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Abstract
Exposure to fine particulate matter (PM2.5) pollution, both outdoors and indoors poses a significant health burden in Africa, 
where concentrations are often high, but there are limited measurements. Two types of low-cost sensors were used during 
two distinct measurement phases conducted in Ibadan, Nigeria. In Phase I, indoor and outdoor PM2.5 concentrations were 
measured for a two-week period in twelve households using a total of twenty-four Atmotube PRO sensors. Phase II con-
sisted of a seven-month extended monitoring study conducted in two households (each equipped with one indoor and one 
outdoor sensor) and a school (1 sensor only) using five PurpleAir sensors. Across the twelve households in Phase I, daily 
median PM₂.₅ concentrations ranged from 12.0 to 18.0 µgm−3 indoors, and from 12.2 to 20.0 µgm−3 outdoors. The overall 
PM2.5 indoor-outdoor (I/O) median ratio was 0.9 indicating that outdoor levels were typically slightly higher than indoors. 
In January (the dry harmattan season), daily median PM2.5 concentrations were 98.0 µgm−3 indoors and 109.3 µgm−3 out-
doors. In contrast, lower PM2.5 concentrations of 21.4 µgm−3 indoors and 24.5 µgm−3 outdoors were recorded in May, a 
rainy season. In Phase II, we find that a substantial part (~ 90%) of PM2.5 concentrations can be explained by variance in the 
outdoor concentrations. There was exceedance of WHO interim target IT-1 of 75 µgm−3 for PM2.5 during the dry harmattan 
season. The findings highlight the need for continuous air quality monitoring infrastructure to track pollutant trends and 
offering insights for future research.
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1  Introduction

The air we breathe is critical to our health and well-being, 
and the burden of disease associated with both outdoor 
and household air pollution is of considerable concern. 
According to Health Effects Institute (2024), air pollution 
was responsible for 8.1 million deaths worldwide in 2021, 
with household air pollution accounting for approximately 
38% of these deaths. The impact of air pollution is particu-
larly more pronounced in low-and-middle-income coun-
tries (LMICs) (WHO 2024). Both indoor and outdoor air 
pollution present significant health risks to humans (WHO 
2021). Agbo et al. (2021) reported that household pol-
lution poses a greater risk due to higher exposure levels 
than those associated with outdoor pollution in Africa. 
This is particularly due to the dependence on solid fuels 
for cooking and heating (UNICEF 2019; Williams et al. 
2025). Over the span of the last decade (2010–2020), there 
has been a reduction in the global health impact caused 
by household air pollution, reflecting years of effort to 
move to cleaner energy sources (HEI 2020). Accord-
ing to ESMAP (2021), global efforts have led to an 11% 
overall reduction in the use of solid fuels for cooking. 
Access to modern energy cooking services in developing 
regions varies, with Latin America at 57%, East Asia at 
36%, South Asia at 27%, Southeast Asia at 21%, and the 
lowest access observed in Sub-Saharan Africa at just 10% 
(ESMAP 2021). This disparity highlights the uneven pro-
gress across the globe, as also noted by the United Nations 
(UNEP 2022).

Particulate matter (PM) is responsible for the largest air 
pollution health burden globally and it is a useful meas-
ure of air quality (AQ) in residential environments (HEI 
2022). PM refers to a mixture of solid particles and liquid 
droplets in the air, with PM2.5—particles with a diameter 
of 2.5 µm or smaller, being of particular concern due to 
their ability to penetrate deep into the lungs and enter the 
bloodstream, causing serious health impacts (Maynard 
et al. 2023). PM sources in Africa include emissions from 
unpaved or damaged tarred roads, industry, biomass burn-
ing, open waste burning, domestic combustion, and Saha-
ran dust (Naidja et al. 2018; WHO 2021). Other sources 
include transportation, especially the use of second-hand 
vehicles with high emissions, and the widespread use of 
fossil fuel powered generators (Abaje et al. 2020). There is 
consistent and robust evidence for the ill effects of PM2.5 
on respiratory health. The acute effects of PM2.5 exposure 
include an increase in hospital admissions, early childhood 
development of asthma (Lavigne et al. 2021; Leon Hsu 
et al. 2015). Long-term effects of outdoor PM2.5 exposure 
are associated with cardiovascular and respiratory dis-
eases; and lung cancer with records of increased mortality 

rates in cities with higher concentration of airborne PM 
(WHO 2021).

Despite the high health burden, there are limited in-situ 
studies of air pollution concentrations in Africa (Mead et al. 
2023; Naidja et al. 2018). Nigeria is the most populous coun-
try in Africa with approximately 230 million people, it is 
ranked fifth for premature deaths associated with air pollu-
tion) (HEI, 2020). The World Health data report indicates 
that in Nigeria, lower respiratory infections linked to air pol-
lution increased in severity, rising from the fourth leading 
cause of premature death in 2007 to the leading cause by 
2017 (Pona et al. 2021). About 185 children under the age 
of five die every day from pneumonia due to air pollution 
in Nigeria (UNICEF 2021). This demonstrates the need to 
tackle air pollution and indicates how impactful reductions 
in air pollution could be for improving population health. 
Measurement of air pollution in Nigeria and many other 
African nations are sparse (Mead et al. 2023; Pona et al. 
2021). Due to lack of static reference-grade monitors in 
Nigeria, there is reliance on shorter term studies to under-
stand air pollution. Shittu et al., (2019) reported the PM2.5 
levels ranged from 4 to 25 µg m−3 using a CW_HAT200 
handheld portable particle counter for PM2.5 measurements 
in different indoor environments within a university cam-
pus in Lagos during the rainy season. Similarly, Jelili et al., 
(2020) reported a higher cumulative mean of indoor and out-
door PM2.5 of 41.6 and 46.3 µg m−3 respectively in Ogbomo-
sho in a 4-week study using GT_531 mass particle counter. 
A total mean PM2.5 concentration of 31.6 and 53.6 µg m−3 
in Ibadan for indoor and outdoor PM2.5 levels respectively 
was reported by Onabowale and Owoade, (2015) using 
elemental analysis of filter samples, providing a baseline 
study for indoor and outdoor PM measurements in Ibadan. 
Using satellite data, outdoor PM exposure has been found 
to be within the range of 5–212 µg m−3 in various locations 
in Lagos (Abulude et al. 2021). According to Akinfolarin 
et al. (2017), air quality in Port-Harcourt was classified as 
moderate during the rainy season, with an air quality index 
(AQI) ranging from 23 to 60, while the dry season recorded 
hazardous levels, with AQI values between 225 and 273. 
Some studies have also used surveys and questionnaires to 
identify impacts of household pollution (Ana et al. 2009; 
Jelili et al. 2020; Oluwole et al. 2017, 2013).

Several PM low-cost sensors ($200–$2500) have become 
commercially available (AQMD 2020; Badura et al. 2019; 
Barkjohn et al. 2022; Kang et al. 2022). These sensors are 
portable, lightweight, and capable of providing high-reso-
lution, near real-time data (Morawska et al. 2018; Rai et al. 
2017). The use of low-cost sensor networks is increasing 
in low- and middle-income countries (LMICs), where con-
tinuous monitoring with reference-grade equipment is often 
sparse or unavailable. These sensors hold great potential to 
provide valuable air quality information for researchers and 
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communities, enabling more frequent and widespread moni-
toring, particularly in areas lacking government or research-
grade instruments (Chatzidiakou et al. 2019; Morawska et al. 
2018). In addition, they are relatively easy to use, requir-
ing minimal training, thus broadening access to air quality 
data. Recent studies in Nigeria have employed low-cost PM 
sensors to assess air quality in various locations, includ-
ing Ekiti, Lagos, Enugu, Awka, and Ile-Ife (Abulude et al. 
2021; Awokola et al. 2020; Omokungbe et al. 2020). These 
studies consistently reported PM2.5 concentrations exceeding 
the WHO recommended 24-h limit of 15 µgm−3. Awokola 
et al., (2020) reported frequent power outages and inconsist-
ent internet connectivity as significant challenges associated 
with the use of low-cost sensors for air pollution monitoring 
in LMIC settings.

There is an urgent need for more comprehensive air qual-
ity measurements in Nigeria, particularly within homes, 
where people spend much of their time. Despite the high 
burden of air pollution, air quality studies in Nigeria remain 
insufficient, making local measurements essential to bet-
ter understand and mitigate the potential health impacts 
of exposure. Our study aims to quantify the abundances 
of residential PM2.5 pollution concentrations, characterise 
monthly PM2.5 variability, and investigate the association 
of indoor and outdoor PM2.5 concentrations in the city of 
Ibadan, Nigeria, where reference-grade monitoring instru-
ments are not available. We deployed low-cost Atmotube 
PRO and PurpleAir sensors to monitor continuous indoor 
and outdoor PM2.5 over several months, establishing an ini-
tial air quality baseline for the city.

2 � Methods

2.1 � Study Area

The study area was in Ibadan, Southwestern Nigeria. The 
study was carried out in two phases; a first shorter-term 
but more intensive phase that used Atmotube PRO sensors, 
followed by a second longer-term but less-intensive phase 
using Purple Air Sensors. In Phase I, twenty-four Atmotube 
PRO sensors we placed in twelve houses in Ibadan, in each 
house one sensor was placed indoors and the other outdoors. 
Sampling took place, over a two-week period between 5 and 
17th November 2023. The houses were spread across a cen-
tral area: University (6 households), Akobo (2 households), 
Ajibode (1 household), Bashorun (1 household), Iwo Road 
(1 household) and Total Garden (1 household). Indoor sen-
sors were placed in a communal area (living room), while 
the outdoor sensor was hung on the entrance door outside the 
building (to allow ease of charging with the power bank). As 
power cuts are common in Nigeria, participants were given a 

power bank to charge the sensors. These were replaced every 
2-days with a fully charged unit.

Phase I was followed by a longer-term measurement 
campaign (Phase II), in which five PurpleAir sensors were 
deployed in two houses and a school building. The monitor-
ing period for Phase II was 5th November 2023 to 22nd May 
2024, covering both the dry and rainy seasons. Each of the 
two participating houses (University and Akobo) had two 
PurpleAir sensors installed; one indoors and one outdoors. 
Finally, an additional sensor was installed in the reception 
area of a secondary school within the University campus, 
this sensor location was designated a hybrid indoor/outdoor 
environment due to an unobstructed exchange of indoor and 
outdoor air. In the houses, indoor PurpleAir sensors were 
placed in the living room, while the outdoor sensors were 
placed under the cover of an overhanging roof (to avoid 
being affected by rainfall or strong winds). Figure 1 shows 
the study area and locations of all sensors. However, some 
sensor markers overlap due to the proximity of the partici-
pating households. All participating households reported the 
use of liquified petroleum gas (LPG) for cooking.

A summary of the sensor locations and a brief description 
of the site for both Phase I and Phase II is given in Table 1.

2.2 � Sensors

In Phase I, Atmotube PRO sensors were used to measure 
PM2.5 in the participating houses, these sensors are port-
able, low-cost and commercially available. The Atmotube 
PRO device contain a Sensirion PM2.5 sensor which reports 
the estimated mass concentration of particles with an aero-
dynamic diameter of < 1 µm, < 2.5 µm and < 10 µm (PM1, 
PM2.5 and PM10) using light scattering principle (Atmotube 
2024; Voultsidis et al. 2023). The Atmotube PRO sensor has 
a PM2.5 measurement range of 1 to 1000 μg m−3. The Atmo-
tube PRO device also has a BOSCH BME280 sensor that 
records temperature and relative humidity (RH) data. The 
sensors log PM2.5 concentrations every second and this is 
used to calculate 1 min average PM2.5 concentrations (Masri 
et al. 2022; Shittu et al. 2025).

In Phase II, PurpleAir sensors were also used to moni-
tor PM2.5 for an extended period. PurpleAir sensors are a 
widely used device around the world, and are popular among 
individual researchers, community organisations and others 
interested in monitoring local air quality. Each PurpleAir 
sensor contains two Plantower PMS5003 sensors, labelled as 
channel “A” and “B”. The sensors record two-minute aver-
aged data (Barkjohn et al. 2022, 2021; Zimmerman et al. 
2018). Plantower sensors use the laser light scattering prin-
ciple to measure particle size. Estimated particle mass with 
aerodynamic diameters PM1, PM2.5 and PM10 are reported, 
as well as particle counts in six size bins (> 0.3, > 0.5, > 
1.0, > 2.5, > 5.0 and 10.0 µm). PurpleAir, like many other 
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low-cost sensors, have unpublished assumed particle densi-
ties used for the conversion from number concentration to 
mass concentration (Giordano et al. 2021; Jaffe et al. 2023).

Like Atmotube PROs, PurpleAir sensors use the BOSCH 
BME280 sensor to record temperature and relative humidity 
(RH). In addition, PurpleAir have a Wi-Fi chip that uploads 

data to the cloud in near real time. The sensor also stores 
data locally on an SD card, which is useful for study areas 
without Wi-Fi or as a backup of the data in case of connec-
tivity issues. For this study, data collected at 2-min inter-
vals were downloaded from online sensors and retrieved 
data from the SD cards of the sensors due to poor Wi-Fi 

Fig. 1   Map of Nigeria highlighting the study area, Ibadan, Oyo State, and the location of the sensors deployed for the study

Table 1   The sampling areas, household ID, their coordinates and site description

Sampling area ID Site description

Phase I: Atmotube PRO sensors
Ajibode A Road to the house has low usage and broken road surface
Iwo-Road B Residential area and has connecting tarred road from main road
University C Highrise building with multiple flats (8)

D A bungalow within a secondary school surrounded by trees
E Mini flat next to the secondary school playground area
G Duplex surrounded by trees, next to a tarred road
H Highrise building with multiple flats (same building with I)
I Highrise building next to a tarred road, some planted hedges as well

Total garden F Building in a dense urban environment and in proximity to a major roundabout with traffic 
at peak periods

Bashorun J Residential area with connecting minor tarred road
Akobo K A bungalow situated in a residential area close to a main tarred road

L Building behind house K
Phase II: PurpleAir sensors
University UI Building close to a tarred busy road at the University
Akobo AK Building situated in an estate with untarred road
Secondary school School School building is located within the University. Sensor site is at the school office reception
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connectivity in our area of study. Data was saved in.csv for-
mat for further analysis in Python. These short-term aver-
ages were then aggregated into hourly averages. To ensure 
data quality, only hourly averages with at least 70% com-
pleteness were calculated.

While we cannot validate the low-cost sensor perfor-
mance in this study due to a lack of ground-based refer-
ence grade monitoring in the region, Shittu et al., (2025) 
undertook a detailed assessment of these sensors against 
a reference grade instrument finding good agreement. The 
Atmotube PRO and PurpleAir sensors had an accuracy 
using coefficient of determination (R2) of (0.86 and 0.85) 
and an error of (3.4 µg m−3 and 4.8 µg m−3), respectively, 
in comparisons to the reference grade instrument. Pearson’s 
coefficient of correlation (r) value > 0.84 indicated strong 
inter-sensor agreement as shown in supplementary Fig. S1. 
Therefore, we have confidence in application of these low-
cost sensors for indicative PM2.5 measurements in this study.

2.3 � Data Processing and Analysis

Descriptive statistics used for analysis of the raw data 
include the arithmetic and geometric mean, standard devia-
tion, median, percentiles, and maximum values. These met-
rics are calculated for the indoor and outdoor PM2.5 for each 
household are summarized in Supplementary Tables S1 and 
S2. Due to the non-gaussian data distribution of the PM2.5 
data and the presence of high-value outliers, the analysis 
was restricted to the minimum value and the 99th percen-
tile to minimize the impact of the extreme or anomalous 
observations. The median was used as a measure of the cen-
tral tendency, as it is less sensitive to skewed distributions 
compared to the arithmetic means, providing a more robust 
summary of PM2.5 levels in our study. The indoor/outdoor 
(I/O) relationship was assessed by calculating I/O ratios and 

determining the Pearson coefficient of determination (R2) 
between indoor and outdoor measurements. R2 represents 
the variance proportion in a dependent variable explained 
by an independent variable, ranging from 0 (no explained 
variance) to 1 (complete explained variance). Diurnal varia-
tions for the longer-term measurements were investigated for 
PM2.5. Python software (v3.11.9) was used for data analysis. 
Linear regression was performed using the SciPy package 
(v1.13.1) in Python.

3 � Results and Discussion

3.1 � Phase 1: Atmotube PRO sensor

There were some data gaps logged by the Atmotube PRO 
instruments during the period of study. Eight and ten house-
holds had indoor and outdoor data coverage exceeding 
75% respectively, while three households had indoor and 
two had outdoor coverage over 50%. Only one household 
had indoor data coverage of < 50% (38%). All participat-
ing households reported the use of liquified petroleum gas 
(LPG) for cooking.

3.1.1 � Atmotube PRO PM2.5 Measurements

The median values for indoor and outdoor hourly PM2.5 
measurements for all 12 households are listed in Table 2. 
The median indoor values across households are relatively 
similar, with none deviating by more than 24.5% from the 
mean of all medians. However, there is a notable difference 
in the range of PM2.5 concentrations. For example, house 
A and house D both recorded indoor PM2.5 median val-
ues of 15.0 µg m−3, however, house A had indoor range 
of 3.0–112.0 µg m−3 while house D had indoor range of 

Table 2   Indoor and outdoor 
PM2.5 concentrations for 
individual houses and their I/O 
relationship (AM = arithmetic 
mean)

ID Indoor PM2.5 concentration Outdoor PM2.5 concentration Median

AM Median Range AM Median Range I/O ratio

A 18.4 15.0 3.0–112.0 13.0 14.0 3.0–82.0 1.1
B 19.6 17.0 3.0–65.0 16.9 15.0 3.0–59.0 1.1
C 17.8 16.1 2.9–77.3 14.3 12.2 3.0–74.0 1.3
D 16.7 15.0 3.0–51.0 13.5 13.0 3.0–34.0 1.2
E 15.6 14.9 3.0–43.0 20.0 18.0 3.0–57.0 0.8
F 17.8 15.1 1.0–70.0 24.5 20.0 1.0–171.0 0.8
G 14.7 12.1 3.0–53.0 15.4 14.0 3.0–39.0 0.9
H 14.3 12.0 3.0–46.0 21.7 19.3 3.0–63.0 0.6
I 20.2 18.0 3.0–74.0 18.2 15.1 4.0–56.0 1.2
J 16.5 15.0 3.0–55.0 18.3 16.0 3.0–57.2 0.9
K 14.8 14.0 3.0–42.0 18.8 17.0 3.0–53.0 0.8
L 13.8 12.0 1.3–40.0 17.6 16.1 1.0–51.9 0.9
All 17.8 15.0 1.0–61.0 19.3 16.1 1–63.0 0.9
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3.0–51.0 µg m−3, indicating differences in the indoor level 
of PM2.5 in both households. This could be due to the dif-
ferences in the level of anthropogenic indoor activities in 
individual houses.

The median PM2.5 values using hourly data for the houses 
ranged from 12.0 to 18.0 µg m−3 and 12.2 to 20.0 µg m−3 for 
indoor and outdoor measurements, respectively. The data 
shows seven households (E, F, G, H, J, K, L) had outdoor 
PM2.5 concentrations higher than the indoor level while the 
other five houses had indoor concentrations higher than the 
outdoor measurements. Despite houses C, D, E, G, H, and 
I being in the same vicinity (within the university campus), 
there were two households showing a higher PM2.5 measure-
ments indoors compared to outdoors. On a house-by-house 
basis, there was insufficient evidence to conclude AQ is 
worse indoors or outdoors.

The comparison of the indoor and outdoor hourly meas-
urements for all households combined throughout the two-
week study period is illustrated in Fig. 2a. Outdoor PM2.5 
levels are slightly higher than indoor PM2.5 levels. The daily 
geometric mean PM2.5 concentrations for all households 
were 16.9 ± 1.5 µg m−3 and 18.2 ± 1.5 µg m−3 for indoor and 

outdoor measurements, respectively. Martins and Carrillho 
Da Graca (2018) reported that in the absence of significant 
internal sources, indoor PM levels are expected to be lower 
than outdoor PM levels. Indoors, high peaks were however 
recorded during the early hours of the day and in the evening 
which coincides with cooking periods.

Indoor and outdoor values were resampled to a daily mean 
resolution and Fig. 2b illustrates the geometric mean of the 
daily PM2.5 values for houses A-L, respectively. The outdoor 
PM2.5 concentrations for 83% of the households were higher 
than the daily AQG levels (15 µg m−3) recommended by 
WHO. Although comparing with the interim targets set by 
the WHO (WHO 2021), these PM2.5 levels were below the 
WHO interim targets of IT-1 (75 µg m−3), IT-2 (50 µg m−3), 
IT-3 (37.5 µg m−3) and IT-4 (25 µg m−3) for 24 h recom-
mended limit. Outdoor sources in and around the study sites 
are typical of an urban environment, and include vehicular 
emissions along roads, generator emissions from residences 
and from commercial shops due to erratic power supply, as 
identified in Ogbomosho by Jelili et al., (2020). House F 
had the highest daily outdoor PM2.5 mean of 21 µg m−3, and 
this can be attributed to the fact that the building is close to 

Fig. 2   a time series of hourly PM2.5 mean for all participating households combined b Indoor and outdoor PM2.5 24 h data distribution for each 
household. The dashed black lines represent the 25th, 50th and 75th percentile of the data
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a major roundabout usually with lots of road traffic, vehicle 
idling at traffic light intersections, and the proliferation of 
vehicular exhaust emissions within the environment, espe-
cially at rush hour. Due to unreliable power supply, houses 
use generators as an alternative power supply and the emis-
sions from these generators result in noise, oxides of carbon, 
nitrogen, sulphur, and particulates.

The indoor 24 h PM2.5 measurement for the 12 house-
holds are shown in Fig. 2(b). These were higher than the 
24 h AQG levels (15 µg m−3) recommended by WHO for 
nearly all (91%) of the households. In previous studies, 
indoor PM has been attributed to household activities, such 
as cooking (Onabowale and Owoade 2015), use of incense 
(Kuo et al. 2015), candles, lightning, occupant’s behaviour 
such as door and window opening behaviour (Fu et al. 2022) 
or resuspension of dust particles from sweeping and other 
anthropogenic activities.

Half of our study sites (C, D, E, G, H, and I) were within 
the University campus as indicated in Table 1. The outdoor 
PM2.5 measurements (Atmotube PRO sensors) alongside 
the outdoor PM2.5 measurements using PurpleAir sensors 
within close proximity at the University study sites showed 
similar temporal variations as shown in Fig. 3. However, 
the PurpleAir sensors recorded higher outdoor PM2.5 con-
centrations, with a mean value of 29.3 ± 11.4 µg m−3, com-
pared to the Atmotube sensors, which reported a mean of 
18.1 ± 11.2 µg  m−3. Bimodal elevated peaks were seen 
around 7am and 7 pm. Similar bimodal peaks at these times 
were observed in previous studies (Cholianawati et al. 2024; 
Gupta and Elumalai 2019; Thabethe et al. 2024). The early 
morning and evening peaks may be explained by stable 
boundary layer and poor vertical mixing at these times, trap-
ping PM2.5 emissions near to the surface and hence causing 
elevated concentrations (Aslam et al. 2017; Du et al. 2020; 
Wang et al. 2020). During the day, a rising boundary layer 
alongside other factors, such as increased atmospheric mix-
ing and higher wind speed, allows for greater dilution and 

in turn lowers PM2.5 concentrations. When visualised at a 
5-min temporal resolution, distinct peaks in PM2.5 concen-
trations (exceedingly 80 µg m−3) were evident during early 
and late evening hours. The high concentrations may also be 
attributable to the operation of fossil fuel powered genera-
tors, which were reported by all participants as a commonly 
used alternative source of electricity. Given that all partici-
pating houses rely on natural ventilation, emissions from 
these generators can readily infiltrate indoor spaces, thereby 
contributing to indoor air pollution.

3.1.2 � Indoor/Outdoor PM2.5 Relationship (Atmotube 
PRO)

Previous studies have used or partly used diffusive sampling 
methods over a few days for indoor AQ measurements (Sch-
neider et al. 2001). The distribution of indoor to outdoor 
(I/O) PM2.5 ratios has been determined for varying building 
types (Chatzidiakou et al. 2020). However, these measure-
ments have I/O ratios that take in to account considerable 
unoccupied periods, during which building operations and 
indoor sources are expected to differ (Stamp et al. 2022). In 
recent years, the use of real-time measurements with low-
cost sensors has enabled continuous measurements and this 
can be used to complement qualitative data (surveys and 
questionnaires) to determine the impacts of these measured 
concentrations on resident’s health. Improvements in these 
sensing technologies have resulted in more affordable meas-
urements in more locations, as well as the ability to examine 
I/O ratios at high temporal resolution for a longer period 
(Chatzidiakou et al. 2019).

Figure 4 illustrates diurnal variation in I/O ratio, indoor 
and outdoor PM2.5 concentrations. High peaks of indoor and 
outdoor PM2.5 were recorded during early hours in the morn-
ing, around noon and early evenings leading to the general 
I/O ratio being below 1, generally. Both indoor and outdoor 
PM2.5 levels were high, 18.6 and 21.3 µg m−3, respectively 

Fig. 3   Comparison of the 
hourly outdoor PM2.5 data from 
Atmotube PRO And PurpleAir 
sensors deployed within the 
University showing similar 
temporal variations. y-axis 
represents logscale and the grey 
grid lines on the x-axis repre-
sent 7am and 7 pm alternately
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during times of high indoor activity in the morning (between 
6 and 8 am), leading to an I/O ratio of 0.88. Similarly, 
both indoor and outdoor PM2.5 levels were high, 23.7 and 
25.5 µg m−3, respectively, during times of high indoor activ-
ity in the evening (between 6 and 8 pm), leading to an I/O 
ratio of 0.96. An I/O ratio close to 1 implies indoor activity 
produce enhancements in indoor PM2.5 levels during high 
indoor activity period. However, during inactive periods 
(10 pm–5 am), we observed a decrease indoor PM2.5 concen-
trations (15.1 µg m−3) and an I/O ratio (0.86). This implied a 
more subdued response from indoor generated sources dur-
ing inactive periods.

Stamp et al., (2022) investigated I/O ratios of UK apart-
ments in the UK and reported a median I/O ratio for PM2.5 of 
0.65 when apartments were well ventilated (that is windows 
left open). Nadali et al., (2020), focussing on 20 building in 
Qom, Iran, reported PM2.5 I/O ratios ranging 0.71–0.93. In 
this study, we found a median PM2.5 I/O ratio of 0.93 which 
ranged from 0.63 to 1.32. Our study shows approximately 
42% of the residences had an I/O ratio above 1.0, from a 
moderately sized sample, indicating indoor PM2.5 is higher 
than outdoors. Households with I/O ratios exceeding 1 indi-
cates higher levels of indoor pollution compared to outdoors. 
Elevated indoor PM2.5 concentrations may arise from indoor 
sources such as cooking methods (e.g. frying and grilling), 
use of candles and incense, air fresheners and cleaning prod-
ucts (Chu et al. 2021; Radbel et al. 2024). This can fur-
ther be exacerbated by insufficient ventilation, potentially 
resulting from infrequent window opening. All participating 
houses had natural ventilation with windows open and shut 
at intervals and none of the residents reported being smok-
ers. Site observations in these houses had varying flooring 
types; concrete floors, tiles and some had floors covered with 
rugs. Other observations include faulty louvers for example 
in house D, which had old stiff windows, and this may hinder 
proper ventilation. House D also had rug laid over a concrete 

floor. In this case cleaning processes such as sweeping of the 
rugs can result in dust resuspension.

Aside from the I/O ratio, Chen and Zhao et al., (2011) 
reported other methods of quantifying the relationship 
between indoor and outdoor particulate abundances. An 
example is the infiltration factor, which represents the equi-
librium fraction of outdoor particles that penetrate indoors 
and remain suspended in the building, and this varies tre-
mendously from one building to another. The PM size, 
chemical components, ventilation rate, human behaviour, 
such as how frequently windows and doors are open and 
the use of air filter and cleaners, type of heating, lightning, 
ventilation type and air conditioning system are all primary 
drivers of variability in infiltration factors. Thus, it would be 
useful to get more detailed information from the participants 
to accurately understand the relationship between indoor and 
outdoor PM for each household.

3.2 � Phase II: PurpleAir Sensors

3.2.1 � PurpleAir PM2.5 Measurements

Time series of 24-h mean PM2.5 concentrations are shown in 
Fig. 5. Higher PM concentrations were seen in late Decem-
ber, January, and mid-February for all locations. This time 
of year (December-mid March) coincides with the dry har-
mattan season, when the air temperature is increased, and 
humidity is decreased. The dry harmattan season is also 
characterised by northeasterly winds which transport dust 
from the Saharan desert over West Africa. (Ayanlade et al. 
2019) reported significant monthly variation in the distribu-
tion of aerosol optical depth (AOD) over Nigeria using Mod-
erate resolution Imaging Spectroradiometer (MODIS) and 
the intensity is noticeably greater during harmattan season 
than the wet season in the Northern part of the country. We 
find elevated in-situ measurements of PM2.5 during the dry 

Fig. 4   The I/O ratio for all households. a Time series (5-min average) over the campaign b diurnal cycle illustrating I/O ratio, indoor and out-
door PM2.5 (hourly averaged) measurements
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harmattan period are also present in our study region in the 
south-western part of Nigeria.

House “AK” recorded daily averaged PM2.5 values as 
high as 193 µg m−3 and 224 µg m−3 for indoors and out-
doors measurements, respectively. Similarly high values 
were recorded for House “UI” which recorded daily aver-
aged PM2.5 value as high as 228 µg m−3 and 237 µg m−3 
for indoors and outdoors respectively. The school sensor 
which is in a hybrid environment also recorded similarly 
high value of PM2.5 of 152 µg m−3. There was strong correla-
tion (r > 0.9) of the school data and the indoor and outdoor 
measurements at both houses indicating outdoor PM2.5 is a 
substantial contributor to indoor PM2.5, as shown in Fig. 5d. 
Both outdoor and indoor PM2.5 exceeded recommended 24-h 
WHO AQG of 15 µg m−3. It also exceeded NAAQS of 24-h 
recommended limit of 40 µg m−3 for outdoor measurements 
(NESREA 2021). The WHO Interim target IT-1 (75 µg m−3) 

was also exceeded during the dry harmattan period indicat-
ing very unhealthy levels of PM2.5 exposure.

Outdoor and indoor PM2.5 concentrations throughout 
the entire study were also investigated. Houses AK and UI 
recorded median outdoor PM2.5 concentrations of 43.2 and 
39.8 µg m−3 respectively while the indoor levels for recorded 
median PM2.5 concentrations of 39.2 and 37.4 µg  m−3, 
respectively. The school hybrid environment had a median 
PM2.5 concentration of 42.3 µg m−3. Figure 6a demonstrates 
the variation in the monthly PM2.5 distribution. For both 
houses, there was higher median average PM2.5 concentra-
tion during the dry harmattan season, which peaks in Janu-
ary with daily averaged median PM2.5 concentrations as high 
as 98.0 and 109.3 µg m−3 for indoor and outdoor environ-
ments, respectively. The lowest PM2.5 concentrations were 
recorded in May with a peak daily median PM2.5 concentra-
tions of 21.4 and 24.5 µg m−3 for indoor and outdoor levels, 

Fig. 5   a–c Time series showing daily averages of PurpleAir PM2.5 data throughout the entire study period and highlighting WHO AQG and 
National Ambient Air Quality Standards (NAAQS) d Pearson’s coefficient of correlation (r) for all study sites
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respectively. The school hybrid environment also showed 
the highest median PM2.5 concentration of 73.6 µg m−3 in 
January.

The PM2.5 concentrations during the weekend and week-
days were also compared, shown in Fig. 6b. House AK 
recorded a higher outdoor PM2.5 median concentration 
during the weekdays (50.4 µg m−3) in comparison with the 
weekends (42.9 µg m−3). House UI also had a slightly higher 
outdoor median value during the weekdays (37.8 µg m−3) 
in comparison with the weekends (37.0 µg m−3). For indoor 
PM2.5 concentrations, House AK recorded higher indoor 
median value during the weekdays (39.6 µg m−3) in com-
parison with the weekends (36.0  µg  m−3) while house 
UI also recorded higher indoor median value during the 
weekdays (37.8 µg m−3) in comparison with the weekends 
(33.9 µg m−3). In general, both houses recorded slightly 
higher indoor and outdoor PM2.5 concentrations during 
weekdays in comparison with weekends. School hybrid 
environments however, showed weekday and weekend PM2.5 
median values of 46.0 and 46.5 µg m−3, respectively. The 
school is partly boarding and partly day-schooling, indi-
cating that the human occupancy/activities in the school’s 
reception lobby are also high on weekends. Although, high-
est PM2.5 values recorded during weekday was 229.3 µg m−3 
while the highest PM2.5 values recorded during the weekend 
was 221.1 µg m−3.

3.2.2 � Indoor/Outdoor Relationship (PurpleAir sensors)

The relationship between outdoor and indoor measured 
PM2.5 concentrations for the longer monitoring period was 
investigated using the I/O ratio. House AK had a PM2.5 
I/O ratio of 0.87, indicating outdoor PM2.5 concentrations 

are higher than the indoor PM2.5 concentrations. House 
UI recorded an average I/O ratio of 0.97, implying indoor 
PM2.5 concentrations are more similar to outdoor PM2.5 con-
centrations. As both houses are naturally ventilated, linear 
regression was conducted to further examine the relationship 
between indoor and outdoor PM2.5 concentration in both 
households. The value of the coefficient of determination 
(R2) between the indoor and outdoor PM2.5 concentrations 
was calculated to investigate the proportion of variance in 
the indoor PM2.5 concentrations that can be explained by 
the variance in the outdoor PM2.5 concentrations as shown 
in Fig. 7. Here, the R2 value for both houses were both 0.9. 
Therefore, a substantial proportion of the variability in 
indoor PM2.5 concentrations is linked to temporal evolution 
in outdoor PM2.5 concentrations. Here, large scale controls 
on outdoor PM2.5 concentrations (for example, seasonality, 
synoptic weather/transport, or regional sources) may be 
influencing the measured indoor concentrations. That is, via 
outdoor infiltration of outdoor PM2.5 into the indoor environ-
ment and dominating over indoor sources of PM2.5. Other 
factors contributing to the remaining indoor variability of 
9% and 10% are indoor PM2.5 sources, potentially include 
cooking activities, use of candles and incense, household 
cleaning products, dust resuspension, building materials, 
inadequate ventilation, mould and mildew and other indoor 
anthropogenic activities.

4 � Conclusion

We conducted indoor and outdoor PM2.5 measurements in 
Ibadan, Nigeria where there is a lack of continuous in-situ 
monitoring infrastructure. Measurement is an essential first 

Fig. 6   a Diurnal variation of 
daily averages of PurpleAir 
PM2.5 data throughout the entire 
study period, which spans 
months 11 and 12 of year 2023 
and months 1–5 of year 2024. 
b Indoor and outdoor PM2.5 
concentrations comparing 
weekdays and weekend
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step in establishing baseline data for air quality studies, 
understanding, and reducing the public health impact of air 
pollution. This study recorded indoor and outdoor PM2.5 
concentrations of 15.0 and 16.1 µg m−3, respectively during 
the short-term (2-week) monitoring period. The extended 
monitoring period (7-month) recorded higher concentra-
tions, with indoor, outdoor and hybrid concentrations aver-
aging 38.3, 41.5 and 42. 3 µg m−3 respectively. The elevated 
PM2.5 concentrations observed in the extended study were 
largely driven by increased PM2.5 concentrations during the 
dry harmattan season (i.e. transport of desert dust). Overall, 
the indoor-outdoor relationships showed median PM2.5 I/O 
ratio of 0.93. A strong temporal correlation (R2 > 0.9) was 
observed between indoor and outdoor PM2.5 concentrations 
indicating synchronized variability driven by ambient con-
ditions. PM2.5 concentrations were also higher during the 
weekdays, in comparison to weekends. Despite the limita-
tion in validating the accuracy of the low-cost PM2.5 sensors 
used in this study, such validation was constrained by the 
absence of regulatory or reference-grade monitors within 
the study area or in nearby locations within the country. Our 
study has generated in-situ air quality data in a city where 
no continuous monitoring had previously been conducted 
over an extended period. This work highlights the urgent 
need for regulatory reference-grade monitors in Nigeria for 
ground air quality measurements and to assist with low-cost 
sensor data validation. Future study aims to include the esti-
mation of indoor-generated emissions, documenting indoor 
activities of the participants using a survey, and conduct 
year-long monitoring period to assess how meteorological 
factors influence ambient PM2.5 levels.
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