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Article

A Hybrid Approach to Literature-Based Discovery: Combining
Traditional Methods with LLMs

Judita Preiss

Information School, University of Sheffield, Sheffield S10 2AH, UK; judita.preiss@sheffield.ac.uk

Abstract

We present a novel hybrid approach to literature-based discovery (LBD) which exploits
large language models (LLMs) to enhance traditional LBD methodologies. We explore the
use of LLMs to address significant LBD challenges: (1) the extraction of factual subject±
predicate±object relations from publication abstracts using few-shot learning and (2) the
filtering of unpromising candidate hidden knowledge pairs (CHKPs) using a variant of the
LLM-as-a-judge paradigm with and without the addition of domain-specific information
using retrieval augmented generation. The approach produces relations with greater cover-
age and results in a lower number of CHKPs compared to LBD based on relations extracted
with, e.g., SemRep, improving the prediction and efficiency of knowledge discovery. We
demonstrate the utility of the method using a drug-repurposing case study and suggest
that emerging AI technologies can be used to assist in knowledge discovery from the
ever-growing volume of the scientific literature.

Keywords: literature-based discovery; large language models; relation extraction; retrieval
augmented generation

1. Introduction

The increasing volume of the scientific literature presents a challenge for knowledge
discovery. The manual synthesis of information cannot keep up with the rapid growth
of publications across diverse fields, leading to missed connections. Literature-based
discovery (LBD) is a data mining approach capable of connecting disparate literature
studies [1] and uncovering new connections within specialized fields, addressing situations
where the volume of publications cannot be processed by a human (e.g., [2,3]). The original
LBD technique, the ABC model [4]Ðdue to the connection between A and C it proposes
based on known relations between A and B and B and CÐhinges on the accuracy and
quality of the relations extracted from texts, as well as the ability to filter the resulting
candidate hidden knowledge pairs (CHKPs) to remove uninformative candidates [5]. This
work introduces a hybrid data analysis approach, which explores the use of large language
models (LLMs) to address both of these points.

Early LBD works utilised simple text mining techniques, such as word co-occurrence in
titles, to define relations [6]. This method was effective for investigating suspected (closed)
connections where the literature could be reduced to titles containing A or C and only the
linking term B was sought. However, even when the relations were refined, the approach
had a tendency to generate an overwhelming number of CHKPs when used in open mode,
where all connections from every term are followed for two steps [7].

The need to reduce the quantity of CHKPs generated by open LBD has fuelled research
into enhancements to existing methods for effective data mining. Prior approaches have

Appl. Sci. 2025, 15, 8785 https://doi.org/10.3390/app15168785

https://doi.org/10.3390/app15168785
https://doi.org/10.3390/app15168785
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2158-5832
https://doi.org/10.3390/app15168785
https://www.mdpi.com/article/10.3390/app15168785?type=check_update&version=1


Appl. Sci. 2025, 15, 8785 2 of 21

included the following: (a) the removal of terms based on frequency (e.g., [8,9]), (b) the
mapping of terms to specialized lexicons such as the Unified Medical Language System
(UMLS) [10] to prevent connections via ambiguous terms [11], (c) the removal of terms
based on semantic type (e.g., [12,13]), (d) the restriction of the type of discovery (e.g., cancer
biology [14] or protein interaction [15]), (e) the restriction of relations to be connected [16],
and (f) the re-ranking of generated CHKPs (e.g., [17±21]). However, the exponential growth
of academic publications [22] requires a constant refinement of these approaches.

Recent advances in deep learning have improved the performance of many natu-
ral language processing (NLP) tasks in the biomedical field [23], including LBD (for an
overview, see [24]). While pre-trained language models have been used for LBD [25], many
successful applications of data mining, particularly in areas such as drug repurposing,
have predominantly relied on knowledge graph-based deep learning, with the knowledge
provided by existing tools, such as SemMedDB [26] (e.g., [3]), the Global Network of
Biomedical Relationships [27] (e.g., [28]), or named entity extraction (e.g., [29]). The use
of large, generative, language models (LLMs) has, however, been relatively low for the
purpose of LBD since they have a propensity for adhering to information they were trained
on rather than proposing new connections [30].

Through the vast quantity of training data, LLMs have access to an enormous amount
of knowledge. While this appears to be a limitation when proposing new connections, it
suggests their suitability for use within CHKP filtering. Since a large quantity of proposed
CHKPs represent background, well-known knowledge (which, due to being widely familiar,
does not appear explicitly in publications [25]), we propose that LLMs could be used to filter
these CHKPs. By instructing them to act as judgesÐa modification of the LLM-as-a-judge
paradigmÐthey can assess each CHKP against their training data to determine whether it
represents generally known, background knowledge. This theoretically distinct approach
goes beyond conventional filtering methods that rely on frequency or semantic constraints.

In this work, we therefore present a novel data mining approach that extensively
explores the integration of machine learning and AI through LLMs for LBD, involving
them in every crucial step except the initial CHKP generation:

1. Using few-shot learning to extract factual subject±predicate±object relations from pub-
lication abstracts, achieving greater coverage than established tools such as SemRep.

2. Investigating the impact of different training examples within few-shot learning
in Step 1, comparing manually annotated instances with examples derived from
cited facts.

3. Using zero-shot learning for filtering background knowledge CHKPs, in an LLM-as-a-
judge setup, with hallucinations ruled out using retrieval augmented generation.

The replication of existing discoveries is used to demonstrate the usefulness of the
LLM-generated relations. A small-scale timeslicing evaluation indicates their superior
suitability for LBD, producing less background knowledge and achieving higher precision
against the gold standard than LBD based on SemRep relations.

The remainder of this paper is structured as follows: Section 2 describes related work,
while Section 3 outlines the experiments carried out in this work. Discussions are presented
in Section 4 with conclusions and future work appearing in Section 5.

2. Related Work

The growing quantity of the scientific literature indicates that effective knowledge
discovery techniques, such as literature-based discovery (LBD), are required. The original
LBD approach, the ABC model [6], uses simple inference to propose a connection between
previously unconnected terms A and C if there are known, published, connections from A

to B and from B to C, which appear in separate publications. Its functionality was initially
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demonstrated on a suspected connection between Raynaud’s syndromeand fish oilÐboth
Raynaud’s syndrome and fish oil were found to have already published links to blood viscosity,
thereby allowing a connection to be confirmed through this (B) term.

The number of practical applications of LBD is growing: within the biomedical field,
this includes, for example, adverse drug event prediction [31], drug development [32] and
drug repurposing [33]. Particularly in the latter case, the economic benefits are substantial:
a drug that has already been safety tested can bypass 6±7 years of preclinical and early-stage
research when being investigated for a new use [34]. While the novel data analysis approach
presented in this paper is applicable to all uses of LBD, our evaluations specifically focus
on its utility in drug repurposing.

2.1. Resources

Several resources are frequently employed in large-scale text and data mining for LBD.
These will be introduced first, as they are required for relation extraction (Section 2.2) and
subsequently LBD (Section 2.3).

2.1.1. MEDLINE and PubMed

PubMed, and its biomedical subset MEDLINE, are the National Library of Medicine’s
(NLM’s) databases of publications, on which many LBD investigations are based. MED-
LINE mainly contains paper titles and abstracts from the biomedical domain, while PubMed
offers broader domain coverage and more recently also contains articles’ full texts. Al-
though some works utilise full texts (e.g., [35]), the majority of LBD systems exploit titles
and/or abstracts only.

2.1.2. UMLS

The Unified Medical Language System (UMLS) [10] is another widely used resource. It
comprises the metathesaurus, the semantic network and the SPECIALIST lexicon and tools.

2.1.3. UMLS Metathesaurus

The UMLS metathesaurus unifies a number of source vocabularies into a single
database of biomedical and health-related concepts. The concepts, identified using a
concept unique identifier (CUI), link together different ways to refer to the same concept
in a natural text. A number of manually identified relationships between CUIs (related
concepts) are also included within the metathesaurus. The main use of the metathesaurus
in LBD is for disambiguation: if terms are accurately mapped to their CUIs, connections
made through terms with identical spelling but different meaning can be avoided [36].
In addition, performing this mapping can link abbreviations to their long form.

2.1.4. The Semantic Network

The Semantic Network groups CUIs together into broad categories known as semantic
types with each UMLS concept assigned at least one semantic type. This semantic typing
is frequently used to constrain the hidden connections proposed by LBD, for example, to
drug (Chemicals & drugs)±treatment (Disease or Syndrome) pairs (e.g., [37]).

2.1.5. MetaMap

MetaMap [38], a tool within the UMLS suite, is widely used for mapping biomedical
text to UMLS concepts. Its availability for local execution and regular releases of pre-
processed versions of MEDLINE by the NLM significantly aid large-scale biomedical text
mining. In this work, we utilize version 24 of MetaMapped MEDLINE, and MetaMap 2020
with the 2020AA USAbase strict data model is used for local processing.
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2.2. Relation Extraction

The extraction of reliable semantic relations is an important component of the ABC
model (e.g., [39] or [40]). High-quality relations enable further refinements, such as focusing
on specific types of interactions (for example, relations between chemicals, genes and
diseases as explored by [27]). Also, the availability of relations allows the construction of
large-scale knowledge graphs, which can be exploited by LBD (e.g., [41]).

2.2.1. SemRep and Refinements

SemRep is a widely used rule-based approach to semantic relation extraction tuned to
the biomedical domain. Built upon MetaMap, it incorporates a step for mapping concepts
to UMLS CUIs. For example, for the sentence in list 1, SemRep extracts the semantic
relations in list 2 (CUIs have been mapped to their term representation).

1. Raynaud’s phenomenon (RP) is commonly observed in fingers and toes of patients with

connective tissue diseases (CTDs).

2. Connective Tissue Diseases PROCESS_OF Patients.

Toes PART_OF Patients.

Fingers LOCATION_OF Raynaud Phenomenon.

Toes LOCATION_OF Raynaud Phenomenon.

The tool extracts approximately 70 different predications, with roughly half being
negative (such as NEG_TREATS). A database of SemRep processed abstracts from MED-
LINE, SemMedDB [26], is publicly available and widely used for biomedical data analysis,
including LBD (e.g., [33] or [42]). However, a recent evaluation of SemRep (version 1.8) on
the SemRep test collection [43] revealed limitations in its performance, with 0.55 precision,
0.34 recall, and 0.41 F1 [44]. Even after accounting for test collection and evaluation setup
issues, the recall remained low at 0.42 (with an F1 of 0.52), suggesting that the technique
requires enhancement for effective data mining.

To address the recall limitations of SemRep, machine learning approaches, such as
classification, have been explored [45]. This involved fine-tuning language models such
as PubMedBERT (now BiomedBERT) [46] on entities extracted by SemRep following a
pre-training step using contrastive learning. This approach was found to be complementary
to SemRep’s annotations, with 0.81 recall, 0.62 precision and 0.70 F1.

Beyond rule-based systems such as Public Knowledge Discovery Engine for Java
(PKDE4J) [47] and its transformer-based refinement BioPREP [48], other applications of
transformer techniques to relation extraction, often focusing on specific subsets of relations,
have also emerged (e.g., [49,50]). However, fine-tuning pre-trained transformer models
typically requires a substantial annotated datasets (e.g., [3]), and the resulting relations are
not always optimally suited for LBD.

Recently, there has been a shift towards the use of large language models (LLMs) for
relation extraction. Given the enormous quantity of data used to pre-train LLMs, relations
can be extracted in a zero-shot settingÐwith no examples provided in the prompt [51]Ð
or in a few-shot setting, with a small number of examples included in the prompt [52].
However, the specific focus of each work (e.g., clinical trials only) and varied different
evaluation datasets make direct performance comparisons difficult across different LLM-
based approaches.

2.2.2. Factuality Dataset

The publicly available FACTUALITY dataset allows the confidence level of SemRep-
generated relations to be assessed. The distinction between genuine facts, conjectures,
or doubtful statements is valuable for high-quality input to LBD (e.g., [53]). Kilicoglu et al. [54]
manually annotated SemRep relations extracted from 500 PubMed abstracts with one of seven
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factuality values (FACT, PROBABLE, POSSIBLE, DOUBTFUL, COUNTERFACT, UNCOMMITTED,
and CONDITIONAL), providing a valuable resource for refining relation extraction (avail-
able from https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html, accessed
1 August 2024).

2.3. Literature-Based Discovery

The original ABC approach to LBD was integrated into a number of larger-scale
systems, such as BITOLA [55], Arrowsmith [56] and FACTA+ [57]. In their open form, these
systems often generated an excessively large number of candidate hidden knowledge pairs
(CHKPs), making the manual identification of promising avenues an extremely laborious
task. To reduce the quantity of CHKPs, co-occurrence was replaced with semantic relations,
and the semantic types of the terms involved in connections were restricted [58]. Further
refinements involved the use of graph-based approaches for inference, based on knowledge
graphs build from semantic relations extracted from publications (e.g., [19]). Despite these
refinements, even targeted LBD systems can still yield a large quantity of links; for example,
Syafiandini et al. [59] found 2,740,314 paths between 35 Xanthium compounds and three
types of diabetes.

Recent advances in deep learning have significantly improved the state of the art
across many biomedical domain tasks (as noted in Section 2.2.1). Many applications of
deep learning to LBD exploit the graph structure of extracted relations, whether by using
language models to enhance similarity in graph construction [60] or for filtering relations
within the resulting graph [3]. Other neural network approaches, such as CNNs [61] and
autoencoders [62], have also been investigated for their utility in LBD.

There is also a clear utility of LLMs within the biomedical domain, for example,
by exploiting their ability to answer scientific questions [63] or aiding clinical decision-
making [64]. LLMs boast a number of advantages over traditional approaches: most
importantly, being based on a massive dataset, they do not require structured inputs and
are less susceptible to the scalability issues experienced by simple inference. However, so
far, works exploiting LLMs for direct hidden knowledge suggestion in LBD have indicated
that the proposed hidden knowledge is of low technical depth and novelty [65], frequently
reverting to well-established information [66]. This observation suggests that it is important
to use LLMs where they excel: we therefore propose a hybrid approach, using LLMs to
extract knowledge from texts and to identify background knowledge among the proposed
CHKPs, while employing the established ABC model for CHKP generation.

2.3.1. Filtering

The effective filtering or re-reranking of the CHKPs resulting from LBD determines
its usefulness. We can broadly categorize valid relation-based CHKPs into three groups:
(1) connections depicting background knowledgeÐinformation that is so widely known
that it is unlikely to appear in knowledge bases; (2) minor variations of existing knowledge,
e.g., involving synonyms or already closely linked studies such as fish oilÐRaynaud phe-

nomenon deduced from a known link between fish oil and Raynaud disease; and (3) genuinely
valuable CHKPs, such as connections between disjointed studies [67].

Many filtering approaches do not target CHKPs by type. For example, the authors
of [3] reduce the set of predicate types within their LBD system to 15 based on their
expected utility. Similarly, restricting the semantic types of subjects (source) and objects
(target) of semantic relations (e.g., [12,13,37]) focuses on the application domain rather than
eliminating specific CHKP groups. While these methods reduce the overall quantity of
CHKPs, type 1 and 2 CHKPs are still prevalent in the remaining lists.

https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html


Appl. Sci. 2025, 15, 8785 6 of 21

2.3.2. Filtering Using Generative AI

The large quantity of data that LLMs are pre-trained with enables them to be used for
content evaluation and filtering, including tasks such as removing noisy data from datasets
(e.g., [68]). However, the application of LLMs for CHKP filtering in LBD has not yet been
explored. Within the LLM-as-a-judge paradigm, an LLM is used to evaluate the output of
other LLMs, checking their agreement with human annotation, yielding agreement levels
of human experts [69]. We propose modifying this paradigm to utilise an LLM to evaluate
the proposed, automatically created CHKPsÐwhich were designed to represent novel
hypothesesÐto determine whether they represent valuable hidden knowledge or already
known background information.

2.3.3. Evaluation of LBD

The evaluation of CHKPs is difficult as there is, by definition, no gold standard
available ([70,71]). Generally, studies therefore perform one of three evaluations [5]:

1. Expert and clinical evaluation, where an expert examines the CHKPs proposed by
the LBD system. Such connections are usually proposed by running LBD in a heavily
restricted mode to account for experts’ specializations.

2. The replication of existing discoveries, where a new system is judged on its ability to
replicate discoveries made by past LBD systems.

3. Timeslicing, in which a chronological cut-off date is selected with publications prior to
the cut-off point used by the LBD model to generate CHKPs, which are then evaluated
against relations extracted from publications after the cut-off point [72].

It should be noted that the number of past discoveries is limited, restricting this
evaluation type [73] and potentially introducing biases [74]. However, the timeslicing
approach, whichÐunlike expert evaluationÐallows for large-scale evaluation, also suffers
from a number of limitations: (1) not all valid CHKPs will have been discovered (yet), and
(2) the evaluation is heavily reliant on the accuracy of relations extracted from the literature
post cut-off.

3. Methodology

This section describes the novel approaches explored in this work: (1) the use of
FSL-based relation extraction is compared to SemRep triples using an application (ABC
LBD model), and (2) LLMs are explored for the identification of already known CHKPs.
The individual experiments are described below.

3.1. Pre-Inference Filtering

To standardize representations and provide access to semantic-type information,
concepts are mapped to the UMLS. Given our focus on drug repurposing, source term
semantic types are restricted to chemicals & drugs and genes & molecular sequence and target
terms to disease or syndrome. This filtering step is applied before inference to increase
speed, meaning only relations with source (subject) semantic type concepts or target (object)
semantic types proceed to inference.

3.2. Semantic Relations

Since accurate semantic relation extraction is crucial for LBD, we explore three separate
approaches for this text mining task.

3.2.1. SemMedDB Semantic Relations

SemMedDB version semmedVER43_2024_R, used in this work, contains 130,480,195 distinct
predications extracted from 37,233,341 articles using a rule-based approach. Removing predi-
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cations based on frequency and their likelihood of being helpful for LBD leaves the following
5 most represented relations: TREATS, AFFECTS, AUGMENTS, PRODUCES and STIMULATES.

3.2.2. Factuality Dataset-Based Relation Extraction

To encourage the extraction of factual relations, FACT relations from the manually
annotated FACTUALITY dataset (Section 2.2.2) are used to provide examples to an LLM
performing relation extraction. Examples were sampled from relations remaining after
removing (1) relations containing a null subject or object, (2) duplicate relations from the
same abstract, (3) relations which did not include the 5 most represented relations, and
(4) relations which did not contain the desired semantic types (Section 3.2.1). This dataset
is referred to as fact_triple.

It is important to note that a single abstract can contain more than one factual triple.
Due to this, the number of shots may be lower than the number of factual triples included
in a prompt since the number of shots refers to the number of abstracts contained in the
prompt. Additionally, the potential of more than one factual triple per abstract means that
balancing over predicates would not be straightforward, and a different technique would
need to be employed for the selection of examples from the S2ORC data (Section 3.2.3).
The LLM’s ability to generalize, along with the prevalence of TREATS relations in the
FACTUALITY dataset (in order, there are 174 TREATS relations compared to 39 instances of
AFFECTS), indicated the suitability of random selection of examples for few-shot learning.
A fixed seed was used to ensure reproducibility and incremental building of examples
(i.e., that examples for 10-shot learning add 5 abstracts to those used for 5-shot learning),
with the same examples used for all models explored.

3.2.3. Cited Information-Based Relation Extraction

An alternative approach to finding examples for LLM FSL-based relation extraction
is based on the hypothesis that novel contributions of publications will be cited by other
researchers. Such descriptions are expected to be factual and represent significant contribu-
tions of publications. They are not restricted to a specific domain and can avoid biases that
may be present when examples are selected for manual annotation.

The S2ORC corpus [75], which contains many full texts of articles, was used to access
the introduction and related work sections (identified using GROBID [76]). These sections
frequently contain short summaries of other academic publications alongside citations
of the sourceÐthese summaries should overlap with the abstract and/or conclusion of
the original work, yielding examples for FSL relation extraction. Training examples were
drawn from (1) English articles (identified using the langdetect library), (2) articles with
less than 50 references (to avoid survey papers, which may dilute specific contributions),
and (3) articles with an abstract length under 500 words with a minimum of 5 words per
paragraph (both being indicative of GROBID failure).

Since some of the summaries could be lengthy, with only a fragment describing
the contribution of a cited work, these were parsed using the constituent_treelib li-
brary [77] (the ConstituentTree.SpacyModelSize.Large was used for greater accuracy)
to extract the clause containing the reference, imposing a minimum length of 6 words on
extracted clauses.

The resulting examples are formed of a sentence fragment alongside a corresponding
abstract or conclusion (dataset cited_sent). Since these sentences may not contain a valid
relation (either by virtue of not containing a valid UMLS term or not containing one of the
selected predicates), a second dataset, cited_sent_wrel, is created comprising sentences
that contain a valid SemRep relation of the desired type. A third dataset, cited_triple,
retains only the SemRep triples alongside an abstract or conclusion. Restricting articles to
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the Microsoft Academic field of study (present in S2ORC) of Medicine, yields a second set
of these datasets (med_cited_sent, med_cited_sent_wrel, med_cited_triple).

3.3. LLMs for Relation Extraction Using FSL

Relation extraction based on the examples identified in Sections 3.2.2 and 3.2.3 is per-
formed using FSL: the LLM is prompted to extract novel contributions from a publication’s
abstract in either sentence or semantic relation form and is provided with a number of exam-
ples from the appropriate list (exact prompts used are shown in Appendices A.1 and A.2).
This approach has a number of advantages:

1. Semantic relations can be extracted from publications in any domain.
2. For FSL, only a (relatively) small number of examples is required to guide the genera-

tive process.
3. The LLM can be directed to identify only relations representing novel contributions of

a publication.

Furthermore, the LLM is constrained to producing TREATS, AFFECTS, AUGMENTS,
PRODUCES or STIMULATES predicates (the most common and LBD-relevant predicates),
which encourages the focus to be on relations likely to be involved in knowledge discovery.

Following relation extraction, the output of the LLM is automatically adjusted to fit
within the expected parameters by exploring frequently occurring patterns and manually
deciding whether a rewrite is appropriate for each pattern. For example, the output of
a relation in the form X PRODUCES a rise in Y is automatically adjusted to X AUGMENTS Y.
Further validation is performed by passing the output generated by the LLM through
MetaMap, which converts it to a standardized form, ensuring that a valid triple is present
in the output of the LLM. Table 1 summarizes the information passed to the FSL model
for each approachÐnote that the relation/text pairs need to indicate to the LLM which
piece of information is important in a paragraph of text, and therefore, it is not important
whether the source of the text is an abstract or a conclusion.

Three recently publicly available models are employed: two Llama 3.1 models [78] (8B
and 70B) and Cohere’s CommandR+ model. These models differ in the training data and
tasks used to create them, the context lengths they allow and the number of parameters
they contain (see Table 2 (the llama2-13B model is included in the table as it is used for
a later experiment)). Note that both the llama3.1-70B and the commandR+ models were
loaded in their quantized (4 bit) versions (the largest Llama 3.1 model, Llama 3.1 405B,
exceeded available computational resources for this work). The decision to employ the
quantized CommandR+ and Llama3.1-70B models was based on a preliminary small-scale
experiment on a subset of the Drug±Drug Interaction benchmark data, DDIExtraction 2013,
where drug±drug interactions needed to be classified into one of four different types [79].
This task was selected for its similarity to relation extraction. A 5-fold cross validation was
performed with 10 shots randomly selected from the training portion and 50 randomly
selected test examples used for evaluation. The results and execution time of the locally run
models can be seen in Table 3. While the non-quantized Llama3.1-70B achieved the highest
accuracy (61.2%), its average query execution time of 134.4 s was deemed unfeasible for
a scalable deployment given our resources. The tasks used for training the models are
likely to be more important for their performance and generalizability to new tasks than
their knowledge cut-offs (which can be found in the final column of Table 2); however,
information about neither the tasks nor details of the training data is available for any of
the models, and therefore, empirical evaluations of all three models were performed on the
relation extraction task described in this work.
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Table 1. A summary of each extracted fact type’s associated information: med indicates a restriction
to the medical domain, while wrel represents sentences that contain at least one extractable SemRep
semantic relation.

Input ID Type Source Title Abstract Conclusion

fact_triple triple Factuality ✓ ✓ ×
cited_sent sentence S2ORC ✓ ✓ ✓

med_cited_sent sentence S2ORC ✓ ✓ ✓

cited_triple triple S2ORC+SemRep ✓ ✓ ✓

med_cited_triple triple S2ORC+SemRep ✓ ✓ ✓

cited_sent_wrel sentence S2ORC(+SemRep) ✓ ✓ ✓

med_cited_sent_wrel sentence S2ORC(+SemRep) ✓ ✓ ✓

Table 2. Generative AI models used for FSL.

Identifier Huggingface Model ID Context Params Cutoff

llama2-13B meta-llama/Llama-2-13b-chat-hf 4K 13B Sep 2022
llama3.1-8B meta-llama/Meta-Llama-3.1-8B-Instruct 128K 8B Dec 2023
llama3.1-70B meta-llama/Meta-Llama-3.1-70B-Instruct 128K 70B Dec 2023
commandR+ CohereForAI/c4ai-command-r-plus-4bit 128K 104B Oct 2023

Table 3. Medical relation extraction on subset of DDIExtraction 2013 benchmark.

Model Accuracy Execution Time per Query
Mean Stdev Mean Stdev

llama3.1-8B 24.8% 7.2% 0.15 s 0.01 s
llama3.1-70B 48.8% 14.1% 1.56 s 0.09 s
llama3.1-70B non-quantized 61.2% 7.0% 134.40 s 11.66 s
commandR+ 57.6% 10.8% 2.09 s 0.10 s

All three models were evaluated on 25 randomly selected withheld examples of the
FACTUALITY dataset, using a fixed seed of 234 and temperature of 0.1 (allowing some
flexibility in generation). The number of shots (examples) was varied between 5 and 20
in increments of 5. To assess the semantic closeness of the LLM responses to the expected
output, sentence transformer similarity [80] (all-MiniLM-L6-v2) was employed, a method
better suited than traditional summarization metrics like the ROUGE score [81] for detecting
semantically equivalent expressions [82].

Figure 1 contains the average similarity achieved by the top-performing models across
the test examples, with the x-axis indicating the model name, number of shots, and training
data source (as listed in Table 1). While the highest performance is based on FSL examples
from the FACTUALITY dataset, the CommandR+ results using cited facts (from the medical
domain with examples containing at least one SemRep relation) also demonstrate high
average similarity, showing the utility of the method especially for domains where an
equivalent of the FACTUALITY dataset is not available. Overall, the CommandR+ model
significantly outperforms the Llama 3.1 models on this task. When exploring the reason for
the difference, it was observed that the Llama 3.1 models were found to generally produce
a single fact for each input, while the CommandR+ models frequently generated more than
one fact. Based on these results, the 10-shot CommandR+ model using FACTUALITY-based
triples was selected to extract relations for LBD in this work.
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Figure 1. Models arranged by highest similarity: the x-axis value contains the model name, the num-
ber of shots, and the source of examples as listed in Table 1.

3.4. CHKP Generation

Two aspects are explored in this section: (1) the suitability of the relation extraction
approach introduced in Section 3.3 for simple inference-based LBD and (2) the applicability
of LLMs for filtering CHKPs.

3.4.1. Evaluation Using Existing Discoveries

Should LBD based on LLM-generated relations be unable to replicate existing discov-
eries, they would indicate that they may not be suitable for LBD. The following established
discoveries are explored in this work:

• Raynaud±fish oil [6]. Literature time interval: 1960±1985. Terms sought: raynaud,
fish oil.

• Migraine±magnesium [83]. Literature time interval: 1980±1984. Terms sought: mi-

graine, magnesium.
• Alzheimer±Indomethacin [84]. Literature time interval: 1966±1996. Terms sought:

alzheimer, indomethacin.
• Thalidomide±Myasthenia gravis [85]. Literature term interval: 1950±2000. Terms

sought: thalidomide, myasthenia gravis.

While the number of replicated discoveries is small, this is primarily due to a lack of
publicly available, well-documented discoveries that are suitable for LBD benchmarking
and align with our specific use case of identifying treatments for diseases (note that this is
a common evaluation issue: LBD works frequently only use the first two discoveries [71]).
Many documented LBD discoveries are either focused on highly specialized domains
(e.g., specific genes and cancer types [14]) or do not include the necessary literature range
for replication.

Table 4 highlights a significant difference between relations extracted by SemRep and
our FSL approach. Both approaches do not manage to extract wanted relations (TREATS,
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AFFECTS, AUGMENTS, PRODUCES or STIMULATES) from all articles (the Articles column)
that contain the desired terms (the Unique Articles column). This is expected since, for
some publications, only very short content is present in PubMed, e.g., PMID 6163587
is only represented by its title ªRaynaud’s phenomenon and sclerodermaº. However,
relations are extracted from more articles using FSL consistently, e.g., for the Raynaud±fish

oil discovery, about a third of abstracts (519 out of 1,472) produce a wanted relation, while
only 430 abstracts give rise to relations using SemRep, indicating a broader coverage of
the method.

Table 4. Number of relations extracted using each semantic relation extraction method for each
replication example.

Discovery Unique SemRep Fact_TRIPLE
Articles Relations Articles Relations Articles

Raynaud 1472 899 430 882 519
Migraine 4278 3513 1577 4434 2472
Alzheimer 36,096 53,871 19,204 43,062 25,316
Myasthenia gravis 8891 7315 3167 4669 4107

LBD applied simple inference to the resulting relations, which were filtered as follows:
(1) relations including 1071 highly frequent terms (in SemRep and/or FSL) (such as patient)
were removed along with terms based on frequent patterns (such as . . . workers), (2) semantic
types of source terms were restricted to a subset of Chemicals & Drugs (with semantic types
such as Indicator, Reagent, or Diagnostic Aid removed) and Gene & Molecular Sequences, and
(3) semantic types of target terms were restricted to Disease or Syndrome, Mental or Behavioural

Dysfunction and Neoplastic Process. To ensure only hidden knowledge pairs are proposed, all
SemRep TREATS relations (as listed in SemMedDB) appearing in works published before the
end of the discovery’s literature year interval (i.e., 1985 for the RaynaudÐfish oil discovery)
are removed from the result of the simple inference. SemRep TREATS relations are used in
this step, rather than relations specific to each extraction approach, as the execution of the
FSL approach over the entire PubMed collection would not be feasible given our resources.
Table 5 shows that all four discoveries were replicated using the LLM FSL relations and that
this approach consistently produced a significantly lower number of CHKPs.

Table 5. Replication of existing discoveries

Discovery SemRep CHKPs Fact_TRIPLE CHKPs
Reproduced |CHKPs| Reproduced |CHKPs|

Raynaud ✓ 99 ✓ 33
Migraine ✓ 3693 ✓ 1400
Alzheimer ✓ 151,241 ✓ 85,412
Myasthenia gravis ✓ 3829 ✓ 3590

3.4.2. LLMs for Background Knowledge Identification

The columns |CHKPs| in Table 5 indicate that the number of CHKPs increases greatly
with the number of studies, despite heavily restricted studies. Since removing background
knowledge could reduce this number, we explore the use of LLMs, with their massive
training data, via zero-shot learning for its automatic identification (see Appendix B.1 for
the prompt used).

To validate the capability of LLMs for this task, a dataset of relationships listed in
the UMLS is constructed with 50 examples of treatment relations (MAY_BE_TREATED_BY,
MAY_TREAT, TREATED_BY and TREATS) randomly selected from examples added in each
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version (see Table 6 for UMLS versions used and their release dates). An additional
dataset was created from a list of clinical trials around the world, available from https:
//clinicaltrials.gov/ (the listing downloaded on 4 August 2024 was used in this work). For
each study, the data contains a start and end date, the study type and a list of conditions and
interventions. Fifty examples of interventional trials with a start date of 1 May 2024 or later
containing a DRUG intervention were extracted. The LLMs listed in Table 2 were tasked
with indicating whether each example represented background knowledge. To ensure that
the Llama models followed instructions closely, these were invoked using a transformer
pipeline [86]. However, in this mode, the llama3.1-70B (non-quantized) model became
unusable, taking 2 h 30 min to answer 6 queries, and the accuracy of the quantized version
was lower than the non-quantized llama3.1-8B. Its results are therefore not included in
Table 6, which shows the proportion of background knowledge in the three datasets found
by each model.

Table 6. Percentage of background knowledge identified by each model (average over 5 runs).

Source Source Release Date llama2-13B llama3.1-8B commandR+

2006AA 13 February 2006 72% 83% 74%
2023AA 6 May 2024 64% 88% 82%
2023AB 6 November 2023 54% 99% 88%
2024AA 6 May 2024 42% 85% 80%
Clinical trials ± 40% 60% 70%

Aligning the performance in Table 6 with the models’ knowledge cut-offs shown
in Table 2 illustrates the reduced utility of an ageing LLM for identifying contemporary
background knowledge. More recent models achieve similar performance on the UMLS
data, as a larger proportion of the publications are expected to be included in the models’
training data. Despite the commandR+ model having a greater number of parameters than
the llama3.1-8B model, the data used to train the llama3.1-8B model is more up to date
and has been stated to be more varied, which may justify its slightly higher performance.

While all three models report a lower percentage of background knowledge within
the clinical trial test set than in the older UMLS data, this is higher than expected. The rea-
soning provided by the commandR+ model was manually explored for 10 randomly selected
condition±intervention pairs where background knowledge was detected. In 9 of the
10 cases, the trials compared a possible new treatment to existing known treatments be-
tween which there was a published link found using a Google internet search, suggesting
that a suspected link is often closely linked to existing works and therefore that the current
prompt was likely to also identify CHKPs with a low novelty value.

3.4.3. Timeslicing Evaluation

A small-scale timeslicing experiment was performed to evaluate the raw percentage of
CHKPs that match a SemRep TREATS relation appearing in SemMedDB from publications
between 1 March 2023 and 31 December 2024. The analysis focused on CHKPs generated
from publications between 1 January 2023 and 28 February 2023. This narrow time window
was selected based on the following constraints:

1. The computational cost of running LLM-based fact extraction and CHKP validation
for a larger time window becomes high, as each publication abstract within the
window requires fact extraction and each CHKP (whether SemRep or FSL generated)
needs to be background knowledge-checked.

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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2. The evaluation step checks for the presence of CHKPs in publications (i.e., SemMedDB)
after the timeslice. However, semmedVER43_2024_R only contains publications
through 2024 (with the majority of included publications appearing before 8 May 2024).

Table 7 demonstrates that even on a larger scale, the number of CHKPs generated
from FSL relations is lower than from SemRep-based relations and that a higher percentage
of these CHKPs were valid (i.e., discovered by December 2024). The overall low percentage
of discovered CHKPs is likely attributable to the relatively short evaluation time period.
One thousand CHKPs were randomly selected for the exploration of background detection,
with the results finding 28% of the SemRep-based CHKPs and 19% of the FSL-based
CHKPs to be already known. The lower quantity of background knowledge found with
FSL suggests that this technique’s relations are better suited to the task.

Table 7. Timeslice evaluation of CHKPs from Jan and Feb 2023 against SemRep TREATS relations.

Source |Triples| |CHKPs| Discovered by Dec 2024

SemRep 836,950 207,123 0.32%
FSL 683,915 124,086 0.45%

4. Discussion

4.1. Semantic Triple Extraction

Both the replication results (Section 3.4.1) and the timeslicing experiment (Section 3.4.3)
confirm the suitability of FSL-based relation extraction for LBD. A careful selection of ex-
amples allows the approach to overcome changes in word distributions seen in different
domains [87], which leads to a reduction in accuracy when general approaches are em-
ployed on domain-specific data. The FSL approach has also been shown to extract relations
from more publications than SemRep, and this section explores a manual analysis of the
differences between the relations extracted by the two approaches.

The relations extracted from the literature subsets for the replication experiments show
under 1% exact overlap of relations between the two approaches. Even when ignoring
the predicate and focusing solely on exact matches for subjects and objects, the overlap
percentage only doubled. This increase appears to be due to the FSL approach frequently
proposing AUGMENTS instead of STIMULATES and TREATS instead of AFFECTS. The low
overlap cannot be solely attributed to the publications that SemRep was unsuccessful
with while FSL extracted relations, as this represents around 15% of publications that
FSL extracted relations from. Exploring non-aligning triples indicates that the FSL-based
approach frequently produces more specific concepts, such as the following:

• FSL: nonsteroidal anti-inflammatory±analgesic agents vs. Semrep: Agent.
• FSL: allergic histamine release vs. Semrep: Histamine Release.
• FSL: coronary artery contractions vs. Semrep: Contraction.

Additional discrepancies in alignment are due to variations in MetaMap mapping,
where concepts, despite originating from the same abstract, were mapped differently.
For example, FSL contains salivary secretion, while the corresponding SemRep concept is
secretion of saliva. (It is important to note that this is unlikely to be due to any inconsistency
in MetaMap, but rather the result of slight changes made to the concepts by the LLM.)

Overall, the differences between the FSL-based approach and SemRep are substantial
enough to indicate that designing relation extraction specifically for a task, such as LBD,
has the potential to result in significant changes.
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4.2. Identification of Background Knowledge

Sections 3.4.2 and 3.4.3 indicate that LLMs can be used to determine background
knowledgeÐthey identify a high proportion of already known facts (Section 3.4.2) without
labeling all CHKPs as known (Section 3.4.3). This suggests that the LLM’s decisions
are unlikely to be based on hallucinated knowledge. To further confirm this, a further
experimentÐbased on retrieval augmented generation (RAG)Ðis performed.

RAG [88] allows an LLM’s in-built knowledge (derived from its training data) to be
augmented with additional information, typically from a knowledge graph. This provides
the LLM access to both its training data and the additional information contained in the
knowledge base. When using an LLM to detect background knowledge, a significant
reduction in the quantity identified in the experiment from Section 3.4.3 when additional
information is supplied to the LLM, would suggest that the originalÐun-augmentedÐLLM
was hallucinating its decisions.

4.2.1. Knowledge Base Creation

To enable RAG, a knowledge base (KB) was set up on neo4j aura (https://www.
neo4j.com, accessed on 4 August 2024), the free version of neo4j, which is limited to
400,000 relations. The KB was populated using three inputs:

• SemRep: To fit within the KB’s capacity, 15 years of TREATS relations (until 2023-03-01,
the end of the timeslice) with source term semantic types restricted as in Section 3.1
were included. Preference was given to longer string relations in the case of partial
matchesÐfor example, if two relations with the same source and predicate have the
target terms Influenza A (H3N2) and influenza A, then the relation containing influenza A

is removed. While this limitation may suggest limitations due to KB incompleteness, it
is expected that publications prior to this date have been included in the vast training
data used for all models. Publications before this date are also expected to have
reached their citation saturation point [89], with publications advancing their research
also either contained in the training data or in (at least) the KB.

• UMLS: Non-null MAY BE TREATED BY, MAY TREAT, TREATED BY and TREATS relations
with different source and target values (with filtering as above) were extracted from
the UMLS. The English preferred term was used in place of CUIs.

• Clinical Trial: Intervention±condition pairs (also known as disease±drug treatment
pairs in [90]) were extracted from trials completed before 1 March 2023 that reported
positive results from http://www.clinicaltrials.gov (accessed on 4 August 2024). If a
trial investigated multiple interventions, these were separated to form multiple TREATS

relations. Filtering was performed to remove terms referring to placebo treatments.

After performing a case-insensitive duplicate drop, the resulting KB contains
399,688 relationships and 107,200 nodes.

4.2.2. Timeslicing with RAG

To determine the impact of RAG on LLM-based background knowledge detection,
Langchain’s (https://www.langchain.com/, accessed 1 November 2024) retrieval chains
were used to augment the prompt. The KB was queried for matches and close matches of
the two terms within a CHKP and the additional information was passed to the LLM as
context. The model was instructed to use this information in addition to its own knowledge
to answer the question (the prompt template is shown in Appendix B.2 with the query
remaining identical to direct background detection).

Table 8 presents the results of augmented queries on the 1000 CHKP sample from
Section 3.4.3, providing a breakdown of the LLM’s classifications. The quantity of back-
ground knowledge remains lower for FSL-based LBD than when this is SemRep relation-

https://www.neo4j.com
https://www.neo4j.com
http://www.clinicaltrials.gov
https://www.langchain.com/
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based. RAG augmentation resulted in a slight increase (1%) in background knowledge
detection with the FSL approach, but a small decrease (5%) in SemRep. The purpose of
RAG is to provide up-to-date or highly specific information that the base LLM might not
have. If our KB contained a high density of facts that were not present in the LLM’s training
data, we would expect to see a more significant change in the classification results. The fact
that the changes are marginal suggests that most of the information in our 400k-edge KB
is already ªknownº to the LLM (which was expected as it was created from information
published before the LLM’s knowledge cut-off). The effect of RAG was therefore to confirm,
rather than to augment, the model’s existing knowledge. However, since both approaches
showed an increase in the number of ‘Unclear’ labels, these were manually explored.

Aligning the output with [91]’s division of error types, specifically factuality (whether
the response is factually correct), refusal (whether the response is a refusal to answer)
and contradiction (whether the response is inconsistent with itself), the majority of the
new ‘Unclear’ labels are due to contradictions within the response while the majority
of ‘Unclear’ labels arising from the unaugmented LLM response correspond to refusals.
A frequent source of contradictions was the confirmation of the context at the beginning of
the response (whether or not the context contained the exact relation) with the answer and
the explanation to the question following (with the connection not subsequently found).

Exploring the CHKPs whose classification changed from ‘known’ when RAG was
added shows that the LLM’s response sometimes claimed the existence of a direct relation-
ship when only an indirect one could be supported with evidence. This did not appear to
be a hallucination, rather a potential shortcoming of the prompt design (note that various
versions of the prompt were tried to emphasize the need for a direct connection, but it did
not appear to be possible to eliminate this category of error completely while retaining the
option to use synonyms). For example, when querying the existence of a direct connection
between anticonvulsant medications and diabetic retinopathy, the unaugmented LLM responds
with this being a known connection but also adds the following:

Given the potential metabolic impacts of anticonvulsants and considering the
broader context of managing chronic diseases like diabetes, there appears to be a
rationale supporting further investigation into any possible connections between
anticonvulsants and diabetic retinopathy.

This suggests that while the LLM accurately identifies potential relevance, its in-
terpretation of a ‘direct connection’ can sometimes be broader than intended for strict
LBD filtering.

Table 8. Results of filtering with and without enhancement.

No RAG With RAG

Source Yes No Unclear Yes No Unclear

Semrep 278 707 15 227 705 72
Factuality 187 788 25 199 736 65

4.3. Application to Nonmedical Domains

While the evaluation in this work is restricted to the biomedical domain, specifically
its drug repurposing subfield of drug, the approach is not limited to this subfield or domain.
Existing works (see, e.g., [92] for an overview) have applied LBD to nonmedical domains,
relying on linguistic and statistical approaches to extract concepts from data (since the
domains often do not possess controlled vocabularies or ontologies). While biomedical
tools (such as UMLS semantic types and MetaMap) are used to filter information in the use
case presented in this work, neither of the LLM approaches requires these. To adapt to a
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non-biomedical domain, or a non-drug repurposing domain, a small number of abstracts
(the current work suggests 10 examples would be sufficient) should be annotated with
relationships between facts in the domain (in the style of the FACTUALITY dataset) to
provide information for FSL-based fact extraction. The simple inference step (which runs
on the output of the FSL-extracted facts) proposes CHKPs relevant to the domain and this
is followed by background knowledge detection, which runs in a zero-shot mode, requiring
no domain examples, and therefore is applicable to any domain.

5. Conclusions

This work explores the use of LLMs for LBD in line with their strengths: (1) to extract
factual semantic relations from biomedical text and (2) to identify knowledge pairs that
represent background knowledge so they can be removed from CHKPs generated by simple
inference LBD.

Using a small number of semantic relations representing facts targeted to the LBD
task (by restricting the predicate) for the few-shot learning of a large language model is
shown to yield a different set of semantic relations to the highly utilised tool, SemRep.
This approach exhibits higher coverage than SemRep relations, with more specific terms
mentioned. When used for LBD, a higher proportion of the resulting CHKPs are shown to
be valid.

This work avoids the shortfall of LLMs mainly suggesting already known or closely
related facts [60] by continuing to employ simple inference for LBD, followed by using
LLMs to identify already known CHKPs from the resulting set. The importance of the
LLM’s knowledge cut-off for this task is demonstrated and it is shown to successfully filter
existing knowledge with hallucination not found to pose a problem.

The next step would involve an expert evaluation of the resulting discoveries, includ-
ing clinical trials as appropriate. To this end, the discoveries yielded by the timeslicing
evaluation presented in the paper are being made publicly available. In addition, expert
involvement could evaluate the inverse application of LLMsÐwhen an LLM is prompted
to determine whether a possible candidate hidden knowledge pair through its linking
term ‘makes sense’. Further re-ranking could also be offered by combining the proposed
approach with other methods, such as, e.g., distance within a knowledge graph [27].
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RAG Retrieval augmented generation
UMLS Unified Medical Language System
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Appendix A. Prompts for Few-Shot Learning

Appendix A.1. Extraction of Novel Contribution Sentence

List novel facts introduced in the title / abstract / conclusion of the academic publica-
tion shown after <<<< below - these should represent the novel contributions of the
paper. Only list facts which appear in the paper, do not generate any new titles, ab-
stracts, conclusion or summaries. Place each fact on a new line, and start the line with
a dash. Output as many facts as can be extracted from the title / abstract / conclusion
segment, while listing each fact as a complete sentence. Some examples are:

Appendix A.2. Extraction of Semantic Relations

List novel facts introduced in the title / abstract / conclusion of the academic pub-
lication shown after <<<< below - these should represent the novel contributions
of the paper. Only list facts which appear in the paper, do not generate any new
titles, abstracts, conclusion or summaries. The novel contributions should be listed
as semantic triples (i.e., subject relation object triples), where the only possible
relations are: TREATS, AFFECTS, AUGMENTS, PRODUCES, STIMULATES - do not
suggest other relations. Place each triple on a new line, separating the three elements
with tabs. Output as many facts as appear in the title / abstract / conclusion segment,
while listing each fact as a complete sentence. Some examples are:

Appendix B. Prompts for Zero-Shot Background Detection

Appendix B.1. Direct Background Knowledge Detection

Based on your biomedical knowledge, answer the following research question.
Is there an already known and established {{PREDICATION}} connection between
{{SOURCE_TERM}} and {{TARGET_TERM}}? You should answer this question as a re-
searcher, starting your answer with ’Yes’ if a relation already exists or ’No’ if it does
not, even if it seems plausible, with reasoning following.

In this work, PREDICATION is always the TREATS relation, and the source and target
terms are inserted for each relation pair.

Appendix B.2. Background Detection with RAG

You are an assistant for question-answering tasks. Use your own knowledge in
addition to that included in the context. The context represents relations extracted
from a knowledge base, found by searching for the two terms provided. Ignore
irrelevant relations but feel free to explore synonyms, hypernyms and hyponyms of
treatments and diseases to make your decision. If you don’t know the answer, just
say that you don’t know. Please start your answer with ’Yes’ or ’No’, with reasoning
following. Question: {{ question }} Context: {{ context }} Answer:

The query is identical to that in direct background detection (shown in Appendix B.1).
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