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1. Introduction

In this paper we focus on studying the problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝a + b

∫
Q 

|u(x) − u(y)|p
|x− y|N+ps

dx dy

⎞
⎠ (−Δp)su = |u|p∗

s−2u + λg(x, u) in Ω

u = 0 in RN \Ω

(Pλ
a,b)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, Q = R2N \ O and O = Ωc ×Ωc, a and 
b are non-negative real numbers such that a + b > 0, s ∈ (0, 1), 1 < p < 2 or p > 2, and ps < N < 2ps
and p∗s denotes the critical exponent for the Sobolev embedding of W s,p(RN ) into Lebesgue spaces. The 
p-fractional Laplacian, up to a normalization constant, can be dfined as

(−Δp)su(x) = 2 lim
ε→0+

∫
RN\Bε(0)

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|N+ps

dy.
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Problem (Pλ
a,b) is a higher dimensional non-local version of the classical Kirchhoff equation

ρh ∂2
ttu−

⎛
⎝p0 + Eh

2L 

L ∫
0 

|∂xu|2 dx

⎞
⎠ ∂2

xxu + δ ∂tu + g(x, u) = 0 (1.1)

for t ≥ 0 and 0 < x < L, where u = u(t, x) is the lateral displacement at time t and at position x, E is 
the Young modulus, ρ is the mass density, h is the cross section area, L the length of the string, p0 is the 
initial stress tension, δ the resistance modulus and g is an external force. As highlighted by Murthy in [29], 
in [17], Kirchhoff’s original idea was to generalize the well-known d’Alembert equation of a vibrating string 
by incorporating also the lateral displacement.

Afterwards, the equation introduced by Kirchhoff has found applications in different fields. In fact, as 
pointed out by Alves et al. in [1], solutions u of the Kirchhoff equation can also be used to model a process 
which depends on the average of itself such as the population density. Additionally, operators similar to the 
one present in (1.1) appear in phase transition phenomena, continuum mechanics, population dynamics, 
game theory, nonlinear optics, and minimal surfaces. The reader interested in the applications of the model 
can consult the survey [7], [3], [10], [11], [12], [21] and the references therein.

Starting from some ideas contained in [26], the purpose of this paper is to study the existence of solutions 
of (Pλ

a,b) when Ω ⊂ RN and ps < N < 2ps. By using a variational approach, we will prove the existence of 
critical points, that correspond to weak solutions of (Pλ

a,b), of the functional

Iλ(u) = a

p 
‖u‖p + b 

2p‖u‖
2p − 1 

p∗s
‖u‖p

∗
s

p∗
s
− λ

∫
Ω

G(x, u) dx

where G is the primitive of g (we refer to the next section for the precise definition of the functional 
framework where we will work). The geometry of the functional Iλ depends on the interplay between the 
parameters N , p, and s. Indeed, when N > 2ps, it is possible to prove that the functional is coercive, and 
the natural approach is to look for non-trivial minimizers of the functional. The author of this paper, in 
collaboration with Fiscella, Molica Bisci, and Secchi in [5] and [4], by adapting some ideas developed in 
[14], proved that there is a non-trivial minimum for sufficiently large λ. Since this minimum is attained at 
a negative level, they are also able to exhibit that the functional possesses a mountain pass geometry, and 
they prove the existence of a second solution. On the other hand, when ps < N < 2ps, the functional Iλ is 
unbounded from below, so the standard approach is to look for solutions of mountain pass type. The case 
N = 2ps is somehow special and must be treated separately since the highest power of the norm in the 
functional corresponding to the operator has the same order as the critical exponent.

The interest in generalizing these kinds of problems to the quasi-linear fractional case extends beyond 
purely mathematical purposes. For instance, Fiscella and Valdinoci in [15] constructed a model for a vibrat
ing string in where the tension of the string is related to a non-local measurement of its displacement from 
the rest position. In addition to that, the study of non-local quasi-linear problems has considerably increased 
in recent years. Pucci et al. in [28] obtained a multiplicity result for the Kirchhoff-Schrödinger equation in 
RN , adding a potential into the Kirchhoff operator. Xiang et al. in [30] proved the existence of a nontrivial 
weak solution to a problem driven by a non-local operator represented by a singular integral with a generic 
kernel. Furthermore, Xiang et al. in [31] proved the existence of a nontrivial solution for a problem involving 
the fractional p-Laplace operator and a critical exponent. We would also like to mention [22], where the 
authors established the existence of a sequence of nontrivial solutions using the symmetric mountain pass 
theorem under the assumption that the nonlinear term f satifies a superlinear growth condition.

The main mathematical difficulty in studying problem (Pλ
a,b) is the presence of a critical term in the sense 

of the Sobolev exponent. Indeed, the Sobolev space where it is natural to look for solutions is not compactly 
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embedded in the Lebesgue space Lp∗
s (Ω). As a result of this lack of compactness, standard variational 

techniques cannot be applied, and the Palais-Smale condition generally fails.
The study of problems with critical exponents began with the seminal paper [9], where the author 

established the validity of the Palais-Smale condition under a certain threshold. They showed that the 
mountain pass critical value of the problem belongs to the interval where the Palais-Smale condition holds. 
Following a similar approach, Naimen analyzed the levels where the Palais-Smale condition is verfied for 
a Kirchhoff-type equation with s = 1 and p = 2 in [26], proving the existence of a positive mountain pass 
solution. In that paper, the author assumed the so-called Ambrosetti-Rabinowitz condition on G, i.e., that 
there exists a ϑ ∈ (2, 6) such that g(x, t)t − ϑG(x, t) ≥ 0 for all x ∈ Ω and u ≥ 0. However, Naimen had 
to deal with the case ϑ ∈ (2, 4] using a truncated functional and relied on a less favorable Palais-Smale 
threshold.

In this paper, we extend Naimen’s result to the case of a fractional quasi-linear operator and also address 
the 2p-superlinear case, i.e., when ϑ = 2p, without using a truncation argument. To achieve this, we replace 
the classical Ambrosetti-Rabinowitz condition with a variant and use a version of the mountain pass theorem 
with the Cerami condition. We refer to [18] for a survey of possible generalizations of the AR-condition. In 
order to study at which level the Cerami condition is valid, we will invoke the concentration-compactness 
principle developed by Lions in [19] and [20] and generalized to the p-fractional case by Mosconi and 
Squassina in [23]. Compared with Naimen’s result, analyzing the validity of the Cerami (or equivalently the 
Palais-Smale) condition for problem (Pλ

a,b) is more challenging, as it is not possible to explicitly characterize 
the value under which the Cerami condition holds. Furthermore, the non-local nature of the operator 
introduces additional difficulties in relating the value of the candidate’s critical level with the Cerami 
threshold. A similar result to the one proved here is present in [15], but we do not use truncation arguments 
to study the 2p-superlinear case. Additionally, in the 2p-sublinear case, the values of λ for which we have 
solutions do not depend on the measure of the domain Ω. We would like to emphasize that, to the best of 
our knowledge, the results we are going to prove are new even for the local quasi-linear case when s = 1
and p �= 2.

To see a complete summary of the notation used we refer the reader to the next section. Our paper is 
structured as follows. Section 2 is devoted to introducing the notation, the functional framework we will 
use, and some preliminary lemmas. In Section 3 we will prove Theorem 1.2, while in Section 4 we give a 
proof of Theorem 1.3. To conclude the section we collect the hypothesis made on the nonlinearity, and we 
state the main theorems.

(H1) g : Ω × R → R is a continuous function such that g(x, 0) = 0 for almost every x ∈ Ω, g(x, t) ≥ 0 for 
t ≥ 0 and g(x, t) ≤ 0 for t ≤ 0 for all x ∈ Ω;

(H2) limt→0 g(x, t)/|t|p−1 = 0 and lim|t|→+∞ g(x, t)/|t|p∗
s−1 = 0 uniformly with respect to x ∈ Ω;

(H3) there exist θ ∈ [2p, p∗s) such that

ξ(x, t1) ≤ ξ(x, t2) for a.e x ∈ Ω and all 0 ≤ t1 ≤ t2 or t2 ≤ t1 ≤ 0

where ξ(x, t) = g(x, t)t− θG(x, t);
(H4) there is a nonempty open set ω ∈ Ω and an interval I ⊂ (0,+∞) such that g(x, t) > 0 if (x, t) ∈ ω× I.
(H5) there exist θ ∈ (p, 2p) such that

ξ(x, t1) ≤ ξ(x, t2) for a.e x ∈ Ω and all 0 ≤ t1 ≤ t2 or t2 ≤ t1 ≤ 0,

where ξ(x, t) = g(x, t)t− θG(x, t);
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Remark 1.1. Fix ϑ ∈ (p, p∗s) and consider the nonlinearities

g1(x, t) = |t|ϑt g2(x, t) = |t|ϑt log(1 + |t|).

Observe that if ϑ ∈ [2p, p∗s) then g1 and g2 fufill hypothesis (H1) − (H4), whereas if ϑ ∈ (p, 2p) the g1

satifies (H1) − (H2) and (H4) − (H5). In particular, notice that in the first case g2 fails to satisfy an 
Ambrosetti-Rabinowitz type condition introduced in [2] when ϑ = 2p, that would require the existence of 
q ∈ (2p, p∗s) such that

g(x, t)t− qG(x, t) ≥ 0

for all x ∈ Ω and t ∈ R.

We end the section with the statement of the two main theorems.

Theorem 1.2. Let a, b ≥ 0 and a + b > 0. If Hypothesis (H1) − (H4) hold, then there exists a λ̃1 > 0 such 
that problem (Pλ

a,b) admits a non-trivial solution for all λ ≥ λ̃1 > 0.

Theorem 1.3. Let a, b > 0. If Hypothesis (H1)− (H2) and (H4)− (H5) hold, then there exists a λ̃2 > 0 such 
that problem (Pλ

a,b) admits a non-trivial solution for all λ ≥ λ̃2 > 0.

Remark 1.4. We point out that λ̃2 ≥ λ̃1 > 0. In fact, these parameters only depend on Hypothesis (H1), 
(H2) and (H4), so the candidate critical value cλ will enter in the Cerami regime for a smaller value of λ
due to larger range where the Cerami condition holds. See also Remark 4.5

2. Abstract framework and preliminary results

This section is devoted to fixing the notation we will use throughout the paper and to introducing the 
functional setting in which it will work. We will denote by ‖ · ‖p the standard norm of the Lebesgue space 
Lp(RN ), and we dfine the fractional Sobolev space

W s,p(RN ) :=

⎧⎨
⎩u ∈ Lp(RN ) : 

∫
R2N

|u(x) − u(y)|p
|x− y|N+ps

dx dy < ∞

⎫⎬
⎭ ,

endowed with the norm ‖u‖W s,p(RN ) = ‖u‖p + ‖u‖, where

‖u‖p =
∫

R2N

|u(x) − u(y)|p
|x− y|N+ps

dx dy.

Since we aim to study the existence of solutions to (Pλ
a,b) with some boundary conditions, we will not work 

directly in W s,p(RN ). Instead, we will consider functions that are zero outside of Ω. More precisely, we will 
work in the space

Xs,p
0 (Ω) :=

{
u ∈ W s,p(RN ) : u = 0 a.e. in RN \Ω

}
.

Remark 2.1. The norm ‖ · ‖ is equivalent to ‖ · ‖W s,p(RN ) in Xs,p
0 (Ω).
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We consider the potential operator Ap associated to the functional u 
→ ‖u‖p/p on Xs,p
0 (Ω), i.e. the 

operator Ap : Xs,p
0 (Ω) → (Xs,p

0 (Ω))∗ such that

〈Ap(u), v〉 =
∫

RN×RN

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))
|x− y|N+sp

dx dy

for every u, v ∈ Xs,p
0 (Ω). It is trivial to see,

〈Ap(u), u〉 = ‖u‖p, |〈Ap(u), v〉| ≤ ‖u‖p−1 ‖v‖ .

The following lemma provides a sufficient condition under which weakly convergent sequences also converge 
strongly in Xs,p

0 (Ω).

Lemma 2.2. If a sequence (un)n converges weakly to u in Xs,p
0 (Ω) and

〈Ap(un), un − u〉 → 0,

then ‖un − u‖ → 0.

Proof. See [27, Proposition 1.3] for a proof. �
The following Theorem is a classical result on fractional Sobolev spaces. For a proof, we refer to [13].

Theorem 2.3. Let s ∈ (0, 1) and p ∈ [1,∞, ) be such that N > ps. Let q ∈ [1, p∗s), Ω ⊂ RN be a bounded 
Lipschitz domain and F a bounded subset of Lp(Ω) such that

sup 
u∈F

∫
R2N

|u(x) − u(y)|p
|x− y|N+ps

dx dy < ∞.

Then F is relatively compact in Lq(Ω).

We also recall that the best Sobolev constant in the Sobolev inequality can be dfined as

Ss,p := inf
u∈Xs,p

0 (Ω)\{0}

‖u‖p
‖u‖pp∗

s

(2.1)

For the reader’s convenience, we conclude this section by recalling the definition of the Cerami condition 
at level c (abbreviated as (C)c in the sequel). Additionally, we present a variant of the classic mountain 
pass theorem, where the classical Palais-Smale condition is replaced by the Cerami condition.

Definition 2.4. Let X be a Banach space, and let X∗ be its topological dual. Let ϕ ∈ C1(X); we say that a 
sequence (un)n ⊂ X is a (C)c sequence for ϕ if ϕ(un) → c and if (1 + ‖un‖)‖ϕ′(un)‖ → 0 in X∗ as n → ∞. 
We also say that ϕ satifies the (C)c condition if every (C)c sequence for ϕ admits a strongly convergent 
subsequence.

Before presenting the Mountain Pass Theorem, we state the following Proposition, which will be useful 
in analyzing the validity of the (C)c condition.
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Proposition 2.5. Let (un)n ⊂ Xs,p
0 (Ω) a bounded sequence. Suppose that ϑ ∈ C∞(RN ) is such that 0 ≤ ϑ ≤ 1, 

ϑ = 1 in B(0, 1) and ϑ = 0 in RN \B(0, 2). For q ∈ RN , let ϑε(x) = ϑ
(
x−q
ε 
)
. Then

lim
ε→0

lim
n→∞

∫
R2N

|un(y)|p |ϑε(x) − ϑε(y)|p

|x− y|N+ps
dx dy = 0.

Proof. The verfication of the limit is similar to [15, Theorem 2]. We omit the details. �
We conclude the section by stating a variant of the classical Mountain Pass theorem, where the classic 

Palais-Smale condition is replaced by the Cerami condition. This will be the main tool that will allow us to 
show the existence of solutions for problem (Pλ

a,b).

Theorem 2.6. If X is a Banach space, ϕ ∈ C1(X) satifies the C-condition, u0, u1 ∈ X satisfy

max{ϕ(u0), ϕ(u1)} ≤ inf{ϕ(u) : ‖u− u0‖ = ρ} = ηρ, ‖u1 − u0‖ > ρ > 0,

set

Γ := {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}

and

c := inf
γ∈Γ

sup 
t∈[0,1]

ϕ(γ(t)),

then c ≥ ηρ and c is a critical value for ϕ.

A proof of this Theorem can be found in [24, Theorem 5.40].

3. Existence of solutions with Hypothesis (H3)

In this section, we present the proof of Theorem 1.2. The proof of the Theorem relies on a variational 
approach, so we introduce the functional

Iλ(u) = a

p 
‖u‖p + b 

2p‖u‖
2p − 1 

p∗s
‖u‖p

∗
s

p∗
s
− λ

∫
Ω

G(x, u) dx

whose critical points correspond to weak solutions of (Pλ
a,b). We would like to emphasize that under the 

conditions (H1)− (H2) the functional Iλ is well dfined and continuously Fréchet differentiable on the space 
Xs,p

0 (Ω). The main tool we will exploit to produce the solution is Theorem 2.6. Thus, we begin by showing 
that the functional Iλ possesses a mountain pass geometry.

Lemma 3.1. If g satifies Hypothesis (H1) − (H2), then there exist R > 0 such that Iλ(u) > 0 if ‖u‖ = R

and w ∈ Xs,p
0 (Ω), with ‖w‖ > R, such that Iλ(w) ≤ 0.

Proof. We start noticing that hypothesis (H1) and (H2) imply that given ε > 0 we can find Cε > such that

G(x, t) ≤ ε|t|p + Cε|t|p
∗
s .

Using this and recalling that Xs,p
0 (Ω) ↪→ Lq(Ω) continuously for q ∈ [p, p∗s], we obtain
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Iλ(u) ≥
(
a

p 
− ε

)
‖u‖p + b 

2p‖u‖
2p − C̃ε‖u‖p

∗
s

for some C̃ε > 0. From this, it is clear that the first part of the Lemma is obtained by selecting ε and R
small enough, recalling that a+ b > 0 and that p∗s > 2p. In order to prove the second part of the statement, 
take v ∈ Xs,p

0 (Ω) and observe that Iλ(ζv) → −∞ as ζ → ∞, so it suffices to take w = ζv with ζ large 
enough. �

Now, we begin the analysis of Cerami sequences. The first step is to prove that such sequences are 
bounded in Xs,p

0 (Ω), allowing us to extract a weakly convergent subsequence.

Proposition 3.2. Assume g satifies (H1)-(H3), then every (C)c sequence for the functional Iλ is bounded.

Proof. Let (un)n ⊂ Xs,p
0 (Ω) be a (C)c sequence for Iλ, i.e. a sequence such that

Iλ(un) → c for some c ∈ R (3.1)

and

(1 + ‖un‖)I ′
λ(un) → 0 in (Xs,p

0 (Ω))∗ (3.2)

as n → ∞. By contradiction, we suppose that ‖un‖ → ∞ as n → ∞, and we dfine a new sequence 
yn := un/‖un‖. Obviously, this new sequence yn is bounded in Xs,p

0 (Ω), so it is not restrictive to assume
⎧⎪⎪⎨
⎪⎪⎩
yn ⇀ y inXs,p

0 (Ω)
yn → y in Lq(Ω) for all q ∈ [1, p∗s)
yn → y a.e inRN

since the embedding Xs,p
0 (Ω) ↪→ Lq(Ω) is compact for every q ∈ [1, p∗s). At this point, we divide our 

analysis separating the case y = 0 and y �= 0. Let us first see what happens in the case y �= 0. Set 
Ω0 := {x ∈ Ω | y(x) = 0}, and observe that clearly

|yn(x)| → +∞ as n → ∞ in Ωc
0.

Thus, Fatou’s Lemma implies that

lim inf
n→∞ 

1 
‖un‖2p

⎛
⎝ 1 
p∗s

∫
Ω

|un|p
∗
s dx +λ

∫
Ω

G(x, un) dx

⎞
⎠

≥
∫
Ωc

0

|y|2p lim inf
n→∞ 

|un|p
∗
s−2p dx = +∞, (3.3)

where the last equality arises from p∗s − 2p > 0 since ps < N < 2ps. On the other hand,

1 
‖un‖2p

⎛
⎝ 1 
p∗s

∫
Ω

|un|p
∗
s dx + λ

∫
Ω

G(x, un) dx

⎞
⎠

= a

p 
1 

‖un‖p
+ b 

2p − 1 
‖un‖2p Iλ(un) → b 

2p
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using (3.1) as n → ∞. This clearly contradicts (3.3). Now, we draw our attention to the case y = 0. Take 
η > 0, which will be determined later, set a new sequence of functions vn := ηyn, and observe that

0 <
η

‖un‖
≤ 1 (3.4)

for sufficiently large values of n. It is worth noting that, up to a subsequence, ‖yn‖p
∗
s

p∗
s
→ L ≥ 0 (notice that 

L = +∞ is not allowed because of (2.1)). We proceed by dividing the proof into two further sub-cases based 
on whether L = 0 or L > 0. If L > 0, let ζn be chosen such that

Iλ(ζnun) = min
0≤ζ≤1

Iλ(ζun).

First of all, we emphasize that ∫
Ω

G(x, vn) dx → 0 (3.5)

as n → ∞, exploiting Hypothesis (H1)-(H2), the Lebesgue Dominated convergence Theorem, and the fact 
that vn → 0 in Lq(Ω) for all q ∈ [1, p∗s). Secondly, we see that

Iλ(ζnun) ≤ Iλ(vn) = a

p 
ηp + b 

2pη
2p − ηp∗s

p∗s
‖yn‖p

∗
s

p∗s − λ

∫
Ω

G(x, vn) dx.

Letting n → ∞, using (3.5), we get

lim
n→∞

Iλ(ζnun) ≤ a

p 
ηp + b 

2pη
2p − ηp∗s

p∗s
L.

From this, we infer

lim
n→∞

Iλ(ζnun) = −∞ (3.6)

as p∗s− > p and we can select η as large as we desire. Now, we point out that (3.6) eventually implies 
ζn ∈ (0, 1), since Iλ(0) = 0 and Iλ(un) → c. So, it is possible to compute the derivative with respect to ζ
to obtain

d 
dζ

∣∣∣∣
ζ=ξn

Iλ(ζun) = 0,

which implies ∫
Ω

g(z, ζnun)ζnun dx = a‖ζnun‖p + b‖ζnun‖2p − ‖ζnun‖p
∗
s

p∗
s
. (3.7)

Applying (3.7) in the expression below, and using the fact that ξ(x, ζnun) ≥ ξ(x, 0) = 0 a.e. in Ω by (H3), 
we have

θIλ(ζnun) = a

(
θ

p
− 1
)
‖ζnun‖p + b

(
θ

2p − 1
)
‖ζnun‖2p

+
(

1 − θ

p∗s

)
‖ζnun‖p

∗
s

p∗
s

+
∫
Ω

ξ(x, ζnun) dx ≥ 0.
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Choosing initially η > 0 large enough such that Iλ(ζnun) < 0 leads to a contradiction.
In the case in which L = 0, we select ζn such that

Iλ(ζnun) = max
0≤ζ≤1

Iλ(ζun).

We have that

Iλ(ζnun) ≥ Iλ(vn) = a

p 
ηp + b 

2pη
2p − ηp∗s

p∗s
‖yn‖p

∗
s

p∗s − λ

∫
Ω

G(x, vn) dx.

Hence, noting that (3.5) still holds, we obtain

lim
n→∞

Iλ(ζnun) ≥ a

p 
ηp + b 

2pη
2p,

from which we deduce

lim
n→∞

Iλ(ζnun) = +∞ (3.8)

since η is arbitrary. Now, similarly to the previous case, we eventually have ξn ∈ (0, 1), so

d 
dζ

∣∣∣∣
ζ=ξn

Iλ(ζun) = 0

and we get again (3.7). Finally, exploiting (3.1), (3.2), (3.7) together with hypothesis (H3), we obtain

θIλ(ζnun) = a

(
θ

p
− 1

)
‖ζnun‖p + b

(
θ

2p − 1
)
‖ζnun‖2p

+
(

1 − θ

p∗s

)
‖ζnun‖p

∗
s

p∗
s

+
∫
Ω

ξ(x, ζnun) dx

≤ |θIλ(un) − I ′
λ(un) [un]| ≤ C

for some C > 0. This last expression contradicts (3.8) and concludes the proof. �
Once we established the boundedness of (C)c sequences, we can draw our attention on trying to un

derstand if there are some values c ∈ R such that the (C)c condition holds. Before doing that, we need a 
preliminary lemma.

Lemma 3.3. Let a, b ≥ 0 such that a + b > 0 and set

f(t) := a + bt− t
p∗s
p −1

S
p∗s
p 

s,p

and f̃(t) := aSs,pt
p 
p∗s + bS2

s,pt
2 p 

p∗s − t.

The following facts hold:

1. the equation f(t) = 0 has a unique positive solution that will be denoted by Ka,b
s,p ;

2. the equation f̃(t) = 0 has a unique positive solution and it is 
(
Ka,b

s,p

Ss,p

) p∗s
p 

;
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3. the quantity

a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p > 0.

Proof. The existence of a unique positive solution of f(t) = 0 and f̃(t) = 0 is an easy exercise of calculus, 
taking into account that p

∗
s

p − 1 > 1 and 0 < 2 p 
p∗
s
< 1 since ps < N < 2ps. Also, notice that

f̃

((
Ka,b

s,pS
−1
s,p

) p∗s
p 
)

= Ka,b
s,pf

(
Ka,b

s,p

)
= 0.

Regarding the last point, we dfine the function

h(t) := a

p 
tp + b 

2pt
2p − S

− p∗s
p 

s,p

p∗s
tp

∗
s

whose derivative is

h′(t) = atp−1 + bt2p−1 − S
− p∗s

p 
s,p tp

∗
s−1.

It is easy to check that there is a unique maximum point tmax > 0 of h such that h(tmax) > 0 and that

h′
(

p

√
Ka,b

s,p

)
=
(
Ka,b

s,p

) p−1
p f

(
Ka,b

s,p

)
= 0. (3.9)

Therefore, it must be

h

(
p

√
Ka,b

s,p

)
= a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p > 0. �

The next proposition allows to recover strong convergence in Lp∗
s (Ω) for a (C)c sequence for Iλ with 

some specific values of c.

Proposition 3.4. Assume g satifies Hypothesis (H1)-(H3) and that (un)n ⊂ Xs,p
0 (Ω) is a (C)c sequence for 

Iλ with

c <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p 

Then there is u ∈ Xs,p
0 (Ω) such that un → u in Lp∗

s (Ω) up to a subsequence.

Proof. We begin by observing that the sequence un is bounded in Xs,p
0 (Ω) as shown in Proposition 3.2. 

Thus, since the embedding Xs,p
0 (Ω) ↪→ Lq(Ω) is compact for every q ∈ [1, p∗s) as established in [13], we have 

un → u in Lq(Ω) for all q ∈ [1, p∗s) and in particular un(x) → u(x) a.e. in RN as n → ∞.
We also notice, thanks to the Hölder inequality, that the sequence (un)n is bounded in the space of 

measures M(Ω). So, according to [23, Theorem 2.5], there are two Borel regular measures μ and ν, and a 
set of indexes J at most countable corresponding to some points (xj)j∈J ⊂ Ω such that

|Dsun|p(x) ⇀∗ μ and |un|2
∗
s (x) ⇀∗ ν inM(Ω)
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where

ν = |u|p∗
s +

∑
j∈J

νjδxj

and

μ ≥ (−Δp)su +
∑
j∈J

μjδxj
(3.10)

with

νj = ν ({xj}) μj = μ ({xj}) .

In one of the expressions above, we have used the notation

|Dsu|p(x) :=
∫
RN

|u(x) − u(y)|p
|x− y|N+ps

dy for a.e. x ∈ RN .

In addition to that, we have the following inequality

μj ≥ Ss,pν
p 
p∗s
j . (3.11)

At this point, we assert that the set J is empty. If this was false, then we would be able to find at least an 
index j0 ∈ J and a point xj0 with νj0 �= 0 associated to it. Fix ε > 0, take a cut-off function such that

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ ϕε ≤ 1 inΩ

ϕε = 1 inB(xj0 , ε)
ϕε = 0 inΩ \B(xj0 , 2ε).

And notice that also the sequence (unϕε)n is bounded in Xs,p
0 (Ω). Hence,

lim
n→∞

I ′
λ(un) [unϕε] = 0.

Writing out the derivative in full, we get

o(1) = I ′
λ(un) [unϕε]

= (a + b‖un‖p)

×
∫
Q 

|un(x) − un(y)|p−2 (un(x) − un(y)) (un(x)ϕε(x) − un(y)ϕε(y))
|x− y|N+ps

dx dy

−
∫
Ω

|un|p
∗
sϕε dx− λ

∫
Ω

g(x, un)unϕε dx (3.12)

= (a + b‖un‖p)

×

⎡
⎣∫
Q 

un(y) |un(x) − un(y)|p−2 (un(x) − un(y))(ϕε(x) − ϕε(y))
|x− y|N+ps

dx dy
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+
∫
Q 

ϕε(x) |un(x) − un(y)|p

|x− y|N+ps
dx dy

⎤
⎦−

∫
Ω

|un|p
∗
sϕε dx− λ

∫
Ω

g(x, un)unϕε dx.

Now, the first term in the square brackets could be estimated with the help of the Hölder inequality obtaining

(a + b‖un‖p)

×
∫
Q 

un(y) |un(x) − un(y)|p−2 (un(x) − un(y))(ϕε(x) − ϕε(y))
|x− y|N+ps

dx dy

≤ C

⎛
⎝∫

Q 

|un(x) − un(y)|p
|x− y|N+ps

dx dy

⎞
⎠

p−1
p ⎛⎝∫

Q 

|un(y)|p |ϕε(x) − ϕε(y)|p

|x− y|N+ps
dx dy

⎞
⎠

1 
p

≤ C̃

⎛
⎝∫

Q 

|un(y)|p |ϕε(x) − ϕε(y)|p

|x− y|N+ps
dx dy

⎞
⎠

1 
p

for some C, C̃ > 0. In addition, Proposition 2.5 yields

lim
ε→0

lim
n→∞

∫
R2N

|un(y)|p |ϕε(x) − ϕε(y)|p

|x− y|N+ps
dx dy = 0,

hence

lim
ε→0

lim
n→∞

(a + b‖un‖p)

×
∫
Q 

un(y) |un(x) − un(y)|p−2 (un(x) − un(y))(ϕε(x) − ϕε(y))
|x− y|N+ps

dx dy = 0. (3.13)

From the subcritical growth of g and the Lebesgue’s dominated convergence Theorem, it follows

lim
ε→0

lim
n→∞

∫
Ω

g(x, un)unϕε dx = 0. (3.14)

Indeed, for any δ > 0, it is standard to prove that Hypotheses (H1)-(H2) imply

g(x, t) ≤ δ|t|p∗
s−1 + Cδ|t|p−1,

and from this, it follows that

lim
δ→0

lim
ε→0

lim
n→∞

∫
Ω

g(x, un)unϕε dx

≤ lim
δ→0

lim
ε→0

lim
n→∞

δ

∫
Ω

|un|p
∗
sϕε dx + Cδ

∫
Ω

|un|pϕε dx.

≤ lim
δ→0

lim
ε→0

Cδ + Cδ

∫
Ω

|u|pϕε dx = lim
δ→0

Cδ = 0.

Equations (3.13) and (3.14) imply we can rewrite (3.12) as
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o(1) = (a + b‖un‖p)
∫
Q 

ϕε(x) |un(x) − un(y)|p

|x− y|N+ps
dx dy −

∫
Ω

|un|p
∗
sϕε dx

for n large and ε small. Let us analyze what happens to the two remaining integrals separately. For the 
second one, an easy calculation and (3.11) show

lim
ε→0

lim
n→∞

∫
Ω

|un|p
∗
sϕε dx = lim

ε→0

∫
Ω

|u|p∗
sϕε dx + νj0 = νj0 . (3.15)

Regarding the first one, because of (3.10), we have

lim
n→∞

(a + b‖un‖p)
∫
Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy

≥ lim
n→∞

⎡
⎢⎣a ∫

R2N\B(xj0 ,2ε)c×Ωc

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy

+b

⎛
⎝∫

Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy

⎞
⎠

2
⎤
⎥⎦

≥ a

∫
R2N\B(xj0 ,2ε)c×Ωc

ϕε(x) |u(x) − u(y)|p
|x− y|N+ps

dx dy + aμj0

+ b

⎛
⎝∫

Q 

ϕε(x) |u(x) − u(y)|p
|x− y|N+ps

dx dy

⎞
⎠

2

+ bμ2
j0 , 

which implies

lim
ε→0

lim
n→∞

(a + b‖un‖p)
∫
Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy ≥ aμj0 + bμ2
j0 . (3.16)

Putting together (3.12), (3.15), and (3.16), we obtain

0 ≥ aμj0 + bμ2
j0 − νj0 . (3.17)

Using (3.11) and dividing by μj0 , we get

a + bμj0 −
μ

p∗s
p −1

0

S
p∗s
p 

s,p

≤ 0,

which yields μ0 ≥ Ka,b
s,p by Lemma 3.3. On the other hand, exploiting (3.11), from (3.17) it also follows

aSs,pν
p 
p∗s
0 + bS2

s,pν
2 p 

p∗s
0 − ν0 ≤ 0, (3.18)
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yielding ν0 ≥
(
Ka,b

s,p

Ss,p

) p∗s
p 

using again Lemma 3.3. Now, keeping in mind this and μ0 ≥ Ka,b
s,p , recalling 

Hypothesis (H3) and that (un)n is a (C)c sequence, we have

c = lim
n→∞

Iλ(un) = lim
n→∞

(
Iλ(un) − 1

θ
I ′
λ(un) [un]

)

= lim
n→∞

[
a

(
1 
p
− 1

θ

)
‖un‖p + b

(
1 
2p − 1

θ

)
‖un‖2p +

(
1
θ
− 1 

p∗s

)
‖un‖p

∗
s

p∗
s

+1
θ

∫
Ω

ξ(x, ζnun) dx

⎤
⎦

≥ a

(
1 
p
− 1

θ

)
μ0 + b

(
1 
2p − 1

θ

)
μ2

0 +
(

1
θ
− 1 

p∗s

)
ν0

≥ a

(
1 
p
− 1

θ

)
Ka,b

s,p + b

(
1 
2p − 1

θ

)(
Ka,b

s,p

)2 +
(

1
θ
− 1 

p∗s

)(
Ka,b

s,p

Ss,p

) p 
p∗s

(3.19)

= a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p −

Ka,b
s,p

θ
f
(
Ka,b

s,p

)

= a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p 

since f
(
Ka,b

s,p

)
= 0 reaching a contradiction. So, J must be empty, and this implies ‖un‖p∗

s
→ ‖u‖p∗

s
. In 

order to conclude, we invoke the classical Brezis-Lieb Lemma [8, Theorem 1], which states that

‖un − u‖p
∗
s

p∗
s

= ‖un‖p
∗
s

p∗
s
− ‖u‖p

∗
s

p∗
s

+ (1)

since un is bounded Lp∗
s (Ω) and un(x) → u(x) a.e. in Ω. From this, it is immediate to deduce un → u in 

Lp∗
s (Ω). �

Remark 3.5. In the proof above, when we prove that the set J is empty, we have focused on a single point 
to simplify the argument. However, we would like to emphasize that even if the set J contains ifinitely 
many indices, to reach a contradiction it suffices to localize the problem around a single point where the 
norm might concentrate, thus avoiding any convergence issues.

Proposition 3.6. Assume g satifies Hypothesis (H1)-(H3). Then Iλ satifies the (C)c condition for all c
such that

0 < c <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p .

Proof. Take a (C)c sequence for Iλ with

0 < c <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p .

From Proposition 3.2 it follows that (un)n is bounded in Xs,p
0 (Ω). As a consequence of that, by Theorem 2.3

and Proposition 3.4, we have that
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⎧⎪⎪⎨
⎪⎪⎩
un ⇀ u inXs,p

0 (Ω)
un → u in Lq(Ω) for all q ∈ [1, p∗s]
un → u a.e inRN .

(3.20)

Now, testing the derivative of Iλ with un − u, we get

o(1) = I ′
λ(un) [un − u] = (a + b‖un‖p) 〈Ap(un), un − u〉

−
∫
Ω

|un|p
∗
s−2un(un − u) dx− λ

∫
Ω

g(x, un)(un − u) dx. (3.21)

At this point we claim that

lim
n→∞

∫
Ω

|un|p
∗
s−2un(un − u) dx = lim

n→∞

∫
Ω

g(x, un)(un − u) dx = 0. (3.22)

Let us start with the second integral. Given ε > 0, by exploiting (H2), it is possible to find Cε > 0 such 
that |g(x, t)| ≤ ε|t|p∗

s−1 + Cε|t|p−1. From this and the Hölder inequality, it follows that
∣∣∣∣∣∣lim sup

n→∞ 

∫
Ω

g(x, un)(un − u) dx

∣∣∣∣∣∣ ≤ lim sup
n→∞ 

⎛
⎝ε

∫
Ω

|un|p
∗
s−1|un − u| dx

+Cε

∫
Ω

|un|p−1|un − u| dx

⎞
⎠

≤ ε lim sup
n→∞ 

⎛
⎝∫

Ω

|un|p
∗
s dx

⎞
⎠

p∗s−1
p∗s

⎛
⎝∫

Ω

|un − u|p∗
s dx

⎞
⎠

1 
p∗s

+ Cε lim sup
n→∞ 

⎛
⎝∫

Ω

|un|p dx

⎞
⎠

p−1
p ⎛⎝∫

Ω

|un − u|p dx

⎞
⎠

1 
p

≤ C̃ε,

for some C̃ > 0, where in the last step we used the Sobolev inequality and (3.20). Similarly,

∣∣∣∣∣∣lim sup
n→∞ 

∫
Ω

|un|p
∗
s−2un(un − u) dx

∣∣∣∣∣∣ ≤ lim sup
n→∞ 

⎛
⎝∫

Ω

|un|p
∗
s dx

⎞
⎠

p∗s−1
p∗s

⎛
⎝∫

Ω

|un − u|p∗
s dx

⎞
⎠

1 
p∗s

= 0. 

Now, replacing (3.22) in (3.21), we deduce

lim
n→∞

(a + b‖un‖p) 〈Ap(un), un − u〉 = 0.

Furthermore, ‖un‖ → 0, is not admissible since it would contradict c > 0, so

lim
n→∞

〈Ap(un), un − u〉 = 0

recalling a + b > 0. At this point, the proof ends by applying Lemma 2.2. �
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Remark 3.7. Hypothesis (H3), necessary to prove the boundedness of (C)c sequences, could be a bit relaxed 
at the condition that we accept to get a slightly worse value in Proposition 3.4. More precisely, we can 
replace (H3) assuming that there exist β ∈ L1(Ω) non-negative, with

‖β‖1 <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p 

and θ ∈ [2p, p∗s) such that

ξ(x, t1) ≤ ξ(x, t2) + β(x) for a.e x ∈ Ω and all 0 ≤ t1 ≤ t2 or t2 ≤ t1 ≤ 0

where ξ(x, t) = g(x, t)t − θG(x, t). Assuming this, it is possible to prove with a minor modfication of the 
arguments above that the (C)c condition holds for all values c with

0 < c <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p − ‖β‖1.

We point out that this condition has been introduced by Mugnai and Papageorgiou in [25] and used also in 
other papers such as [6] and [16].

With the last Proposition, we finished the analysis of the (C)c condition. Before proceeding with the 
proof of the main Theorem 1.2, we dfine our candidate critical level. Namely, set

Γ := {γ ∈ C([0, 1], Xs,p
0 (Ω)) : γ(0) = 0, γ(1) = w}

where w is provided by Lemma 3.1 and

cλ := inf
γ∈Γ

sup 
t∈[0,1]

Iλ(γ(t)).

We point out that the candidate critical level cλ > 0 thanks Lemma 3.1 and has the following behavior for 
λ large.

Proposition 3.8. Assume g satifies (H1), (H2) and (H4). Then cλ → 0 as λ → +∞.

Proof. Since the problem is translation invariant, let us assume that 0 ∈ ω. Now, take a ϕ ∈ C∞
0 (ω)

and consider v(x) = ϕ|x|−k for some k ∈ (0, 1/2). Extend v to be 0 outside its support and observe that 
v ∈ H1

0 (Ω), and so v ∈ Xs,p
0 (Ω). Recalling that G is non-negative, we immediately see that

Iλ(ζv) ≤ a

p 
ζp‖v‖p + b 

2pζ
2p‖v‖2p − 1 

p∗s
ζp

∗
s‖v‖p

∗
s

p∗
s
− λ

∫
ω

G(x, ζv) dx =: h(ζ).

Since p∗s > 2p, we have that h attains the maximum in a point ζλ ∈ (0,+∞) and we see that

0 = h′(ζλ)
ζpλ

= a‖v‖p + bζpλ‖v‖2p − 1 
p∗s

ζ
p∗
s−p

λ ‖v‖p
∗
s

p∗
s
− λ 

ζpλ

∫
ω

g(x, ζλv)v dx. (3.23)

Exploiting (H1), we obtain

a‖v‖p + bζpλ‖v‖2p ≤ 1 
p∗s

ζ
p∗
s−p

λ ‖v‖p
∗
s

p∗
s
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from which, remembering that N > 2ps, we can deduce that ζλ remains bounded at varying of λ. Moreover, 
we have that ζλ → 0 as λ → ∞. Indeed, if there exists a sequence (λn)n such that λn → ∞ and ζλn

→ β > 0, 
using (H1)-(H2) and the Lebesgue dominated convergence theorem, we would have that

1 
ζpλn

∫
ω

g(x, ζλn
v)v dx → 1 

β

∫
ω

g(x, βv)v dx > 0.

Notice that the positivity of the right-hand side of the previous equation is ensured by (H4) and the fact 
that I ⊂ v(ω). However, this is in contradiction with (3.23), where passing to the limit we see that the only 
admissible case is

1 
β

∫
ω

g(x, βv)v dx = 0

due to the unboundedness of (λn)n. The proof of the Proposition now ends by observing that

cλ ≤ max
ζ≥0 

Iλ(ζv) ≤ a

p 
ζpλ‖v‖p + b 

2pζ
2p
λ ‖v‖2p → 0

as λ → ∞. �
Proof of Theorem 1.2. Thanks to Proposition 3.8, it is possible to find λ̃1 > 0 such that

cλ <
a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p 

for all λ ≥ λ̃1. At this point, Proposition 3.1 shows Iλ has a mountain pass geometry and in addition, the 
(C)c condition holds thanks to Proposition 3.6. Hence, all Hypotheses of Theorem 2.6 are satified. Thus, 
we have the existence of a critical point of Iλ. Moreover, from cλ > 0 it follows that this critical point is 
non-trivial and it corresponds to a non-trivial solution of (Pλ

a,b). �
Remark 3.9. The method used in the proof of Theorem 1.2 also applies to producing solutions of constant 
sign. More precisely, if we restrict to the case of non-negative perturbations g, i.e., we require in (H1) that 
g(x, t) ≥ 0 for t > 0 and g(x, t) = 0 for t ≤ 0 almost everywhere in x ∈ Ω, then it is possible to run again 
all the above arguments to produce a non-trivial critical point u for Iλ. At this point, we test the derivative 
of Iλ with u−, where u− = −min {0, u}, and we obtain

(a + b‖u‖p) 〈Ap(u), u−〉 −
∫
Ω

|u−|p∗
s dx = 0. (3.24)

Now, notice that

(u(x) − u(y))
(
u−(x) − u−(y)

)
= −u+(x)u−(y) − u−(x)u+(y) − (u−(x) − u−(y))2 ≤ −

∣∣u−(x) − u−(y)
∣∣2

where u+ = max {0, u}. Substituting this in (3.24), we get

0 = (a + b‖u‖p)

×
∫
Q 

|u(x) − u(y)|p−2 (u(x) − u(y)) (u−(x) − u−(y))
|x− y|N+ps

dx dy −
∫
Ω

|u−|p∗
s dx



18 L. Appolloni / J. Math. Anal. Appl. 546 (2025) 129194 

≤ − (a + b‖u‖p)
∫
Q 

|u(x) − u(y)|p−2 |u−(x) − u−(y)|2

|x− y|N+ps
dx dy

and so

∣∣u−(x) − u−(y)
∣∣2 = 0 ⇒ u− = const,

but then u− = 0 since u− ∈ Xs,p
0 (Ω).

4. Existence of solutions with Hypothesis (H5)

In this section, we address the existence of solutions for problem (Pλ
a,b) under condition (H5) on the 

nonlinearity. When p < ϑ < 2p, establishing the boundedness of (C)c sequences for the functional Iλ
becomes more challenging. To overcome this difficulty, in the same spirit as in [26], we introduce a truncated 
functional by cutting off the higher-order part of the functional associated with the operator. More precisely, 
we consider a cut-off function ψ ∈ C∞([0,∞) , [0, 1]) where ψ = 1 if 0 ≤ t ≤ 1 and ψ = 0 if t ≥ 2. We 
also assume that −2 ≤ ψ′ ≤ 0. We take a T > 0 that will be determined later, and we set the function 
Ψ(u) := ψ(‖u‖p/T p). We dfine now the truncated functional

Jλ(u) := a

p 
‖u‖p + b 

2p‖u‖
2pΨ(u) − 1 

p∗s
‖u‖p

∗
s

p∗
s
− λ

∫
Ω

G(x, u) dx,

and we observe that is Fréchet differentiable in Xs,p
0 (Ω) and its derivative in u in the direction v, where 

u, v ∈ Xs,p
0 (Ω), is

J ′
λ(u) [v] =

(
a + b‖u‖pΨ(u) + b 

2T p
‖u‖2pΨ ′(u)

)
×

×
∫
Q 

|u(x) − u(y)|p−2 (u(x) − u(y)) (v(x) − v(y))
|x− y|N+ps

dx dy

−
∫
Ω

|u|p∗
s−2uv dx− λ

∫
Ω

g(x, u)v dx.

We point out that since we are working with a truncated functional, after we will find a critical point for 
Jλ, we have the additional step of showing that this is also a weak solution of problem (Pλ

a,b). Now, we fix

T p := min
{

a 
8b ,

a 
4b

θ − p 
2p− θ

}

and we observe that from this choice and the fact that

∣∣‖u|2pψ′(‖u‖p/T p)
∣∣ ≤ 8T 2p

it follows

a + b 
2T p

‖u‖2pψ′
(
‖u‖p
T p

)
≥ a

2 
(4.1)

a

(
1 
p
− 1

θ

)
− b

(
1
θ
− 1 

2p

)
T p ≥ 0 (4.2)
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a

(
1 
p
− 1

θ

)
T p ≥ 8b

(
1
θ
− 1 

2p

)
T 2p. (4.3)

Now, we will prove that also this truncated functional Jλ possesses a mountain pass geometry.

Lemma 4.1. If g satifies Hypothesis (H1) − (H2), then there exist R̃ > 0 such that Jλ(ũ) > 0 if ‖ũ‖ = R̃

and w̃ ∈ Xs,p
0 (Ω), with ‖w̃‖ > R̃, such that Jλ(w̃) ≤ 0.

Proof. The proof is analogous to the one of Lemma 3.1, so we will omit the details. �
After having proved that the truncated functional Jλ has a mountain pass geometry, we can start 

investigating the boundedness of Cerami sequences when Hypothesis (H3) is replaced by (H5).

Proposition 4.2. Assume g satifies (H1), (H2) and (H5), then every (C)c sequence for the functional Jλ is 
bounded.

Proof. The proof is essentially analogous the one of Proposition 3.2, so we will highlight only the differences.
Assume by contradiction that ‖un‖ → ∞ and dfine a new sequence yn := un/‖un‖. As done before, we 

can suppose
⎧⎪⎪⎨
⎪⎪⎩
yn ⇀ y inXs,p

0 (Ω)
yn → y in Lq(Ω) for all q ∈ [1, p∗s)
yn → y a.e inRN .

The case y �= 0 can be treated similarly as in Proposition 3.2, since (3.3) is still valid and

1 
‖un‖2p

⎛
⎝ 1 
p∗s

∫
Ω

|un|p
∗
s dx + λ

∫
Ω

G(x, un) dx

⎞
⎠

= a

p 
1 

‖un‖p
+ b 

2pΨ(un) − 1 
‖un‖2pJλ(un) → 0.

So, suppose y = 0 and notice that up to a subsequence ‖yn‖p
∗
s

p∗
s
→ L as n → ∞ for some L ∈ [0,+∞). We 

analyze separately the cases L = 0 and L > 0.
Case L > 0: we take η > 0 and we observe that for n large enough we have

0 <
η

‖un‖
≤ 1.

Dfine vn := ηyn and let ζn be such that Jλ(ζnun) = min0≤ζ≤1 Jλ(ζun). We notice that

Jλ(ζnun) ≤ Jλ(vn) = a

p 
ηp + b 

2pη
2pψ

(
ηp

T p

)
− ηp

∗
s

p∗s
‖yn‖p

∗
s

p∗
s
− λ

∫
Ω

G(x, vn) dx,

thus

lim
η→∞

lim
n→∞

Jλ(ζnvn) ≤ lim
η→∞

a

p 
ηp + b 

2pη
2pψ

(
ηp

T p

)
− ηp

∗
s

p∗s
L = −∞

since p∗s > p and ψ
(

ηp

Tp

)
→ 0 as η → +∞ being ψ compactly supported. As a result of this, being Jλ(0) = 0

and Jλ(un) → c, we eventually have that ζn ∈ (0, 1). Then, we get
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d 
dζ

∣∣∣∣
ζ=ζn

Jλ(ζun) = 0

which implies

λ

∫
Ω

g(z, ζnun)ζnun dx = a‖ζnun‖p

+ b‖ζnun‖2pΨ(ζnun) + b 
2T p

‖ζnun‖3pΨ ′(ζnun) − ‖ζnun‖p
∗
s

p∗
s
. (4.4)

In view of this, we see that

θJλ(ζnun) = θJλ(ζnun) + λ

∫
Ω

g(x, ζnun)ζnun dx− λ

∫
Ω

g(x, ζnun)ζnun dx

≥ a

(
θ

p
− 1

)
‖ζnun‖p − b

(
1 − θ

2p

)
‖ζnun‖2pΨ(ζnun)

+
(

1 − θ

p∗s

)
‖ζnun‖p

∗
s

p∗
s
− b 

2T p
‖ζnun‖3pΨ ′(ζnun)

+ λ

∫
Ω

ξ(z, ζnun) dx

≥ −b

(
1 − θ

2p

)
‖ζnun‖2pΨ(ζnun) − b 

2T p
‖ζnun‖3pΨ ′(ζnun)

where we used (H5). At this point, to reach a contradiction, it suffices to check that ‖ζnun‖2pΨ(ζnun) and 
‖ζnun‖3pΨ ′(ζnun) are bounded. However, verifying this is straightforward, since if ‖ζnun‖3p is bounded, 
these two terms remain bounded, whereas they are zero in case ‖ζnun‖3p is unbounded due to the compact 
support of ψ.

Case L = 0: as in the previous case, we pick up a parameter η > 0, we set vn = ηyn and we notice that

0 <
η

‖un‖
≤ 1

for n large enough. Analogously as before, let ζn be such that

Jλ(ζnun) = max
0≤ζ≤1

Jλ(ζun).

Using similar arguments as the case L = 0 in Proposition 3.2, we see immediately that

lim
η→∞

lim
n→∞

Jλ(ζnun) ≥ lim
η→∞

a

p 
ηp = +∞.

Again, for n large enough ζn ∈ (0, 1), and we obtain

d 
dζ

∣∣∣∣
ζ=ζn

Jλ(ζun) = 0

which means that (4.4) is still true. To conclude, we see that
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θJλ(ζnun) = θJλ(ζnun) + λ

∫
Ω

g(x, ζnun)ζnun dx− λ

∫
Ω

g(x, ζnun)ζnun dx

= a

(
θ

p
− 1
)
‖ζnun‖p − b

(
1 − θ

2p

)
‖ζnun‖2pΨ(ζnun)

+
(

1 − θ

p∗s

)
‖ζnun‖p

∗
s

p∗
s

− b 
2T p

‖ζnun‖3pΨ ′(ζnun) + λ

∫
Ω

ξ(x, ζnun) dx

≤ |ϑJλ(un) − J ′
λ(un)un| − b

(
1 − θ

2p

)
‖ζnun‖2pΨ(ζnun)−

− b 
2T p

‖ζnun‖3pΨ ′(ζnun)

where the right hand side of the chain of inequalities is bounded arguing similarly as in the case L > 0 and 
taking into account that (un)n is a (C)c sequence. �

The next proposition will identify a positive threshold value for the value c of (C)c sequences. Under this 
threshold, Cerami sequences will possess a convergent subsequence.

Proposition 4.3. Assume g satifies Hypothesis (H1), (H2) and (H5). Suppose also that (un)n ⊂ Xs,p
0 (Ω) is 

a (C)c sequence for Jλ with

c <

(
1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

Then there is u ∈ Xs,p
0 (Ω) such that un → u in Lp∗

s (Ω) up to a subsequence.

Proof. By Proposition 4.2 the sequence (un)n is bounded in Xs,p
0 (Ω) and in M(Ω). As did in the previous 

section, invoking the second concentration-compactness principle we have that there exist two Borel regular 
measures μ and ν, and a set J at most countable such that

|Dsun|p(x) ⇀∗ μ and |un|2
∗
s (x) ⇀∗ ν inM(Ω)

where

ν = |u|p∗
s +

∑
j∈J

νjδxj

and

μ ≥ (−Δp)su +
∑
j∈J

μjδxj

with

νj = ν ({xj}) μj = μ ({xj}) ,

and
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μj ≥ Ss,pν
p 
p∗s
j .

We claim that the set J is empty. By contradiction, we made the assumption J is non-empty e for simplicity 
we also assume has only one element j0 ∈ J and a point xj0 with νj0 �= 0 corresponding to it. Fix ε > 0, 
take a smooth cut-off function such that⎧⎪⎪⎨

⎪⎪⎩
0 ≤ ϕε ≤ 1 inΩ

ϕε = 1 inB(xj0 , ε)
ϕε = 0 inΩ \B(xj0 , 2ε),

and notice that also the sequence (unϕε)n is bounded in Xs,p
0 (Ω). Hence

o(1) = J ′
λ(un) [unϕε]

=
(
a + b‖un‖pΨ(un) + b 

2T p
‖un‖2pΨ ′(u)

)
〈Ap(un), unϕε〉 (4.5)

−
∫
Ω

|un|p
∗
sϕε dx− λ

∫
Ω

g(x, un)unϕε dx.

Arguing similarly as we have done in Proposition 3.4, recalling that

∣∣‖u|2pψ′(‖u‖p/T p)
∣∣ ≤ 8T 2p

to get the bound
∣∣∣∣b‖un‖pΨ(un) + b 

2T p
‖un‖2pΨ ′(u)

∣∣∣∣ ≤ 6T p,

we can easily see that

〈Ap(un), unϕε〉 =
∫
Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy + o(1)

as n → ∞ and ε → 0. In view of this, (4.1) and (4.5), we have

J ′
λ(un) [un] =

(
a + b‖un‖pΨ(un) + b 

2T p
‖un‖2pΨ ′(u)

)
〈Ap(un), unϕε〉 ≥

≥ a

2 

∫
Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy + o(1)

Since the growth hypothesis and g are as in the previous section, we have that (3.14) still holds, so, letting 
n → ∞ we have

0 ≥ lim
n→∞

⎛
⎝a

2 

∫
Q 

ϕε(x) |un(x) − un(y)|p
|x− y|N+ps

dx dy −
∫
Ω

|un|p
∗
sϕε dx

⎞
⎠+ o(1) =

= a

2 

∫
Ω

ϕε dμ−
∫
Ω

ϕε dν + o(1).
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Sending ε → 0, we get

a

2 
μj0 − νj0 ≤ 0,

and recalling (3.11), we have

0 ≥ a

2 
Ss,pν

p 
p∗s
j0

− νj0 . (4.6)

From (4.6), we finally obtain

νj0 ≥
(a

2 
Ss,p

) p∗s
p∗s−p

. (4.7)

To conclude, keeping in mind that (un)n is a (C)c sequence, (H1) and (H5), we see that

c = lim
n→∞

Jλ(un) = lim
n→∞

Jλ(un) − 1
θ
J ′
λ(un) [un]

= lim
n→∞

a

(
1 
p
− 1

θ

)
‖un‖p − b

(
1
θ
− 1 

2p

)
‖un‖2pΨ(un) +

(
1
θ
− 1 

p∗s

)
‖un‖p

∗
s

p∗
s

+ 1
θ

∫
Ω

ξ(x, ζnun) dx− b 
2T p

‖un‖3pψ′
(
‖un‖p
T p

)

≥
(

1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

where we also used the fact that ψ′ ≤ 0 and (4.2). At this point, the conclusion of the proof is similar as in 
Proposition 3.4. �
Proposition 4.4. Assume g satifies Hypothesis (H1), (H2) and (H5). Then Jλ satifies the (C)c condition 
for all c such that

0 < c <

(
1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

Proof. Take a (C)c sequence as described in the statement of the Proposition. Arguing as in the proof of 
Proposition 3.6 and replacing Proposition 3.4 with Proposition 4.3, we get

o(1) =
(
a + b‖un‖pΨ(un) + b 

2T p
‖un‖2pΨ ′(u)

)
〈Ap(un), un − u〉.

Recalling that a > 0 and (4.1), we can deduce that

lim
n→∞

〈Ap(un), un − u〉 = 0,

and the conclusion follows by applying Lemma 2.2. �
Remark 4.5. It is clear that the validity of (3.18) implies (4.6), thus it must be

(
Ka,b

s,p

Ss,p

) p 
p∗s

≥
(

1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

.
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As a consequence of that, from (3.19) it follows that

a

p 
Ka,b

s,p + b 
2p
(
Ka,b

s,p

)2 − S
− p∗s

p 
s,p

p∗s

(
Ka,b

s,p

) p∗s
p ≥

(
1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

,

showing that Proposition 3.6 identify a larger threshold than Proposition 4.4 for the validity of the (C)c
condition.

As done in the previous section, we introduce the candidate critical level. More precisely, we dfine

Γ̃ := {γ ∈ C([0, 1], Xs,p
0 (Ω)) : γ(0) = 0, γ(1) = w̃}

where w̃ is provided by Lemma 4.1 and

c̃λ := inf
γ∈Γ̃

sup 
t∈[0,1]

Jλ(γ(t)).

Similarly as Proposition 3.8, next result shows that for λ sufficiently large, the candidate critical level 
belongs to a range where the Cerami condition holds.

Proposition 4.6. Assume g satifies (H1), (H2) and (H4). Then c̃λ → 0 as λ → +∞.

Proof. The proof is a minor modfication of the one carried out in Proposition 3.8. �
Now, we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. Take λ large enough so that we have

c̃λ < min
{(

1
θ
− 1 

p∗s

)(a
2 
Ss,p

) p∗s
p∗s−p

, 4b
(

1
θ
− 1 

2p

)
T 2p

}
. (4.8)

Thanks to Propositions 4.1 and 4.4, we can apply Theorem 2.6 and we can produce a non-trivial critical 
point u for the functional Jλ in Xs,p

0 (Ω). In order to conclude the proof, it is enough to show that the 
solution we obtained has the property ‖u‖ ≤ T . Let us assume ‖u‖ > T . To reach a contradiction, on the 
one hand, observe that (H5) and Jλ(u) = cλ imply

a

p 
‖u‖p + b 

2p‖u‖
2pΨ(u) = 1 

p∗s
‖u‖p

∗
s

p∗
s

+ λ

∫
Ω

G(x, u) dx + cλ

≤ 1
θ
‖u‖p

∗
s

p∗
s

+ λ

θ

∫
Ω

g(x, u)u dx + cλ.

On the other hand, by writing in full J ′
λ(u) [u] = 0 and multiplying by 1/θ we get

1
θ

[
a + b‖u‖pΨ(u) + b 

2T p
‖u‖2pψ′

(
|u‖p
T p

)]
‖u‖p

= 1
θ

∫
Ω

|u|p∗
s dx− λ

θ

∫
Ω

g(x, u)u dx.

Putting the last two expressions together, recalling that ‖u‖2pΨ(u) ≤ 4T 2p and ψ′ ≤ 0, we obtain



L. Appolloni / J. Math. Anal. Appl. 546 (2025) 129194 25

a

(
1 
p
− 1

θ

)
‖u‖p ≤ b

(
1
θ
− 1 

2p

)
‖u‖2pΨ(u) + b 

2θT p
‖u‖3pψ′

(
|u‖p
T p

)
+ cλ

≤ 4b
(

1
θ
− 1 

2p

)
T 2p + cλ.

Now, using ‖u‖ > T , it follows that

a

(
1 
p
− 1

θ

)
T p ≤ 4b

(
1
θ
− 1 

2p

)
T 2p + cλ.

Coupling this with (4.3), we finally get

cλ ≥ a

(
1 
p
− 1

θ

)
T p − 4b

(
1
θ
− 1 

2p

)
T 2p

≥ 4b
(

1
θ
− 1 

2p

)
T 2p

which contradicts (4.8). �
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