model 1: Corr(𝜇̃1𝑗 , 𝜇𝑗) = √𝑅1  

Model 2:  Corr(𝜇̃2𝑗 , 𝜇𝑗) = √PCV2 + 𝑅2(1 − PCV2)  

Model 3:  Corr(𝜇̃3𝑗 , 𝜇𝑗) = √PCV3 + 𝑅3(1 − PCV3)  

 

Substituting the true and implied parameter values from the overview table yields the correlation 

associated with each approach. 

Approach Values 

True 1 

Simple means 0.7989 

MAIHDA Model 1 means 0.7989 

MAIHDA Model 2 means 0.9479 

MAIHDA Model 3 means 0.9566 

 

The correlation between the Simple Means and the true means, as well as between the 

MAIHDA Model 1 means and the true means, is 0.7989. These values are identical in this case 

because the data are balanced. In unbalanced settings, however, the correlation between the 

MAIHDA Model 1 means and the true means will generally be higher than that between the 

Simple Means and the true means, as shown in the main text. The correlation for the MAIHDA 

Model 2 means is notably higher, at 0.9479. The correlation for the MAIHDA Model 3 means is 
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slightly higher still, at 0.9566—though this represents only a marginal improvement over Model 

2. 

Thus, as expected, in the presence of a fixed two-way interaction in the DGP, MAIHDA 

Model 3—which accounts for this interaction—produces the most accurate predicted means in 

terms of correlation with the true means. However, the improvement over Model 2 is minimal. 

Our central finding remains: MAIHDA Model 2 means are much more strongly correlated with 

the true means than those from Model 1, which in turn outperform the Simple Means. 

 

STATISTICAL PROPERTIES OF PREDICTED INTERSECTION MEAN FOR A GIVEN 

INTERSECTION 

Recall from the main text that our goal here is to examine the statistical properties of the 

predicted mean for a given intersection across repeated random samples of individuals from that 

intersection. 

Bias 

The expression for the bias of the MAIHDA Model 3 mean for a given intersection takes the 

same form as that for Models 1 and 2. Specifically, it is the product of two terms: the first 

depends on the model’s reliability, and the second is the deviation of the model-implied mean 

(i.e., the mean implied by the fixed effects) from the true mean. For ease of comparison, we also 

present the bias expressions for the Simple Means, MAIHDA Model 1 Means, and MAIHDA 

Model 2 Means as given in the main text. 

Simple: bias(𝑦̅.𝑗|𝜇𝑗) = 0  

Model 1: bias(𝜇̃1𝑗|𝜇𝑗) = −(1 − 𝑅1𝑗)(𝜇𝑗 − 𝛽1,0)  

Model 2: bias(𝜇̃2𝑗|𝜇𝑗) = −(1 − 𝑅2𝑗){𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)}  
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Model 3: bias(𝜇̃2𝑗|𝜇𝑗) = −(1 − 𝑅3𝑗){𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗 +𝛽2,𝑝+1𝑥1𝑥2)} 
The deviation of the model-implied mean from the true mean in Models 1, 2, and 3 is specified 

through a value of 𝜎𝑢, chosen so that the model-implied mean is 1 standard deviation below the 

true mean in terms of the distribution of deviations across all intersections. This implies that 

approximately 32% of intersections exhibit deviations more extreme than this (so more than 1SD 

away from the true mean in either direction), while 68% have less extreme deviations 

(2(1 − Φ(1)) = 0.32). Importantly, the actual magnitude of this deviation decreases as we move 

from Model 1 to Model 2 to Model 3, reflecting improved accuracy of the model-implied means 

with the inclusion of more fixed covariates. 

Substituting in the true and implied parameter values from the overview table gives the 

bias associated with each approach. 

Approach Values 

Simple means 0 

MAIHDA Model 1 means -0.1401 

MAIHDA Model 2 means -0.1118 

MAIHDA Model 3 means -0.1041 

 

The bias associated with the model-implied mean being 1 standard deviation below the 

true mean decreases from a downward bias of 0.1401 points in Model 1, to 0.118 points in 

Model 2, and further to 0.1041 points in Model 3, reflecting the effect of shrinkage towards the 

model-implied mean. 
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Thus, as expected, when the DGP includes a fixed two-way interaction, MAIHDA Model 

3—which explicitly accounts for this interaction—produces the least biased predicted means 

among the three MAIHDA models. However, the improvement over Model 2 is minimal. Our 

central finding remains: MAIHDA Model 2 means are substantially less biased than Model 1 

means, while only the simple means are truly unbiased. 

 

Variance 

The expression for the variance of the MAIHDA Model 3 mean for a given intersection takes the 

same form as that for Models 1 and 2. Specifically, it equals the squared conditional reliability 

coefficient multiplied by the variance of the simple means. For ease of comparison, we also 

present the expressions for the variance of the Simple Means, MAIHDA Model 1 Means, and 

MAIHDA Model 2 Means as given in the main text. 

Simple: Var(𝑦̅.𝑗|𝜇𝑗) = 𝜎𝑒2𝑛𝑗  

Model 1: Var(𝜇̃1𝑗|𝜇𝑗) = 𝑅1𝑗2 𝜎𝑒2𝑛𝑗  

Model 2: Var(𝜇̃2𝑗|𝜇𝑗) = 𝑅2𝑗2 𝜎𝑒2𝑛𝑗  

Model 3: Var(𝜇̃3𝑗|𝜇𝑗) = 𝑅3𝑗2 𝜎𝑒2𝑛𝑗  

Substituting in the true and implied parameter values from the overview table gives the bias 

associated with each approach. 

Approach Values 

Simple means 0.0850 

MAIHDA Model 1 means 0.0346 
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MAIHDA Model 2 means 0.0027 

MAIHDA Model 3 means 0.0019 

 

The variance of the Simple Means across repeated samples is 0.0850. The variance of the 

MAIHDA Model 1 means is substantially lower, at 0.0346. This variance decreases further for 

the MAIHDA Model 2 means, reaching 0.0027. The variance for the MAIHDA Model 3 means 

is slightly lower still, at 0.0019. 

As expected, when the DGP includes a fixed two-way interaction, MAIHDA Model 3—

which explicitly accounts for this interaction—yields the most consistent predictions of the true 

means by minimizing the variance of predicted means across repeated samples. However, the 

improvement over Model 2 is marginal. Our central findings hold: MAIHDA Model 2 means are 

substantially better than those from Model 1, which in turn outperform the simple means. 

 

Mean Squared Error 

The expression for the mean squared error (MSE) of the MAIHDA Model 3 mean for a given 

intersection takes the same form as for Models 1 and 2. Specifically, it equals the sum of the 

variance and the squared bias. For ease of comparison, we also present the expressions for the 

MSE of the Simple Means, MAIHDA Model 1 Means, and MAIHDA Model 2 Means as given 

in the main text. 

Simple: MSE(𝑦̅.𝑗|𝜇𝑗) = 𝜎𝑒2𝑛𝑗   

Model 1: MSE(𝜇̃1𝑗|𝜇𝑗) = 𝑅1𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅1𝑗)2(𝜇𝑗 − 𝛽1,0)2
  

Model 2: MSE(𝜇̃2𝑗|𝜇𝑗) = 𝑅2𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅2𝑗)2{𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)}2
 (1) 
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Model 3: MSE(𝜇̃3𝑗|𝜇𝑗) = 𝑅3𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅3𝑗)2{𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗 +
𝛽2,𝑝+1𝑥1𝑥2)}2

  

 

We continue to consider the case where the model-implied mean is 1 standard deviation lower 

than the true mean in each model, based on the distribution of deviations for that model. 

Approach Values 

Simple means 0.0850 

MAIHDA Model 1 means 0.0543 

MAIHDA Model 2 means 0.0152 

MAIHDA Model 3 means 0.0128 

 

The MSE associated with the model-implied mean being 1 standard deviation below the 

true mean is 0.0850 for the Simple Mean, substantially lower at 0.0543 for Model 1, further 

reduced to 0.0152 for Model 2, and then marginally decreased to 0.0128 for Model 3. 

Thus, as expected, when the DGP includes a fixed two-way interaction, MAIHDA Model 

3—which explicitly accounts for this interaction—produces the most accurate predicted means 

across repeated samples. However, the improvement over Model 2 is minimal. Our central 

finding remains: MAIHDA Model 2 means achieve substantially higher predictive accuracy than 

Model 1 means, which themselves outperform the simple means. 

 

CONCLUSION 

In this section, we used a specific example to show that even when the true data-generating 

process (DGP) is more complex than MAIHDA Model 2, our key finding still holds: MAIHDA 
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Model 2 means are more predictively accurate measures of the true means than Model 1 means, 

which themselves outperform the Simple Means. We focused on one particular deviation from 

MAIHDA Model 2—specifically, the addition of a single, intentionally large two-way interaction 

as a fixed effect rather than representing it implicitly through intersection random effects. 

Although this example supports our argument, it is only one among many possible departures 

from the MAIHDA Model 2 DGP that merit further investigation. The key point is that 

MAIHDA Model 2 is expected to better approximate most real-world DGPs than either Model 1 

or the Simple Means. Our main conclusion thus remains robust under this assumption. 
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TABLES 
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Table S1 

Summary table for the three prediction methods: simple means, MAIHDA Model 1, and MAIHDA Model 2 

Description Simple Mean Model 1 Model 2 

    

MODELS AND STATISTICS 

Model equation 

for individual 

outcome 

 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 𝑦𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 

Model equation 

for the 

intersection 

mean (model-

implied mean) 

 𝜇𝑗 = 𝛽0,1 + 𝑢1𝑗 𝜇𝑗 = 𝛽0,2 + 𝛽1,2𝑥1𝑗 + ⋯ + 𝛽1,2𝑥1𝑗 + 𝑢2𝑗 

Variance 

Partition 
 VPC1 = 𝜎𝑢12𝜎𝑢12 + 𝜎𝑒12  
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coefficient 

(VPC) 

Proportion 

Change in 

Variance 

(PCV) 

  
PCV = 𝜎𝑢12 − 𝜎𝑢22𝜎𝑢12 . 

Reliability  
𝑅1𝑗 = 𝜎𝑢12𝜎𝑢12 + 𝜎𝑒2𝑛𝑗  𝑅2𝑗 = 𝜎𝑢22𝜎𝑢22 + 𝜎𝑒2𝑛𝑗  

    

PREDICTED MEANS 

Predicted mean 𝑦̅.𝑗 = 1𝑛𝑗 ∑ 𝑦𝑖𝑗
𝑛𝑗

𝑖=1  𝜇̃1𝑗 = 𝑅1𝑗𝑦̅.𝑗 + (1 − 𝑅1𝑗)𝛽1,0 𝜇̃2𝑗 = 𝑅2𝑗𝑦̅.𝑗 + (1 − 𝑅2𝑗)(𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗) 

Degree to which 

simple mean 

is shrunk 

 

𝜇̃1𝑗 − 𝑦̅.𝑗 = (𝑅1𝑗 − 1)(𝑦̅.𝑗 − 𝛽1,0) 

 

𝜇̃2𝑗 − 𝑦̅.𝑗 = (𝑅2𝑗 − 1){𝑦̅.𝑗− (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)} 
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Degree to which 

model-implied 

mean is 

shrunk 

 𝜇̃1𝑗 − 𝛽1,0 = 𝑅1𝑗(𝑦̅.𝑗 − 𝛽1,0) 

𝜇̃1𝑗 − 𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗= 𝑅2𝑗{𝑦̅.𝑗− (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)} 

    

STATISTICAL PROPERTIES OF THE DISTRIBUTION OF PREDICTED INTERSECTION MEANS 

Variance 𝜎𝜇2 + 𝜎𝑒2𝑛  𝑅1𝜎𝜇2 𝜎𝜇2 − (1 − 𝑅2)𝜎𝑢22  

Correlation with 

true means 
√𝑅1 √𝑅1 √PCV + 𝑅2(1 − PCV) 

    

STATISTICAL PROPERTIES OF PREDICTED INTERSECTION MEAN FOR A GIVEN INTERSECTION 

Bias 0 −(1 − 𝑅1𝑗)(𝜇𝑗 − 𝛽1,0) −(1 − 𝑅2𝑗){𝜇𝑗 − (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)} 

Variance 
𝜎𝑒2𝑛𝑗  𝑅1𝑗2 𝜎𝑒2𝑛𝑗  𝑅2𝑗2 𝜎𝑒2𝑛𝑗  
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Mean Squared 

Error (MSE) 

𝜎𝑒2𝑛𝑗  𝑅1𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅1𝑗)2(𝜇𝑗 − 𝛽1,0)2
 

𝑅2𝑗2 𝜎𝑒2𝑛𝑗 + (1 − 𝑅2𝑗)2{𝜇𝑗
− (𝛽2,0 + 𝛽2,1𝑥1𝑗 + ⋯ + 𝛽2,𝑝𝑥𝑝𝑗)}2

 

Note. 
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FIGURES 

Figure S1. 

Variance of the simple means (17), MAIHDA Model 1 means (18), and MAIHDA Model 2 

means (19) across the distribution of intersections, plotted against intersection size. The plot 

assumes a Model 2 PCV of 0.90, and equal intersection sizes. The plot is repeated for three 

Model 1 VPC values of 0.01 (small intersectional inequalities), 0.15 (medium) and 0.50 (large).  
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Figure S2. 

Variance of the simple means (17), MAIHDA Model 1 means (18), and MAIHDA Model 2 

means (19) across the distribution of intersections, plotted against intersection size. The plot 

assumes a Model 1 VPC of 0.15, and equal intersection sizes. The plot is repeated for four Model 

2 PCV values of 0.00 (no additive patterning in the intersectional inequalities), 0.50 (low), 0.90 

(medium), and 0.99 (high).  
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Figure S3. 

Variance of the simple means (17), MAIHDA Model 1 means (18), and MAIHDA Model 2 

means (19) across the distribution of intersections, plotted against intersection size. The plot 

assumes a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The plot is repeated for three 

coefficients of variation of intersection sizes of 0 (equal intersection sizes), 1 (medium variation 

in intersection sizes), and 2 (high variation in intersection sizes).  
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Figure S4. 

Correlation between the simple means and the true means (20), MAIHDA Model 1 means and 

the true means (21), and MAIHDA Model 2 means and the true means (22), across the 

distribution of intersections, plotted against intersection size. The plot assumes a Model 2 PCV 

of 0.90, and equal intersection sizes. The plot is repeated for three Model 1 VPC values of 0.01 

(small intersectional inequalities), 0.15 (medium) and 0.50 (large).  
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Figure S5. 

Correlation between the simple means and the true means (20), MAIHDA Model 1 means and 

the true means (21), and MAIHDA Model 2 means and the true means (22), across the 

distribution of intersections, plotted against intersection size. The plot assumes a Model 1 VPC 

of 0.15, and equal intersection sizes. The plot is repeated for three Model 2 PCV values of 0.00 

(no additive patterning in the intersectional inequalities), 0.50 (low), 0.90 (medium), and 0.99 

(high).  
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Figure S6. 

Correlation between the simple means and the true means (20), MAIHDA Model 1 means and 

the true means (21), and MAIHDA Model 2 means and the true means (22), across the 

distribution of intersections, plotted against intersection size. The plot assumes a Model 1 VPC 

of 0.15, and a Model 2 PCV of 0.90. The plot is repeated for three coefficients of variation of 

intersection sizes of 0 (equal intersection sizes), 1 (medium variation in intersection sizes), and 2 

(high variation in intersection sizes).  
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Figure S7. Bias of the simple mean (23), MAIHDA Model 1 mean (24), and MAIHDA Model 2 

mean (25) across repeated samples of individuals for a given intersection, plotted against the 

difference between the true mean and the model-implied mean for that intersection. The plot 

assumes an intersection size of 10 individuals, and a Model 1 VPC of 0.15. The plot is repeated 

three times for intersection sizes of 5 (very small), 10 (small), and 50 (medium) individuals. The 

Model 1 model-implied mean corresponds to the overall mean, while the Model 2 model-implied 

mean reflects the additive effects of the social identities defining the intersection. The bias of the 

MAIHDA Model 2 mean is shown over a narrower range due to smaller differences between the 

true and model-implied means in this model. 
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Figure S8. Bias of the simple mean (23), MAIHDA Model 1 mean (24), and MAIHDA Model 2 

mean (25) across repeated samples of individuals for a given intersection,, plotted against the 

difference between the true mean and the model-implied mean for that intersection. The plot 

assumes an intersection size of 10 individuals, and a Model 2 PCV of 0.90. The plot is repeated 

for three Model 1 VPC values of 0.01 (small intersectional inequalities), 0.15 (medium) and 0.50 

(large). The Model 1 model-implied mean corresponds to the overall mean, while the Model 2 

model-implied mean reflects the additive effects of the social identities defining the intersection. 

The bias of the MAIHDA Model 2 mean is shown over a narrower range due to smaller 

differences between the true and model-implied means in this model. 
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Figure S9. Bias of the simple mean (23), MAIHDA Model 1 mean (24), and MAIHDA Model 2 

mean (25) across repeated samples of individuals for a given intersection,, plotted against the 

difference between the true mean and the model-implied mean for that intersection. The plot 

assumes an intersection size of 10 individuals, and a Model 1 VPC of 0.15. The plot is repeated 

for three Model 2 PCV values of 0.00 (no additive patterning in the intersectional inequalities), 

0.50 (low), 0.50 (low), 0.90 (medium), and 0.99 (high). The Model 1 model-implied mean 

corresponds to the overall mean, while the Model 2 model-implied mean reflects the additive 

effects of the social identities defining the intersection. The bias of the MAIHDA Model 2 mean 

is shown over a narrower range due to smaller differences between the true and model-implied 

means in this model. 
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Figure S10. Variance of the simple mean (26), MAIHDA Model 1 mean (27), and MAIHDA 

Model 2 mean (28) across repeated samples of individuals for a given intersection, plotted 

against the difference between the true mean and the model-implied mean for that intersection. 

The plot assumes a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The plot is repeated three 

times for intersection sizes of 5 (very small), 10 (small), and 50 (medium) individuals. The 

Model 1 model-implied mean corresponds to the overall mean, while the Model 2 model-implied 

mean reflects the additive effects of the social identities defining the intersection. The bias of the 

MAIHDA Model 2 mean is shown over a narrower range due to smaller differences between the 

true and model-implied means in this model. 
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Figure S11. Variance of the simple mean (26), MAIHDA Model 1 mean (27), and MAIHDA 

Model 2 mean (28) across repeated samples of individuals for a given intersection, plotted 

against the difference between the true mean and the model-implied mean for that intersection. 

The plot assumes an intersection size of 10 individuals, and a Model 2 PCV of 0.90. The plot is 

repeated for three Model 1 VPC values of 0.01 (small intersectional inequalities), 0.15 (medium) 

and 0.50 (large). The Model 1 model-implied mean corresponds to the overall mean, while the 

Model 2 model-implied mean reflects the additive effects of the social identities defining the 

intersection. The bias of the MAIHDA Model 2 mean is shown over a narrower range due to 

smaller differences between the true and model-implied means in this model. 
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Figure S12. Variance of the simple mean (26), MAIHDA Model 1 mean (27), and MAIHDA 

Model 2 mean (28) across repeated samples of individuals for a given intersection, plotted 

against the difference between the true mean and the model-implied mean for that intersection. 

The plot assumes an intersection size of 10 individuals, and a Model 1 VPC of 0.15. The plot is 

repeated for three Model 2 PCV values of 0.00 (no additive patterning in the intersectional 

inequalities), 0.50 (low), 0.90 (medium), and 0.99 (high). The Model 1 model-implied mean 

corresponds to the overall mean, while the Model 2 model-implied mean reflects the additive 

effects of the social identities defining the intersection. The bias of the MAIHDA Model 2 mean 

is shown over a narrower range due to smaller differences between the true and model-implied 

means in this model. 
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Figure S13. 

Mean squared error of the simple mean (29), MAIHDA Model 1 mean (30), and MAIHDA 

Model 2 mean (31) across repeated samples of individuals for a given intersection, plotted 

against the difference between the true mean and the model-implied mean for that intersection. 

The plot assumes a Model 1 VPC of 0.15, and a Model 2 PCV of 0.90. The plot is repeated three 

times for intersection sizes of 5 (very small), 10 (small), and 50 (medium) individuals. The 

Model 1 model-implied mean corresponds to the overall mean, while the Model 2 model-implied 

mean reflects the additive effects of the social identities defining the intersection. The bias of the 

MAIHDA Model 2 mean is shown over a narrower range due to smaller differences between the 

true and model-implied means in this model. 
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Figure S14. Mean squared error of the simple mean (29), MAIHDA Model 1 mean (30), and 

MAIHDA Model 2 mean (31) across repeated samples of individuals for a given intersection, 

plotted against the difference between the true mean and the model-implied mean for that 

intersection. The plot assumes an intersection size of 10 individuals, and a Model 2 PCV of 0.90. 

The plot is repeated for three Model 1 VPC values of 0.01 (small intersectional inequalities), 

0.15 (medium) and 0.50 (large). The Model 1 model-implied mean corresponds to the overall 

mean, while the Model 2 model-implied mean reflects the additive effects of the social identities 

defining the intersection. The bias of the MAIHDA Model 2 mean is shown over a narrower 

range due to smaller differences between the true and model-implied means in this model. 
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Figure S15. Mean squared error of the simple mean (29), MAIHDA Model 1 mean (30), and 

MAIHDA Model 2 mean (31) across repeated samples of individuals for a given intersection, 

plotted against the difference between the true mean and the model-implied mean for that 

intersection. The plot assumes an intersection size of 10 individuals, and a Model 1 VPC of 0.15. 

The plot is repeated for three Model 2 PCV values of 0.00 (no additive patterning in the 

intersectional inequalities), 0.50 (low), 0.90 (medium), and 0.99 (high). The Model 1 model-

implied mean corresponds to the overall mean, while the Model 2 model-implied mean reflects 

the additive effects of the social identities defining the intersection. The bias of the MAIHDA 

Model 2 mean is shown over a narrower range due to smaller differences between the true and 

model-implied means in this model. 

 


