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Abstract
1.	 Predictions of animal movement are vital for understanding and managing 

wild populations. However, the fine-scale, complex decision-making of animals 
can pose challenges for the accurate prediction of trajectories. Integrated step 
selection functions (iSSFs), a common tool for inferring relationships between 
animal movement and the environment, are also increasingly used to simulate 
animal trajectories for prediction. Although admitting a lot of flexibility, the iSSF 
framework is limited to its reliance on pre-defined functional forms for fitting to 
data, and iSSFs that involve complex functional forms to model detailed processes 
can be prohibitively difficult to fit and interpret.

2.	 Here, we present deepSSF, an approach to fit and predict animal movement data 
using deep learning. The deepSSF approach replaces the log-linear model of an 
iSSF with a neural network architecture that receives multiple environmental 
layers and scalar values as inputs and outputs a single layer representing the 
next-step probability. We demonstrate an example deepSSF model, built in 
PyTorch, consisting of distinct but interacting habitat selection and movement 
subnetworks. This allows for explicit representation of both selection and 
movement processes, thus giving interpretable intermediate outputs. We apply 
our model to GPS data of introduced water buffalo (Bubalus bubalis) in the tropical 
savannas of Northern Australia.

3.	 Our deepSSF model was able to learn features that are present in the habitat 
covariate layers, such as linear features (rivers, forest edges) and the composition 
of certain habitat areas, without having to specify them pre-emptively within 
the model framework. It was able to capture complex interactions between the 
habitat covariates as well as temporal dynamics across time of day and year. 
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1  |  INTRODUC TION

The movement of animals through space drives the structure and 
functioning of ecosystems through processes such as seed disper-
sal, herbivory and predator–prey relationships (Bello et  al.,  2024; 
Côrtes & Uriarte,  2013; Fortin et  al.,  2005). An ability to predict 
animal locations is also vital for conservation efforts. Accurate pre-
dictions of animal movement can be used to mitigate impacts to 
wildlife when designing infrastructure such as roads, wind turbines, 
or mines (Cowan et al., 2024; Mayer et al., 2021; Pay et al., 2022), 
to reduce the risk to threatened species (Finnegan et  al.,  2021; 
Forrest, Rodríguez-Recio, & Seddon,  2024), or to manage invasive 
or problematic species (Lustig et al., 2019; Patterson et al., 2024; Pili 
et al., 2022).

Recently, there has been a growing prevalence of predicting 
animal movement by simulating it from fitted integrated step se-
lection functions (iSSFs), a flexible way of incorporating measured 
processes such as movement, habitat selection, memory, and social 
interactions (Avgar et al., 2016; Ellison, Potts, Boudreau, et al., 2024; 
Ellison, Potts, Strickland, et al., 2024; Potts & Börger, 2023; Signer 
et al., 2017; Signer et al., 2023). iSSFs have been used for quantify-
ing connectivity (Hofmann et  al.,  2023; Hooker et  al.,  2021; Sells 
et al., 2023; Whittington et al., 2022), expected spatial distributions 
(Forrest, Pagendam, et al., 2024), and the effect of different land-
scapes on movement behaviour (MA Cowan, unpublished data). 
Simulating from an iSSF requires proposing potential steps from a 
starting location, determining the relative probability of choosing 
each of these steps (using the fitted movement and habitat selec-
tion parameters), and then choosing one of them using these relative 
probabilities. The end location of this step then becomes the next 
step's starting point, and the process is repeated. Recent develop-
ments aim to increase the flexibility of iSSFs through the addition 
of temporally dynamic and flexible responses (Forrest, Pagendam, 
et  al.,  2024; Klappstein et  al.,  2024), which can increase the real-
ism of the trajectories. However, animal movement is notoriously 
difficult to predict at fine scales, and the decisions that animals 

make depend on a range of factors that may interact in ways that 
are difficult to predict a priori (Couzin, 2009; Nathan et al., 2008; 
Strandburg-Peshkin et al., 2015). Therefore, to make accurate pre-
dictions, we require a framework that can handle complex interac-
tions and does not require pre-emptive specification of functional 
forms and responses for animal movement. One such approach is 
deep learning, a highly flexible data-driven method that can accom-
modate a large number of inputs and represent an impressively wide 
range of complex processes (Drori, 2022; LeCun et al., 2015).

Deep learning uses multiple processing layers to construct an 
internal representation of data that can have multiple layers of ab-
straction (LeCun et al., 2015). It has led to many advances in both 
our understanding of the world around us and our ability to gen-
erate predictions of complex and abstract phenomena (Raghu & 
Schmidt, 2020). In recent years, deep learning has advanced rapidly, 
with progress in both modelling architectures that enable more flex-
ible model fitting and hardware such as graphics processing units 
(GPUs) that have enabled models to be fitted with much greater 
speed. Increasingly, deep learning is being applied to complex prob-
lems in science, often with impressive results (Jumper et al., 2021; 
Raghu & Schmidt, 2020). The flexibility of deep learning models and 
their ability to take an array of different inputs and produce almost 
any output means that, with some thought and consideration, they 
can help uncover interesting features in almost any dataset. There 
are many existing applications of deep learning that are similar to 
the next-step-ahead predictions of animal movement, such as the 
movement of a robot, game playing, text generation and the gener-
ation of human and vehicle trajectories (Drori, 2022). Although the 
application of deep learning has yet to be fully utilised or adopted 
for modelling animal movement, there have been some promising 
examples that consider next-step ahead predictions using a range of 
machine learning architectures (Chen et al., 2024; Cífka et al., 2023; 
Dalziel et al., 2008; Einarson et al., 2024; Kazama et al., 2024; Shenk 
et al., 2021; Wijeyakulasuriya et al., 2020).

One way to apply deep learning to animal movement is by 
representing the process as comprised of distinct but interacting 

Finally, our deepSSF model generally had better in- and out-of-sample predictive 
accuracy than the analogous iSSF model.

4.	 We expect that the deepSSF approach will generate accurate and informative 
predictions about animal movement, which can be used for deepening our un-
derstanding of animal–environment systems and for the practical management 
of species. We discuss how the wide range of existing deep learning tools could 
enable the deepSSF approach to be extended to represent memory and social 
dynamic processes, with the potential for integrating non-spatial data sources 
such as accelerometers and physiological sensors.

K E Y W O R D S
conservation, deep learning, habitat selection, movement ecology, predictive ecology, 
simulations, step selection function, temporal dynamics
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    |  3FORREST et al.

behavioural processes, such as movement and habitat selection, 
analogous to a step selection function. Some benefits of using a 
deep learning approach include: (1) an ability to learn about spatial 
features of the landscape that may not be explicitly captured by the 
pixel values of the covariates, as we can use deep learning tools that 
were developed for image data; (2) covariate interactions can also 
be represented by flexible and non-linear processing layers, which 
can also interact with temporal dynamics over multiple time scales; 
(3) given the modular capability of deep learning, there is additional 
potential for extending the model by using the wide array of deep 
learning tools, such as recurrent layers (Drori, 2022) or transformers 
(Vaswani et al., 2017) to incorporate a history of previous locations, 
which may approximate memory processes; (4) the flexibility of deep 
learning also allows for other data sources such as accelerometers 
and physiological sensors to be integrated, which could allow for a 
more holistic representation of animal movement behaviour (English 
et al., 2024; Williams et al., 2020).

In this paper we present an approach that formulates a deep 
learning model to replicate an iSSF, with an explicit representation of 
movement and habitat selection processes. We term this approach 
deepSSF, which refers to the general approach, rather that any par-
ticular network architecture. There are numerous ways to formu-
late a deep learning model that could be used for modelling animal 
movement, and we hope to highlight one possible approach that may 
be readily extended to use other neural network architectures and 
incorporate more realistic processes such as memory and social dy-
namics. We show how the deepSSF approach may be used to learn 
about hitherto unknown behavioural processes underpinning the 
movement data, as well as for realistic predictions.

2  |  MATERIAL S AND METHODS

Technical terms related to deep learning are summarised in 
the Glossary, found in the Supporting Information, as well as a 
Supporting Information section of deep learning concepts in the 
context of the deepSSF approach.

2.1  |  From iSSF to deepSSF: Mathematical 
formalisms

An iSSF denotes the probability, p� (x|y, t), of moving from one loca-
tion, y at time t, to another, x at time t + �. We will assume here that y 
and x are locations of vertices in a rectangular lattice S (correspond-
ing to pixels in a rectangular raster), so we are working in discrete 
space (although iSSA can also be formulated in continuous space). 
Usually, this probability is given in an exponential functional form, 
as follows

Here, Mi(x, y, t) (for i = 1, … ,m) are movement covariates, which could 
be as simple as Mi(x, y, t) = ∣ x − y ∣ to model the effect of step length 
on the next location, or could depend upon time or habitat features 
that affect movement (e.g. snow depth or slope of terrain) (Avgar 
et al., 2016). The functions Hj(x, y, t) (for j = 1, … , n) denote aspects 
of the habitat that animals might select for (if 𝛽 i > 0) or avoid (if 𝛽 i < 0). 
The normalising function K(y, t) ensures that 

∑
x∈Sp� (x�y, t) = 1, so that 

p� (x|y, t) is a probability distribution on S.
Importantly, in ‘ordinary’ step selection, ln

[
p� (x|y, t)

]
 is a linear 

function of the Mi(x, y, t) and Hj(x, y, t) functions (where M is often 
defined at the start of the step and H at the end of the step). It is 
also defined locally, so that ln

[
p� (x|y, t)

]
 only depends upon values 

of the Mi(x, y, t) and Hj(x, y, t) functions at x, and ignores pixels in 
the vicinity. The key generalisation that deepSSF makes is to re-
place this linear function by a sum of two compositions of functions, 
fk ◦ … ◦ f1 + gl ◦ … ◦g1, where each individual function (i.e. each of 
f1, … , fk , g1, …, gl) may be nonlocal and/or non-linear. [Note that 
fj+1 ◦ fj(x) ≔ fj+1

(
fj(x)

)
 for j = 1, … , k − 1 but the former notation 

avoids nested brackets]. We write Mi( ⋅ , y, t) and Hj( ⋅ , y, t) to denote, 
respectively, the matrices whose entries are Mi

(
x′, y, t

)
 and Hj

(
x′, y, t

)
 

for all x� ∈ S. Then deepSSF has the following generic movement 
model formulation

In the context of deep learning, the compositions fk ◦ … ◦ f1 and 
gl ◦ … ◦g1 are usually known as neural networks.

The great advantage of deep learning is that, over the past few 
decades, researchers have discovered specific functional forms for 
f1, … , fk and g1, … , gl that are both able to capture arbitrary non-
linear and nonlocal functions to an arbitrarily high degree of accu-
racy and can be fitted to data rapidly to give high predictive power. 
The particular functions forms (also known as layers) that we will use 
here are fully connected layers, convolutional layers, rectified lin-
ear units (ReLU), and max pooling, which will be explained in greater 
detail below. In the deepSSF framework presented here, we also in-
sist on a particular form of fk that allows us to frame fk ◦ … ◦ f1 as a 
product of step lengths and turning angle distributions (as gamma 
and von Mises distributions respectively), but this is not necessary 
a priori.

2.2  |  deepSSF model architecture

To retain the separable movement and habitat selection components 
described in Equation (1), we developed a model that had two dis-
tinct but interacting structures that we call subnetworks, which ex-
plicitly represented the movement and habitat selection processes. 

(1)
p� (x|y, t) = K−1(y, t) exp

(
�1M1(x, y, t) + … + �mMm(x, y, t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
selection - freemovement

exp
(
�1H1(x, y, t) + … + �nHn(x, y, t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
habitat selection

.

(2)
p� (x|y, t)=

K−1(y) exp
(
fk◦… ◦f1

[
M1(⋅, y, t), … ,Mm(⋅, y, t)

]
+gl◦… ◦g1

[
H1(⋅, y, t), … ,Hn(⋅, y, t)

])
.
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4  |    FORREST et al.

These were denoted by fk ◦ … ◦ f1 and gl ◦ … ◦g1 respectively in the 
previous section. As with iSSF (Avgar et al., 2016), the outputs of the 
deepSSF subnetworks were combined additively into a next-step 
probability surface. This is similar to the ‘log-additive neural model’ 
used by Pagendam et  al.  (2023). We describe each of the subnet-
works in more detail below, and provide a conceptual overview of 
our deepSSF model in Figure 1.

2.2.1  |  Habitat selection subnetwork

The purpose of the habitat selection subnetwork is to transform the 
input covariates into a probability surface that describes the selec-
tion preferences of the animal, disregarding the effect of movement 
(as in typical step selection analysis). To achieve this we used con-
volutional layers. These are often described as ‘feature-extractors’ 
(Hertel et al., 2015), as they determine salient features of the input 
rasters that influence the prediction outcome. In our case they help 
determine the features of the surrounding landscape that influenced 
the animal's choice of the next step, and importantly can capture 
non-local aspects of habitat selection. Convolutional layers are char-
acterised by the use of convolution filters (also known as kernels) 
that sweep over the spatial inputs and apply pixel-wise operations, 
resulting in a set of ‘feature-maps’. When making predictions, the 
particular values of the filters do not change, meaning that they 
apply the same transformation equally across the spatial extent of 
the inputs (i.e. they are ‘spatially equivariant’). Therefore they do 
not conflate with the movement process, which is biased toward the 
centre cell, s(t). These filters evaluate the local neighbourhood of 
grid cells, and with several successive layers they can represent fea-
tures of the landscape such as forest edges, differing patch sizes, or 
riparian vegetation. The filters used by convolutional layers process 
all input layers simultaneously, meaning that interactions between 

all input covariates are considered, which can also include variables 
such as the time of the day and day of the year, as well as information 
about the animal such as its age or sex. For a conceptual overview of 
convolutional layers see the Supporting Information.

Our habitat selection subnetwork had three consecutive convo-
lutional layers. The first two of these had rectified linear unit (ReLU) 
activation functions, which enabled the model to capture non-linear 
effects of the input rasters on selection. These two convolutional 
layers each had four different 3 × 3 × n cell convolution filters that 
can each extract different features of the inputs, where n is the num-
ber of spatial inputs. Each convolutional layer resulted in four output 
layers (one for each filter), which are typically referred to as feature 
maps. The final convolutional layer had a single 3 × 3 × n filter, where 
n is now the number of feature maps generated by the previous con-
volutional layer. This layer acted to process the feature maps into 
a single output layer (without an activation function), which is the 
habitat selection probability surface. The inputs for each convolu-
tional layer were padded (see padding) with zeros and the filters had 
a stride of 1, which is critical to ensure that the spatial extent (i.e. 
number of cells) of the output of each convolution operation is the 
same as the input. This formulation allows for any number of convo-
lution layers to be applied whilst retaining the same spatial extent 
for the predicted habitat selection surface. The convolutional layers 
can therefore be considered to apply spatially-nonlocal (as the filters 
consider neighbouring cells) and non-linear (due to the ReLUs) trans-
formations of the input data.

The number of convolutional layers and filters in our deepSSF 
model was chosen to be relatively low whilst still having enough 
complexity to represent the habitat selection process. Determining 
the number of convolutional layers and filters and the number of 
nodes in a feedforward network will vary by study due to the volume 
of data and differing predictability of the data and the spatial lay-
ers. We suggest starting with a small model for faster model fitting 

F I G U R E  1  Conceptual overview of the deepSSF neural network used to predict animal movement. There are two subnetworks: A 
habitat selection and a movement process subnetwork. Both receive the same inputs, which are spatial layers such as environmental 
covariates, scalar covariates such as the hour, the day of the year (yday, also called ‘ordinal’ or ‘Julian’ day), and the bearing of the previous 
step. The periodic components (i.e. hour and yday) are decomposed into sine and cosine components to wrap continuously as a period, 
before being converted into spatial layers with constant values so they can be processed by the convolutional layers, each of which are 
followed by a rectified linear unit ReLU activation layer. To ensure that the turning angles are relative to the previous step, the bearing of 
the previous step is added directly to the predicted mean (�) parameters of von Mises distributions. The habitat selection subnetwork uses 
convolutional layers that have parameters set to ensure that the output has the same spatial extent as the input, resulting in spatial, non-
linear transformations of the input covariates, where all inputs can interact, to produce a probability surface (on the log-scale) describing 
the likelihood of moving to any cell based on the surrounding environment. The movement process subnetwork uses convolutional layers 
with max pooling to extract features from the input covariates that are salient to movement, and fully connected layers to process the 
convolutional layer outputs whilst reducing the dimensionality. The predicted output of the movement subnetwork can be any number of 
parameters that govern a movement distribution, so we used finite mixtures of two gamma distributions for the step lengths and two von 
Mises distributions for the turning angles. This results in a total of 12 predicted parameters—a shape, scale and weight for each gamma 
distribution and a �, � and weight for each von Mises distribution. The parameters are then converted to a two-dimensional movement 
surface (also on the log-scale) which is added to the habitat selection predictions, resulting in a next-step log-probability surface. To generate 
trajectories, the next-step log-probability surface is exponentiated and normalised such that the sum of all cells is equal to one, and a step 
is sampled according to these probability values. To highlight the directional persistence, the arrow and � in the movement and next-step 
predictions denotes the bearing of the previous step, and the red star to the left of the next-step predictions is the location of the observed 
next step for those inputs. When fitting the model we are trying to maximise the probability at each observed next-step.
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6  |    FORREST et al.

and increasing it gradually until there are negligible improvements 
in the loss function on out-of-sample test data. See the Supporting 
Information for consideration of model and training hyperparame-
ters when fitting deepSSF models.

2.2.2  |  Movement process subnetwork

The aim of the movement subnetwork is to predict parameters of 
step-length and turn-angle distributions that govern a movement 
kernel. These parameters are, in turn, functions of input rasters, such 
as the surrounding habitat, and other covariates such as the hour or 
day of year. The resulting movement parameters are converted to 
a two-dimensional surface, using the density functions relevant to 
the predicted parameters (i.e. for gamma and von Mises distribu-
tions), which becomes the output of the movement process subnet-
work. As we are converting one-dimensional distributions of step 
lengths and turning angles into a two-dimensional movement sur-
face, we account for the increasing two-dimensional area at larger 
step lengths by dividing the probability density by the distance from 
the centre cell (Michelot et al., 2024; Rhodes et al., 2005; Schlägel & 
Lewis, 2016). This change of variables is illustrated and described in 
the Supporting Information.

The movement process subnetwork that we used had three 
components. Two of these include processing layers with param-
eters that are estimated, and the other converts the predicted 
movement parameters into a two-dimensional probability surface. 
Similar to the habitat selection subnetwork, the first component of 
the movement subnetwork was comprised of convolutional layers, 
such that it can take spatial and temporal covariates as grids where 
all inputs can interact, allowing for the movement parameters to 
depending on the surrounding habitat and the time of day and 
year. It is not strictly necessary to include the spatial covariates as 
inputs to the movement process, as the temporal covariates can 
be inputted directly to the fully connected layers which would ob-
viate any convolution layers, but we illustrate a movement process 
here that can be influenced by the surrounding habitat. In contrast 
to the habitat selection subnetwork, the movement subnetwork 
included max pooling layers after each of the convolutional and 
ReLU layers, which reduce the number of parameters whilst re-
taining important features. We used a max pooling kernel size of 
2 × 2 × n cells that had a stride of two, which means that each max 
pooling layer will reduce the total number of cells in the output 
grid by a factor of four. We used two convolutional layers with 
four convolution filters each, which were followed by ReLU acti-
vation functions and max pooling layers. As there were two max 
pooling operations, the final feature maps had 16 times fewer cells 
than the input layers. The size of the convolution filters were the 
same as in the habitat selection subnetwork (3 × 3 × n), although 
these are independent from those of the habitat selection sub-
network so that the filters will learn different features that are 
relevant to each process. In the movement subnetwork, the filters 
will extract features from the covariates that influence an animal's 

general movement tendencies, thereby influencing the parame-
ters of the movement kernel.

For the movement subnetwork to predict the correct number 
of movement parameters, the dimension must be reduced so that 
the output is a vector of length equal to the number of movement 
parameters. To achieve this we used a flatten operation on the out-
puts of the convolutional layers, which turns them into a single long 
vector which has a length equal to the total number of cells in the 
final feature maps. We processed this vector using fully connected 
layers, where every cell in the flattened vector connects to every 
cell in the next ‘hidden’ layer, which we gave a length of 128. These 
128 cells are then connected to every cell in a final vector, which 
has a length equal to the number of parameters that define the 
movement kernel that we want to estimate. As all cells in the fully 
connected layers connect, every cell from the initial covariate inputs 
can influence the final movement parameters, where the convolu-
tional layers extract the most important features from the spatial 
covariates. The final component in the movement subnetwork takes 
the predicted movement parameters and converts them to a two-
dimensional probability surface using the appropriate density func-
tion for each distribution, whilst dividing by the distance from the 
centre (i.e. the step length to each cell) to account for the change of 
movement variables (Supporting Information; Michelot et al., 2024; 
Rhodes et  al.,  2005; Schlägel & Lewis,  2016). As the centre cell 
has a distance of 0, for numerical stability we assigned this cell a 
positive value, for which we used the average distance from the 
centre of the cell to any location within the cell. For a 25 m × 25 m 
cell is ∫ 12.5

−12.5
∫ 12.5

−12.5

√
x2 + y2dxdy, which is equal to ~9.56 m. To pre-

vent overfitting, we used dropout at a rate of p = 0.1 (Srivastava 
et al., 2014) within the fully connected layers.

As there can be any number of outputs from the fully connected 
layers, any form of step-length and turn-angle distributions can be 
used, whether parametric distributions or distributions described 
by other methods such as basic functions, providing that these pa-
rameters can be converted to a two-dimensional surface. This for-
mulation then allows for finite mixtures of probability distributions, 
where there are multiple distributions that are combined together 
using a weighting. To provide more flexibility to the model to allow it 
to more easily capture the temporal dynamics, we fitted a mixture of 
two gamma distributions for the step lengths and a mixture of two 
von Mises distributions for the turning angles.

2.2.3  |  Next-step probability and loss function

To construct the next-step probability surface, the habitat selec-
tion and movement process probability surfaces are combined by 
adding them together when they are on the log-scale, in exactly the 
same way as for iSSFs (Avgar et al., 2016). Prior to being combined, 
they are normalised whilst on the log-scale (using the log-sum-exp 
trick for numerical stability) to be valid probability surfaces (i.e. 
they sum to 1 after being exponentiated), so each subnetwork con-
tributes equally to the next-step probability surface. We combined 
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    |  7FORREST et al.

the normalised predictions of the habitat selection and movement 
processes prior to evaluating the loss function, which means that 
the final prediction accuracy depends on both subnetworks, and al-
though they have separate sets of parameters and can learn their 
own representations, the subnetworks are trained simultaneously 
and implicitly depend on one another.

The loss function quantifies how accurately a model is predict-
ing, which is used to update the parameters of the network. We used 
a negative log-likelihood (NLL) loss function, where the target that 
the model is trying to predict is the observed location of the next 
step. For a 101 × 101 grid there are N = 10,201 cells, each with a 
probability value, p̂i from the next-step probability surface.

We seek to maximise the probability of selecting the cell where 
the step was observed to land. This is equivalent to minimising the 
negative log-probability, NLL = − ln

(
p̂i∗

)
, where i∗ is the grid cell 

where the step ends. The next-step log-probabilities are given by:

where ln
(
p̂hi

)
 are the predicted log-probability values from the habi-

tat selection subnetwork, and ln
(
p̂mi

)
 are the predicted log-probability 

values from the movement subnetwork. K includes the normalisation 
constants for the habitat selection and movement surfaces, denoted 
by ln

∑N

i=1
p̂mi + ln

∑N

i=1
p̂hi, which ensures that they each sum to 1 

after being exponentiated. We found that training was more stable 
when the probability surfaces were normalised individually prior to 
being combined rather than normalising the next-step probability 
surface after combining. This is likely due to the difference in scale 
between the habitat selection and movement probabilities. We used 
the log-sum-exp trick to calculate the normalisation constants, but 
we do not denote it here for clarity (a description can be found in the 
Glossary). Each set of inputs only has a single observed next-step, re-
sulting in a single loss function evaluation, so we take the average loss 
1

n

∑n

i=1
− ln

�
p̂i∗

�
 for a set of n samples (i.e., a batch) when updating the 

model parameters.

2.3  |  Data preparation for deepSSF

To take advantage of deep learning tools that consider the spatial 
structure of the data, such as convolutional layers, it is necessary 
to format the input data as grids (i.e. images or rasters). As we were 
generating next-step probability surfaces, we extracted the environ-
mental information surrounding the animal's current location, within 
the range of its typical step lengths. This resulted in a set of local 
rasters for each observed step. We chose a grid size of 101 × 101 
cells, which is 2525 m × 2525 m, or 1262.5 m to the nearest edge of 
the local landscape. We chose this distance as 1262.5 m comprises 
more than 96% of the observed step lengths. It is important to have 
an odd number of cells so that there is a central cell, as that is the 
location of the animal at the start of the step, s(t).

For the periodic inputs such as hour of the day and day of the 
year, to maintain their periodicity (so hour 24 is adjacent to hour 
1, and yday 1 is adjacent to yday 365), we decomposed them into 

sine and cosine terms using �sin = sin(2�� ∕T) and �cos = cos(2�� ∕T) , 
where � is the periodic covariate (the hour of the day or day of the 
year), and T is the largest value in the period, that is 24 or 365.25 (to 
account for leap years). To use convolutional layers which require 
images (i.e. grids or rasters) as inputs, we converted any scalar (single 
value) data to grids of the same spatial extent as the environmental 
covariates, and set the value of every cell to the value of the scalar.

To assess how well the model predicted the next step (i.e. to 
evaluate the loss function), we created an additional spatial layer 
corresponding to the ‘target’, which is the observed location of the 
next step. This spatial layer is comprised of zeros at all entries except 
the entry corresponding to the location of the next step, where it 
has a value of 1.

2.4  |  Study area and data collection

Data were collected from the Djelk Indigenous Protected Area in 
Western Arnhem Land, Northern Territory, Australia. The area is 
a culturally significant landscape comprised of tropical savanna 
with areas of open woodland, rainforest, a varied river and wetland 
system, and open floodplains. To understand their movement and 
habitat selection behaviours, 17 female water buffalo (Bubalus buba-
lis) were GPS-tracked in collaboration with Bawinanga Aboriginal 
Corporation rangers between July 2018 and November 2019. 
For further details on the data collection see Forrest, Pagendam, 
et  al.  (2024). All animal handling procedures were performed by 
suitably qualified personnel trained in the appropriate capture 
and handling techniques under the approval of CSIRO Wildlife and 
Large Animal Ethics Committee (permit no. 2017-27). To exemplify 
the deepSSF approach, we randomly selected a single individual's 
data, which had 10,103 hourly GPS locations that were suitable for 
training the model. This individual's data ranged from the 25th of 
July 2018 until the 31st of October 2019, with a fix-success rate of 
90.9%.

2.5  |  Landscape covariates

Buffalo movement decisions are driven by factors such as vegeta-
tion composition and density for resource acquisition and shade, ac-
cess to water, and the terrain (Campbell et al., 2020). In monsoonal 
ecosystems of Northern Australia, vegetation and the distribution 
of water change dramatically throughout the year. To represent the 
seasonal changes in vegetation, we used monthly normalised dif-
ference vegetation index (NDVI), which measures photosynthetic 
activity and approximates the density and health of vegetation 
(Myneni et al., 1995; Reed et al., 1994). NDVI is an informative co-
variate in this landscape (Campbell et al., 2020) as it distinguishes 
between the broad vegetation classes, identifies wet and flooded 
areas, and can quantify buffalo's forage resources as they are typi-
cally under open canopy. Monthly NDVI layers were generated 
from Sentinel-2 spectral imagery at 10 m × 10 m resolution using 

(3)ln
(
p̂i
)
= ln

(
p̂mi

)
+ ln

(
p̂hi

)
− K,
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8  |    FORREST et al.

Google Earth Engine by taking the clearest pixels from a range of 
images for that month to alleviate the effects of obstruction from 
clouds. We selected the highest quality-band-score, which is based 
on cloud and shadow probability for each pixel, resulting in a single 
obstruction-free image of the NDVI values for each month of each 
year. We also used temporally static layers for canopy cover and her-
baceous vegetation, which are derivatives of Landsat-7 imagery and 
were sourced from Geoscience Australia at 25 m × 25 m resolution 
(Source: Geoscience Australia; Landsat-7 image courtesy of the U.S. 
Geological Survey). We represented broad-scale topographic fea-
tures that affect buffalo movement by including a slope covariate, 
which was summarised from a 25 m × 25 m digital elevation model 
using the terra R package (Hijmans, 2024; R Core Team, 2024), and 
was calculated using the methodology of Horn  (1981), which uses 
the elevation difference in the x and y directions of the eight neigh-
bouring cells to estimate slope. The canopy cover layer was a pro-
portion from 0 (completely open) to 1 (completely closed), and the 
herbaceous vegetation layer was binary, with 1 representing grasses 
and forbs, and 0 representing other (which is predominately woody 
growth). All spatial variables were discretised into grids (i.e. rasters) 
and resampled to be 25 m × 25 m resolution.

2.6  |  Model fitting and predictions

The data were sequentially separated into training, validation, and 
test datasets, with the first 80% of the data used for model fit-
ting (training), the next 10% for validation, and the final 10% used 
for testing the model and calculating out-of-sample predictive ac-
curacy. As is typical in deep learning, the training data were split 
into batches, and the loss function is evaluated for all samples in the 
batch. We used a batch size of 32 samples; the model was robust to 
varying batch sizes. Smaller batches lead to more stochastic (noisier) 
gradients, whereas larger batches are more stable. Often, the batch 
size that leads to the best trained neural network is some interme-
diate batch size (32 is a common choice), which provides enough 
information to calculate gradients such that parameter updates are 
taken in a beneficial direction, but also enough noise that it is able 
to escape from local minima. Smaller batches can also be computa-
tionally beneficial in that less data needs to be processed to obtain 
a gradient estimate when updating the parameters, but there is a 
higher CPU-GPU data transfer overhead, and smaller batches can 
underutilise GPU capacity.

Using the average loss of a batch, the weights of the model are up-
dated by performing backpropagation (Drori, 2022; Murphy, 2022), 
and then the next batch is put in. A complete iteration through all 
batches of the training data is termed an epoch. At the end of each 
epoch, the loss function is evaluated on all of the validation data, and 
if the average validation loss decreases, the model is said to have 
improved (no backpropagation is performed after evaluating the val-
idation data, to ensure it does not contribute to updating the model's 
parameters). Fitting the model typically involves many epochs. The 
test data are reserved until training has completed. They are used to 

test the overall performance of the model on unseen data, which is 
typically used to compare between models.

The model was initialised with random weights, and we used the 
stochastic optimiser ‘Adaptive Moment Estimation’, Adam, (Kingma 
& Ba,  2014) with an adaptive learning rate (the amount that the 
weights and bias parameters are updated) for each of the processes, 
that decreased when the contribution to the loss function for each 
process plateaued. Using a separate optimisers for each process also 
allowed us to use different starting learning rates, and we started 
the learning rate at 10−4 for the habitat selection process and 10−5 
for the movement process. The learning rates were decreased when 
their respective contribution to the loss had not decreased for five 
epochs, and training was terminated when the average combined 
validation loss had not decreased for 15 epochs. To prevent saving 
an overfitted model, the model weights are only saved when the 
validation loss decreased, so the final model weights are those that 
had the best performance on the validation data.

2.6.1  |  Simulating from the deepSSF model

Simulating from the deepSSF model requires selecting a starting loca-
tion, hour of the day, and day of the year (the bearing was randomly 
initialised). The local environmental covariates are cropped out as 
grids with 101 × 101 cells centred on the starting location, and the 
time inputs are decomposed into their respective sine and cosine com-
ponents and converted to spatial layers. The trained model then pro-
cesses the stack of spatial inputs, resulting in a next-step probability 
surface, which is exponentiated, normalised to sum to 1, and sampled 
with respect to the probability weights. The sampled location is then 
the next step, and the process is repeated until the desired number 
of locations is reached. Due to having discrete cells that are sampled 
from, and selecting the centre cell would result in a step length of 0, 
we add jitter to each simulated location. We sample the jitter from a 
normal distribution centred on the middle of the cell with a standard 
deviation of 6.5 m, as 95% of this density is within the cell. If the sam-
pled jitter would put the simulated location outside of the cell, it was 
resampled. We tested the sensitivity of this choice by varying the SD 
of the jitter distribution, as well as sampling uniformly from within the 
cell; none of which meaningfully changed the results.

We simulated 50 deepSSF trajectories from the starting location of 
the observed trajectory that covered the late-dry season 2018, resulting 
in 3000 steps per trajectory. We assessed whether the simulated trajecto-
ries displayed realistic characteristics of animal movement trajectories by 
visual comparison and by comparing summary statistics of the movement 
and habitat selection with observed data. For the movement behaviour, 
we compared the simulated and observed step lengths by plotting the 
distribution of step lengths and turning angles (Supporting Information) 
and also the mean step length for each hour of the day, which is a similar 
approach to Forrest, Pagendam, et al. (2024) (Figure 4). For the habitat 
selection, we binned the simulated and observed locations into hourly 
bins and calculated the mean values of each of the covariates, which was 
also similar to Forrest, Pagendam, et al. (2024) (Figure 4).
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    |  9FORREST et al.

2.6.2  |  Landscape-scale habitat selection

As trained convolution filters can be applied to images (i.e. rasters) 
of any size, it is possible to generate habitat selection surfaces of any 
size by using the trained filters from the habitat selection subnet-
work. These filters have been trained to extract the salient features 
of the input data and produce higher probability values where an 
animal is likely to take its next step, which interact with the time of 
day and the day of the year. Additionally, only local covariates that 
are ‘available’ to the animal are used as inputs, which prompted the 
initial development of step selection functions (Fortin et al., 2005; 
Rhodes et al., 2005).

The resulting probability surface denotes only the next-step 
habitat selection, and not the expected distribution of that next 
step (nor the expected distribution of animal locations per se). This 
is because this surface ignores movement constraints, effectively 
assuming that all locations on the landscape are equally accessible 
at the next time step. That said, it does provide a visual represen-
tation of what the habitat selection subnetwork has learned about 
the animal's selection process from the environmental covariates, 
and how this changes with respect to the other covariates such as 
the hour and day of the year. This can be used as a diagnostic tool 
for further model development, or as an end in itself, as it highlights 
the features present in the environmental covariates that the model 
considered to be influential in determining the next step's location. 
From these maps, we can also plot the correlation between the 
covariate values and the habitat selection predictions, illustrating 
which covariate values were associated with higher habitat selection 
(Supporting Information). Quantifying the relationship between the 
input covariate values and the predicted probabilities in this way is 
similar to partial dependence plots (Friedman, 2001).

2.6.3  |  Next-step ahead validation and comparison 
to iSSF

Whilst the realism and emergent properties of simulated trajectories 
are difficult to assess, we can validate the deepSSF models on their 
predictive performance at the next step, for each of the predicted 
habitat selection, movement and next-step surfaces. Ensuring that 

each of the predicted surfaces are normalised to sum to one, they 
can be compared to the predictions of typical step selection func-
tions when the same probability surfaces are generated for the same 
local covariates. We can also compare both of these to completely 
random movement and habitat selection by calculating uniform 
probabilities over the movement, habitat selection and next-step 
probability surfaces, which is calculated as equal probability for 
every cell (p = 1∕n cells). This approach not only allows for com-
parison between models, but can be informative as to when in the 
observed trajectory the model performs well or poorly, which can 
be analysed across the entire tracking period or for each hour of the 
day, and can lead to critical evaluation of the covariates that are used 
by the models and thus allow for model refinement.

We compared the deepSSF models to the predictive accuracy 
of two typical iSSFs fitted using conditional logistic regression to 
the same covariates as the deepSSF model described above (NDVI, 
canopy cover, herbaceous vegetation and slope). One of these mod-
els was fitted without temporal dynamics, denoted ‘iSSF’ (Model 1), 
and the other iSSF was fitted with temporal dynamics on the move-
ment and habitat selection processes over a daily period using two 
pairs of harmonics, as presented by Forrest, Pagendam, et al. (2024), 
which we refer to as the ‘dynamic iSSF’ (Model 2). We fitted deepSSF 
models to two sets of covariates, the first of which was fitted to the 
same covariates as the iSSF models, which we refer to simply as the 
‘deepSSF’ model (Model 3), as well as a deepSSF model fitted to 12 
Sentinel-2 bands and slope at the same 25 m × 25 m cell resolution, 
which we refer to as ‘deepSSF S2’ (Model 4), which is described in 
detail in the Supporting Information. These models are outlined in 
Table 1. To compare against random movement and habitat selec-
tion we also include a comparison to uniform probabilities (1/n cells 
in probability surface), where the uniform probabilities are referred 
to as Model 0, as it is not necessary to fit a model to calculate them.

We fitted each of these four models to the first 80% of a ran-
domly selected individual buffalo's data (ID 2005, n = 8082 steps), 
which had more than a year of high-quality data. We assessed the 
‘in-sample’ performance of the models by generating and evaluating 
next-step-ahead predictions over the data the model was fitted to 
(typically referred to as the ‘training data’), and the ‘out-of-sample’ 
performance by generating next-step predictions the final 10% of 
the data, which was not used in model fitting (n = 1010 steps). The 

Model Name Description Spatial covariates

0 uniform (1/n cells in probability surface) —

1 iSSF baseline iSSF NDVI, canopy cover, 
herbaceous vegetation, 
slope

2 dynamic iSSF dynamic iSSF with daily 
harmonics

3 deepSSF deepSSF model described 
above

4 deepSSF S2 deepSSF model (Supporting 
Information)

12 Sentinel-2 bands, slope

Note: Both deepSSF models also included variables relating to time, which was a harmonic 
representation of the hour of the day and the day of the year.

TA B L E  1  The models that were fitted 
to an individual buffalo's GPS tracking 
data to compare predictive accuracy, as 
well as uniform probabilities to assess 
performance against random movement 
and habitat selection.
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10  |    FORREST et al.

penultimate 10% of data was used for the deepSSF validation pro-
cess, which involves assessing the predictive performance through 
the loss function to determine whether to reduce the learning rate 
and when to terminate model fitting to prevent overfitting. Although 
it is not used to update the parameters of the model, it is still con-
sidered to be used in the training process, hence the use of the test 
dataset, which is completely novel to the model.

2.7  |  Software packages

We used a variety of software packages to perform data exploration 
and processing, statistical analysis and model fitting, as well as model 
interpretation and plotting. In R (R Core Team,  2024) the primary 
packages that we used were tidyverse (Wickham et al., 2019) and 
amt (Signer et al., 2019) for data processing, terra (Hijmans, 2024) 
for processing raster data, and ggplot2 (Wickham,  2016) and 
ggpubr (Kassambara,  2023) for plotting. In Python, the primary 
packages we used were NumPy (Harris et  al.,  2020) and pandas 
(McKinney, 2010) for data processing, rasterio (Gillies, 2013) for 
processing raster data, PyTorch (Paszke et  al.,  2019) for building 
and training the deepSSF models, and matplotlib (Hunter, 2007) 
for plotting.

3  |  RESULTS

On a central processing unit (CPU—Dell Latitude 7420 with Intel 
Core i7 11th Gen 3.0 GHz and 16 GB RAM) the deepSSF model took 
1–2 h to train, which typically comprised between 50 and 80 epochs 
(complete iterations through the training data), depending on the 
initial conditions. When trained on a graphics processing unit (GPU) 
using Google Colaboratory (2024) or a Macbook Pro with M4 chip, 
the training time reduced to 10–20 min.

The deepSSF model was able to capture the habitat selection 
and movement dynamics of the buffalo's data (Figure 2), resulting 
in simulated trajectories that represented important features of 
the data (Figure  3). The deepSSF approach generated trajectories 
that were visually similar to the observed data (Fieberg et al., 2024); 
although as the simulations did not have a memory or centralising 
tendency, they wandered more widely than the observed data, and 
there was less obvious revisitation structure to the trajectories.

The model clearly captured temporal dynamics in both the 
movement and habitat selection processes, which interacted over 
both hourly (Figure  4) and seasonal (Figure  5) time scales. The 
model captured the stationary distributions of the step lengths and 
turning angles well (Supporting Information). However, when log-
transformed, the evidence of discretising the movement surface to 
fit and simulate from the model is clear (Supporting Information). As 
the discrepancy is for step lengths less than 10 m, and the overall 
distribution and temporal dynamics are well captured, this is unlikely 
to cause problems when generating predictions. The observed turn-
angle distribution also did not follow a standard von Mises distribu-
tion due to the plateauing of turn angles away from the peak, but this 
was also captured reasonably well by the flexibility of the mixture of 
the von Mises distributions, despite flattening the peak of turning 
angles close to 0. The deepSSF model was able to capture the hourly 
temporal dynamics in habitat selection (Figure 4).

The landscape-scale habitat selection maps clearly show the 
representation of hourly and seasonal dynamics of habitat selection 
(Figure 5). The habitat selection varies significantly throughout each 
day, which for buffalo often has opposing trends at certain times of 
the day (Supporting Information). Across the year, the habitat se-
lection also changes, which in this ecosystem is likely driven by the 
distribution of water (Figure 5).

When compared to typical iSSF models, the deepSSF models 
had higher average prediction values for habitat selection, move-
ment and next-step probabilities at the location of the next step, 
particularly for the deepSSF model fitted to 12 Sentinel-2 spectral 
bands and slope (Figure 6; Table 2). The higher performance of the 
deepSSF S2 model suggests that these raw layers contain more in-
formation that is relevant to buffalo than oft-used derived measures 
like NDVI, particularly in the dry season. This was a similar result to 
when the probabilities were binned into the hours of the day, where 
the night-time performance of the deepSSF model was high, but it 
was lower during the day, again in contrast to the deepSSF S2 model.

4  |  DISCUSSION

We have presented an example of how deep learning can be applied 
to animal movement data, with promising results for generating 
realistic and accurate trajectories of animal movement, and poten-
tial for revealing subtle properties of animal movement behaviour. 

F I G U R E  2  Here we show three example steps, with the inputs, intermediate habitat selection and movement predictions, and the resulting 
next-step log probabilities outputted from a deepSSF model (Model 3 in Table 1). The day of the year and hour inputs listed above the spatial 
covariates were decomposed into sine and cosine components and these values were converted to grids of the same spatial extent prior to 
inputting to the model. The bearing was added directly to the � parameters of the von Mises distributions to deviate the turning angle from the 
previous step. The intermediate outputs provide an indication of what the model considers to be important for predicting the location of the 
next step. In panel (a), there is higher selection for the areas that have woody vegetation (when bottom left covariate is 0), with higher values 
of normalised difference vegetation index (NDVI), and low values of slope along a watercourse feature. In panel (b), there is high selection for 
the low slope feature running laterally (which is a watercourse), but also high selection for the southern edge of the woody area. In panel (c), the 
covariate values are of similar magnitude, but the model identifies several areas in the north of the covariates as a high probability of selection, 
which are localised areas of floodplain that are known to be used by buffalo, particularly during the wet season.
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12  |    FORREST et al.

Deep learning is a highly flexible and data-driven approach, requiring 
minimal pre-emptive specification about the functional form of the 
model. This allows the model to learn its own representation about 
the nature of the movement and habitat selection processes repre-
sented by the deepSSF model, which lends a robustness to the mod-
el's outputs. We have also shown that we do not necessarily require 
‘big data’ for deep learning, here using only a single individual's data 
with ~10,000 GPS locations (and of those the model was trained on 
only ~8000, with the remainder used for validation and testing).

As we expected, the deepSSF models outperformed the iSSF 
models for the in-sample and out-of-sample data, which was partic-
ularly the case when the model was trained with Sentinel-2 spectral 
bands and slope as the spatial covariates (deepSSF S2). The habitat 
selection performance dropped slightly on the out-of-sample data 
for all models (including iSSFs), although there was minimal evidence 
for overfitting. The performance of the deepSSF S2 model trained 
directly on Sentinel-2 layers suggests that these inputs contain more 
information that is relevant to buffalo movement and habitat selec-
tion than derived quantities like NDVI and canopy cover. The value 
of using raw layers was particularly clear for predictions in the dry 
season and for the hours during the middle of the day, where the 

deepSSF model had a lower performance compared to the deepSSF 
S2 model. In general, this suggests that, when using deep learning as 
a model for predicting animal movement, users should make as few 
a priori derivations as possible, instead providing the model with the 
rawest data possible and letting it find the relevant covarying de-
rived quantities itself. However, the explainability of the model out-
puts when fitted directly to the Sentinel-2 data was lower as it is not 
as meaningful to correlate the input values with the predicted out-
puts, suggesting an explainability-predictability trade-off (Dwivedi 
et al., 2023; Henriques et al., 2024).

Assessing how the predictive performance of the models and co-
variates varies across different time periods is informative not only 
for the models' overall performance but also for the relevance of the 
spatial covariates, as lower predictive performance suggests that the 
buffalo were responding to environmental features not captured in 
the inputs, which can be used to guide model refinement.

As we only fitted the deepSSF model to the data from a single 
individual, it is likely that it would benefit from being fitted to more 
data to represent the broader environmental space that the buffalo 
population in this area is likely to encounter. A model with a partial-
pooling or hierarchical representation (i.e. a ‘mixed model’) may be 

F I G U R E  3  Example trajectories of hourly locations that were simulated from the starting location of the observed trajectory using 
the deepSSF model, with normalised difference vegetation index (NDVI) as the background (with higher values as darker grey). The red 
trajectory is the observed buffalo trajectory, and the other colours are five simulated trajectories. Both the observed and simulated 
trajectories have 3000 steps each. Without a memory process, the trajectories of the simulated data do not have any home ranging 
behaviour and wander more widely than the observed data. There are several instances of directed and high speed movement by the buffalo 
which were not replicated by the deepSSF model. This is due to the size of the predicted probability surfaces, which in our case we chose to 
include 96% of the observed step lengths, but which place an upper limit on possible step lengths and will prevent very large movements.
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particularly useful here, as the data from each individual would be 
considered as more dependent than the data between individuals 
(Muff et al., 2020). Until a solution in this area is developed, a deep-
SSF model can be trained on all of the observed data, without repre-
sentation in the model that the data come from different individuals 
(complete pooling); or separate models can be trained on the data 
from different individuals (such as we have here), creating a ‘popula-
tion’ of individuals to simulate from.

An additional consideration when fitting deep learning models 
is that model training is stochastic, and due to the flexibility of the 
model, there are likely to be multiple minima that can be found by the 
model. This means that fitting the model with the same parameters 
may result in varying performance and slightly different predictions. 
Although the model is still likely to create a useful representation 
of the data and generate accurate predictions, exactly what the 
model has learned will differ. This observation may also relate to the 
amount and complexity of the data, which we did not explore here.

Deep learning models are not interpretable in the same way as 
a simpler statistical model (i.e. we cannot understand the influence 
of particular parameters such as through coefficients), but in our 

case we have model explainability through visualising the intermedi-
ate (movement and habitat selection predictions) and final outputs 
(next-step predictions) from the model, summarising the trajectories, 
and from correlating the covariate values with the habitat selection 
probability values. From these model outputs we were able to deter-
mine that there is substantial daily variation, and some yearly vari-
ation, in buffalo movement and habitat selection behaviour, which 
corroborates with fine-scale dynamic iSSFs (Forrest, Pagendam, 
et al., 2024) and with the observed data. The model was also able 
to represent multi-scale temporal dynamics, with daily movement 
and habitat selection behaviour that also changed throughout the 
year. Whilst we acknowledge that understanding what the deepSSF 
model has learned requires some more investigation by the user, we 
also believe that because animal movement behaviour is a sophisti-
cated process, the outputs of typical statistical models such as iSSFs 
can oversimplify the process, potentially obscuring subtle insights 
into the behaviour of the species and the nature of the movement 
process.

There have been several other papers which have provided a 
conceptual foundation for this study. Dalziel et  al.  (2008) offered 

F I G U R E  4  To assess the temporally dynamic habitat use of the simulated trajectories, we binned all simulated (orange) and observed 
(blue) steps into the hours of the day, and compared the mean values of the step lengths and each covariate for each hour of the day. We 
simulated 50 trajectories with 3000 steps each (as above) that covered the late-dry season 2018. We took a subset of the observed data 
that covered the same period. The deepSSF model was able to capture the hourly temporal dynamics in animal movement, similar to the 
results of temporally dynamic step selection functions in Forrest, Pagendam, et al. (2024). The shaded ribbons enclose the 25% and 75% 
quantiles, and the dashed lines are the 2.5% and 97.5% quantiles. The solid coloured line is the mean for that hour across all trajectories or 
for the buffalo data, and we show the hourly mean for 10 simulated individuals as thin lines. The grey bar on the right encloses the 25% and 
75% quantiles of the values of all cells in the landscape in Figure 3, thereby quantifying the available background.
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14  |    FORREST et al.

F I G U R E  5  As convolution filters are fixed in size and apply transformations uniformly across grids, they can be applied to any landscape 
extent to approximate habitat selection (without accounting for movement dynamics). Here we show habitat selection at two times, 5 AM 
and 7 PM, in the middle of the wet season (yday = 45) and the dry season (yday = 225). The spatial covariates are shown in the top panels, 
and the habitat predictions for each day and hour are shown below. The units of the x- and y-axes are the cell indices, and the landscape is 
therefore ~25 km × ~15 km with 25 m cells. These plots illustrate that the model was able to represent the multi-scale temporal dynamics of 
habitat selection that was present in the observed data. It should be noted that these maps should not be interpreted as long-term spatial 
distributions, but only as habitat selection surfaces that ignore the animal's movement dynamics.
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a similar approach to what we have presented here, although the 
study was not widely adopted; since then, deep learning has ad-
vanced rapidly. Cífka et  al.  (2023) used transformers to train a 
general model (MoveFormer) for animal movement, which also rep-
licated a step selection function. This approach shows very prom-
ising results for representing memory by incorporating a history of 
locations and using a transformer architecture, although applying 
the model to a wide range of species demanded reducing the loca-
tion frequency, ignoring fine-scale processes. This approach also re-
quired proposing random steps which are compared to the observed 
steps (as in iSSFs), rather than directly inputting spatial information 
which can allow for spatial features to influence movement. Given 
the modular nature of deep learning, it is possible that components 
of the deepSSF approach and MoveFormer may be combined to 
represent fine-scale behavioural processes while using the more 
flexible (but data-hungry) transformer architecture, and may reveal 
insights about the spatial memory process. Another promising ap-
proach for representing sequences is via (deep) reinforcement learn-
ing (Villeneuve et al., 2021), which may also be combined with other 
processing layers such as we have here (Chen et al., 2024), and can 
provide accurate movement predictions for several steps into the 
future.

Whilst we present one possible deepSSF model here, there are a 
number of exciting possible developments that would lead to a more 
realistic representation of animal movement. Firstly, a straightfor-
ward extension is to retain the deepSSF architecture and processes 
that we presented, but to add more information to the inputs of 
the movement process (and/or into the habitat selection process), 
which may also include a representation of past locations (Ellison, 
Potts, Strickland, et al., 2024; Oliveira-Santos et al., 2016; Rheault 
et al., 2021; Schlägel & Lewis, 2014). In our configuration, the model 
only received the bearing of the previous step (to confer turn-angle 
persistence) as well as the surrounding spatial covariates. It would be 
straightforward to incorporate a greater number of previous turning 
angles and previous step lengths, which would confer a persistence 
in speed and approximate a momentum process, and may be partic-
ularly helpful in cases of highly correlated movement kernels, such as 
high-frequency tracking data or for animal migrations. An example 
of such a movement process is Wijeyakulasuriya et al. (2020), where 
39 variables, such as lagged (x, y) coordinates and lagged x, y veloc-
ities, were used at each time step to predict the movement of ants.

Secondly, there are a number of tools in the deep learning tool-
box that may be applied to extend the modelling approach we have 
presented here. Potential processing architectures may include re-
current layers or transformer layers, which can accommodate long 
sequences as inputs, such as a history of locations, allowing the 
model to represent a flexible and data-driven memory process (Chen 
et al., 2024; Cífka et al., 2023; Shenk et al., 2021). An additional ar-
chitecture that may be able to represent social dynamics may be 
graph neural networks (GNNs) (Zhou et al., 2020), where individuals 
in a population may be represented by nodes and their relationship 
to each other by edges, which can be parameterised from move-
ment data (Scharf et al., 2016). A graphical approach may allow for 

predictive modelling at a population level with a socially informed 
model across many individuals. Both of these processes (memory 
and social dynamics) may allow for more accurate predictions but 
may also represent and reveal some of the more sophisticated and 
abstract mechanisms of these processes.

Thirdly, integrating other data sources, such as those from other 
biologging devices, is likely to allow for a more nuanced and com-
prehensive representation of animal movement behaviour that may 
also reduce the dependence on any particular temporal scale (Adam 
et al., 2019; DeRuiter et al., 2017; Leos-Barajas et al., 2017; Munden 
et al., 2021; Saldanha et al., 2023). This integration can be achieved 
due to the modular nature of deep learning, where a subnetwork 
may process sensor data such as from high-frequency accelerom-
eters or magnetometers, which could be summarised to the same 
temporal scale as the locational data and may, for example, become 
an input to the movement subnetwork, where quantities of the ob-
served activity would inform the movement kernel at the next step.

Finally, it may also be possible to train a ‘foundational’ or ‘general’ 
deepSSF model for animal movement from the data of many spe-
cies, taking advantage of open-source databases such as Movebank 
(Kranstauber et al., 2011), similar to the approach of MoveFormer 
(Cífka et al., 2023). A model such as this could learn the general prin-
ciples of animal movement dynamics, which could then be used as 
a pre-trained model and ‘transferred’ to a species of interest (Pan 
& Yang, 2010). Besides representing general animal movement dy-
namics, a purpose of a model such as this would be that less data 
would be required for new species, enabling accurate predictions 
with few data.

5  |  CONCLUSIONS

Here we presented the deepSSF approach for modelling and pre-
dicting animal movement using deep learning. We developed an 
approach that represented animal movement behaviour as distinct 
but interacting processes, each represented by a subnetwork. This 
approach allows for greater modelling flexibility and modularity, and 
provides intermediate outputs that can be interpreted in direct ref-
erence to the input covariates. The deepSSF model we presented 
generated realistic trajectories, as well as provided insights into 
water buffalo's daily and seasonal movement and habitat selection 
behaviour in northern Australia. The deepSSF model fitted to de-
rived covariates, such as NDVI and canopy cover, and the deepSSF 
model fitted to Sentinel-2 satellite imagery showed high predictive 
performance both in- and out-of-sample, across the full range of the 
data. The results for both models will likely improve when more data 
is used for training; and be better able to generalise under different 
environmental scenarios.

We kept the processes in our deepSSF model straightforward 
to exemplify the approach, but there are numerous possibilities for 
extensions. There are a wide array of computational architectures 
that can represent different features of the data; processes such as 
memory and social dynamics may be represented, and almost any 
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    |  17FORREST et al.

input data can be integrated by adding subnetworks, which may 
process different inputs and produce outputs but can be combined 
in later stages of the model. Further developments are promising 
for high-frequency telemetry data and migration pathways, where 
a more complex movement process may better capture the highly 
autocorrelated structure of these data.

We consider the deepSSF approach to be a valuable addition 
to the toolbox for modelling animal movement, and we provide 
a combination of R and Python code to process data, train deep-
SSF models, and produce all outputs in this article (see Supporting 
Information). As deep learning is very flexible and requires few a 
priori assumptions, a deepSSF model can realistically model animal 
decision-making on fine scales, lending the potential to reveal subtle 
insights into animal movement behaviour that may be difficult to as-
certain from parametric statistical models.
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F I G U R E  6  Probability values for the normalised habitat selection process at the observed location of the next step. We compare 
between the four models described in Table 1. Panels (a) and (b) show two example steps, with one of the inputs (NDVI), and the predicted 
habitat selection for the iSSF and deepSSF models, which we have normalised to sum to 1. We estimate the predictive accuracy by 
extracting the probability value at the observed location of the next step, which is shown as the white cell surrounding by a red circle 
for visibility. We follow this procedure to extract the habitat selection, movement and next-step probability for every step in the entire 
trajectory. In panel (c) we show the habitat selection probabilities, which have been smoothed with a rolling window of 15 days, with the 
mean (solid line) and 25% and 75% quantiles enclosed by the ribbon. The vertical lines at (a) and (b) show where in the trajectory the example 
steps were taken, and the dashed lines to the right indicate the 80/10/10 split of the data into training (model fitting), validation and test 
datasets. The y-axis is on the log-scale. We show a similar plot in panel (d), except here we take the average and 25% and 75% quantiles for 
each hour of the day. In panel (e) we show the distribution of predicted habitat selection probabilities for every step. The number to the right 
is the proportion of steps that had a predicted probability that was greater than the uniform probability (i.e., random selection). The deepSSF 
models often had higher probability values that were more ‘confident’, which led to more accurate predictions of average, but also more 
variability than the iSSF models.

TA B L E  2  Average probability values (±SD) for the habitat selection, movement and next-step probability surfaces at the location of the 
next step, which we used to compare between iSSF and deepSSF models.

All probability values are 1 × 10
−4 In-sample (n = 8080 steps)

Model Probability Habitat Movement Next step

0 uniform 0.980 0.980 0.980

1 iSSF 1.026 ± 0.194 177.4 ± 243.2 180.3 ± 248.0

2 iSSF 2p 1.063 ± 0.330 211.8 ± 312.5 218.2 ± 248.0

3 deepSSF 1.974 ± 2.481 702.0 ± 1411 752.5 ± 1488

4 deepSSF Sentinel-2 2.158 ± 2.448 1221 ± 2426 1277 ± 2545

All probability values are 1 × 10
−4 Out-of-sample (n = 1010 steps)

Model Probability Habitat Movement Next step

0 uniform 0.980 0.980 0.980

1 iSSF 0.990 ± 0.108 235.3 ± 267.8 236.8 ± 271.1

2 iSSF 2p 1.075 ± 0.232 283.7 ± 267.8 301.9 ± 379.7

3 deepSSF 1.610 ± 0.943 1111 ± 1732 1258 ± 1975

4 deepSSF Sentinel-2 1.918 ± 1.605 1896 ± 2960 1970 ± 3058

Note: We calculated the habitat selection, movement and next step (the combination of habitat selection and movement) probability values for 
each step of the data that the models were fitted to. Each of the prediction surfaces was normalised to sum to one such that they were valid 
probability surfaces, which makes the probabilities at the observed next step comparable between models. The models are described in Table 1. The 
uniform values are shown in italics, and the bold values show the most accurate model for each dataset and process. The increased out-of-sample 
performance of the movement and next-step predictions are likely due to more predictable movement behaviour in that part of the trajectory.
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