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Abstract
The Connectedness Theory is a mathematical approach to understanding the interactions 
between any number of phases in a complex medium that have different physical proper-
ties. It arose from the development of an Archie’s Law for n-phases when it is applied to 
fluid permeability. We have shown that Connectedness Theory allows for relative perme-
abilities to be expressed as ratios of connectednesses. This approach demonstrates why the 
sum of the non-wetting phase and wetting phase relative permeabilities is always less than 
unity. In its most general form the Connectedness Theory for two-phase relative perme-
abilities has eight independent parameters and allows both the fractions of immobile and 
mobile wetting phase and non-wetting phase, and the phase exponents to vary as a func-
tion of wetting phase and non-wetting phase saturation. However, if we make the common 
assumption that the irreducible wetting phase saturation and residual non-wetting phase 
saturation are constant and that the phase exponents are also constant, we can use the Con-
nectedness Theory to prove the Brooks and Corey approach to relative permeability mod-
elling and to relate its lambda parameters to phase exponents. In doing so, we also show 
that the wetting phase relative permeability endpoint is not an independent parameter but 
arises from variability of phase exponents and hence connectednesses as a function of fluid 
saturations, and that the two Brooks and Corey coefficients are interdependent. Finally, 
the Connectedness Theory also predicts that in principle one relative permeability curve 
can be calculated from the other. Since the theory upon which it is based is valid for any 
number of different phases, the two-phase scenario followed by most of this work is easily 
extended to three-phase relative permeabilities.

Highlights
•	 We show that permeability is equal to the connectedness G multiplied by the perme-

ability of a capillary tube.
•	 Relative permeabilities can be expressed solely in terms of a ratio of connectednesses 

describing flow pathways.
•	 The lambda parameter is related to phase exponents in the new connectedness model, 

arising solely from microstructure.
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1  Introduction

Relative permeability is extremely important in many branches of earth science, includ-
ing soil science (Jafarzadeh et al. 2025), reservoir modelling (Iqbal et al. 2025), hydrology 
(Lanetc et al. 2024), and the use of subsurface reservoirs in the transition to sustainable 
energy (Lan et al. 2024; Ahmed 2024; Li and Horne 2004; 2005), including underground 
sequestration of CO2 (Wang et al. 2025). However, it is also important in many other fields 
as widespread as understanding fluid dynamics in nano–biomedical applications (Abdel-
salam et al. 2024; Abdelsalam and Bhatti 2024), improving biomedical flow in arteries (El 
Kot et al. 2024), understanding the flow of nano-fluids (Ghoneim et al. 2025; Tliba et al. 
2025), and in thermal management in engineering (Abdelsalam et al. 2025).

The measurement of relative permeability is often difficult and time-consuming (e.g. 
Honarpour 1988). This is because the most representative measurements are made at a 
steady state which takes time to achieve, especially if carried out at temperatures and pres-
sures for the appropriate depth. There are particular problems if the porous medium has a 
low permeability, or if it is undergoing precipitation or dissolution reactions. Li and Horne 
(2004, 2005) recognised that steam–water relative permeabilities differ importantly from 
conventional gas–water relative permeabilities, with implications for geothermal systems 
and steam-flooding procedures, while the effect of precipitation reactions on the relative 
permeabilities of reservoirs that are used for underground sequestration of CO2 may also be 
difficult to measure in the laboratory.

A great number of mathematical models have been proposed for the wetting and non-
wetting relative permeabilities of a porous medium in order that difficult experimental 
measurements may be avoided (e.g. Li and Horne 2005; Chen et al. 1999; Dourado Neto 
et  al. 2011). Most of them are purely empirical, and those that are based on fundamen-
tal physics use empirically defined parameters (Li and Horne 2006). Hence, they may all 
be regarded as methods for fitting relative permeability curves to experimental data rather 
than an independent way of predicting relative permeability curves in the absence of exper-
imental data.

It is beyond the scope of this paper to review them all. However, we have included a 
review of the six main models in Sect. 3 of this paper with a summary table for the full 
contextualisation of the results presented in this work. These models are (i) most used by 
earth scientists and (ii) have a basis in petrophysics, including contributions from both fluid 
permeability and capillary pressure, and include combinations of the approaches of Pur-
cell (1949), Burdine (1953) and Mualem (1976) with the water retention models of Corey 
(1954), Brooks and Corey (1964), van Genuchten (1980) and van Genuchten and Nielsen 
(1985).

However widely used these models are, their limitations are well-recognised. Demond 
and Roberts (1993) conducted a comparison of experimental measurements showing that 
the conventional methods have limited predictive capabilities, while Dury et  al. (1999) 
restricted themselves to reviewing the models for the non-wetting phase and again found 
considerable difference between predictions and experiment.
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An alternative approach to predicting relative permeabilities is pore-scale network mod-
elling. Earlier studies such as that by Rajaram et al. (1997) found that the results of pore-
scale network modelling could fit the capillary pressure–saturation curves and predict the 
saturation–relative permeability curves with a degree of accuracy comparable to the van 
Genuchten (1980) relationships. More recently, Piri and Blunt (2005a; 2005b) have shown 
that the pore-scale network models can reproduce steady-state oil, water, and gas three-
phase relative permeabilities without the need to use empirical models, while Valvatne 
et  al. (2005), Valvatne and Blunt (2005), Nardi et  al. (2009) and Raeesi and Piri (2009) 
have used such models to predict successfully relative permeabilities from other more eas-
ily measured parameters.

The recognised limitations of the existing empirical models using single empirically 
defined parameters (Purswani et al. 2020) have led to the adoption by some of an Equation 
of State (EoS) approach to relative permeability (Khorsandi and Johns 2017), in which 
relative permeability is decomposed into five measureable characteristics. The resulting 
empirical EoS (Purswani et al. 2020) was quadratic with respect to saturation with six coef-
ficients that can be reduced to two on making a number of assumptions. The two remaining 
coefficients were estimated by linear regression to provide a very good fit to some simula-
tion data. The approach is essentially a more flexible empirical approach with more empiri-
cal parameters than the conventional methods but takes no explicit account of the rock 
matrix, and it will be interesting how it performs on experimental rock data.

Some of the fundamental deficiencies in the conventional approaches to the relative per-
meability problem were also described by Besserer and Hilfer (2000), who proposed split-
ting the phases in a porous medium into five phases before calculating the energy balances 
and energy exchanges between the phases. This is essentially a thermodynamic approach to 
the relative permeability problem. It differs fundamentally from the approach using Con-
nectedness Theory that is developed in this paper in that Connectedness Theory considers 
only the microstructural properties of the phases (phase fraction and phase connectedness). 
Connectedness Theory is a geometrical and topological approach to the relative permeabil-
ity problem rather than the dynamic approach of Besserer and Hilfer (2000).

Besserer and Hilfer (2000) considered the two-phase relative permeability problem, 
which intuitively infers the treatment of five phases (the matrix and the mobile and immo-
bile parts of the two miscible phases). In this paper, we also restrict ourselves to two-phase 
relative permeability and therefore the same inherent five phases. However, the connected-
ness approach is not limited to five phases. A three-fluid system would be described by 
seven phases in Connectedness Theory calculations, and more complex systems may pro-
duce even more (Glover 2010). In principle, Connectedness Theory could be used to con-
temporaneously solve both the electrical and relative permeability fluid flow in a porous 
medium by defining phases according to their electrical conductivity and their mobility. 
If we imagine a porous medium composed of three solid phases with different electrical 
properties, with a pore space that contains both a wetting and non-wetting phase, there will 
be a total of seven phases for the Connectedness Theory calculation, which will have either 
mobility but no conductivity, mobility and conductivity, or no mobility but be electrically 
conductive. This opens up the possibility that both the relative permeability and the elec-
trical conductivity problems of a porous medium might be resolved contemporaneously 
by using Connectedness Theory. Consequently, the geometrical and topological nature of 
Connectedness Theory in principle provides huge potential for the study of porous media.

Hilfer (2006a) further used the distinction between percolating and non-percolating flu-
ids in his treatment of microscopic capillarity, further underlying the importance of immo-
bile phases in the definition of fluid flows in a porous medium. The concepts of capillary 
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pressure and relative permeability are key to the conventional theoretical approach to 
two-phase flow in porous media. It was Hilfer (2006a, b, c) who instituted a theoretical 
approach not requiring these concepts as input, but basing their approach on the mobility 
or immobility of the two immiscible phases. Hilfer and Doster (2010) then presented the 
first numerical solutions of Hilfer’s (2006b) coupled nonlinear partial differential equations 
based on the dynamics of fluid flow.

In this paper we have developed independently the use of the same, one might say intui-
tive, breakdown of phases to solid, and two immiscible phases each of which can have a 
mobile fraction and an immobile one, but in the case of the Connectedness Theory, the 
similarity is restricted to the definition of phases, taking a purely geometric approach to the 
problem thereafter.

By contrast, other geometric approaches do exist. Minkowski functionals (MFs) can be 
used to describe the basic morphological properties of porous media. In three-dimensional 
Euler space, the Minkowski functionals comprise four functions (M0, M1, M2 and M3), 
which are measurements of the volume, surface area, mean curvature, and Euler character-
istic of a given object, respectively (Arns et al. 2001). These four measurements uniquely 
define any object in 3D space according to Liu et al. (2017) who carried out a combined 
modelling and experimental study. Their experimental results showed that there was a 
strong correlation between the non-wetting phase Euler characteristic and relative perme-
ability, but a weak correlation for the wetting phase topology.

Slotte et al. (2020) also used Minkowski functionals for the purpose of predicting per-
meability and electrical flow. While this approach showed some success, it concluded that 
Minkowski functionals alone were insufficient to characterise transport properties, and the 
paper did not consider the quantitative connectedness of pore space, the latter of which is a 
strength of Connectedness Theory.

While recognising that relative permeability shows a very strong correlation with con-
nectivity, Alpak et al. (2018) carried out fully coupled visco-capillary simulations, using a 
free-energy based lattice Boltzmann approach, achieving results which “… highlight the 
close connection between relative permeability and fluid topology and suggest that topo-
logical measures are much more meaningful validation criteria for pore-scale simulation” 
(Alpak et al. 2018). In essence, our paper explores the geometrical and topological con-
trol of relative permeability with a different topological approach, which exploits the very 
strong correlation with connectivity recognised by Alpak et al. (2018).

Consequently, this work seeks to extend the Connectedness Theory that was developed 
for electrical flow in porous media containing any number of conducting and non-conduct-
ing phases to the problem of fluid flow (Glover 2010).

Another approach, which is significantly different, but has the same goal, is to decom-
pose the conductivity critical exponent at the percolation threshold into parts, one of which 
is the tortuosity exponent (Berg and Sahimi 2024). This approach has shown significant 
success on network models, but differs from the approach in this paper in two important 
respects. The first is that the approach is based entirely upon assigning meaning to expo-
nents that scale behaviour of the porous medium, and does not explicitly consider connec-
tivity or connectedness of any of the phases. The second is that, conversely, Connected-
ness Theory does not explicitly include any percolation threshold because it is not required. 
Instead, any threshold is implicit in the geometrical symmetry of the approach. As a result, 
the two approaches are mathematically very different indeed.

In this purely theoretical work, we first review a selection of the most common 
empirical models for the two-phase relative permeability of a porous medium and draw 
attention to how the models are all forms of more general underlying equations for the 
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relative permeability of the wetting and non-wetting phase. Subsequently, we define 
a conceptual framework for considering the multiphase relative permeability problem 
which is very similar to that which the empirical models already use. We then use pre-
vious work of Glover et al. (2006), Glover and Walker (2009), and Glover (2009, 2010) 
to apply Connectedness Theory to the relative permeability problem, noting that this is 
a theoretical development of the previous work, where the physical parameters may be 
determined experimentally. The remainder of this work then examines the immediate 
implications of the new relative permeability model. This paper is purely theoretical 
and deliberately avoids comparison with experimental data. In many ways it mirrors 
the approach of Sakai et al. (2015) in wanting to combine electrical and flow character-
istics to inform the quantitative understanding of relative permeability. It is hoped that 
this theoretical paper will in the future be supported by new experimental measure-
ments that allow it to be fully verified.

2 � Theoretical Background

The relative permeability of a phase is a dimensionless measure of the effective perme-
ability of that phase and is given by the ratio of the effective permeability of that phase 
to the absolute permeability

where krj is the relative permeability of the jth phase, κj is the absolute permeability of the 
jth phase and κ is a reference permeability. Often the reference permeability is taken to be 
that of oil when all the oil in the porous medium is immobile, in other words at the irreduc-
ible wetting phase saturation, Swi. Relative permeabilities are most often represented as a 
function of wetting phase saturation, Sw. The wetting phase and oil relative permeabilities 
depend not only on the volume fraction of each phase but the way that phase is arranged. 
Since any rearrangement of a fluid phase implies the movement of all fluid phases in a 
porous medium and the need to include capillary effects due to wetting and non-wetting 
fluids, the relative permeability curves also depend upon the flow history. Hence, different 
relative permeability curves are measured during drainage (reduction of the wetting phase 
volume fraction) and imbibition (increase of the wetting phase volume fraction).

Equation (1), though simple, makes a number of important assumptions that should 
be considered. The approach implies that Darcy’s law can be applied to each phase in 
the porous medium separately. The assumptions inherent in Darcy’s law also apply to 
relative permeabilities. These are that (i) the flow is one-dimensional, (ii) horizontal, 
(iii) the fluids are immiscible, and (iv) the medium is homogeneous. Ideally, we would 
add a further assumption that the fluids do not interact, implying that the movement of 
one fluid has no effect on the movement of another. This is not true even for steady-
state relative permeability measurements. Normally, each phase impedes the other 
phases sufficiently that the sum of all the relative permeabilities is less than unity, 
although there have been examples in heavy oil reservoirs where inter-phase coupling 
enhances flow leading to the sum of the relative permeabilities being greater than unity 
(Bravo and Araujo 2008).

(1)�rj =
�j

�o
,
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3 � Empirical Relative Permeability Models

It is not the aim of this paper to review the relative permeability models. However, 
since there are few authoritative reviews (of which the best are cited below), we feel 
that it is necessary to review briefly the main models so that they may be compared with 
the approach used in this work. The most important point is that all of the models are 
empirical because each assumes some form of the capillary pressure–saturation function 
that is based on experimental observation.

There are three historical approaches to the relative permeability problem that are 
discussed briefly in the following subsections and are also reviewed by Li and Horne 
(2005) and Dury et al. (1999). All the models are summarised in Table 1, which pre-
sents the six models in the form of two generalised equations that differ only in the form 
of their individual coefficients. Consequently, it can be seen that, though all the mod-
els are empirical, they exhibit some underlying symmetry which hints at there being a 
deeper theoretical control. This paper uses the Connectedness Theory approach to show 
that at least one of these empirical methods (the Brooks–Corey–Purcell method) has a 
deeper pedigree than just being an empirical model.

The following sections examine each of the models in a little more detail so that their 
relationships can be understood.

3.1 � The Purcell Approach

Purcell (1949) used capillary pressure data to calculate porous medium permeability, 
and in doing so created an equation that can be used to calculate the relative permeabili-
ties in two-phase flow

where krw and krnw are the relative permeabilities of the wetting and non-wetting phases, Sw 
is the saturation of the wetting phase and Pc(Sw) is the capillary pressure as a function of 
Sw. Li and Horne (2005), who provide a good review of most relative permeability models, 
note that krw + krnw = 1, which is contrary to experimental measurements on porous media. 
They also compare the model with experimental data and find that the equation for the wet-
ting phase fits the data fairly well, but that for the non-wetting phase does not.

3.2 � The Burdine Approach

Burdine (1953) added a tortuosity factor λ to the Purcell equations to give

where

(2)krw =
∫
Sw
0

dSw∕
[

Pc

(

Sw
)]2

∫ 1
0
dSw∕

[

Pc

(

Sw
)]2

and krnw =
∫ 1
Sw
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[

Pc

(

Sw
)]2

∫ 1
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(
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)]2

,
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where τw and τnw are the hydraulic tortuosities of the wetting and the non-wetting phases, 
respectively, Sm is the minimum wetting phase saturation from the capillary curve and Se 
is the equilibrium saturation of the non-wetting phase, and the symbols have been retained 
from Li and Horne (2005) in order to retain consistency with their work. However, once 
again, the wetting phase relative permeability is a better fit to the experimental data than 
the non-wetting phase relative permeability from this model (e.g. Honarpour et al. 1986).

3.3 � The Mualem Approach

Mualem (1976) provided an approach that has become popular among soil physicists. It takes 
the form

where

is the normalised or reduced wetting phase saturation and Swr is the residual saturation of 
the wetting phase.

3.4 � The Corey and Brooks–Corey Relative Permeability Models

The three approaches outlined above require us to know the form of the function Pc(Sw). Corey 
(1954) found an approximate form of this function experimentally using data measured during 
initial drainage,

where A is a constant and S∗
w
 is the normalised or reduced wetting phase saturation during 

initial drainage and defined in the same way as Eq. (6).
This parameter can also be defined for use during subsequent imbibition of the wetting 

phase as,

where Snwr is the residual saturation of the non-wetting phase. Corey (1954) then obtained 
equations for the relative permeability of the wetting and non-wetting phases by assuming 
that Se = 0 and Sm = Swr, and using Eqs. (3) and (7) to give
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Although we often call this model the “Corey Model”, it is formally the Burdine Model 
with the Corey capillary pressure relationship (Eq. 7) and is purely empirical. Other empir-
ical models were developed about the same time such as that by Pirson (1958) and Wyllie 
(1962) for different forms of the capillary pressure relationship.

Since Eq. (7) is rather restrictive, Brooks and Corey (1966) used a more general func-
tional form

where Pe is the entry capillary pressure and λ is called the pore size distribution index. This 
empirical model was subsequently derived theoretically from capillary pressure and fractal 
theory for fractal dimensions of the pore network, Df > 2 (Li and Horne 2004).

Following the same procedure as Corey (1954), the relative permeabilities become

and noting that the Corey (1954) model is a special case of the Brooks and Corey (1966) 
model with λ = 2. This model is called the Brooks–Corey–Burdine (BCB) Model and is 
also given in Table 1.

If Eq.  (10) is substituted into Eqs.  (2), we obtain a relative permeability model 
that is based on the Purcell approach rather than the Burdine approach (i.e. the 
Brooks–Corey–Purcell (BCP) Model) (Li and Horne 2005, 2006)

If Eq. (10) is substituted into Eqs. (5), we obtain a relative permeability model that is 
based on the Mualem approach (i.e. the Brooks–Corey–Mualem (BCM) Model) (Chen 
et al. 1999)

Both the BCP and BCM models are also summarised in Table 1.

3.5 � The van Genuchten Relative Permeability Model

Another popular way of describing the capillary pressure curve was developed by van 
Genuchten (1980) and van Genuchten and Nielsen (1985) which can be written

where α and n are fitting parameters that are related to the non-wetting fluid pore entry 
pressure and the width of the pore size distribution, respectively, and it is often assumed 
that m is a function of n. These parameters share a common physical origin with the Brooks 
and Corey parameters Pe and λ. At large capillary pressures S∗
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→
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van Genuchten (1980) assumed that m = 1 −
1

n
 and substituted Eq. (14) into Eq. (5) to 

obtain the van Genuchten–Mualem (VGM) Model that has since been extremely popular 
with soil scientists (Sakai et al. 2015; Parker and Lenhard 1987; Parker et al. 1987; Dour-
ado Neto et al. 2011)

Similar models can be written for the combination of the van Genuchten model with the 
Burdine and Purcell approaches to give

for the van Genuchten–Burdine (VGB) Model, and

for the van Genuchten–Purcell (VGP) Model (Demond and Roberts 1993; Dourado Neto 
et al. 2011). All of these models are summarised in Table 1.

The relationships between the models described in the section above, as exemplified by 
Table 1, exhibit clearly a common form given by the generalised equations and indicating 
some deeper theoretical symmetry in the petrophysics of relative fluid flow. Later in this 
work we will show that the generalised forms of these equations arise directly from the 
application of Connectedness Theory to relative permeabilities, and that the relationships 
between the various fitting parameters also arise directly from the Connectedness Theory.

Finally, it should be noted that none of the equations above require the irreducible wet-
ting phase saturation or the residual non-wetting phase saturation to remain constant. Since 
these are both defined at a point where each of the fluids become immobile, retrospectively, 
it is a natural inference that they might be considered to be constant throughout the wetting 
phase saturation range. However, that is not necessarily the case, as we will see later in this 
paper. In addition, it should be noted that the Connectedness Theory which we will apply 
to relative fluid flow does not assume that the saturation of wetting or non-wetting fluid 
remaining immobile is constant as a function of wetting phase saturation.

4 � Phase Fractions

In this work we consider a multiphase system that is solely composed of n-phases, each 
with its volume fraction χj, and where

There is no restriction that the phases are miscible or immiscible, and there is no 
dependence on the historic relative volume fraction of the phases or their distribution. The 
volume fractions and distributions of the phases are, hence, defined purely geometrically 
at a certain arbitrary instant in time. The consequence of this is that the material which 
follows is equally valid for any of the common two-phase systems (oil–water, water–gas, 
gas–oil), but also less common systems (for example, oil–steam, oil–supercritical carbon 
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dioxide, and water–supercritical carbon dioxide), with the important note that their usage 
would need to also take into account miscibility/dissolution if phase fractions were to 
change. It also implies that this approach to relative permeabilities is also valid for three-
phase systems, such as oil–water–gas. The approach is independent of physical properties, 
requiring only that the distribution of the phases is known.

Having stated the likely general validity of the approach, the rest of this paper will focus 
upon the well-known wetting–non-wetting phase problem, and use the indexes ‘p’, ‘r’, ‘n’, 
and ‘w’ to associate with pores, rock matrix, the non-wetting phase, and the wetting phase, 
respectively, followed by an ‘m’ or an ‘i’, to represent mobility of the phase or immobility 
of the phase, again respectively. The main deviation from conventional usage here is the 
use of ‘n’ for non-wetting, instead of ‘nw’. This has been done to make the equations easier 
to read.

If we assume that our multiphase system is a porous medium with a solid matrix, the 
volume fraction of the solid matrix χr encloses a pore space with a volume fraction χp, 
where the distribution of the pore space and matrix can take any geometry at any scale, and 
where

We will continue to work with volume fractions rather than saturations S or porosity � 
for reasons of generality that will become apparent as the article progresses, but we note 
that  �p = � and �r = 1 − �.

It should be noted that commonly the two volume fractions χp and χr are considered to 
be constant for any given porous medium; however, if the porous medium were to undergo 
dissolution of precipitation reactions, these parameters would become variable, and that 
such a variation is therefore included implicitly in our new model.

For the remainder of this work, we assume that the pore space is completely filled with 
either non-wetting phase or wetting phase and that the non-wetting phase and wetting 
phase may be mobile or immobile. Hence we have four fluid phases, immobile non-wetting 
phase, immobile wetting phase, mobile non-wetting phase, and mobile wetting phase, with 
volume fractions χni, χwi, χnm, and χwm, respectively.

The volume fractions sum as

Some of these phases are miscible and some are not. The distinction is irrelevant 
because our two target parameters are associated with two distinct immiscible phases 
(mobile wetting phase and mobile non-wetting phase).

All the parameters in Eqs. (20) and (21) may be considered to be variable, but only any 
four are independently variable because of the restrictions introduced in Eq. (20) that no 
undefined phases are also present. In our model we consider that all four fluid phases to 
be variable in the sense that they depend upon the overall wetting phase and non-wetting 
phase saturations (Sw and Snw), and that a particular volume of one pore fluid that is mobile 
at a given wetting phase saturation may be immobile at a slightly higher or lower satura-
tion. This implies that our samples should be homogeneous at the scale on which we apply 
our model. However, there is no requirement for homogeneity at a smaller scale than that 
at which the model is applied, providing that the volume appears homogeneous when het-
erogeneities, and their effects, are averaged. There is no requirement for the sample to be 

(19)�r + �p = 1.

(20)�r + �wi + �ni + �wm + �nm = 1, and

(21)�p = �wi + �ni + �wm + �nm.
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isotropic at any scale. It should be noted that the conventional approach is rather different, 
treating the parameters χr, χwi and χni as fixed, and letting χwm and χnm vary (i.e. just one 
independent variable).

In order to fully define the system and to be consistent with parameters that are used 
conventionally, we have

where each of the pore fluids has a volume fraction χw and χn and saturations Sw and Sn, 
respectively. If we consider that the fluid phases are completely interchangeable, the vol-
ume fraction of wetting phase varies between zero and (1 − � ) and that of the hydrocarbon 
between (1 − � ) and zero. However, there exists an immobile wetting phase fraction χiw that 
cannot be removed from the porous medium, which is given by

and a residual non-wetting phase saturation, which is given by

where Swi is the irreducible wetting phase saturation and Snr is the residual non-wetting 
phase saturation. Hence, the volume fraction of wetting phase varies between � Swi and � 
(1 − Snr) where

and the analogous ranges for the other parameters are

Figure 1 shows how the five phases may occupy the porous medium. It should be noted 
that the lines AB and CD are not necessarily constant or linear and have been drawn with 
an arbitrary shape in Fig. 1 to express this. The functional form of these lines is (χr + χwi) 
and (1 − χni), respectively, and is nonlinear if the functions χwi(Sw) and χni(Sw) are nonlinear, 
respectively. However, the line AC is linear because χwi + χwm = Sw for Swi ≤ Sw ≤ (1-Snr).

One of the perceived disadvantages of Connectedness Theory is that by its general 
nature can introduce a large number of parameters. The number of parameters is governed 
in the electrical case by the number of conducting phases and can be large and difficult 
to quantify in practical applications. The same is true, but to a lesser extent, for the two-
phase flow application described in this paper. Nevertheless, for relative fluid flow there are 
eight independent parameters. Fortunately in most cases, some of these can be considered 
to be constant. One example is the phase fraction of the matrix. In most applications one 
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,
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might assume that the phase fraction of the matrix would remain constant, thus simplifying 
the equations. However, the general nature of Connectedness Theory means that in cases 
where reactive fluid flow leads to dissolution or precipitation, the phase fraction of the 
matrix can be allowed to vary while still being described by the theory. Despite the number 
of parameters, this paper shows that Connectedness Theory can be used to provide some 
theoretical pedigree to some of the simpler conventional empirical relative permeability 
models described in Sect. 3.

5 � Connectedness and Permeability

The permeability of a single phase flowing through a porous medium is given by the rela-
tionship (Glover et al. 2006).

where κ is the permeability (in m2), d is the effective grain diameter (in m), � is the 
porosity (unitless), m is the cementation exponent (unitless) and a is a constant that is 
thought to be equal to 8/3 for three-dimensional samples composed of quasi-spherical 
grains. Equation  (31) is an equation derived analytically from electro-kinetic considera-
tions. Like many equations in electro-kinetics, it assumes that the electrical double layer is 
thin, which requires the value of the cementation exponent m to be derived from measure-
ments on samples saturated with medium-to-high-salinity fluid. The equation also assumes 
that O’Konski’s (1960) equation is valid, and that the formation factor F(= �−m) and the 
porosity do not approach unity.

In 2009 Glover and Walker (2009) provided an equation that allows the effective pore 
radius of a porous medium to be calculated if the effective grain diameter is known, and 

(31)� =
d2�3m

4am2
,

Fig. 1   The relationship between 
the five phases, porous medium 
matrix, mobile and immobile 
wetting phase, and mobile and 
immobile non-wetting phase
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vice versa. The equation also requires that the porosity and cementation exponent (or for-
mation factor) is known. The so-called theta-transformation is given by

where r is the effective pore radius, and F is the formation factor (unitless). The assump-
tions behind Eq. (32) are the same as those for Eq. (31) discussed previously.

Equation (32) can be resolved for d2 and substituted into Eq. (31) to give

and τe is the electrical tortuosity.
The connectedness of a porous material was defined by Glover (2009) and used in the 

generalised Archie’s law (Glover 2010) as

where �e is the electrical connectivity (= 1/τe). Hence, Eq. (33) can be rewritten as

The permeability of a tube with a radius r can be expressed by (Bernabé 1995)

and is proven to scale with porosity if a bundle of capillary tubes forms an array of porosity 
� (Adegoke and Olowofela 2008). Hence,

This is a remarkable result; it is completely analogous to the equation for calculating the 
conductivity of a porous medium when completely saturated with a single phase

where σ is the conductivity of the porous medium and σf is the conductivity of the saturat-
ing fluid. In each case, Eqs. (37) and (38) express the measured transport property (κ and 
σ) as the product of the physical property without the presence of the pore structure (κt 
and σf) and the effect of the intervening pore structure given by the connectedness. The 
connectedness represents how the basic physical property is abated or modified by the 
pore structure. The corollary is that the connectedness can be said to be independent of the 
physical (transport) property it modifies, being solely a function of the microstructure of 
the porous medium.

The similarity of Eqs.  (37) and (38) is even more surprising when one considers 
that electrical conduction in porous media is mediated by ions and electrons that cross 
phase boundaries, while fluid flow involves mass transport that by definition remains 
constrained to its own phase. There is no real problem for a non-conducting matrix 
that is saturated with a single conducting fluid, because both the conducting ions and 
the fluid are constrained to the same phase. The implication is that this model for 

(32)d = 2Θr where Θ =

√

am2

8�2m
=
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8
,
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(34)G ≡ �m = ��e,
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.
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.

(37)� = G�t.

(38)� = G�f ,



Connectedness Theory of Relative Permeability﻿	 Page 15 of 31     86 

permeability should only be valid for immiscible non-interacting pore fluids. The fur-
ther question remains whether these equations can be generalised to three pore fluids 
or even n-phases as in the case of the generalised Archie’s law?

In the case of conductivity, the phase may have a zero conductivity for two reasons: 
(i) the connectedness of the phase tends to zero (G → 0) or (ii) the conductivity of 
the material making up that phase tends to zero (σf → 0) as shown by Eq.  (38). The 
case for permeability is analogous. A phase may have a zero permeability if (i) the 
connectedness of the phase tends to zero (G → 0), or (ii) the value of κt for that phase 
tends to zero (κt  → 0) as shown by Eq. (37). The interpretation of the connectedness is 
the same as for the electrical case as well as being simple and intuitive (Glover 2009; 
2010; Glover and Déry 2010). However, the physical interpretation of the value of κt is 
not. Equation (36) depends solely upon the radius of the capillary tube that represents 
a characteristic radius of the phase perpendicular to flow (i.e. the characteristic pore 
radius of the pore space if there are only two phases: matrix and mobile fluid). Hence, 
both κt and σf represent the effectiveness of flow though the phase, with electrical flow 
being a function of the availability, charge and mobility of charge carriers, while the 
hydraulic flow is a function of the radius of the equivalent capillary. Hence, there are 
two conditions for zero permeability

In other words, there is zero permeability if either (i) the phase is not connected, or 
(ii) the inherent permeability of the phase approaches zero. While one might initially 
consider that

it is possible that

if there is no flow in the capillary tube due to either (a) the driving pressure being insuf-
ficient to overcome frictional forces when the capillary radius is extremely small, or (b) 
the driving pressure being insufficient to overcome capillary forces. There is an impor-
tant mechanism associated with the second point: If fluid–fluid interfaces are successively 
mobilised in a porous medium from zero effective permeability at low pressure gradients, 
the relative permeability picture breaks down as the relation between flow rate and pressure 
gradient becomes a power law rather than linear. This was first seen by Tallakstad et al. 
(2009) and later studied by numerous authors (e.g. Gao et al. 2021). Later in this paper, we 
will apply Connectedness Theory that was developed from Eq. 38 to the analogous Eq. 37 
developed in this work. Connectedness Theory is concerned only with the fraction of any 
given phase and its connectedness. Consequently, the mobility of fluid–fluid interfaces may 
change both the relative fractions of the two fluid phases as well as their connectedness, so 
in principle the effect described by Tallakstad et al. (2009), and Gao et al. (2021), should 
be implicitly included in the theory.

Since Eqs. (36) and (37) are defined for a moment in time with specified phase frac-
tions, there is no implicit accounting for capillary pressure, and we can discount the 
second mechanism (mechanism (b), above).

(39)� → 0 for either
|

|

|

|

G → 0

�t → 0

(40)�t → 0 ⇒ r → 0 ⇒ � → 0 ⇒ G → 0,

(41)�t → 0 when r ≠ 0 ⇒ � ≠ 0 ⇒ G ≠ 0(m ≠ ∞),
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6 � Phase Connectednesses

In this work we consider a multiphase system that is solely composed of n-phases, each 
with its connectedness Gi. Glover (2010) hypothesised that there exists a law of conserva-
tion of connectedness that is given by

which is an exact analogy of Eq. (18). Glover (2010) showed using numerical modelling 
that for the electrical system, conservation of connectedness seemed to be valid. How-
ever, it is too early to state that such a law is valid and under what circumstances. Here we 
extend our hypothesis in the electrical domain to include connectedness and fluid flow.

If we continue our definition of matrix, immobile, and mobile phases forward to con-
nectednesses, we have Gr, Gwi, Gni, Gwm, and Gnm for the connectednesses of the matrix, 
immobile wetting phase and non-wetting phase, and mobile wetting phase and non-wetting 
phase, respectively. It follows that

If the system is linear such that Eq. (39) is valid, we may also say that

Individual connectednesses are a function of the appropriate phase fraction and an expo-
nent as defined in Glover (2009) as

It is immediately obvious that each connectedness contains information both of the vol-
ume fraction of each phase χj and its connectivity  �mj−1

j
 (or tortuosity �1−mj

j
).

Figure 2 shows an example of how the connectednesses of the mobile non-wetting phase 
and gas phases vary with wetting phase saturation for five values of both mnm and mwm (1, 
1.5, 2, 2.5 and 3), and for which mnm = 1 and mwm = 1 both provide a linear relationship. As 
with the cementation from the conventional Archie’s Law, larger values imply lower con-
nectednesses. The generic similarity of the curves in this figure to relatively permeability 
curves will be noted.

7 � Connectedness and Relative Permeability

Let us write Eq. (37) for n-phases, where 1 < j < n

(42)
n
∑

1

Gj = 1,

(43)Gr + Gwi + Gni + Gwm + Gnm = 1.

(44)Gp = Gwi + Gni + Gwm + Gnm,

(45)Gw = Gwi + Gwm, and

(46)Gn = Gni + Gnm.

(47)Gj = �
mi

j
= �j�

mj−1

j
.

(48)�j = Gj�tube.
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We can generate equations for the effective permeability of both the mobile wetting 
and the mobile non-wetting phases

We should bear in mind that both the effective permeabilities and their respective 
connectednesses are a function of the volume fractions (and saturations) of each phase, 
respectively.

Let us define a reference effective permeability to be the effective permeability to the 
non-wetting phase at Swi (irreducible wetting phase saturation), which is fairly common 
within the oil industry. We can rewrite Eqs.  (49) and (50) in terms of relative perme-
abilities using the definition given by Eq. (1)

The sum of these relative permeabilities is

(49)�wm = Gwm�tube, and

(50)�nm = Gnm�tube.

(51)krw =
Gwm

(

�w

)

Gnm

(

�w = �wi

) , and

(52)krnw =
Gnm

(

�n

)

Gnm

(

�w = �wi

) .

Fig. 2   Variation of the connectedness of the mobile non-wetting phase and mobile wetting phases as a func-
tion of wetting phase saturation for a range of values of mnm and mwm given in the legend, and for Swi = 0.2 
(irreducible wetting phase), Snr = 0.25 (residual non-wetting phase), and � = 0.2
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or

Let us assume that we can apply the conservation of connectedness that was developed by 
Glover (2010) for the generalised Archie’s law, and we apply it within the reference frame of 
the whole porous medium sample, i.e. for all the five phases in the porous medium, we get

or

Now certain of these phases are immobile, but that is not the same as saying that their 
connectednesses are zero. Each phase present has a finite nonzero value. If that phase is 
immobile, it is the value of κtube that appears in Eq. (37) that is zero.

The numerator of Eq. (54) can be written as

The denominator of Eq. (54) can also be written as

and hence Eq. (54) is equal to unity, which does not agree with the general experimental 
observation that the sum of the relative permeabilities of a two-fluid system is less than 
unity (except at the point where the reference effective permeability is taken). Is this a 
failing of the application of Connectedness Theory to permeability? Does it mean that the 
conservation of connectedness according to Glover (2010),

is not followed for fluid permeability?
Perhaps the fault lies in the phase definitions. We have defined five phases, the porous 

medium, two immobile fluid phases, and two mobile fluid phases. However, if there is an 
irreducible wetting phase saturation of say 0.2 that does not necessarily mean that this wet-
ting phase does not contribute in some way to flow when the wetting phase saturation is 
greater than 0.2. This effect is not accounted for in the analysis from Eqs. (55–58).

Equation (54) should be rewritten as a

The exponents now express the connectivity of the phase whether it is mobile or not. 
Equation (56) can be rewritten as
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and we can also write

Using Eqs. (61) and (62) in Eq. (60) gives

where mni is the exponent in the equation that defines the connectedness of the non-wetting 
phase at irreducible wetting phase saturation. This can be rewritten in terms of connected-
nesses as

Since Gpores is the measure of the connectedness of the pore space, and the denominator 
can be interpreted as the connectedness of the mobile fluids, Eq. (64) will be always less 
than unity for valid combinations of its parameters.

If we imagine the viscosity of one of the two fluids phases approaches infinity (let’s say 
the wetting phase), that phase effectively becomes a part of the solid matrix and the perme-
ability of that fluid phase becomes zero. The relative permeability of the other phase (here 
non-wetting phase) becomes unity (providing we are in a two-phase system). This is the 
same as saying the ratio between the permeability of the porous medium where the matrix 
now consists of the old matrix and the immobile fluid, and the single phase permeability 
of the fully saturated porous medium. Applying this to Eq. (64) leads to the left-hand side 
becoming equal to krnw = 1.

The numerator of the right-hand side, previously Gpores , is now a new value because the 
porosity has lost that part of it which was occupied by the mobile and immobile wetting 
phase, having become effectively part of the matrix. Designating the new connectedness of 
the pores as Gpores′ , both values can be written down as

However, only the mobile portion of the non-wetting phase will take part in flow allow-
ing Eq. (66) to be modified to read

The transformation has removed the phase fractions associated with the wetting phase, 
and the connectedness of the new pore space is less than that for all the old pore space 
because the space that was previously apportioned to contain wetting phase is now solid. 
This implies that Gpores′ < Gpores and that mpores is generally not equal to m′

pores
 or m′′

pores
 . The 

value of m′
pores

 may be larger or smaller than the value of mpores depending upon whether 
the new pathway through the matrix has a smaller or a greater connectivity, respectively. 
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Commonly, one would expect the process of transforming what was pore space saturated 
with wetting phase into matrix would result in a lower connectivity of the remaining 
non-wetting phase pathways, and pores saturated with mobile non-wetting phase by only 
accounting for part of the non-wetting phase saturation would have less connectivity than 
the combined non-wetting phase. Consequently, one would expect m′′

pores
> m′

pores
> mpores.

The denominator of the right-hand side of Eq. (64) is also altered by the transformation. 
While it was previously

it becomes

remembering that mni was previously defined as the exponent in the equation that defines 
the connectedness of the non-wetting phase at irreducible wetting phase saturation. Now, 
after transformation only mobile non-wetting phase is present as a mobile phase, so this 
exponent can be replaced with mnm′ , designating the exponent in the equation that defines 
the connectedness of the mobile non-wetting phase when that is the only phase present.

It is worth noting that this definition is the same as the definition for m′′
pores

 , hence 
m′′

pores
≡ m′

om
 . Consequently, using this result, Eq. (67) and Eq. (69) allow us to rewrite the 

right-hand side of Eq. (64) to take account of the transformation, which gives

which is equal to the unity, agreeing with the left-hand side of the transformed version of 
Eq. (64).

It should be noted in the material above that the reference permeability that was used 
was that of the non-wetting phase at the irreducible saturation of the wetting phase. This 
is common in practical usage, but not universal. A different analysis would be needed if 
relative permeabilities were defined relative to a different reference permeability, but the 
analysis would stay broadly the same. This might be useful in those circumstances when 
non-wetting permeability made at the irreducible wetting saturation might be unreliable, 
which is the case in some unconsolidated systems.

8 � Comparison of Relative Permeability Models

A comparison between the results of the new connectedness approach to calculating rela-
tive permeability curves with the results of the Brooks–Corey–Purcell (BCP) approach.

In this comparison, the BCP relative permeability curves for non-wetting phase and 
wetting phase were first calculated using the equations in (12) as a function of wetting 
phase saturation values for 6 values of λ from 0.5 to 5. The model also varied porosity 
� for the values 0.05, 0.10, 0.15, 0.20 and 0.25, for irreducible wetting phase saturation 
Swi for the values 0.05, 0.10, 0.15, 0.20 and 0.25 and residual non-wetting phase Sor for 
the values 0.10, 0.15, 0.2. 0.25 and 0.30, making 625 independent measurements for each 
of the non-wetting phase and wetting phase relative permeability curves. Figure 3a shows 
the results for the 6 values of λ, for � = 0.20, Swi = 0.20, and Snr = 0.25. Variation of the 
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porosity, irreducible wetting phase saturation and residual non-wetting phase saturation 
only resulted in expected changes in the range of wetting phase saturation over which it 
was possible to calculate relative permeability curves, as expected.

The connectedness calculations were carried out in the following steps.
Step 1. Calculating the phase fractions for each of the five phases using the values of 

porosity, irreducible wetting phase saturation and residual non-wetting phase saturation (as 
for the conventional approach described above and for the same parameter values). We 
assumed that the immobile phase fractions remained constant and independent of wetting 
phase saturation (i.e. not as shown in the generalised diagram in Fig. 1).

Step 2. Calculating the connectednesses for each phase as defined by Glover (2009) 
and used in the generalised Archie’s law (Glover 2010). This requires phase exponents 
for each phase, some of which were imposed and some of which were calculated. The 
exponent of the pore space mp was set to a range of values between 0.05 and 0.30, but 
was found not to influence the shape of the calculated relative permeability curves. This 
insensitivity is not surprising as the porosity should not influence the relative perme-
ability curves precisely because they are relative curves. Subsequently, a value of mp = 2 
was used in all measurements. The exponents of the immobile wetting phase (mwi) 
and immobile non-wetting phase (mni) phases were varied between 1 and 2 and again 
resulted in no change in the modelled curves. The reason for this is less obvious and is 
here related to our assumption that χwi and χni are independent of Sw. If χwi and χni are a 

Fig. 3   (a) Relative permeability modelled with the Brooks–Corey–Purcell (BCP) (Li and Horne 2004) 
model for a range of values of l from 0.5 to 5 (please see legend). (b) Relative permeability modelled with 
the new connectedness approach developed in this work for a range of mobile non-wetting phase and wet-
ting phase exponents, each taking values from 1 to 5. (c) An example of the comparison between rela-
tive permeability values for non-wetting phase and wetting phase modelled with both the BCP and new 
approaches for both λ = 3, mwm = 3 and mnm = 3 showing their similarity but not exact match. (d) Relative 
permeabilities using the BCP approach (lines) and the new connectedness approach (symbols) showing 
their identity, together with the values of λ, mwm and mnm required for the matching. In all panels Swi = 0.2, 
Snr = 0.25, � = 2 and krw@Snr = 0.35
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function of Sw, implementation of these parameters would be expected to produce sub-
tle changes in both relative permeability curves as well as making the exponents of the 
mobile phases (mwm and mnm) each a function of Sw. As there was no functional depend-
ence on mwm and mnm, they were set, rather arbitrarily to mwm = 1.25, and mnm = 1.4 for 
all subsequent tests. In this work the exponents of the mobile phases (mwm and mnm) 
were assumed not to be a function of Sw. Values of mwm and mnm were varied, taking the 
5 integer values between and including 1 and 5. The exponent of the porous medium 
matrix mr was calculated as the final missing parameter, using the conservation of con-
nectedness law given by Glover (2010).

Step 3. The relative permeabilities for non-wetting phase and wetting phase were 
calculated for each value of wetting phase saturation using Eqs.  (42) and (43), and no 
recourse to the use of a reduced effective wetting phase saturation. This approach is 
apparently completely independent of the methodology used in calculating the BCP rel-
ative permeability curves.

Figure  3 shows the resulting BCP and connectedness relative permeability curves. 
The first part of the figure (Fig. 3a) shows the implementation of the BCP model for a 
number of different values of the pore size distribution index λ, from 0.5 to 5, which 
more than covers the usual range found in most porous media. Consequently, this plot 
shows the range of relative permeability curves for non-wetting phase and wetting phase 
that might be expected to occur. Figure 3b shows the implementation of the new con-
nectedness approach to calculating relative permeability. This approach does not use the 
pore size distribution index λ, but uses the mwm and mnm exponents which describe how 
connected the mobile non-wetting phase and wetting phases are. In this implementation 
both the exponent for the mobile non-wetting phase mnm and that for the mobile wetting 
phase mwm take integer values from 1 to 5, inclusively. These exponents can be inter-
preted in a similar way to that of Archie’s cementation exponent, from which they are 
ultimately derived. Consequently, a value close to unity indicates very direct connection 
of the phase, while values closer to 2 would be typical of those degrees of connection 
found in clastic porous media, and higher values would indicate less of a degree of con-
nection, such as you might find in a carbonate that had undergone considerable diagen-
esis. Consequently, these values also represent the reasonable range of these parameters 
that you might be expected to encounter in porous media.

Comparison of the curves in Fig.  3a, b shows the calculated relative permeability 
curves to have a very similar shape for all the different parameters. Furthermore, curves 
which have lower lambda value also have higher exponent values and vice versa, which 
is consistent with higher lambda values being associated with more uniform pore size 
distributions which would give rise to more direct connection of the pores.

However, as shown in Fig. 3c, the imposition of modelling with λ = mwm = mnm does 
not result in the same relative permeability curves. At first sight this should not be sur-
prising because the BCP model is calculated in a very different way to the connected-
ness approach to calculating relative permeabilities. It should be remembered that the 
pore size distribution index λ that is found by fitting the BCP model to data rather than 
used in a predictive sense. It would be a step forward if we could find the underlying 
meaning of the pore size distribution index λ.

Figure 3d shows the same BCP data as in Fig. 3a as curves. The symbols, which fol-
low an identical curve as each of the lines, are generated from the new connectedness 
approach to calculating each of the relative permeabilities. The values of mwm and mnm 
which allow this to occur conform to the equation
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which will be recognised as the exponents occurring in the BCP model. Equation (71) is 
not a coincidence and indicates a deeper link between the BCP model and the fundamental 
geometrical basis of the Connectedness Theory in three dimensions. It also represents a 
validation of the BCP model.

It should also be noted that throughout this work we have taken mwm = mnm, but this 
need not necessarily be the case. The generalised treatment does not require mwm = mnm, 
and it follows that there may be a separate value of λ for each mobile phase, i.e. λwm and 
λnm.

The implication of Eq. (65) is that the value of λ is defined solely on the basis of the 
same geometrical considerations that define the exponents mwm and mnm, and that both 
parameters are effectively structural parameters which are defined by the distribution of 
the pore space.

Equation  (71) is testable using experimental data. The value of λ for the wetting 
phase from experimental relative permeability measurements can be compared with the 
value of the saturation exponent as a function of wetting phase saturation during drain-
age experiments. Figure 4 shows the result of this comparison for data from the litera-
ture. The data were collated from Alawi et al. (2020), Pairoys et al. (2013), and Liang 
et al. (2018), as well as from the Dutch Oil and Gas Portal nlog (https://​www.​nlog.​nl/​
en), and either used explicitly quoted data or required the fitting of curves to relative 
permeability data. The match is not perfect, but sufficiently good to validate the link 
between λ, mwm (and by inference mnm). It should be noted that Fig. 4 is essentially com-
paring measurements of two different types (electrical and mass flow), and in the case 
of Pairoys et  al. (2013) used three different methods of obtaining the Brooks–Corey 
coefficient λ. There is a remarkable agreement considering that the measurements are 
derived from disparate sources.

(71)mwm = mnm =
2 + �

�
,

Fig. 4   The variation of the 
parameter (2 + �)∕� using values 
of λ from fits to experimental krw 
data as a function of measured 
saturation exponent, using data 
(56 points) from the Dutch Oil 
and Gas Portal nlog (https://​
www.​nlog.​nl/​en) as well as 
Alawi et al. (2020), Pairoys et al. 
(2013), and Liang et al. (2018)

https://www.nlog.nl/en
https://www.nlog.nl/en
https://www.nlog.nl/en
https://www.nlog.nl/en
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9 � Variable Exponent Values

During this work, we have assumed that phase exponents are not a function of fluid satura-
tions. This is clearly an oversimplification. Indeed, one would expect the exponents, which 
it will be remembered express the connectivity of a phase, would increase or decrease 
according to how the connectivity of the phase changes as changing phase fraction opens 
or closes flow pathways.

Consequently, the decrease in non-wetting phase flow pathways would be expected dur-
ing imbibition as the non-wetting phase is replaced by the imbibed wetting phase. This 
would be associated with an increase in mnm, whereas the increasingly connected wetting 
phase would be associated with an accompanying decrease in mwm. In general, mwi and mni 
are also a function of fluid saturation, though it is possible to assume that the dependence is 
normally weak. In most circumstances mr and mp will remain constant, although they may 
also be a function of fluid saturation if significant dissolution or precipitation was occur-
ring in the porous medium and depended itself on wetting or non-wetting saturation.

Imposing Eq. (42) from the generalised Archie’s law (Glover 2010) and assuming miw, 
mni, mr and mp remain constant, we obtain

or

which can be rearranged to express each phase exponent

This result, which is the analogue of that found in the modification of Archie’s law for 
two conducting phases, is this found to have relevance to fluid flow. It also opens the pos-
sibility that it may be possible, at least in principle, that krnw might be calculable from krw 
and vice versa, providing the earlier assumptions are justified.

Figure 5 shows a plot where the krnw and krw values have been generated using the BCP 
model, with λ = 4 for krnw and λ = 3 for krw. There is no reason why the λ values for krnw and 
krw should have to be identical. The figure demonstrates a number of effects when allowing 
the values of the exponents to vary with wetting phase saturation. Given that there are an 
infinite number of functional forms for the four-phase exponents (mni, mwi, mnm and mwm), 
physical constraints ensured that sensible solutions exist.

For example, here we constrained mwi = 1.5 and not to vary with wetting phase or 
non-wetting phase saturation. Assuming that the sum of the phase fractions of the 
immobile phases is constant, which is reasonable, this implied that the immobile wet-
ting phase exponent values mwi varied between 1.75 at Swi and 1.21 at Snr, which is con-
sistent with the immobile wetting phase being in better communication with the mobile 
wetting phase as Snr is approached. This is likely to be the case in reality, but with a 
smaller range of change, because in reality the mni values which we constrained to a 
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constant value would also vary with changing wetting phase saturation such that they 
had higher values at and approaching Snr and smaller values at and approaching Swi for 
analogous reasons to the controls on mwi.

The four connectednesses (Gni, Gwi, Gnm and Gwm) sum to 0.04 at all values of Sw (and 
hence Snw) as a result of Eq.  (42) and where the value arises from the calculation of the 
connectedness of the pores using a porosity of 20% and a cementation exponent mp = 2, 
which is typical of conventional Archie’s law cementation exponents describing the geo-
metrical arrangement of pores in a sandstone.

Now, instead of fixing the mobile phase exponents to be constant, we have allowed them 
to vary linearly, according to the equation for each mobile phase

which allows the phase exponent to increase or decrease linearly depending on the desired 
values at each of the end points ( S∗

w
= 0to1). Figure 5 shows the connectednesses Gnm and 

Gwm resulting from the modelling.
In the case of the connectedness of mobile non-wetting phase (Gnm), we obtained a per-

fect fit to the BCP krnw curve (λ = 3 giving mnm = 1.6667), as expected from similar results 
shown earlier in this paper. However, Fig.  5 shows the connectedness calculated using 
mat at Swi = 1.6667 and matatSnr = 1.7667. This seemingly small linear increase in the expo-
nent is enough to reduce progressively the connectedness in Fig. 5 and results in the cal-
culated krnw using the connectedness method (blue diamonds) being progressively smaller 
that the BCP krnw (red curve) which used a fixed exponent. The inference here is that 
changing the phase exponent as a function of wetting phase saturation not only produces 

(76)m = m@Swi +

(

m@Snr − m@Swi

)

(

1 − Swi − Snr
) S∗

w
,

Fig. 5   Relative permeability and connectedness curves for the conventional BCP model and for the con-
nectedness model presented in this work using variable phase fractions which are a function of wetting 
phase saturation
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valid krnw curves, but such a change would be expected from considerations of phase con-
nectedness as Sw changes.

In the case of krw, we have gone a step further. Previously, we have implemented a mul-
tiplier to ensure that the endpoint of the krw curve is that encountered during experiments. 
It was set to krw = 0.35 at Snr for previous results in this paper. Here, we adjust the values 
of m@Swi and m@Snr for the wetting phase in order to match the BCP krw curve, which does 
use the krw@Sor multiplier. We found that we could obtain a reasonable match through the 
full range of wetting phase saturations from Swi to Snr using the values m@Swi = 1.8 and 
m@Snr = 1.99, noting the sensitivity of the match to the parameters at Snr (1.99 matched 
much better than 2.00). The inference here is that, as with the krnw test reported previously, 
variable phase exponents can be used to provide matching krw curves effectively (here to 
another model, but it would be equally the case for fitting to good experimental data). Such 
a fit to experimental data could be used to generate the phase exponents. Furthermore, as 
no multiplier was needed for the process, it is clear that the information required to fit the 
krw curve is contained entirely within the geometrically defined parameters of the connect-
edness model, and does not need an ad hoc multiplier to allow for fitting.

Finally, the horizontal dashed line in Fig.  5 represents the connectedness of the pore 
space, Gp = 0.04. All of the mobile and immobile connectednesses must sum to this value 
according to the conservation of connectedness law (Glover 2010). The dotted horizontal 
line represents the maximum value of the sum of the connectednesses of the mobile phases 
(non-wetting phase and wetting phase), inferring that the space in between the two lines, 
which is shaded, represents the value of the sum of the connectedness of the immobile 
phases (non-wetting phase and wetting phase). This is considerable and generally becomes 
larger as the wetting phase progressively establishes itself in the pore space.

10 � Conclusions

In this work we have recognised a fundamental similarity between electrical transport and 
fluid mass transport in porous media, whereby both are controlled by the amount of a con-
ducting or flowable phase and how well it is connected. In reviewing existing relative per-
meability models, we recognise the fundamental similarities in their structures. We have 
attempted to apply the connectedness approach developed during work on the generalised 
Archie’s law (Glover 2010). This is a theoretical problem where the overall conductivity of 
a porous medium may have contributions from multiple and different conducting phases 
which interact with each other. In the case of relative permeabilities, there is a theoretical 
problem where the overall flow of each phase also may depend upon other flowing phases.

In this work, we use Connectedness Theory to understand relative permeabilities, which 
has allowed the formalisation of effective and relative permeability in terms of phase con-
nectedness. Connectedness Theory can be formulated for any number of phases, and each 
can be mobile or not. Consequently, the approach outlined in this work can be extended to 
a three-phase relative permeability system easily.

In this work, we focus on the well-known and wetting/non-wetting two-phase relative 
permeability system, though it is expected that many of its characteristics will be similar 
for a three-phase system. In particular, we derive the important result that the effective 
permeability is equal to the connectedness G multiplied by the permeability of a capillary 
tube, which is completely analogous to the equation for calculating the conductivity of a 
porous medium when completely saturated with a single phase. The relative permeabilities 
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for each fluid phase in the porous medium can then be expressed solely in terms of a ratio 
of connectednesses, which describe the distribution of flow pathways.

Comparison of the relative permeabilities calculated with the new connectedness-based 
model provides identical curves to the Brooks–Corey–Purcell (BCP) model providing that 
the phase exponents defining each mobile phase are equivalent to (2 + �)∕� . This amounts 
to a theoretical validation of the BCP model. Comparison of this last value for the wetting 
phase with the saturation exponent from electrical data would be expected to also measure 
how well connected that same phase is for electrical flow.

Although commonly regarded as constant, the values of l for the wetting phase and the 
non-wetting phase neither have to be the same or be constant. Indeed, it would be expected 
that these values for wetting phase and non-wetting phase would be different and vary 
according to the amount of each phase present in the porous medium at a particular fluid 
saturation state. The connectedness approach has allowed us to examine variable phase 
exponents, indicating that in principle the relative permeability of one mobile phase should 
be calculable from the other and vice versa, and that the end point for the wetting phase 
relative permeability curve need not be imposed in a model, but arises naturally from the 
interplay of the mobile and immobile phase exponents.

This work examines some of the geometrical theory underlying the behaviour of relative 
permeabilities, putting the controlling parameters of those models on a theoretical basis 
and allowing electrical parameters to inform relative permeability measurements and vice 
versa. The formulation depends only on interacting geometrical considerations and is capa-
ble of taking hysteresis effects into consideration when phase connectivity changes as a 
function of saturation history because it utilises the connectedness of phases directly.

This paper has been purely theoretical and scope and is consistent with existing empiri-
cal models and the data to which they have been fitted. However, it is hoped that the 
approach will be supported by new experimental measurements in the future. It is unlikely 
that existing standard measurements of relative permeability will be sufficient to take 
account of all the variables in the model and sufficiently validate it. Such measurements 
may be carried out on either rocks or physical models that imitate rocks using micro-CT 
or nano-CT measurements during steady-state flooding, or by modelling on digital rock 
models using the Lattice Boltzmann approaches. Whatever the approach, it is important 
that measurements or modelling are done in such a way that all the parameters of the con-
nectedness model can be taken into account and fully tested.

Connectedness Theory puts the continuity of phases in the position of prime impor-
tance. Consequently, we predict that the development of an unconnected and dead-end 
pathways will have less importance than those which are continuous within the fluid and 
therefore represent a latent connectedness which can be opened up by small changes in 
the matrix connectedness, or improving the permeability of the matrix connectedness as 
shown so elegantly in Ferreira and Nick (2024).

This paper also restricts itself to two-phase flow. The Connectedness Theory approach 
can, of course, be extended to any number of phases, the most important of which is its 
application and three-phase flow, which represents a possible extension of his work in 
future papers.
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