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HIGHLIGHTS 

• We show that permeability is equal to the connectedness G multiplied by the permeability 

of a capillary tube. 

• Relative permeabilities can be expressed solely in terms of a ratio of connectednesses 

describing flow pathways. 

• The lambda parameter is related to phase exponents in the new connectedness model, 

arising solely from microstructure. 
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ABSTRACT 

The Connectedness Theory is a mathematical approach to understanding the interactions 

between any number of phases in a complex medium that have different physical properties. 

It arose from the development of an Archie`s Law for n phases when it is applied to fluid 

permeability. We have shown that Connectedness Theory allows for relative permeabilities 

to be expressed as ratios of connectednesses. This approach demonstrates why the sum of 

the non-wetting phase and wetting phase relative permeabilities is always less than unity. In 

its most general form the Connectedness Theory for two phase relative permeabilities has 8 

independent parameters and allows both the fractions of immobile and mobile wetting phase 

and non-wetting phase, and the phase exponents to vary as a function of wetting phase and 

non-wetting phase saturation. However, if we make the common assumption that the 

irreducible wetting phase saturation and residual non-wetting phase saturation are constant 

and that the phase exponents are also constant, we can use the Connectedness Theory to 

prove the Brooks and Corey approach to relative permeability modelling and to relate its 

lamda parameters to phase exponents. In doing so, we also show that the wetting phase 

relative permeability endpoint is not an independent parameter but arises from variability 

of phase exponents and hence connectednesses as a function of fluid saturations, and that 

the two Brooks and Corey coefficients are interdependent. Finally, the Connectedness Theory 

also predicts that in principle one relative permeability curve can be calculated from the 

other. Since the theory upon which it is based is valid for any number of different phases, the 

two phase scenario followed by most of this work is easily extended to three-phase relative 

permeabilities. 

 

Keywords. Relative permeability, Connectedness Theory, generalised Archie’s law, phase 

fraction, wetting phase saturation, non-wetting phase saturation, reservoir modelling
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1.  INTRODUCTION 

Relative permeability is extremely important in many branches of earth science, including 

soil science (Jafarzadeh et al., 2025), reservoir modelling (Iqbal et al. 2025), hydrology (Lanetc 

et al., 2024) and the use of subsurface reservoirs in the transition to sustainable energy (Lan 

et al., 2024; Ahmed, 2024; Li and Horne 2004; 2005), including underground sequestration of 

CO2 (Wang et al., 2025). However, it is also important in many other fields as widespread as 

understanding fluid dynamics in nano–biomedical applications (Abdelsalam et al., 2024; 

Abdelsalam and Bhatti, 2024), improving biomedical flow in arteries (El Kot et al., 2024), 

understanding the flow of nano-fluids (Ghoneim et al., 2025; Tliba et al., 2025), and in thermal 

management in engineering (Abdelsalam et al., 2025). 

 

The measurement of relative permeability is often difficult and time consuming (e.g., 

Honarpour, 1988). This is because the most representative measurements are made at a 

steady-state which takes time to achieve, especially if carried out at temperatures and 

pressures for the appropriate depth. There are particular problems if the porous medium has 

a low permeability, or if it is undergoing precipitation or dissolution reactions. Li and Horne 

(2004; 2005) recognised that steam-water relative permeabilities differ importantly from 

conventional gas-water relative permeabilities, with implications for geothermal systems 

and steam-flooding procedures, while the effect of precipitation reactions on the relative 

permeabilities of reservoirs that are used for underground sequestration of CO2 may also be 

difficult to measure in the laboratory. 
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A great number of mathematical models have been proposed for the wetting and non-

wetting relative permeabilities of a porous medium in order that difficult experimental 

measurements may be avoided (e.g., Li and Horne, 2005; Chen et al., 1999; Dourado Neto et 

al., 2011). Most of them are purely empirical, and those that are based on fundamental 

physics use empirically defined parameters (Li and Horne, 2006). Hence, they may all be 

regarded as methods for fitting relative permeability curves to experimental data rather than 

an independent way of predicting relative permeability curves in the absence of experimental 

data.  

 

It is beyond the scope of this paper to review them all. However, we have included a review 

of the six main models in Section 3 of this paper with a summary table for the full 

contextualisation of the results presented in this work. These models are (i) most used by 

earth scientists, and (ii) have a basis in petrophysics, including contributions from both fluid 

permeability and capillary pressure, and include combinations of the approaches of Purcell 

(1949), Burdine (1953) and Mualem (1976) with the water retention models of Corey (1954), 

Brooks and Corey (1964), van Genuchten (1980) and van Genuchten and Nielsen (1985). 

 

However widely used these models are, their limitations are well-recognised. Demond and 

Roberts (1993) conducted a comparison of experimental measurements showing that the 

conventional methods have limited predictive capabilities, while Dury et al. (1999) restricted 

themselves to reviewing the models for the non-wetting phase, and again found considerable 

difference between predictions and experiment.  
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An alternative approach to predicting relative permeabilities is pore-scale network 

modelling. Earlier studies such as that by Rajaram et al. (1997) found that the results of pore-

scale network modelling could fit the capillary-pressure saturation curves and predict the 

saturation-relative permeability curves with a degree of accuracy comparable to the van 

Genuchten (1980) relationships. More recently, Piri and Blunt (2005a; 2005b) have shown that 

the pore-scale network models can reproduce steady-state oil, water, and gas three-phase 

relative permeabilities without the need to use empirical models, while Valvatne et al. (2005), 

Valvatne and Blunt (2005), Nardi et al. (2009) and Raeesi and Piri (2009) have used such 

models to predict successfully relative permeabilities from other more easily measured 

parameters.  

 

The recognised limitations of the existing empirical models using single empirically-defined 

parameters (Purswani et al., 2020) has led to the adoption by some of an Equation of State 

(EoS) approach to relative permeabilty (Khorsandi and Johns, 2017), in which relative 

permeability is decomposed into five measureable characteristics. The resulting empirical 

EoS (Purswani et al., 2020) was quadratic with respect to saturation with six coefficients that 

can be reduced to two on making a number of assumptions. The two remaining coefficients 

were estimated by linear regression to provide a very good fit to some simulation data. The 

approach is essentially a more flexible empirical approach with more empirical parameters 

than the conventional methods but takes no explicit account of the rock matrix, and it will be 

interesting how it performs on experimental rock data. 
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Some of the fundamental deficiencies in the conventional approaches to the relative 

permeability problem were also described by Besserer and Hilfer (2000), who proposed 

spliting the phases in a porous medium into five phases before calculating the energy 

balances and energy exchanges between the phases. This is essentially a thermodynamic 

approach to the relative permeability problem. It differs fundamentally from the approach 

using Connectedness Theory that is developed in this paper in that Connectedness Theory 

considers only the microstructural properties of the phases (phase fraction and phase 

connectedness). Connectedness Theory is a geometrical and topological approach to the 

relative permeability problem rather than the dynamic approach of Besserer and Hilfer 

(2000).  

 

Besserer and Hilfer (2000) considered the two phase relative permeability problem, which 

intuitively infers the treatment of five phases (the matrix, and the mobile and immobile parts 

of the two miscible phases). In this paper, we also restrict ourselves to 2 phase relative 

permeability, and therefore the same inherent five phases. However, the connectedness 

approach is not limited to five phases. A three-fluid system would be described by 7 phases 

in Connectedness Theory calculations, and more complex systems may produce even more 

(Glover, 2010). In principle, Connectedness Theory could be used to contemporaneously 

solve both the electrical and relative permeability fluid flow in a porous medium by defining 

phases according to their electrical conductivity and their mobility. If we imagine a porous 

medium composed of three solid phases with different electrical properties, with a pore 
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space that contains both a wetting and nonwetting phase, there will be a total of seven phases 

for the Connectedness Theory calculation, which will have either mobility but no 

conductivity, mobility and conductivity, or no mobility but be electrically conductive. This 

opens up the possibility that both the relative permeability and the electrical conductivity 

problems of a porous medium might be resolved contemporaneously by using 

Connectedness Theory. Consequently, the geometrical and topological nature of 

Connectedness Theory in principle provides huge potential for the study of porous media. 

 

Hilfer (2006a) further used the distinction between percolating and non-percolating fluids in 

his treatment of microscopic capillarity, further underlying the importance of immobile 

phases in the definition of fluid flows in a porous medium. The concepts of capillary pressure 

and relative permeability are key to the conventional theoretical approach to two phase flow 

in porous media. It was Hilfer (2006a; 2006b; 2006c) who instituted a theoretical approach 

not requiring these concepts as input, but basing their approach on the mobility or 

immobility of the two immiscible phases. Hilfer and Doster (2010) then presented the first 

numerical solutions of Hilfer’s (2006b) coupled nonlinear partial differential equations based 

on the dynamics of fluid flow.  

 

In this paper we have developed independently the use of the same, one might say intuitive, 

breakdown of phases to solid, and two immiscible phases each of which can have a mobile 

fraction and an immobile one, but in the case of the Connectedness Theory, the similarity is 
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restricted to the definition of phases, taking a purely geometric approach to the problem 

thereafter. 

 

By contrast, other geometric approaches do exist. Minkowski functionals (MFs) can be used 

to describe the basic morphological properties of porous media. In three dimensional Euler 

space, the Minkowski functionals comprise four functions (M0 , M1 , M2 and M3), which are 

measurements of the volume, surface area, mean curvature and Euler characteristic of a given 

object, respectively (Arns et al., 2001). These four measurements uniquely define any object 

in 3D space according to Liu et al. (2017) who carried out a combined modelling and 

experimental study. Their experimental results showed that there was a strong correlation 

between the non-wetting phase Euler characteristic and relative permeability, but a weak 

correlation for the wetting phase topology.  

 

Slotte et al. (2020) also used Minkowski functionals for the purpose of predicting 

permeability and electrical flow. While this approach showed some success, it concluded that 

Minkowski functionals alone were insufficient to characterise transport properties, and the 

paper did not consider the quantitative connectedness of pore space, the latter of which is a 

strength of Connectedness Theory.  

 

While recognising that relative permeability shows a very strong correlation with 

connectivity, Alpak et al. (2017) carried out fully coupled visco-capillary simulations, using 

a free-energy based lattice Boltzmann approach, achieving results which “… highlight the 
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close connection between relative permeability and fluid topology and suggest that 

topological measures are much more meaningful validation criteria for pore-scale 

simulation.” (Alpak et al., 2017). In essence, our paper explores the geometrical and 

topological control of relative permeability with a different topological approach, which 

exploits the very strong correlation with connectivity recognised by Alpak et al. (2017). 

 

Consequently, this work seeks to extend the Connectedness Theory that was developed for 

electrical flow in porous media containing any number of conducting and non-conducting 

phases to the problem of fluid flow (Glover, 2010).  

 

Another approach, which is significantly different, but has the same goal, is to decompose 

the conductivity critical exponent at the percolation threshold into parts, one of which is the 

tortuosity exponent (Berg and Sahimi, 2024). This approach has shown significant success on 

network models, but differs from the approach in this paper in two important respects. The 

first is that the approach is based entirely upon assigning meaning to exponents that scale 

behaviour of the porous medium, and does not explicitly consider connectivity or 

connectedness of any of the phases. The second is that, conversely, Connectedness Theory 

does not explicitly include any percolation threshold because it is not required. Instead, any 

threshold is implicit in the geometrical symmetry of the approach. As a result, the two 

approaches are mathematically very different indeed. 
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In this purely theoretical work we first review a selection of the most common empirical 

models for the two-phase relative permeability of a porous medium, and draw attention to 

how the models are all forms of more general underlying equations for the relative 

permeability of the wetting and non-wetting phase. Subsequently, we define a conceptual 

framework for considering the multi-phase relative permeability problem which is very 

similar to that which the empirical models already use. We then use previous work of Glover 

et al. (2006), Glover and Walker (2009), and Glover (2009; 2010) to apply Connectedness 

Theory to the relative permeability problem, noting that this is a theoretical development of 

the previous work, where the physical parameters may be determined experimentally. The 

remainder of this work then examines the immediate implications of the new relative 

permeability model. This paper is purely theoretical and deliberately avoids comparison 

with experimental data. In many ways it mirrors the approach of Sakai et al. (2015) in wanting 

to combine electrical and flow characteristics to inform the quantitive understanding of 

relative permeability. It is hoped that this theoretical paper will in future be supported by 

new experimental measurements that allow it to be fully verified. 

 

2.  THEORETICAL BACKGROUND 

The relative permeability of a phase is a dimensionless measure of the effective permeability 

of that phase and is given by the ratio of the effective permeability of that phase to the 

absolute permeability  

𝜅𝑟𝑗 =  
𝜅𝑗

𝜅𝑜,       (1) 
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where krj is the relative permeability of the jth phase, j is the absolute permeability of the jth 

phase and o is a reference permeability. Often the reference permeability is taken to be that 

of oil when all the oil in the porous medium is immobile, in other words at the irreducible 

wetting phase saturation, Swi. Relative permeabilities are most often represented as a function 

of wetting phase saturation, Sw. The wetting phase and oil relative permeabilities depend not 

only on the volume fraction of each phase but the way that phase is arranged. Since any 

rearrangement of a fluid phase implies the movement of all fluid phases in a porous medium, 

and the need to include capillary effects due to wetting and non-wetting fluids, the relative 

permeability curves also depend upon the flow history. Hence, different relative 

permeability curves are measured during drainage (reduction of the wetting phase volume 

fraction) and imbibition (increase of the wetting phase volume fraction). 

 

Equation (1), though simple, makes a number of important assumptions that should be 

considered. The approach implies that Darcy’s law can be applied to each phase in the porous 

medium separately. The assumptions inherent in Darcy’s law also apply to relative 

permeabilities. These are that (i) the flow is one-dimensional, and (ii) horizontal, that (iii) the 

fluids are immiscible, and that (iv) the medium is homogeneous. Ideally we would add a 

further assumption that the fluids do not interact, implying that the movement of one fluid 

has no effect on the movement of another. This is not true even for steady-state relative 

permeability measurements. Normally, each phase impedes the other phases sufficiently that 

the sum of all the relative permeabilities is less than unity, although there have been 
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examples in heavy oil reservoirs where inter-phase coupling enhances flow leading to the 

sum of the relative permeabilities being greater than unity (Bravo and Araujo, 2008). 

 

3.  EMPIRICAL RELATIVE PERMEABILITY MODELS 

It is not the aim of this paper to review the relative permeability models. However, since 

there are few authoritative reviews (of which the best are cited below), we feel that it is 

necessary to review briefly the main models so that they may be compared with the approach 

used in this work. The most important point is that all of the models are empirical because 

each assumes some form of the capillary pressure-saturation function that is based on 

experimental observation. 

 

There are three historical approaches to the relative permeability problem that are discussed 

briefly in the following sub-sections, and are also reviewed by Li and Horne (2005) and Dury 

et al. (1999). All the models are summarised in Table 1, which presents the six models in the 

form of two generalised equations that differ only in the form of their individual coefficients. 

Consequently, it can be seen that, though all the models are empirical, they exhibit some 

underlying symmetry which hints at there being a deeper theoretical control.  This paper 

uses the Connectedness Theory approach to show that at least one of these empirical methods 

(the Brooks–Corey–Purcell method) has a deeper pedigree than just being an empirical 

model. 
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Table 1. The six main relative permeability models used in this work. 
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∗ )𝑎[1 − (1 − (𝑆𝑤
∗ )𝑏)𝑐]2 (1 − 𝑆𝑤

∗ )𝑑[1 − (𝑆𝑤
∗ )𝑒]𝑓   

a b c d e f krw krnw References 

BCP 

Brooks and 

Corey 

(1964) 

Purcell 

(1949) 

2 + 𝜆

𝜆
 

 
0 0 0 

2 + 𝜆

𝜆
 1 (𝑆𝑤

∗ )
2+𝜆

𝜆   [1 − (𝑆𝑤
∗ )

2+𝜆

𝜆 ]  Li and Horne (2005) 

BCB 

Brooks and 

Corey 

(1964) 

Burdine 

(1953) 

2 + 3𝜆

𝜆
 

 
0 0 2 

2 + 𝜆

𝜆
 1 (𝑆𝑤

∗ )
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Neto et al. (2011), 

Demond and Roberts 

(1993) 

VGM 

van 

Genuchten 

(1980) 

Mualem 

(1976) 
0.5 1/m 2m 0.5 1/m 2m (𝑆𝑤

∗ )1 2⁄ [1 − (1 − (𝑆𝑤
∗ )1 𝑚⁄ )

𝑚
]

2
 (1 − 𝑆𝑤
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(1980), Dourado 

Neto et al. (2011), 

Parker et al. (1987) 
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The following sections examine each of the models in a little more detail so that their 

relationships can be understood. 

 

The Purcell Approach 

Purcell (1949) used capillary pressure data to calculate porous medium permeability, and in 

doing so created an equation that can be used to calculate the relative permeabilities in two-

phase flow 

𝑘𝑟𝑤 =  
∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄

𝑆𝑤
0

∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄
1

0

   and  𝑘𝑟𝑛𝑤 =  
∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄

1
𝑆𝑤

∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄
1

0

  ,   (2) 

where krw and krnw are the relative permeabilities of the wetting and non-wetting phases, Sw is 

the saturation of the wetting phase and Pc(Sw) is the capillary pressure as a function of Sw. Li 

and Horne (2005), who provide a good review of most relative permeability models, note 

that krw+ krnw = 1, which is contrary to experimental measurements on porous media. They 

also compare the model with experimental data and find that the equation for the wetting 

phase fits the data fairly well, but that for the non-wetting phase does not.  

 

The Burdine Approach 

Burdine (1953) added a tortuosity factor  to the Purcell equations to give 

𝑘𝑟𝑤 =  (𝜆𝑟𝑤)2 ∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄
𝑆𝑤

0

∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄
1

0

   and  𝑘𝑟𝑛𝑤 =  (𝜆𝑟𝑛𝑤)2
∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄

1
𝑆𝑤

∫ 𝑑𝑆𝑤 [𝑃𝑐(𝑆𝑤)]2⁄
1

0

,  (3) 

where, 



15 

 

𝜆𝑟𝑤 =  
𝜏𝑤(𝑆𝑤=1)

𝜏𝑤(𝑆𝑤)
=  

𝑆𝑤−𝑆𝑚

1−𝑆𝑚
   and   𝜆𝑟𝑛𝑤 =  

𝜏𝑛𝑤(𝑆𝑤=1)

𝜏𝑛𝑤(𝑆𝑤)
=  

1−𝑆𝑤−𝑆𝑒

1−𝑆𝑚−𝑆𝑒
,   (4) 

where w and nw are the hydraulic tortuosities of the wetting and the non-wetting phases, 

respectively, Sm is the minimum wetting phase saturation from the capillary curve and Se is 

the equilibrium saturation of the non-wetting phase, and the symbols have been retained 

from Li and Horne (2005) in order to retain consistency with their work. However, once 

again, the wetting phase relative permeability is a better fit to the experimental data than the 

non-wetting phase relative permeability from this model (e.g., Honarpour et al., 1986). 

 

The Mualem Approach 

Mualem (1976) provided an approach that has become popular amongst soil physicists. It 

takes the form 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )1 2⁄ [

∫ 𝑑𝑆𝑤 𝑃𝑐(𝑆𝑤)⁄
𝑆𝑤

∗

0

∫ 𝑑𝑆𝑤 𝑃𝑐(𝑆𝑤)⁄
1

0

]

2

   and  𝑘𝑟𝑛𝑤 =  (1 − 𝑆𝑤
∗ )1 2⁄ [

∫ 𝑑𝑆𝑤 𝑃𝑐(𝑆𝑤)⁄
1

𝑆𝑤
∗

∫ 𝑑𝑆𝑤 𝑃𝑐(𝑆𝑤)⁄
1

0

]

2

,  (5) 

where  

𝑆𝑤
∗ =  

𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟
       (6) 

is the normalised or reduced wetting-phase saturation and Swr is the residual saturation of 

the wetting phase.  

 

The Corey and Brooks-Corey Relative Permeability Models 

The three approaches outlined above require us to know the form of the function Pc(Sw). 

Corey (1954) found an approximate form of this function experimentally using data 

measured during initial drainage,  
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𝑃𝑐 = 𝐴(𝑆𝑤
∗ )−1 2⁄ ,       (7) 

where A is a constant and wS*
 is the normalised or reduced wetting-phase saturation during 

initial drainage, and defined in the same way as Equation (6). 

 

This parameter can also be defined for use during subsequent imbibition of the wetting phase 

as, 

𝑆𝑤
∗ =  

𝑆𝑤−𝑆𝑤𝑟

1−𝑆𝑤𝑟−𝑆𝑛𝑤𝑟
,      (8) 

where Snwr is the residual saturation of the non-wetting phase. Corey (1954) then obtained 

equations for the relative permeability of the wetting and non-wetting phases by assuming 

that Se = 0 and Sm = Swr, and using Equation (3) and Equation (7) to give 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )4   and   𝑘𝑟𝑛𝑤 =  (1 − 𝑆𝑤

∗ )2[1 − (𝑆𝑤
∗ )2].   (9) 

Although we often call this model the “Corey Model”, it is formally the Burdine Model with 

the Corey capillary pressure relationship (Equation (7)), and is purely empirical. Other 

empirical models were developed about the same time such as that by Pirson (1958) and 

Wyllie (1962) for different forms of the capillary pressure relationship. 

 

Since Equation (7) is rather restrictive, Brooks and Corey (1966) used a more general 

functional form 

𝑃𝑐 =  𝑃𝑒(𝑆𝑤
∗ )−1 𝜆⁄    𝑜𝑟   𝑆𝑤

∗ =  (
𝑃𝑒

𝑃𝑐
)

𝜆

,      (10) 
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where Pe is the entry capillary pressure and  is called the pore size distribution index. This 

empirical model was subsequently derived theoretically from capillary pressure and fractal 

theory for fractal dimensions of the pore network, Df > 2 (Li and Horne, 2004).  

 

Following the same procedure as Corey (1954), the relative permeabilities become 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )

2+3𝜆

𝜆    and  𝑘𝑟𝑛𝑤 =  (1 − 𝑆𝑤
∗ )2 [1 − (𝑆𝑤

∗ )
2+𝜆

𝜆 ],    (11) 

and noting that the Corey (1954) model is a special case of the Brooks and Corey (1966) model 

with =. This model is called the Brooks-Corey-Burdine (BCB) Model and is also given in 

Table 1. 

 

If Equation (10) is substituted into Equations (2), we obtain a relative permeability model that 

is based on the Purcell approach rather than the Burdine approach (i.e., the Brooks-Corey-

Purcell (BCP) Model) (Li and Horne, 2005; 2006) 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )

2+𝜆

𝜆    and   𝑘𝑟𝑛𝑤 = [1 − (𝑆𝑤
∗ )

2+𝜆

𝜆 ].    (12) 

If Equation (10) is substituted into Equations (5), we obtain a relative permeability model that 

is based on the Mualem approach (i.e., the Brooks-Corey-Mualem (BCM) Model) (Chen et 

al., 1999) 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )

4+5𝜆

2𝜆    and   𝑘𝑟𝑛𝑤 = (1 − 𝑆𝑤
∗ )1 2⁄ [1 − (𝑆𝑤

∗ )
1+𝜆

𝜆 ]
2

.   (13) 

Both the BCP and BCM models are also summarised in Table 1. 

 

The van Genuchten Relative Permeability Model 
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Another popular way of describing the capillary pressure curve was developed by van 

Genuchten (1980) and van Genuchten and Nielsen (1985) which can be written 

𝑆𝑤
∗ =  (1 + [𝛼𝑃𝑐]𝑛)𝑚,      (14) 

where  and n are fitting parameters that are related to the non-wetting fluid pore entry 

pressure and the width of the pore size distribution, respectively, and it is often assumed that 

m is a function of n. These parameters share a common physical origin with the Brooks and 

Corey parameters Pe and . At large capillary pressures 𝑆𝑤
∗  → (

1

𝛼
⋅

1

𝑃𝑐
)

𝑚𝑛

, while Equation (10) 

for the Brooks and Corey Model shows 𝑆𝑤
∗ =  (

𝑃𝑒

𝑃𝑐
)

𝜆

. Hence 𝑃𝑒  ⟷  
1

𝛼
   𝑎𝑛𝑑   𝜆 ⟷ 𝑚𝑛. 

 

van Genuchten (1980) assumed that 𝑚 = 1 −
1

𝑛
  and substituted Equation (14) into Equation 

(5) to obtain the van Genuchten-Mualem (VGM) Model that has since been extremely 

popular with soil scientists (Sakai et al., 2015; Parker and Lenhard, 1987; Parker et al., 1987; 

Dourado Neto et al., 2011) 

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )1 2⁄ [1 − (1 − (𝑆𝑤

∗ )1 𝑚⁄ )
𝑚

]
2

   𝑎𝑛𝑑    𝑘𝑟𝑛𝑤 =  (1 − 𝑆𝑤
∗ )1 2⁄ [(1 − (𝑆𝑤

∗ )1 𝑚⁄ )
𝑚

]
2
.

 (15) 

Similar models can be written for the combination of the van Genuchten model with the 

Burdine and Purcell approaches to give  

𝑘𝑟𝑤 =  (𝑆𝑤
∗ )2[1 − (1 − (𝑆𝑤

∗ )1 𝑚⁄ )
𝑚

]    and    𝑘𝑟𝑛𝑤 =  (1 − 𝑆𝑤
∗ )2[1 − (𝑆𝑤

∗ )1 𝑚⁄ ]
𝑚

,  

 (16) 

for the van Genuchten-Burdine (VGB) Model, and 

𝑘𝑟𝑤 =  [1 − (1 − (𝑆𝑤
∗ )1 𝑚⁄ )

𝑚
]    and    𝑘𝑟𝑛𝑤 =  [1 − (𝑆𝑤

∗ )1 𝑚⁄ ]
𝑚
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,   (17) 

for the van Genuchten-Purcell (VGP) Model (Demond and Roberts, 1993; Dourado Neto et 

al., 2011). All of these models are summarised in Table 1.  

 

The relationships between the models described in the section above, as exemplified by Table 

1, exhibits clearly a common form given by the generalised equations and indicating some 

deeper theoretical symmetry in the petrophysics of relative fluid flow. Later in this work we 

will show that the generalised forms of these equations arise directly from the application of 

Connectedness Theory to relative permeabilities, and that the relationships between the 

various fitting parameters also arise directly from the Connectedness Theory. 

 

Finally, it should be noted that none of the equations above require the irreducible wetting 

phase saturation or the residual non-wetting phase saturation to remain constant. Since these 

are both defined at a point where each of the fluids become immobile, retrospectively, it is a 

natural inference that they might be considered to be constant throughout the wetting phase 

saturation range. However, that is not necessarily the case, as we will see later in this paper. 

In addition, it should be noted that the Connectedness Theory which we will apply to relative 

fluid flow does not assume that the saturation of wetting or nonwetting fluid remaining 

immobile is constant as a function of wetting phase saturation. 
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4.  PHASE FRACTIONS 

In this work we consider a multiphase system that is solely composed of n phases, each with 

its volume fraction j , and where 

∑ 𝜒𝑗 = 1𝑛
1 .      (18) 

There is no restriction that the phases are miscible or immiscible, and there is no dependence 

on the historic relative volume fraction of the phases or their distribution. The volume 

fractions and distributions of the phases are, hence, defined purely geometrically at a certain 

arbitrary instant in time. The consequence of this is that the material which follows is equally 

valid for any of the common two phase systems (oil-water, water-gas, gas-oil), but also less 

common systems (for example, oil-steam, oil-supercritical carbon dioxide, and water-

supercritical carbon dioxide), with the important note that their usage would need to also 

take into account miscibility/dissolution if phase fractions were to change. It also implies that 

this approach to relative permeabilities is also valid for three phase systems, such as oil-

water-gas, and so on. The approach is independent of physical properties, requiring only that 

the distribution of the phases is known.  

 

Having stated the likely general validity of the approach, the rest of this paper will focus 

upon the well-known wetting-nonwetting phase problem, and use the indexes ‘p’, ‘r’, ‘n’, and 

‘w’ to associate with pores, rock matrix, the non-wetting phase, and the wetting phase, 

respectively, followed by an  ‘m’ or an ‘i', to represent mobility of the phase or immobility of 
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the phase, again respectively. The main deviation from conventional usage here is the use of 

‘n’ for non-wetting, instead of ‘nw’. This has been done to make the equations easier to read. 

If we assume that our multiphase system is a porous medium with a solid matrix, the volume 

fraction of the solid matrix r encloses a pore space with a volume fraction p, where the 

distribution of the pore space and matrix can take any geometry at any scale, and where  

𝜒𝑟 + 𝜒𝑝 = 1.      (19) 

We will continue to work with volume fractions rather than saturations S or porosity  for 

reasons of generality that will become apparent as the article progresses, but we note that  

𝜒𝑝 = 𝜙  and 𝜒𝑟 = 1 − 𝜙.  

 

It should be noted that commonly the two volume fractions p and r are considered to be 

constant for any given porous medium, however, if the porous medium were to undergo 

dissolution of precipitation reactions, these parameters would become variable, and that 

such a variation is therefore included implicitly in our new model. 

 

For the remainder of this work, we assume that the pore space is completely filled with either 

non-wetting phase or wetting phase and that the non-wetting phase and wetting phase may 

be mobile or immobile. Hence we have four fluid phases, immobile non-wetting phase, 

immobile wetting phase, mobile non-wetting phase and mobile wetting phase, with volume 

fractions ni, wi, nm, wm, respectively.  

 

The volume fractions sum as 
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𝜒𝑟 + 𝜒𝑤𝑖 + 𝜒𝑛𝑖 + 𝜒𝑤𝑚 + 𝜒𝑛𝑚 = 1, and    (20) 

𝜒𝑝 = 𝜒𝑤𝑖 + 𝜒𝑛𝑖 + 𝜒𝑤𝑚 + 𝜒𝑛𝑚.     (21) 

Some of these phases are miscible and some are not. The distinction is irrelevant because our 

two target parameters are associated with two distinct immiscible phases (mobile wetting 

phase and mobile non-wetting phase). 

 

All the parameters in Equations (20) and (21) may be considered to be variable, but only any 

four are independently variable because of the restrictions introduced in Equation (20) that 

no undefined phases are also present. In our model we consider that all four fluid phases to 

be variable in the sense that they depend upon the overall wetting phase and non-wetting 

phase saturations (Sw and Snw), and that a particular volume of one pore fluid that is mobile 

at a given wetting phase saturation may be immobile at a slightly higher or lower saturation. 

This implies that our samples should be homogeneous at the scale on which we apply our 

model. However there is no requirement for homogeneity at a smaller scale than that at 

which the model is applied, providing that the volume appears homogeneous when 

heterogeneities, and their effects, are averaged. There is no requirement for the sample to be 

isotropic at any scale. It should be noted that the conventional approach is rather different, 

treating the parameters r, wi and ni as fixed, and letting wm and nm vary (i.e., just one 

independent variable).  

 

In order to fully define the system and to be consistent with parameters that are used 

conventionally, we have 
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𝜒𝑤𝑖 + 𝜒𝑤𝑚 =  𝜒𝑤 =  𝜙𝑆𝑤,     (22) 

𝜒𝑛𝑖 + 𝜒𝑜𝑚 =  𝜒𝑛 =  𝜙𝑆𝑛,     (23) 

𝜒𝑤 + 𝜒𝑛 =  𝜙,       (24) 

where each of the pore fluids has a volume fraction w and n and saturations Sw and Sn, 

respectively. If we consider that the fluid phases are completely interchangeable, the volume 

fraction of wetting phase varies between zero and (1-) and that of the hydrocarbon between 

 (1-) and zero. However, there exists an immobile wetting phase fraction iw that cannot be 

removed from the porous medium, which is given by 

𝜒𝑤𝑖(𝑆𝑤 = 𝑆𝑤𝑖) =  𝜙𝑆𝑤𝑖,     (25) 

and a residual non-wetting phase saturation, which is given by 

𝜒𝑛𝑖(𝑆𝑤 = 1 − 𝑆𝑜𝑟) =  𝜙𝑆𝑛𝑟,     (26) 

where, Swi is the irreducible wetting phase saturation and Snr is the residual non-wetting 

phase saturation. Hence, the volume fraction of wetting phase varies between  Swi and  (1-

Snr)  where 

 𝜙𝑆𝑤𝑖 ≤ 𝜒𝑤 ≤ 𝜙(1 − 𝑆𝑛𝑟)   or   𝜒𝑤𝑖 ≤ 𝜒𝑤 ≤ (1 − 𝜒𝑟 − 𝜒𝑛𝑖),   (27) 

and the analogous ranges for the other parameters are 

𝜙𝑆𝑜𝑟 ≤ 𝜒𝑛 ≤ 𝜙(1 − 𝑆𝑤𝑖)   or   𝜒𝑛𝑖 ≤ 𝜒𝑛 ≤ (1 − 𝜒𝑟 − 𝜒𝑤𝑖),   (28) 

0 ≤ 𝜒𝑤𝑚 ≤ 𝜙(1 − 𝑆𝑤𝑖 − 𝑆𝑛𝑟)   or   0 ≤ 𝜒𝑤𝑚 ≤ (1 − 𝜒𝑟 − 𝜒𝑤𝑖 − 𝜒𝑛𝑖),  (29) 

0 ≤ 𝜒𝑛𝑚 ≤ 𝜙(1 − 𝑆𝑤𝑖 − 𝑆𝑛𝑟)   or   0 ≤ 𝜒𝑛𝑚 ≤ (1 − 𝜒𝑟 − 𝜒𝑤𝑖 − 𝜒𝑛𝑖),  (30) 

Figure 1 shows how the five phases may occupy the porous medium. It should be noted that 

the lines AB and CD, are not necessarily constant or linear, and have been drawn with an 

arbitrary shape in Figure 1 to express this. The functional form of these lines are (r + wi) and 
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(1-ni) , respectively, and are non-linear if the functions wi(Sw) and ni(Sw) are non-linear, 

respectively. However, the line AC is linear because wi+wm = Sw for SwiSw (1-Snr).  

 

 

Figure 1. The relationship between the five phases, porous medium matrix, mobile and 

immobile wetting phase, and mobile and immobile non-wetting phase. 

 

 

One of the perceived disadvantages of Connectedness Theory is that by its general nature 

can introduce a large number of parameters. The number of parameters is governed in the 

electrical case by the number of conducting phases, and can be large and difficult to quantify 
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in practical applications. The same is true, but to a lesser extent, for the two phase flow 

application described in this paper. Nevertheless, for relative fluid flow there are eight 

independent parameters. Fortunately in most cases some of these can be considered to be 

constant. One example is the phase fraction of the matrix. In most applications one might 

assume that the phase fraction of the matrix would remain constant, thus simplifying the 

equations. However, the general nature of Connectedness Theory means that in cases where 

reactive fluid flow leads to dissolution or precipitation, the phase fraction of the matrix can 

be allowed to vary while still being described by the theory. Despite the number of 

parameters, this paper shows that Connectedness Theory can be used to provide some 

theoretical pedigree to some of the simpler conventional empirical relative permeability 

models described in Section 3. 

 

5.  CONNECTEDNESS AND PERMEABILITY 

The permeability of a single phase flowing through a porous medium is given by the 

relationship (Glover et al., 2006). 

𝜅 =  
𝑑2𝜙3𝑚

4 𝑎 𝑚2 ,      (31) 

Here  is the permeability (in m2), d is the effective grain diameter (in m),  is the porosity 

(unitless), m is the cementation exponent (unitless) and a is a constant that is thought to be 

equal to 8/3 for three dimensional samples composed of quasi-spherical grains. Equation (31) 

is an equation derived analytically from electro-kinetic considerations. Like many equations 

in electro-kinetics, it assumes that the electrical double layer is thin, which requires the value 
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of the cementation exponent m to be derived from measurements on samples saturated with 

medium to high salinity fluid. The equation also assumes that O’Konski’s (1960) equation is 

valid, and that the formation factor 𝐹 (= 𝜙−𝑚) and the porosity do not approach unity. 

 

In 2009 Glover and Walker (2009) provided an equation that allows the effective pore radius 

of a porous medium to be calculated if the effective grain diameter is known, and vice versa. 

The equation also requires that the porosity and cementation exponent (or formation factor) 

is known. The so-called theta-transformation is given by 

𝑑 = 2 Θ 𝑟    where    Θ =  √
𝑎 𝑚2

8 𝜙2𝑚  =  √
𝑎 𝑚2 𝐹2

8
,   (32) 

where r is the effective pore radius, and F is the formation factor (unitless). The assumptions 

behind Equation (32) are the same as those for Equation (31) discussed previously. 

 

Equation (32) can be resolved for d2 and substituted into Equation (31) to give 

𝜙

𝜏𝑒𝜅
=  

8

𝑟2    where  𝜏𝑒 =  𝜙1−𝑚 ,    (33) 

and e is the electrical tortuosity.  

 

The connectedness of a porous material was defined by Glover (2009) and used in the 

generalized Archie`s law (Glover, 2010) as 

𝐺 ≡ 𝜙𝑚 =  𝜙𝜍𝑒,     (34) 

where  𝜍𝑒 is the electrical connectivity (=1/e). Hence, Equation (33) can be rewritten as 

𝜅 =  
𝐺𝑟2

8
.      (35) 
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The permeability of a tube with a radius r can be expressed by (Bernabé, 1995) 

𝜅𝑡 =  
𝑟2

8
.      (36) 

and is proven to scale with porosity if a bundle of capillary tubes forms an array of porosity 

 (Adegoke and Olowofela, 2008). Hence, 

𝜅 = 𝐺 𝜅𝑡.      (37) 

This is a remarkable result; it is completely analogous to the equation for calculating the 

conductivity of a porous medium when completely saturated with a single phase 

𝜎 = 𝐺 𝜎𝑓,      (38) 

where  is the conductivity of the porous medium and f is the conductivity of the saturating 

fluid. In each case, Equations (37) and (38) express the measured transport property ( and 

) as the product of the physical property without the presence of the pore structure (t and 

f) and the effect of the intervening pore structure given by the connectedness. The 

connectedness represents how the basic physical property is abated or modified by the pore 

structure. The corollary is that the connectedness can be said to be independent of the 

physical (transport) property it modifies, being solely a function of the microstructure of the 

porous medium.  

 

The similarity of Equations (37) and (38) is even more surprising when one considers that 

electrical conduction in porous media is mediated by ions and electrons that cross phase 

boundaries, while fluid flow involves mass transport that by definition remains constrained 

to its own phase. There is no real problem for a non-conducting matrix that is saturated with 
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a single conducting fluid, because both the conducting ions and the fluid are constrained to 

the same phase. The implication is that this model for permeability should only be valid for 

immiscible non-interacting pore fluids. The further question remains whether these 

equations can be generalised to three pore fluids or even n-phases as in the case of the 

generalised Archie’s law? 

 

In the case of conductivity the phase may have a zero conductivity for two reasons; (i) the 

connectedness of the phase tends to zero (G→0), or (ii) the conductivity of the material 

making up that phase tends to zero (f→0) as shown by Equation (38). The case for 

permeability is analogous. A phase may have a zero permeability if (i) the connectedness of 

the phase tends to zero (G→0), or (ii) the value of t for that phase tends to zero (t →0) as 

shown by Equation (37). The interpretation of the connectedness is the same as for the 

electrical case as well as being simple and intuitive (Glover, 2009; 2010; Glover and Déry, 

2010). However, the physical interpretation of the value of t is not. Equation (36) depends 

solely upon the radius of the capillary tube that represents a characteristic radius of the phase 

perpendicular to flow (i.e., the characteristic pore radius of the pore space if there are only 

two phases; matrix and mobile fluid). Hence, both t and f represent the effectiveness of 

flow though the phase, with electrical flow being a function of the availability, charge and 

mobility of charge carriers, while the hydraulic flow is a function of the radius of the 

equivalent capillary. Hence, there are two conditions for zero permeability 

𝜅 → 0   for either  |
𝐺 → 0
𝜅𝑡 → 0

      (39) 
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In other words, there is zero permeability if either (i) the phase is not connected, or (ii) the 

inherent permeability of the phase approaches zero. While one might initially consider that  

𝜅𝑡 → 0 ⇒  𝑟 → 0 ⇒  𝜒 → 0 ⇒  𝐺 → 0,    (40) 

it is possible that  

𝜅𝑡 → 0    when   𝑟 ≠ 0 ⇒  𝜒 ≠ 0 ⇒  𝐺 ≠ 0  (𝑚 ≠ ∞),  (41) 

if there is no flow in the capillary tube due to either (a) the driving pressure being insufficient 

to overcome frictional forces when the capillary radius is extremely small, or (b) the driving 

pressure being insufficient to overcome capillary forces. There is an important mechanism 

associated with the second point: If fluid-fluid interfaces are successively mobilised in a 

porous medium from zero effective permeability at low pressure gradients, the relative 

permeability picture breaks down as the relation between flow rate and pressure gradient 

becomes a power law rather than linear. This was first seen by Tallakstad et al. (2009), and 

later studied by numerous authors (e.g., Gao et al., 2021). Later in this paper we will apply 

Connectedness Theory that was developed from Equation 38 to the analogous Equation 37 

developed in this work. Connectedness Theory is concerned only with the fraction of any 

given phase and its connectedness. Consequently, the mobility of fluid–fluid interfaces may 

change both the relative fractions of the two fluid phases as well as their connectedness, so 

in principle the effect described by Tallakstad et al. (2009), and Gao et al. (2021), should be 

implicitly included in the theory. 
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Since Equations (36) and (37) are defined for a moment in time with specified phase fractions, 

there is no implicit accounting for capillary pressure, and we can discount the second 

mechanism (mechanism (b), above). 

 

6.  PHASE CONNECTEDNESSES 

In this work we consider a multiphase system that is solely composed of n phases, each with 

its connectedness Gi. Glover (2010) hypothesised that there exists a law of conservation of 

connectedness that is given by 

∑ 𝐺𝑗 = 1𝑛
1 ,      (42) 

which is an exact analogy of Equation (18). Glover (2010) showed using numerical modelling 

that for the electrical system, conservation of connectedness seemed to be valid. However, it 

is too early to state that such a law is valid and under what circumstances. Here we extend 

our hypothesis in the electrical domain to include connectedness and fluid flow. 

 

If we continue our definition of matrix, immobile and mobile phases forward to 

connectednesses, we have Gr, Gwi, Gni, Gwm, and Gnm for the connectednesses of the matrix, 

immobile wetting phase and non-wetting phase and mobile wetting phase and non-wetting 

phase, respectively. It follows that 

𝐺𝑟 +  𝐺𝑤𝑖 + 𝐺𝑛𝑖 + 𝐺𝑤𝑚 + 𝐺𝑛𝑚 = 1.     (43) 

If the system is linear such that Equation (39) is valid, we may also say that 

𝐺𝑝 =  𝐺𝑤𝑖 + 𝐺𝑛𝑖 + 𝐺𝑤𝑚 + 𝐺𝑛𝑚,     (44) 
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𝐺𝑤 =  𝐺𝑤𝑖 + 𝐺𝑤𝑚, and      (45) 

𝐺𝑛 =  𝐺𝑛𝑖 + 𝐺𝑛𝑚.       (46) 

Since individual connectednesses are a function of the appropriate phase fraction and an 

exponent as defined in Glover (2009) as 

𝐺𝑗 = 𝜒𝑗
𝑚𝑖 = 𝜒𝑗 𝜒

𝑗

𝑚𝑗−1
.      (47) 

It is immediately obvious that each connectedness contains information both of the volume 

fraction of each phase j and its connectivity  𝜒
𝑗

𝑚𝑗−1
 (or tortuosity𝜒

𝑗

1−𝑚𝑗). 

 

Figure 2 shows an example of how the connectednesses of the mobile non-wetting phase and 

gas phases vary with wetting phase saturation for five values of both mnm and mwm (1, 1.5, 2, 

2.5 and 3), and for which mnm =1 and mwm = 1 both provide a linear relationship. As with the 

cementation from the conventional Archie’s Law, larger values imply lower 

connectednesses. The generic similarity of the curves in this figure to relatively permeability 

curves will be noted. 
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Figure 2. Variation of the connectedness of the mobile non-wetting phase and mobile 

wetting phases as a function of wetting phase saturation for a range of values of mnm and 

mwm given in the legend, and for Swi = 0.2 (irreducible wetting phase), Snr = 0.25 (residual 

nonwetting phase), and  = 0.2. 

 

7.  CONNECTEDNESS AND RELATIVE PERMEABILITY 

Let us write Equation (37) for n phases, where 1<j<n 

𝜅𝑗 =  𝐺𝑗𝜅𝑡𝑢𝑏𝑒.       (48) 

We can generate equations for the effective permeability of both the mobile wetting and the 

mobile nonwetting phases 

𝜅𝑤𝑚 =  𝐺𝑤𝑚𝜅𝑡𝑢𝑏𝑒, and     (49) 

𝜅𝑛𝑚 =  𝐺𝑛𝑚𝜅𝑡𝑢𝑏𝑒.      (50) 
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We should bear in mind that both the effective permeabilities and their respective 

connectednesses are a function of the volume fractions (and saturations) of each phase, 

respectively. 

 

Let us define a reference effective permeability to be the effective permeability to the 

nonwetting phase at Swi (irreducible wetting phase saturation), which is fairly common 

within the oil industry. We can rewrite Equations (49) and (50) in terms of relative 

permeabilities using the definition given by Equation (1) 

𝑘𝑟𝑤 =  
𝐺𝑤𝑚(𝜒𝑤)

𝐺𝑛𝑚(𝜒𝑤=𝜒𝑤𝑖)
, and     (51) 

𝑘𝑟𝑛𝑤 =  
𝐺𝑛𝑚(𝜒𝑛)

𝐺𝑛𝑚(𝜒𝑤=𝜒𝑤𝑖)
.      (52) 

The sum of these relative permeabilities is 

𝑘𝑟𝑤 + 𝑘𝑟𝑛𝑤 =
𝐺𝑤𝑚(𝜒𝑤)+ 𝐺𝑛𝑚(𝜒𝑛)

𝐺𝑛𝑚(𝜒𝑤=𝜒𝑖𝑤)
 .    (53) 

or 

𝑘𝑟𝑤 + 𝑘𝑟𝑛𝑤 =
𝜒𝑤𝑚

𝑚𝑤+ 𝜒𝑛𝑚
𝑚𝑛

𝜒𝑛𝑚
𝑚𝑛|

𝑆𝑤𝑖

.     (54) 

Let us assume that we can apply the conservation of connectedness that was developed by 

Glover (2010) for the generalised Archie’s law, and we apply it within the reference frame of 

the whole porous medium sample, i.e., for all the 5 phases in the porous medium, we get 

𝐺𝑟 + 𝐺𝑤𝑖 + 𝐺𝑛𝑖 + 𝐺𝑤𝑚 + 𝐺𝑛𝑚 = 1.     (55) 

or 

𝜒𝑟
𝑚𝑟 + 𝜒𝑤𝑖

𝑚𝑤𝑖 + 𝜒𝑛𝑖
𝑚𝑛𝑖 + 𝜒𝑤𝑚

𝑚𝑤𝑚 + 𝜒𝑛𝑚
𝑚𝑛𝑚 = 1    (56) 
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Now certain of these phases are immobile, but that is not the same as saying that their 

connectednesses are zero. Each phase present has a finite non-zero value. If that phase is 

immobile, it is the value of tube that appears in Equation (37) that is zero. 

 

The numerator of Equation (54) can be written as 

1 − 𝜒𝑟
𝑚𝑟 − 𝜒𝑤𝑖

𝑚𝑤𝑖 − 𝜒𝑛𝑖
𝑚𝑛𝑖 .     (57) 

The denominator of Equation (54) can also be written as 

1 − 𝜒𝑟
𝑚𝑟 − 𝜒𝑤𝑖

𝑚𝑤𝑖 − 𝜒𝑛𝑖
𝑚𝑛𝑖      (58) 

and hence Equation (54) is equal to unity, which does not agree with the general experimental 

observation that the sum of the relative permeabilities of a 2 fluid system is less than unity 

(except at the point where the reference effective permeability is taken). Is this a failing of the 

application of Connectedness Theory to permeability? Does it mean that the conservation of 

connectedness according to Glover (2010), 

∑ 𝐺𝑗𝑗 = 1      (59) 

is not followed for fluid permeability?  

 

Perhaps the fault lies in the phase definitions. We have defined 5 phases, the porous medium, 

two immobile fluid phases and two mobile fluid phases. However, if there is an irreducible 

wetting phase saturation of say 0.2 that does not necessarily mean that this wetting phase 

does not contribute in some way to flow when the wetting phase saturation is greater than 

0.2. This effect is not accounted for in the analysis from Equations (55) to (58). 
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Equation (54) should be rewritten as a 

𝑘𝑟𝑤 + 𝑘𝑟𝑛𝑤 =
(𝜒𝑤𝑖+𝜒𝑤𝑚)𝑚𝑤+(𝜒𝑛𝑖+𝜒𝑛𝑚)𝑚𝑛

(𝜒𝑛𝑖+𝜒𝑛𝑚)𝑚𝑛|𝑆𝑤𝑖

    (60) 

The exponents now express the connectivity of the phase whether it is mobile or not. 

Equation (56) can be rewritten as 

𝜒𝑟
𝑚𝑟 + (𝜒𝑤𝑖 + 𝜒𝑤𝑚)𝑚𝑤 + (𝜒𝑛𝑖 + 𝜒𝑛𝑚)𝑚𝑛 = 1   (61) 

and we can also write 

𝜒𝑟 + (𝜒𝑤𝑖 + 𝜒𝑤𝑚) + (𝜒𝑛𝑖 + 𝜒𝑛𝑚) = 1.   (62) 

Using Equations (61) and (62) in Equation (60) gives 

𝑘𝑟𝑤 + 𝑘𝑟𝑛𝑤 =
1−𝜒𝑟

𝑚𝑟

(1−𝜒𝑟−𝜒𝑤𝑖)𝑚𝑛𝑖
.     (63) 

where mni is the exponent in the equation that defines the connectedness of the non-wetting 

phase at irreducible wetting phase saturation. This can be rewritten in terms of 

connectednesses as 

𝑘𝑟𝑤 + 𝑘𝑟𝑛𝑤 =
𝐺𝑝𝑜𝑟𝑒𝑠

(1−𝜒𝑟−𝜒𝑤𝑖)𝑚𝑛𝑖
.     (64) 

Since Gpores is the measure of the connectedness of the pore space, and the denominator can 

be interpreted as the connectedness of the mobile fluids, Equation (64) will be always less 

than unity for valid combinations of its parameters. 

 

If we imagine the viscosity of one of the two fluids phases approaches infinity (let’s say the 

wetting phase), that phase effectively becomes a part of the solid matrix and the permeability 

of that fluid phase becomes zero. The relative permeability of the other phase (here non-

wetting phase) becomes unity (providing we are in a two phase system). This is the same as 
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saying the ratio between the permeability of the porous medium where the matrix now 

consists of the old matrix and the immobile fluid, and the single phase permeability of the 

fully saturated porous medium. Applying this to Equation (64) leads to the left-hand side 

becoming equal to krnw = 1.  

 

The numerator of the right-hand side, previously 𝐺𝑝𝑜𝑟𝑒𝑠 is now a new value because the 

porosity has lost that part of it which was occupied by the mobile and immobile wetting 

phase, it having become effectively part of the matrix. Designating the new connectedness of 

the pores as 𝐺𝑝𝑜𝑟𝑒𝑠
′ , both values can be written down as  

𝐺𝑝𝑜𝑟𝑒𝑠 =  (𝜒𝑛𝑚  +  𝜒𝑛𝑖  +  𝜒𝑤𝑚  + 𝜒𝑤𝑖𝜒)𝑚𝑝𝑜𝑟𝑒𝑠  = (1 − 𝜒𝑟)𝑚𝑝𝑜𝑟𝑒𝑠   (65) 

𝐺𝑝𝑜𝑟𝑒𝑠
′ =  (𝜒𝑛𝑚  +  𝜒𝑛𝑖  )𝑚𝑝𝑜𝑟𝑒𝑠 

′
 = (1 − 𝜒𝑟 − 𝜒𝑤𝑚 − 𝜒𝑤𝑖)

𝑚𝑝𝑜𝑟𝑒𝑠 
′

   (66) 

However, only the mobile portion of the non-wetting phase will take part in flow allowing 

Equation (66) to be modified to read 

𝐺𝑝𝑜𝑟𝑒𝑠
′′ =  (𝜒𝑛𝑚)𝑚𝑝𝑜𝑟𝑒𝑠 

′′
 = (1 − 𝜒𝑟 − 𝜒𝑤𝑚 − 𝜒𝑤𝑖 − 𝜒𝑛𝑖)

𝑚𝑝𝑜𝑟𝑒𝑠 
′′

   (67) 

The transformation has removed the phase fractions associated with the wetting phase, and 

the connectedness of the new pore space is less than that for all the old pore space because 

the space that was previously apportioned to contain wetting phase is now solid. This implies 

that 𝐺𝑝𝑜𝑟𝑒𝑠
′ <  𝐺𝑝𝑜𝑟𝑒𝑠  and that 𝑚𝑝𝑜𝑟𝑒𝑠  is generally not equal to 𝑚𝑝𝑜𝑟𝑒𝑠

′  or 𝑚𝑝𝑜𝑟𝑒𝑠
′′  . The value of 

𝑚𝑝𝑜𝑟𝑒𝑠
′  may be larger or smaller than the value of 𝑚𝑝𝑜𝑟𝑒𝑠  depending upon whether the new 

pathway through the matrix has a smaller or a greater connectivity, respectively. Commonly, 

one would expect the process of transforming what was pore space saturated with wetting 
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phase into matrix would result in a lower connectivity of the remaining non-wetting phase 

pathways, and pores saturated with mobile non-wetting phase by only accounting for part 

of the non-wetting phase saturation would have less connectivity than the combined non-

wetting phase. Consequently, one would expect 𝑚𝑝𝑜𝑟𝑒𝑠
′′ > 𝑚𝑝𝑜𝑟𝑒𝑠

′ > 𝑚𝑝𝑜𝑟𝑒𝑠 .  

 

The denominator of the right-hand side of Equation (64) is also altered by the transformation. 

While it was previously 

(1 − 𝜒𝑟 − 𝜒𝑤𝑖)𝑚𝑛𝑖       (68) 

it becomes 

(1 − 𝜒𝑟 − 𝜒𝑤𝑖 − 𝜒𝑤𝑚 − 𝜒𝑛𝑖)
𝑚𝑜𝑚

′
=  (𝜒𝑛𝑚)𝑚𝑛𝑚

′
 ,   (69) 

remembering that 𝑚𝑛𝑖 was previously defined as the exponent in the equation that defines 

the connectedness of the non-wetting phase at irreducible wetting phase saturation. Now, 

after transformation only mobile non-wetting phase is present as a mobile phase, so this 

exponent can be replaced with 𝑚𝑛𝑚
′ , designating the exponent in the equation that defines 

the connectedness of the mobile nonwetting phase when that is the only phase present.  

 

It is worth noting that this definition is the same as the definition for 𝑚𝑝𝑜𝑟𝑒𝑠
′′ , hence  𝑚𝑝𝑜𝑟𝑒𝑠

′′ ≡

 𝑚𝑜𝑚
′ .  Consequently, using this result, Equation (67) and Equation (69) allows us to rewrite 

the right-hand side of Equation (64) to take account of the transformation, which gives 

𝜒𝑛𝑚

𝑚𝑝𝑜𝑟𝑒𝑠
′′

𝜒𝑛𝑚
𝑚𝑛𝑚

′ =
𝜒𝑛𝑚

𝑚𝑝𝑜𝑟𝑒𝑠
′′

𝜒𝑛𝑚

𝑚𝑝𝑜𝑟𝑒𝑠
′′ = 1 ,     (70) 
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which is equal to the unity, agreeing with the left-hand side of the transformed version of 

Equation (64). 

 

It should be noted in the material above that the reference permeability that was used was 

that of the nonwetting phase at the irreducible saturation of the wetting phase. This is 

common in practical usage, but not universal. A different analysis would be needed if relative 

permeabilities were defined relative to a different reference permeability, but the analysis 

would stay broadly the same. This might be useful in those circumstances when nonwetting 

permeability made at the irreducible wetting saturation might be unreliable, which is the 

case in some unconsolidated systems. 

 

8.  COMPARISON OF RELATIVE PERMEABILITY MODELS 

A comparison between the results of the new connectedness approach to calculating relative 

permeability curves with the results of the Brookes-Corey-Purcel (BCP) approach.  

 

In this comparison, the BCP relative permeability curves for non-wetting phase and wetting 

phase were first calculated using the equations in (12) as a function of wetting phase 

saturation values for 6 values of  from 0.5 to 5. The model also varied porosity  for the 

values 0.05, 0.10, 0.15, 0.20 and 0.25, for irreduscible wetting phase saturation Swi for the 

values 0.05, 0.10, 0.15, 0.20 and 0.25 and residual non-wetting phase Sor for the values 0.10, 

0.15, 0.2. 0.25 and 0.30, making 625 independent measurements for each of the non-wetting 
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phase and wetting phase relative permeability curves. Figure 3a shows the results for the 6 

values of , for  = 0.20, Swi = 0.20, and Snr = 0.25. Variation of the porosity, irreduscible wetting 

phase saturation and residual non-wetting phase saturation only resulted in expected 

changes in the range of wetting phase saturation over which it was possible to calculate 

relative permeability curves, as expected. 

 

The connectedness calculations were carried out in the following steps. 

 

Step 1. Calculating the phase fractions for each of the five phases using the values of porosity, 

irreducible wetting phase saturation and residual non-wetting phase saturation (as for the 

conventional approach described above and for the same parameter values). We assumed 

that the immobile phase fractions remained constant and independent of wetting phase 

saturation (i.e., not as shown in the generalised diagram in Figure 1). 

 

Step 2. Calculating the connectednesses for each phase as defined by Glover (2009) and used 

in the generalized Archie’s law (Glover, 2010). This requires phase exponents for each phase, 

some of which were imposed and some of which were calculated. The exponent of the pore 

space mp was set to a range of values between 0.05 and 0.30, but was found not to influence 

the shape of the calculated relative permeability curves. This insensitivity is not surprising 

as the porosity should not influence the relative permeability curves precisely because they 

are relative curves. Subsequently, a value of mp = 2 was used in all measurements. The 

exponents of the immobile wetting phase (mwi) and immobile non-wetting phase (mni) phases 
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were varied between 1 and 2, and again resulted in no change in the modelled curves. The 

reason for this is less obvious and is here related to our assumption that wi and ni are 

independent of Sw. If wi and ni are a function of Sw, implementation of these parameters 

would be expected to produce subtle changes in both relative permeability curves as well as 

making the exponents of the mobile phases (mwm and mnm) each a function of Sw. As there was 

no functional dependence on mwm and mnm, they were set, rather arbitrarily to mwm = 1.25, and 

mnm = 1.4 for all subsequent tests. In this work the exponents of the mobile phases (mwm and 

mnm) were assumed not to be a function of Sw. Values of mwm and mnm were varied, taking the 

5 integer values between and including 1 and 5. The exponent of the porous medium matrix 

mr was calculated as the final missing parameter, using the conservation of connectedness 

law given by Glover (2010). 

 

Step 3. The relative permeabilities for non-wetting phase and wetting phase were calculated 

for each value of wetting phase saturation using Equations (42) and (43), and no recourse to 

the use of a reduced effective wetting phase saturation. This approach is apparently 

completely independent of the methodology used in calculating the BCP relative 

permeability curves. 

 

Figure 3 shows the resulting BCP and connectedness relative permeability curves. The first 

part of the figure (Figure 3a) shows the implementation of the BCP model for a number of 

different values of the pore size distribution index , from 0.5 to 5, which more than covers 

the usual range found in most porous media. Consequently, this plot shows the range of 
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relative permeability curves for non-wetting phase and wetting phase that might be expected 

to occur. Figure 3b shows the implementation of the new connectedness approach to 

calculating relative permeability. This approach does not use the pore size distribution index 

 but uses the mwm and mnm exponents which describe how connected the mobile non-wetting 

phase and wetting phases are. In this implementation both the exponent for the mobile non-

wetting phase mnm and that for the mobile wetting phase mwm take integer values from 1 to 5,  

inclusively. These exponents can be interpreted in a similar way to that of Archie’s 

cementation exponent, from which they are ultimately derived. Consequently, a value close 

to unity indicates very direct connection of the phase, while values closer to 2 would be 

typical of those degrees of connection found in clastic porous media, and higher values 

would indicate less of a degree of connection, such as you might find in a carbonate that had 

undergone considerable diagenesis. Consequently, these values also represent the reasonable 

range of these parameters that you might be expected to encounter in porous media.  

 

Comparison of the curves in Figures 3a and 3b show the calculated relative permeability 

curves to have a very similar shape for all the different parameters. Furthermore, curves 

which have lower lambda value also have higher exponent values and vice versa, which is 

consistent with higher lambda values being associated with more uniform pore size 

distributions which would give rise to more direct connection of the pores. 

 

However, as shown in Figure 3c, the imposition of modelling with  = mwm = mnm does not 

result in the same relative permeability curves. At first sight this should not be surprising 
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because the BCP model is calculated in a very different way to the connectedness approach 

to calculating relative permeabilities. It should be remembered that the pore size distribution 

index   that is found by fitting the BCP model to data rather than used in a predictive sense. 

It would be a step forward if we could find the underlying meaning of the pore size 

distribution index  
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Figure 3. (a) Relative permeability modelled with the Brooks – Corey – Purcell (BCP) (Li and 

Horne, 2004) model for a range of values of l from 0.5 to 5 (please see legend). (b) Relative 

permeability modelled with the new connectedness approach developed in this work for a 

range of mobile non-wetting phase and wetting phase exponents, each taking values from 1 

to 5. (c) An example of the comparison between relative permeability values for non-wetting 

phase and wetting phase modelled with both the BCP and new approaches for both  = 3, 

mwm = 3 and mnm = 3 showing their similarity but not exact match. (d) Relative permeabilities 

using the BCP approach (lines) and the new connectedness approach (symbols) showing 

their identity, together with the values of , mwm and mnm required for the matching. In all 

panels Swi = 0.2, Snr = 0.25,  = 2 and krw@Snr = 0.35.  

 

Figure 3d shows the same BCP data as in Figure 3a as curves. The symbols, which follow an 

identical curve as each of the lines, are generated from the new connectedness approach to 

calculating each of the relative permeabilities. The values of mwm and mnm which allow this to 

occur conform to the equation 

𝑚𝑤𝑚 = 𝑚𝑛𝑚 =  
2+ 𝜆

𝜆
 ,     (71) 

which will be recognised as the exponents occuring in the BCP model. Equation (71) is not a 

coincidence, and indicates a deeper link between the BCP model and the fundamental 

geometrical basis of the Connectedness Theory in three dimensions. It also represents a 

validation of the BCP model. 

 

It should also be noted that throughout this work we have taken mwm = mnm, but this need not 

necessarily be the case. The generalised treatment does not require mwm = mnm, and it follows 

that there may be a separate value of  for each mobile phase, i.e., wm and nm. 
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The implication of Equation (65) is that the value of  is defined solely on the basis of the 

same geometrical considerations that define the exponents mwm and mnm, and that both 

parameters are effectively structural parameters which are defined by the distribution of the 

pore space.  

Figure 4. The variation of the parameter (2 +  𝜆) 𝜆⁄  using values of  from fits to 

experimental krw data as a function of measured saturation exponent, using data (56 points) 

from the Dutch Oil and Gas Portal nlog (https://www.nlog.nl/en ) as well as Alawi et al. 

(2020), Pairoys et al. (2013), and Liang et al. (2018). 

 

Equation (71) is testable using experimental data. The value of  for the wetting phase from 

experimental relative permeability measurements can be compared with the value of the 

saturation exponent as a function of wetting phase saturation during drainage experiments. 

Figure 4 shows the result of this comparison for data from the literature. The data was 

https://www.nlog.nl/en
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collated from Alawi et al. (2020), Pairoys et al. (2013), and Liang et al. (2018), as well as from 

the Dutch Oil and Gas Portal nlog (https://www.nlog.nl/en), and either used explicitly 

quoted data or required the fitting of curves to relative permeability data. The match is not 

perfect, but sufficiently good to validate the link between , mwm (and by inference mnm). It 

should be noted that Figure 4 is essentially comparing measurements of two different types 

(electrical and mass flow), and in the case of Pairoys et al. (2013) used three different methods 

of obtaining the Brooks-Corey coefficient . There is a remarkable agreement considering 

that the measurements are derived from disparate sources. 

 

9.  VARIABLE EXPONENT VALUES 

During this work we have assumed that phase exponents are not a function of fluid 

saturations. This is clearly an oversimplification. Indeed, one would expect the exponents, 

which it will be remembered express the connectivity of a phase, would increase or decrease 

according to how the connectivity of the phase changes as changing phase fraction opens or 

closes flow pathways.  

 

Consequently, the decrease in non-wetting phase flow pathways would be expected during 

imbibition as the non-wetting phase is replaced by the imbibed wetting phase. This would 

be associated with an increase in mnm, whereas the increasingly connected wetting phase 

would be associated with an accompanying decrease in mwm. In general mwi and mni are also a 

function of fluid saturation, though it is possible to assume that the dependance is normally 

weak. In most circumstances mr and mp will remain constant, although they may also be a 

https://www.nlog.nl/en
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function of fluid saturation if significant dissolution or precipitation was occuring in the 

porous medium and depended itself on wetting or nonwetting saturation. 

 

Imposing Equation (42) from the generalised Archie’s law (Glover, 2010), and assuming miw, 

mni , mr and mp remain constant we obtain  

𝐺𝑛𝑚 +  𝐺𝑤𝑚 = 1,      (72) 

or  

𝜒𝑛𝑚
𝑚𝑛𝑚 +  𝜒𝑤𝑚

𝑚𝑤𝑚 = 1,      (73) 

which can be rearranged to express each phase exponent 

𝑚𝑛𝑚 =  
𝑙𝑜𝑔(1− 𝜒𝑤𝑚

𝑚𝑤𝑚)

𝑙𝑜𝑔(𝜒𝑛𝑚)
 , and      (74) 

𝑚𝑤𝑚 =  
𝑙𝑜𝑔(1− 𝜒𝑛𝑚

𝑚𝑛𝑚)

𝑙𝑜𝑔(𝜒𝑤𝑚)
 .      (75) 

This result, which is the analogue of that found in the modification of Archie’s law for two 

conducting phases, is this found to have relevance to fluid flow. It also opens the possibility 

that it may be possible, at least in principle, that krnw might be calculable from krw and vice 

versa, providing the earlier assumptions are justified. 

 

Figure 5  shows a plot where the krnw and krw values have been generated using the BCP model, 

with  = 4 for krnw and  = 3 for krw. There is no reason why the  values for krnw and krw should 

have to be identical. The figure demonstrates a number of effects when allowing the values 

of the exponents to vary with wetting phase saturation. Given that there are an infinite 
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number of functional forms for the 4 phase exponents (mni, mwi, mnm and mwm), physical 

constraints ensured that sensible solutions exist.  

 

For example, here we constrained mwi =1.5 and not to vary with wetting phase or non-wetting 

phase saturation. Assuming that the sum of the phase fractions of the immobile phases is 

constant, which is reasonable, this implied that the immobile wetting phase exponent values 

mwi varied between 1.75 at Swi and 1.21 at Snr, which is consistent with the immobile wetting 

phase being in better communication with the mobile wetting phase as Snr is approached. 

This is likely to be the case in reality, but with a smaller range of change, because in reality 

the mni values which we constrained to a constant value would also vary with changing 

wetting phase saturation such that they had higher values at and approaching Snr and smaller 

values at and approaching Swi for analogous reasons to the controls on mwi. 

 

The four connectednesses (Gni, Gwi, Gnm and Gwm) sum to 0.04 at all values of Sw (and hence Snw) 

as a result of Equation (42) and where the value arises from the calculation of the 

connectedness of the pores using a porosity of 20% and a cementation exponent mp = 2, which 

is typical of conventional Archie’s law cementation exponents describing the geometrical 

arrangement of pores in a sandstone. 

 

Now, instead of fixing the mobile phase exponents to be constant, we have allowed them to 

vary linearly, according to the equation for each mobile phase 
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𝑚 = 𝑚@𝑆𝑤𝑖 +  
(𝑚@𝑆𝑛𝑟− 𝑚@𝑆𝑤𝑖)

(1− 𝑆𝑤𝑖− 𝑆𝑛𝑟)
 𝑆𝑤

∗ ,     (76) 

which allows the phase exponent to increase or decrease linearly depending on the desired 

values at each of the end points (𝑆𝑤
∗ = 0 to 1). Figure 5 shows the connectednesses Gnm and 

Gwm resulting from the modelling. 

 

In the case of the connectedness of mobile non-wetting phase (Gnm) we obtained a perfect fit 

to the BCP krnw curve (=3 giving mnm = 1.6667), as expected from similar results shown earlier 

in this paper. However, Figure 5 shows the connectedness calculated using mat at Swi = 1.6667 

and mat at Snr = 1.7667. This seemingly small linear increase in the exponent is enough to reduce 

progressively the connectedness in Figure 5 and results in the calculated krnw using the 

connectedness method (blue diamonds) being progressively smaller that the BCP krnw (red 

curve) which used a fixed exponent. The inference here is that changing the phase exponent 

as a function of wetting phase saturation not only produces valid krnw curves, but such a 

change would be expected from considerations of phase connectedness as Sw changes. 

 

In the case of krw, we have gone a step further. Previously, we have implemented a multiplier 

to ensure that the endpoint of the krw curve is that encountered during experiments. It was 

set to krw = 0.35 at Snr for previous results in this paper. Here, we adjust the values of m@Swi and 

m@Snr for the wetting phase in order to match the BCP krw curve, which does use the krw@Sor 

multiplier. We found that we could obtain a reasonable match through the full range of 

wetting phase saturations from Swi to Snr using the values m@Swi = 1.8 and m@Snr = 1.99, noting 
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the sensitivity of the match to the parameters at Snr (1.99 matched much better than 2.00). The 

inference here is that, as with the krnw test reported previously, variable phase exponents can 

be used to provide matching krw curves effectively (here to another model, but it would be 

equally the case for fitting to good experimental data). Such a fit to experimental data could 

be used to generate the phase exponents. Furthermore, as no multiplier was needed for the 

process, it is clear that the information required to fit the krw curve is contained entirely within 

the geometrically-defined parameters of the connectedness model, and does not need an ad 

hoc multiplier to allow for fitting. 

 

Figure 5. Relative permeability and connectedness curves for the conventional BCP model 

and for the connectedness model presented in this work using variable phase fractions 

which are a function of wetting phase saturation. 
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Finally, the horizontal dashed line in Figure 5 represents the connectedness of the pore space, 

Gp = 0.04. All of the mobile and immobile connectednesses must sum to this value according 

to the conservation of connectedness law (Glover, 2010). The dotted horizontal line 

represents the maximum value of the sum of the connectednesses of the mobile phases (non-

wetting phase and wetting phase), inferring that the space in between the two lines, which is 

shaded, represents the value of the sum of the connectedness of the immobile phases (non-

wetting phase and wetting phase). This is considerable, and generally becomes larger as the 

wetting phase progressively establishes itself in the pore space. 

 

10.  CONCLUSIONS 

In this work we have recognised a fundamental similarity between electrical transport and 

fluid mass transport in porous media, whereby both are controlled by the amount of a 

conducting or flowable phase and how well it is connected. In reviewing existing relative 

permeability models, we recognise the fundamental similarities in their structures. We have 

attempted to apply the connectedness approach developed during work on the generalised 

Archie’s law (Glover, 2010).  This is a theoretical problem where the overall conductivity of 

a porous medium may have contributions from multiple and different conducting phases 

which interact with each other. In the case of relative permeabilities, there is a theoretical 

problem where the overall flow of each phase also may depend upon other flowing phases. 
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In this work, we use Connectedness Theory to understand relative permeabilities, which has 

allowed the formalisation of effective and relative permeability in terms of phase 

connectedness. Connectedness Theory can be formulated for any number of phases, and each 

can be mobile or not. Consequently, the approach outlined in this work can be extended to a 

three-phase relative permeability system easily.  

 

In this work, we focus on the well-known and wetting/non-wetting two phase relative 

permeability system, though it is expected that many of its characteristics will be similar for 

a three-phase system. In particular, we derive the important result that the effective 

permeability is equal to the connectedness G multiplied by the permeability of a capillary 

tube, which is completely analogous to the equation for calculating the conductivity of a 

porous medium when completely saturated with a single phase. The relative permeabilities 

for each fluid phase in the porous medium can then be expressed solely in terms of a ratio of 

connectednesses, which describe the distribution of flow pathways. 

 

Comparison of the relative permeabilities calculated with the new connectedness-based 

model provides identical curves to the Brooks-Corey-Purcell (BCP) model providing that the 

phase exponents defining each mobile phase are equivalent to (2 +  𝜆) 𝜆⁄ . This amounts to a 

theoretical validation of the BCP model. Comparison of this last value for the wetting phase 

with the saturation exponent from electrical data, which would be expected to also measure 

how well connected that same phase is for electrical flow. 
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Although commonly regarded as constant, the values of l for the wetting phase and the non-

wetting phase neither have to be the same or be constant. Indeed, it would be expected that 

these values for wetting phase and non-wetting phase would be different and vary according 

to the amount of each phase present in the porous medium at a particular fluid saturation 

state. The connectedness approach has allowed us to examine variable phase exponents, 

indicating that in principle the relative permeability of one mobile phase should be calculable 

from the other and vice versa, and that the end point for the wetting phase relative 

permeability curve need not be imposed in a model, but arises naturally from the interplay 

of the mobile and immobile phase exponents. 

 

This work examines some of the geometrical theory underlying the behaviour of relative 

permeabilities, putting the controlling parameters of those models on a theoretical basis and 

allowing electrical parameters to inform relative permeability measurements and vice versa. 

The formulation depends only on interacting geometrical considerations and is capable of 

taking hysteresis effects into consideration when phase connectivity changes as a function of 

saturation history because it utilises the connectedness of phases directly.  

 

This paper has been purely theoretical and scope, and is consistent with existing empirical 

models and the data to which they have been fitted. However, it is hoped that the approach 

will be supported by new experimental measurements in the future. It is unlikely that 

existing standard measurements of relative permeability will be sufficient to take account of 

all the variables in the model and sufficiently validate it. Such measurements may be carried 
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out on either rocks or physical models that imitate rocks using micro-CT or nano-CT 

measurements during steady-state flooding, or by modelling on digital rock models using 

the Lattice Boltzmann approaches. Whatever the approach, it is important that 

measurements or modelling are done in such a way that all the parameters of the 

connectedness model can be taken into account and fully tested.  

 

Connectedness Theory puts the continuity of phases in the position of prime importance. 

Consequently, we predict that the development of an unconnected and dead-end pathways 

will have less importance than those which are continuous within the fluid, and therefore 

represent a latent connectedness which can be opened up by small changes in the matrix 

connectedness, or improving the permeability of the matrix connectedness as shown so 

elegantly in Ferreira and Nick (2024). 

 

This paper also restricts itself to two phase flow. The Connectedness Theory approach can, 

of course, be extended to any number of phases, the most important of which is its 

application and three phase flow, which represents a possible extension of his work in future 

papers. 
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