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ABSTRACT 

The Single Degree of Freedom (SDoF) method is widely used to evaluate the response of structures or 

structural elements under blast loading. Here, the structure in question is transformed into a single-point 

equivalent for which a single equation of motion can be solved. While the SDoF method is orders-of-

magnitude faster than alternatives such as the finite element method, both are focussed only on solving 

the forward problem (inputs → outputs). In practise, however, a required performance limit is known 

(peak displacement, support rotation, etc.) and an adequate structure should be provided so as to not 

exceed that limit. This necessitates some form of iteration as the SDoF equation of motion cannot be 

simply inverted. Alternatively, machine learning techniques such as artificial neural networks (ANNs) 

may be used. ANNs are agnostic to input data type and therefore can just as easily learn patterns 

between input and output data as they can between output and input data. This paper presents a novel 

application of ANNs to rapidly solve the inverse problem (outputs → inputs) for SDoF structures 

subjected to blast loads. 180,000 SDoF analyses were run for 36 British Steel Universal Column 

sections (5,000 runs for each). The subsequent data was used to train an ANN classification network to 

suggest a section size deemed to meet a target value of support rotation, for a given set of basic inputs 

(span, peak force, impulse). The ANN is able to perform to a high degree of accuracy (> 90% correct 

classification of the test data set) and performs well in unseen ‘design cases’, suggesting that machine 

learning could be a highly valuable tool to aid in solving inverse problems relating to blast loading. 

Keywords:  artificial neural network, blast, classification, inverse modelling, SDoF. 

1  INTRODUCTION 

Protection of critical national infrastructure is predicated on the ability of engineers to 

accurately model the effects of blast on structures. Whether from large-scale industrial 

explosions such as Tianjin (2015) and Beirut (2020), acts of terror, or during ongoing 

conflicts such as those in Ukraine and the Middle East, explosions impart loads on structures 

that are several orders of magnitude larger than those which civil infrastructure is typically 

designed to resist. Furthermore, blast loading parameters are highly sensitive to the exact 

composition, size, shape, and location of the explosive, and are significantly influenced by 

non-linear physical processes which occur when a blast wave reflects off and diffracts around 

obstacles (e.g. in an urban environment), or when two wavefronts coalesce [1]. 

     Whilst tools such as computational fluid dynamics (CFD) and the finite element method 

(FEM) provide solutions to the underlying conservation equations (e.g. they are ‘physics-

based’) with a potentially very high degree of spatiotemporal resolution, they cannot easily 

incorporate the underlying uncertainties in explosion events. That is, whilst they may provide 

a near-exact answer to a given set of well-defined inputs, they provide only one answer (for, 

say, a few hours of computational time), and thus their use in probabilistic, risk-based design 

is currently limited. CFD/FEM therefore finds a natural place more in the detailed design 

stage, rather than the scheme design stage, and there remains a very clear need for a tool 

which provides ‘good enough and quick enough’ results. 
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     This is where we find the natural habitat of the Single Degree of Freedom (SDoF) method; 

at the stage where engineers need to rapidly assess a large number of potential designs and 

quickly ascertain which would work in principle, which would be prohibitively expensive (in 

terms of cost, or carbon) to implement, which simply would not work, etc. The SDoF method 

works by transforming a ‘real life’ system with distributed mass, stiffness, loading, and 

resultant displacements (and stresses, strains, etc.) into an ‘equivalent’ single point [2], with 

one value of mass, stiffness, applied load, and damping coefficient (although this is typically 

ignored in blast applications due to the fact that its influence on first peak displacement is 

negligible [3]). This single point normally represents the point of maximum displacement of 

the ‘real life’ structure (e.g. midspan of a beam or column), and it is allowed to translate 

through one degree of freedom only, hence the name. 

     Transforming a structure into an equivalent single point has the effect of reducing a large 

system of simultaneous equations: 𝑴𝒛ሷ ሺ𝑡ሻ ൅ 𝑲𝒛ሺ𝑡ሻ ൌ 𝑭ሺ𝑡ሻ, (1)

into a single equation: 𝐾ெ𝑚𝑧ሷሺ𝑡ሻ ൅ 𝐾௅𝑘𝑧ሺ𝑡ሻ ൌ 𝐾௅𝐹ሺ𝑡ሻ, (2)

where 𝑴 and 𝑲 are mass and stiffness matrices, and 𝒛ሷ , 𝒛 and 𝑭 are vectors of time-varying 

acceleration, displacement and applied force at each node, whereas 𝑚, 𝑘, 𝑧ሷ and 𝑧 are scalar 

values of the above. Mass and load transformation factors, 𝐾ெ and 𝐾௅, are employed in the 

SDoF method to ensure that kinetic energy, internal strain energy, and work done are 

conserved when moving from ‘real life’ to ‘equivalent’ systems [2]. The SDoF method offers 

orders-of-magnitude reductions in run-time compared to FEM and has demonstrated high 

levels of agreement with experimental data (see Rigby et al. [4] as an example). 

2  THE DESIGN PROCESS AS AN INVERSE METHOD 

The methods described previously (CFD, FEM, SDoF), although offering substantial 

differences in terms of fidelity of solution and computational expense, all still solve the 

problem in a ‘forward model’ sense. That is, for a given set of inputs (load, span, support 

conditions, etc.) and design variables (material type, depth, width, section modulus, etc.), the 

response of that system can be calculated; for the SDoF method this is peak displacement or 

support rotation. 

     In terms of protective design, however, the aim is to limit response to some acceptable 

value, and whilst the inputs are normally constrained (e.g. the element has to span a certain 

distance), the design variables are chosen such that the response limit is not exceeded. These 

response limits are given for support rotation and ductility ratio (peak deflection divided by 

elastic deflection limit), for either Category 1 (for the protection of personnel and equipment 

from the effects of primary and secondary fragments and falling portions of the structure 

under the action of blast loading) or Category 2 (for the protection of structural elements 

themselves from collapse under the action of blast loading) protection levels (see Table 1). 

     This means that the design process can effectively be viewed as an inverse problem 

(outputs → inputs), with analysis being the corresponding forward problem (inputs → 

outputs), a conceptual point introduced in Gallet et al. [6] and expanded upon in Gallet et al. 

[7]. The aim of this paper is to explore this idea in the context of blast response of structural 

elements. In particular, we devise a machine learning model to rapidly solve the  
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Table 1:   Rotation and deformation limits for common structural components for Category 

1 and Category 2 protection levels. (Source: Adapted from Cormie et al. [5].) 

Element Protection category Support rotation Ductility ratio 

Structural steel beams/plates 
1 2° 10 

2 12° 20 

Reinforced concrete beams/ 

slabs 

1 2° – 

2 4° – 

 

 

Figure 1:   (a) Conceptual overview of the standard ‘forward model’ approach; and (b) the 

‘inverse model’ approach adopted in this study. 

inverse/design problem, as in Fig. 1, meaning that the design process can be undertaken in a 

single step, rather than through iteration of the forward model, which would otherwise be the 

approach adopted. 

     When considering steel columns specifically, as can be seen in Fig. 1, the forward model 

requires an initial guess of section type, e.g. a choice of one of the sections available from 

the BS-UC (British Steel Universal Column) catalogue [8] (see the table in the Appendix for 

the full list). This section is then run through the forward model (which, although typically 

inexpensive when solving the SDoF equation of motion, may still require several thousand 

timesteps to be computed), the results extracted, compared against the response limit, and a 

new section chosen if necessary. Clearly, this may require several iterations before the most 

suitable section is chosen, and the required computational steps could number in the many 

thousands. Alternatively, an inverse model will ‘jump’ straight to section type for a given 

response limit in a single computation. 

3  OVERVIEW OF DATASET 

A total of 180,000 individual SDoF analyses were performed, corresponding to 5,000 runs 

for each of the 36 BS-UC column types. Analyses were performed using Ergo Compute, 

Arup’s in-house SDoF solver. The columns were simply supported, and the applied loading 

was a linearly-decaying reverse-ramp load, uniformly distributed along the column’s length, 
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acting on the column’s major axis. The steel was modelled with a yield strength of 355 MPa, 

elastic modulus of 200 GPa, and a dynamic increase factor of 1.17 to incorporate strain rate 

sensitivity of the steel [5]. The columns had a bilinear elastic-perfectly-plastic resistance 

function, i.e. they performed elastically (linearly increasing resistance) until the plastic 

moment capacity was reached (plastic modulus, 𝑍௣௟, multiplied by yield stress, 𝜎௬), and then 

deformed plastically with a constant resistance thereafter. No damping was specified, and 

analyses were terminated when velocity of the single degree of freedom reached zero (and 

therefore displacement had reached a maximum). The forcing function was input as a peak 

pressure and positive phase duration, which can simply be converted to peak force (Ergo 

allows the user to specific a loaded length, with force then given by the multiple of pressure, 

span, and loaded length. For simplicity, in this study the loaded length was set to 1m, and the 

peak force was controlled by peak pressure and span only) and impulse (integral of force 

with respect to time. Since the loading decays linearly, this is simply half the peak force 

multiplied by positive phase duration) in post-processing. An example output is shown in 

Fig. 2. 

 

 

Figure 2:   Example Ergo output for an 8 m spanning 203 × 203 × 113 column with 1 MN 

peak force and 10 ms duration. Peak displacement = 193.1 mm, peak support 

rotation = 2.76°. Note: analysis was run beyond first zero velocity (~30 ms) for 

clarity of presentation. 

     Monte Carlo sampling was used to initialise each simulation. Span was randomly selected 

from the interval 2–10 m (uniform probability). Peak pressures were randomly selected from 

the interval 9–5000 kPa, and positive phase durations from the interval 0.1–40 ms (both with 

a uniform probability in log-space), loosely corresponding to Hopkinson-Cranz scaled 

distances of 1–20 kg/m1/3 and charge masses of 0.1–1,000 kg [9]. Basic logic was used to 

reject any results where peak rotation exceeded 45°, and several ‘passes’ were undertaken to 

ensure the outputs were reasonably well distributed between 0–45°, with a slight preference 

towards rotations of 2°, 4°, and 12°, as these are common limits used in design (e.g. as in 
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Table 1). This naturally resulted in the tendency for higher values of force and impulse to be 

associated with stiffer columns (larger plastic modulus). 

     In summary, each independent Ergo analysis ultimately returned five pieces of 

information: peak force (kN), impulse (kN.ms), span (m), section classification (in the form 

‘CAT BS-UC XXXxYYYxZZZ’; one of 36 available BS-UC sections), and maximum 

support rotation (°). This comprises the entire ‘labelled’ dataset which was used to train the 

machine learning inverse model described in the next section. Examples of the labelled data 

for the columns with largest and smallest section modulus are shown in Fig. 3. 

 

 

Figure 3:   Labelled data for columns with largest (356 × 406 × 634) and smallest (152 × 

152 × 23) plastic modulus, sorted by increasing support rotation. 

4  CLASSIFICATION ARTIFICIAL NEURAL NETWORK 

Classification artificial neural networks (ANNs) are a type of supervised machine learning 

model used to classify labelled data into a number of discrete categories and have recently 

been used to predict failure mode of reinforced concrete walls under near-field explosions 

[10]. 

     In general, ANNs are designed to ‘learn’ the connections between input data and output 

data through successive ‘training’. A network is formed of three main structures: input, 

hidden, and output layers (see Fig. 4). Each of these layers is formed of connected nodes, or 

‘neurons’, and an input signal (in the form of numerical values fed into the input layer) is 

then propagated through the network until, ultimately, the ANN produces a prediction in the 

output layer. Each neuron will send a signal along a pathway to every (if the network is what 

is known as ‘fully connected’) node in the next layer, and whether this node then sends the 

signal onwards, and how strong the resulting signal is, is a function the combined strengths 

of the incoming signals. This strength is adjusted using tuneable parameters – the ‘weights’ 

and ‘biases’ – along the pathways between neurons. 
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Figure 4:  Architecture of the classification neural network adopted in this study. 

     Mathematically, the output signal of a given node, 𝑦, is given as [11]: 

𝑦 ൌ 𝑓 ൭෍𝑤௜𝑥௜ ൅ 𝑏௡
௜ୀଵ ൱ (3)

where 𝑥௜ is the signal received from the ith node on the previous layer, 𝑤௜ is the weight, 𝑏 is 

the bias, 𝑛 is the number of nodes in the previous layer, and 𝑓ሺ⋯ሻ indicates that the 

composite signal is passed through an ‘activation’ function before going on to the next layer. 

The activation function (with ReLU, the ‘rectified linear unit’, used in this study) introduces 

non-linearity to the network (allowing complex relations between input and output to be 

learned), as well as suppressing low magnitude, potentially irrelevant connections and also 

ensuring computational efficiency. 

     First, the labelled data is separated into training, validation, and test data. The training 

dataset is available to the model to learn from throughout, whereas the validation and test 

datasets are kept aside and do not form part of the model’s training. The model is sequentially 

asked to predict the validation dataset during training, so its performance can be monitored, 

whereas the test dataset is used only after training to assess how well the final model can 

predict unseen data, i.e. ‘generalise’. 

     The network is then trained through successive passes of labelled data, where for a given 

set of inputs the network is asked to produce an output (or ‘prediction’), and its performance 

compared against the known output (or ‘target’). Training is typically done in ‘batches’; the 

number of predictions the network is asked to make before weights and biases are adjusted. 

Once the network has attempted to predict the entire training dataset, one ‘epoch’ is said to 

have passed, and training can continue for a specified number of epochs or until some 

performance criteria has been met (hence the need for the validation dataset).  

     In regression networks, the output is typically numerical, with the output predictions 

readily assessed against targets using measures such as mean absolute error or root mean 

square error. In classification tasks, however, the network is asked to assign a confidence 

value to each of the neurons in the output layer. The ‘true’ target, therefore, would be a series 

of zeros for each incorrect label, and a single 1.00 for the correct label. The classification 

network therefore outputs a series of numbers which sum to 1.00 (achieved using the softmax 

function on the output layer).  

     In this study, column classes were listed in order of decreasing plastic section modulus 

(see Appendix) in a slight reworking of the order in which they appear in the BS-UC 

catalogue. This was deemed necessary to ensure that similar predictions (in terms of input) 
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propagated through the network in a similar manner and ultimately arrived at predictions in 

close proximity to one another. In that sense, the index of each class has some physical 

significance, i.e. it is the rank order of plastic section modulus. 

     Imagine the converse, where two datapoints share all but one input, say span, yet their 

classes occupy the top and bottom nodes of the output layer (with the inputs associated with 

the shorter span requiring a slightly less stiff section for a given support rotation). Here, we 

are asking one set of inputs to return [1, 0, 0, … 0] and the other only marginally different 

set to return [0, 0, 0, … 1], requiring each signal to be sent to drastically different parts of the 

network; a difficult task that is sure to hamper the training process. As another example, if 

we trained a network to classify types of pet from a photograph of an animal, we would hope 

that connections representing ‘Springer Spaniel’ and ‘Cocker Spaniel’ occupy similar areas 

of the network, whereas those representing ‘Goldfish’ and ‘Horse’ should occupy wildly 

different areas. 

     ANN training is achieved by minimising the ‘loss function’, effectively a measure of how 

close the predictions are to the targets, with a loss of zero suggesting a network that makes 

perfect predictions every time. Here, the categorical cross entropy loss function is used: 𝐿 ൌ െ 1𝑁෍෍𝑦௝,௖ lnሺ𝑦ො௝,௖ሻ஼
௖ୀଵ

ே
௝ୀଵ  

 

(4)

where 𝑁 and 𝐶 are the number of samples (batch size) and the number of classes (36, in this 

study), 𝑦௝,௖ is a binary indicator that represents whether class c is the correct class for sample 𝑗, and 𝑦ො௝,௖ is the predicted probability of class 𝑐, sample 𝑗. The term ‘accuracy’ refers to the 

number of correct classifications (the neuron in the output layer with the highest numerical 

value is deemed the ‘predicted’ class, and the numerical value of this output (from 0 to 1) is 

called ‘confidence’. The aim is for the network to predict with 100% accuracy and 100% 

confidence) divided by the total number of samples. 

     The machine learning model was generated in Python using TensorFlow and the Keras 

Sequential Model. Input features were scaled to have zero mean and unit variance to prevent 

excessively large inputs from dominating the network’s learning. The loss function was 

minimised using the Adam optimizer with a learning rate of 0.001 and a batch size of 64. The 

model was trained for 200 epochs as this was deemed sufficient to ensure proper training 

whilst avoiding overfitting (manifesting as a divergence in the loss/accuracy curves of the 

training and validation datasets). Hyperparameter tuning determined that three hidden layers 

of 256 neurons in each layer achieved the best balance between accuracy and computational 

time, whilst also avoiding overfitting. Dropout, which is commonly adopted to reduce a 

network’s tendency to overfit, was not required. L1 and L2 regularisation, which encourage 

sparsity in the network and penalise very large weights respectively, were found to have a 

detrimental effect on model accuracy. 

     The train/test split was 80/20, with a further 10% of the training data set aside for 

validation, giving 129,600/14,400/36,000 datapoints in the training/validation/test sets.  

Fig. 5 shows the loss and accuracy of the network with increasing epochs, with modest 

improvement in performance beyond epoch 100, but importantly with overfitting having 

been avoided. The final accuracy of the test dataset was reported as 90.41% (loss: 0.1899 

(training), 0.2093 (validation), 0.2047 (test); accuracy: 91.53% (training), 90.55% 

(validation), 90.41% (test)). 
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(a) 

 
(b) 

Figure 5:  Training progress of the classification network. (a) Loss; and (b) Accuracy. 

5  PERFORMANCE ASSESSMENT 

The trained network was evaluated against the test dataset (approximately 1,000 datapoints 

per class), the results of which are compiled in the ‘confusion matrix’ shown in Fig. 6. Here, 

true classes are shown on the y-axis, and predicted classes are shown on the x-axis. A model 

with 100% predictive accuracy would occupy only the diagonal spaces. 

     Generally, the model is able to correctly classify the test data around 90% of the time, 

however this is not consistent among the classes. Of the 36 section types, 13 are predicted 

with >95% accuracy, and 21 are predicted with >91% accuracy. There are five classes that 

score an accuracy of <80%, however on closer inspection of Fig. 6 it appears as though these 

are formed of two main clusters, each containing three sections with similar plastic modulus. 
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Figure 6:  Confusion matrix of the trained model against the test dataset. 

     For the two lowest-accuracy sections (254 × 254 × 107 and 254 × 254 × 89), confidence 

in the true class was calculated separately for cases where the model predicted correctly and 

incorrectly (see Table 2). Even when the model misclassifies, it still has around a 30% 

confidence in the true classification, meaning that in these cases it would almost certainly 

have picked the correct class as its second choice (second highest confidence value). 

Therefore, whilst the accuracy of the model’s first guess may be around 90% overall, the 

accuracy of its top two guesses would be approaching 100% 

Table 2:  Low-accuracy section classifications and corresponding misclassifications. 

Section 

Plastic 

modulus, 𝑍௣௟ (cm4) 

Mass per 

metre 

(kg/m) 

Accuracy 

(%) 

Confidence in true 

class (%) Most frequent 

misclassification When 

correct 

When 

incorrect 

254 × 254 × 107 1480 107.1 68.08 78.62 33.11 305 × 305 × 97 

305 × 305 × 97 1590 96.9 84.90 80.60 36.83 203 × 203 × 127 

203 × 203 × 127 1520 127.5 91.07 91.75 29.06 254 × 254 × 107 

254 × 254 × 89 1220 88.9 73.47 88.29 26.21 203 × 203 × 100 

203 × 203 × 100 1150 99.6 88.81 88.81 29.81 203 × 203 × 113 

203 × 203 × 113 1330 113.5 93.43 97.20 23.23 254 × 254 × 89 

 

     Each time the model misclassified, the most frequent incorrect class was also stored, again 

see Table 2. The two lowest accuracy classes are each joined by two sections with remarkably 

similar properties, and the model understandably has some difficulty in distinguishing 

between them. Currently, the ANN is not given these properties (plastic modulus and mass) 

in advance, but ongoing work is exploring whether further improvements in accuracy can be 

achieved if the model is allowed to incorporate this information into the training process. 
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6  THE MODEL IN USE 

Whilst the model has shown good accuracy against the test dataset, its intended use will be 

subtly different. Rather than predicting a section that is known to exactly match a set of 

inputs, the model will be given span, loading, and a target rotation, and asked to provide a 

section which, to its best knowledge, matches that rotation most closely. For example, 

running the model for the inputs [8, 1000, 5000, 2], in the order of span (m), peak force (kN), 

impulse (kN.ms), and support rotation (°) returns: CAT BS-UC 254 × 254 × 73. Running this 

section back through the Ergo forward model returns a peak support rotation of 1.85°, within 

7.5% of the target value. These are the same inputs as in Fig. 2, but with a larger section. 

     In order to assess how close the rotation of the predicted section is to the target rotation, 

in a more general sense, a grid search was performed with peak force ranging from 5e3–

5e5kN (20 values spaced logarithmically), impulse ranging from 5e3–1e5kN.ms (25 values  

 

 
(a) 

 
(b) 

Figure 7:   Histograms of peak rotation of predicted section divided by target peak rotation. 

(a) First choice only; and (b) Closest match from the model’s top two choices. 
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spaced logarithmically), span ranging from 4–8 m (increments of 1 m), and two target 

rotations: 2° and 12°, as per Table 1, resulting in 5,000 total unseen design cases. For each 

case, the top two sections from the predictor (in terms of % confidence) were run through the 

Ergo forward model. The results from this grid search are presented in Fig. 7, where (a) 

shows the output from only the top classification, whereas (b) shows the closest match from 

either of the top two classifications. It can be seen that in 29.5% of the design cases, the top 

choice section results in a rotation that is within ±7.5% of the target, and in 50.9% of the 

design cases the top two choices return a rotation within ±7.5% of the target. These are both 

indicated by the purple regions of each histogram. 

     Excluding the underflow and overflow bins, the mean deviation is +13.0% when 

considering only the top choice, and +4.2% when considering the top two choices. These are 

associated with mean confidence values of 95.95% (top choice only) and 99.79% (top two 

choices). In total, only 5.8% of the design cases sit within the under/overflow bins 

(representing >25% underprediction or >50% overprediction respectively) when considering 

the top choice, which reduces to 4.7% when considering the top two choices. 

7  SUMMARY AND OUTLOOK 

This paper presents the development of a classification artificial neural network to perform 

rapid inverse analysis of blast loaded steel columns. 180,000 individual SDoF analyses are 

leveraged to train the network, which takes inputs of span, force, impulse, and target support 

rotation, and outputs one of 36 BS-UC section classifications. The trained model is able to 

correctly classify the test dataset 90.41% of the time. The model was further tested on 5,000 

unseen design cases, where it was able to pick a section – which resulted in an output rotation 

within 7.5% of the target – in 29.5% of the cases if a single output was taken from the inverse 

model, which increased to 50.9% of the cases if the top two outputs were taken from the 

model and the closest match selected. 

     As a proof-of-concept, this work can be considered highly successful, and it is hoped that 

future studies will benefit by reframing the design process as an inverse method and 

leveraging machine learning tools to aid in this. This will particularly benefit scenarios where 

the forward model is much more computationally expensive than the SDoF method used 

herein (e.g. CFD/FEM), and therefore any computational steps saved by reducing or 

eliminating the need for iteration, will have considerable savings. 

     The model itself could be further improved by: (a) incorporating prior knowledge of 

relevant section properties such as plastic modulus and mass per unit length; (b) training the 

model on more section types; and (c) developing a non-symmetrical loss function to attempt 

to correct the inherent conservativism of the model, which showed average deviations in the 

design case of >1.00. Work is ongoing in this regard. 
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APPENDIX 

Full list of BS-UC sections sorted by decreasing plastic modulus [8]. 

Section 

Plastic 

modulus, 𝑍௣௟ (cm4) 

Mass per 

metre 

(kg/m) 

Section 

Plastic 

modulus, 𝑍௣௟ (cm4) 

Mass per 

metre 

(kg/m) 

356 × 406 × 634 14,200 633.9 254 × 254 × 132 1,870 132 

356 × 406 × 551 12,100 551 305 × 305 × 97 1,590 96.9 

356 × 406 × 467 10,000 467 203 × 203 × 127 1,520 127.5 

356 × 406 × 393 8,220 393 254 × 254 × 107 1,480 107.1 

356 × 406 × 340 7,000 339.9 203 × 203 × 113 1,330 113.5 

356 × 406 × 287 5,810 287.1 254 × 254 × 89 1,220 88.9 

305 × 305 × 283 5,110 282.9 203 × 203 × 100 1,150 99.6 

356 × 406 × 235 4,690 235.1 254 × 254 × 73 992 73.1 

305 × 305 × 240 4,250 240 203 × 203 × 86 977 86.1 

356 × 368 × 202 3,970 201.9 203 × 203 × 71 799 71 

356 × 368 × 177 3,460 177 203 × 203 × 60 656 60 

305 × 305 × 198 3,440 198.1 203 × 203 × 52 567 52 

356 × 368 × 153 2,960 152.9 203 × 203 × 46 497 46.1 

305 × 305 × 158 2,680 158.1 152 × 152 × 51 438 51.2 

356 × 368 × 129 2,480 129 152 × 152 × 44 372 44 

254 × 254 × 167 2,420 167.1 152 × 152 × 37 309 37 

305 × 305 × 137 2,300 136.9 152 × 152 × 30 248 30 

305 × 305 × 118 1,960 117.9 152 × 152 × 23 182 23 
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