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Abstract

This paper proposes a robust method that identiőes sets of points that collectively deviate from

typical patterns in a dataset, which it calls łoutlier setsž, while excluding individual points from

detection. This new methodology, Outlier Set Two-step Identiőcation (OSTI) employs a two-

step approach to detect and label these outlier sets. First, it uses Gaussian Mixture Models for

probabilistic clustering, identifying candidate outlier sets based on cluster weights below a hyper-

parameter threshold. Second, OSTI measures the Inter-cluster Mahalanobis distance between each

candidate outlier set’s centroid and the overall dataset mean. OSTI then tests the null hypothesis

that this distance does not signiőcantly differ from its theoretical chi-square distribution, enabling

the formal detection of outlier sets. We test OSTI systematically on 8,000 synthetic 2D datasets

across various inlier conőgurations and thousands of possible outlier set characteristics. Results

show OSTI robustly and consistently detects outlier sets with an average F1 score of 0.92 and

an average purity (the degree to which outlier sets identiőed correspond to those generated syn-

thetically, i.e., our ground truth) of 98.58%. We also compare OSTI with state-of-the-art outlier

detection methods, to illuminate how OSTI őlls a gap as a tool for the exclusive detection of outlier

sets.

Keywords: Outlier sets, Outlier Set Two-step Identiőcation (OSTI), Gaussian mixture models,

Inter-cluster Mahalanobis distance

Key points

• New approach to label clustered sets as outliers sets instead of individual points.

• Our two-step method combines clustering and distance-based outlier set detection.

• Traditional outlier detection methods are not designed to tackle this problem.

• Our method (OSTI) reliably identiőes outlier sets across 8,000 synthetic datasets.
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1 Introduction

Outliers are commonly deőned as data points deviating signiőcantly from the remainder of dataset

(Grubbs, 1969; Grubbs and Beck , 1972; Barnett , 1978; Hawkins, 1980; Beckman and Cook , 1983). This

deőnition with emphasis on individual observations has endured different conceptualizations of outliers

and methods to detect them. For instance, outliers can deviate signiőcantly from the remainder of

the dataset either in absolute terms ś they are global outliers ś or within a speciőc context ś they

are contextual outliers; or they can be anomalous because they are part of a group of points that

collectively stand out ś they are clustered or collective outliers (Divya and Babu, 2016; Singh and

Upadhyaya, 2012; Zimek et al., 2014). In all these cases, including clustered or collective outliers, the

aim is to label each observation as outlier (or inlier) individually, rather than characterizing the cluster

or collective that they form (Gao et al., 2022; Li et al., 2022).

However, there is a growing recognition that outliers manifest as coordinated phenomena where

the collective behavior of seemingly typical individual points reveals systematic deviations, coordi-

nated threats, or emergent patterns that cannot be captured through individual point analysis (Yu

et al., 2015; Thudumu et al., 2020). This limitation becomes particularly problematic in complex,

interconnected systems where the most critical insights emerge from understanding groups of related

observations as single analytical units rather than as collections of individually labeled points. This

points to a qualitative difference between identifying and interpreting points individually or collec-

tively. Indeed, while individual outliers typically indicate isolated anomalies or measurement errors,

outlier sets expose coordinated threats, systematic irregularities, and collective behaviors that emerge

from the interactions between multiple data points - patterns that cannot be understood by analyzing

individual observations in isolation (Saha et al., 2018; Breunig et al., 2000; Bai et al., 2016). To for-

malize this qualitative difference, we introduce the concept of łoutlier setsž - cohesive groups of data

points that collectively deviate from expected patterns, and which we are interested in detecting and

analyzing as uniőed entities rather than individual outlier observations.

Formalizing outlier sets as a type of object separate from point outliers would be valuable in

several őelds where collective outliers provide actionable insights unattainable through individual point

detection. In big data analytics, processing vast information streams, sets of outliers reveal systematic

biases and collective behavioral patterns that detection methods for individual outliers are not meant

to őnd, particularly in high-dimensional datasets where many approaches suffer from the curse of

dimensionality (Thudumu et al., 2020). Digital twin-based outlier detection frameworks highlight

that identifying collective outlier patterns across data streams is critical for capturing underlying

distribution shifts (Gupta et al., 2024).

Other current efforts looking at large future uncertainties - climatic, socio-economic and / or tech-

nological, to name a few - lead to the generation of thousands to millions of scenarios to understand

the behavior of complex systems across these large uncertainty spaces an approach often referred to

as exploratory modeling (Kwakkel and Pruyt , 2013; Moallemi et al., 2020). In such large ensembles,

identifying individual outliers is often not of interest. Instead, more meaningful insights are gener-

ally obtained from identifying groups of scenarios that collectively represent meaningful deviations

from typical patterns, and from understanding what these scenarios have in common. For instance,

datasets obtained by simulating large scenario ensembles are increasingly used to understand the fac-
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tors that lead to remarkable outcomes in climate change, climate policy and associated socio-economic

scenarios (Eyring et al., 2016; Lamontagne et al., 2018; Dolan et al., 2021; Byers et al., 2022; Dekker

et al., 2023). Transportation infrastructure requires collective monitoring where cascading failures

begin as coordinated outlier sets across interconnected systems, and early detection of these collec-

tive patterns prevents widespread service disruptions (Basak et al., 2019). In cybersecurity, Advanced

Persistent Threats operate through coordinated actions where individual network events appear nor-

mal but collectively reveal sophisticated attack patterns that traditional individual-based intrusion

detection systems routinely miss, enabling prolonged unauthorized access (Benabderrahmane et al.,

2024). Financial systems have evolved to recognize that sophisticated fraud schemes like coordinated

market manipulation and money laundering manifest as collective transaction patterns rather than

individual suspicious activities, requiring detection of sets of outliers (Mazzarisi et al., 2024). Simi-

larly, in meteorology, several recent studies point to the need to characterize emerging extreme weather

events as spatio-temporal anomalous patterns, rather than through large collections of individual grid

points involved over the event’s time-span (Ramachandra et al., 2016; Barz et al., 2017; Coelho et al.,

2008). Beyond these examples, interest in detecting and describing sets of outliers and describing their

anomalous behaviors, not as individual points, but as spatial and/or temporal clusters has arisen in

őelds as varied as őnance (Lee et al., 2022), healthcare (Allenby et al., 2021) and smart grid analytics

(Madabhushi and Dewri , 2023).

To address this emerging need for collective identiőcation of sets of clustered outliers, the main

contributions of this paper are summarized as follows:

• We formalize the outlier set detection problem and demonstrate that existing state-of-the-art

methods cannot solve it, establishing a clear methodological gap where current approaches detect

individual outliers but fail to identify coherent anomalous groups as uniőed entities.

• We introduce a novel two-step methodology for the exclusive detection of outlier sets, and call it

Outlier Set Two-step Identiőcation (OSTI). It identiőes potential outlier sets with probabilistic

clustering, and combines it with Inter-cluster Mahalanobis distance measurement and rigorous

hypothesis testing to formally detect a cluster as an outlier set.

• We demonstrate through an example dataset that our methodology, OSTI, is qualitatively dif-

ferent from existing outlier detection methods in that no other methods can detect outlier sets

while excluding individual points.

• We conduct a systematic evaluation of the effectiveness of OSTI in two dimensions, through the

generation of thousands of synthetic datasets varying inlier and outlier conőgurations. It demon-

strates the effectiveness of our approach in correctly identifying outlier sets with a high degree

of purity i.e., the detected outlier sets coincide with the synthetically generated outlier sets with

a high degree of accuracy. We also provide evidence that results are robust to hyperparameter

choices, making OSTI convenient to implement.

The rest of the paper is structured as follows. We analyze the state-of-the-art outlier detection

methods for outlier set detection (Section 2). Then, we introduce the OSTI methodology (Section 3).

Next, we describe the experimental setup, including the large-scale synthetic dataset generation process
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used to evaluate OSTI (Section 4). We then present results (Section 5), followed by a discussion of key

őndings (Section 6), and conclude with a summary of contributions and future directions (Section 7).

2 Related Work

Outlier detection methods can be broadly classiőed into distance-based, density-based, clustering-based

and ensemble-based methods (Campos et al., 2016a; Aggarwal and Sathe, 2015; Mandhare and Idate,

2017; Hodge and Austin, 2004) to detect the different types of (individual or point) outliers mentioned

in the introductory paragraph of Section 1.

Distance-based methods assess the outlier status of a point based on its distance from its neighbors

(Kriegel et al., 2008; Ghorbani , 2019; Maesschalck et al., 2000; Ramaswamy et al., 2000). They are

well-suited to the detection of point and contextual outliers by identifying points far from others. For

instance, Mahalanobis distance (Mahalanobis, 1933) measures the separation between a point and a

distribution while removing cross-variable correlation via an orthogonal coordinate transformation.

This makes it effective for detecting outliers that appear normal when variables are considered inde-

pendently in highly correlated multivariate datasets (Li et al., 2019). However, it is not set up to

recognize structured deviations that form coherent groups of points, i.e., outlier sets.

Density-based methods identify regions in the data space where the density of points is signiőcantly

lower than in the surrounding areas. Points in these low-density regions are considered outliers.

Density-based methods are suited for identifying point and contextual outliers in sparse areas; however,

they can typically struggle in datasets where inliers are in regions of varying densities (Breunig et al.,

2000; Bai et al., 2016). For this reason, more recent methods such as the Relative-KNN-kernel density-

based clustering algorithm (REDCLAN) (Saha et al., 2018) operates on the principle of relative density

rather than absolute density to detect clusters. It includes a weighted rank-based anomaly detection

component that helps detect outliers relative to the identiőed clusters. REDCLAN effectively groups

similar density points into clusters while identifying those that do not conform to the overall data

distribution as outliers. It is unclear how density-based methods would handle outlier sets.

Clustering-based methods operate by organizing data points into clusters and can detect various

types of outliers through two broad approaches. In the őrst approach, outliers are characterized as data

points that either do not belong to any cluster or are signiőcantly distant from the nearest cluster (Ester

et al., 1996). In the second approach, outliers are identiőed as points that form micro-clusters (Breunig

et al., 2000) - small groups of data points that are markedly different from the main clusters in the

dataset. Several clustering-based outlier detection methods illustrate these approaches. For instance,

the Cluster-Based Local Outlier Factor (CBLOF) (He et al., 2003) detects outliers by clustering the

dataset into small and large clusters based on initialization parameters α and β, which act as thresh-

olds and weighting factors respectively. Data points in small clusters located near large clusters are

identiőed as outliers, enabling the identiőcation of small groups of isolated points. However, CBLOF’s

effectiveness depends heavily on initialization parameters and lacks veriőcation mechanisms for iden-

tiőed outlier clusters. Another method, Outlier Detection with Explicit Micro-Cluster Assignments

(D.MCA) (Jiang et al., 2022), blends advanced sampling strategies, pruning, and iterative reőnement

to detect outliers while assigning them to explicit micro-clusters. Despite its sophisticated approach,
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D.MCA’s point-wise scoring can fragment outlier identiőcation, potentially missing some points within

outlier clusters. The relationship between clustering and outlier detection extends beyond using clus-

tering for outlier identiőcation. Jiang et al. (Jiang et al., 2016) demonstrated that outlier detection

techniques can enhance clustering performance through improved initialization strategies. They pro-

posed initialization algorithms for K-modes clustering that incorporate outlier detection techniques,

establishing a bidirectional relationship where clustering aids outlier detection and outlier detection

improves clustering initialization. Their work reinforces the principle that outliers should not be se-

lected as initial cluster centers, as this can lead to suboptimal clustering results. This bidirectional

relationship highlights a fundamental limitation in existing approaches: most methods focus on individ-

ual point detection rather than considering the collective behavior of sets of outliers. This observation

reinforces our motivation for developing methods that can detect entire outlier sets as cohesive entities,

rather than fragmenting them into individual outlier points. Despite their demonstrated effectiveness,

clustering-based outlier detection methods (Sánchez Vinces et al., 2025) remain limited by their focus

on individual data points, overlooking cohesive outlier groups and thus constraining their utility for

detecting collective anomalies.

Ensemble-based methods employ multiple algorithms to identify outliers in a given dataset for

increased accuracy and adaptability (Sahu et al., 2021; Li and Zhang , 2023; Ouyang et al., 2021).

Ensemble-based methods are versatile in detecting point, collective or clustered and contextual out-

liers by leveraging multiple detection strategies. For instance, Feature Bagging operates by combining

multiple outlier detection algorithms over different feature subsets (Lazarevic and Kumar , 2005). Used

in conjunction with Isolation Forest (Liu et al., 2008), each algorithm produces an outlier score for

each data point, and these scores are combined to detect higher-quality outliers. This approach is

particularly effective in high-dimensional and noisy datasets but is aimed at identifying outliers along

dataset boundaries rather than coherent groups. A recent unsupervised outlier detection method, Dif-

ferential Potential Spread Loss (DPSL) (Gao et al., 2022) detects global, local, and clustered outliers

simultaneously using potential chains based on nearest neighbor relationships. It constructs hier-

archical potential peak points and measures anomaly degrees through distance ratios and isolation

radius. DPSL requires careful parameter tuning and has limited scalability for large datasets due to

point-by-point evaluation.

Even though some clustering and ensemble-based methods can detect small groups of points, none

of these methods aim at exclusively őnding sets of clustered outliers - that is, excluding isolated out-

lying points. Yet, there is a growing need to detect collective outlying or anomalous behaviors in

data (Feroze et al., 2021). Several outlier detection methods do not őt neatly into traditional cat-

egories mentioned above yet remain signiőcant. These methods employ alternative strategies such

as boundary construction in feature spaces, statistical distribution modeling, and dimensionality re-

duction techniques to identify outliers. For instance, Deep Support Vector Data Description (Deep

SVDD) (Ruff et al., 2018) employs a neural network trained to map input data into a hypersphere

of minimum volume in the learned feature space, directly optimizing an anomaly detection objective.

Deep SVDD is particularly effective for high-dimensional data where traditional kernel methods fail

due to computational constraints, as it scales linearly with dataset size and requires no data storage for

prediction. In contrast to Deep SVDD’s neural network-based feature mapping, Copula-based Outlier
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Detection (COPOD) (Li et al., 2020) leverages copula functions to model the dependence structure

between features, enabling the detection of outliers based on deviations from expected joint distribu-

tions. COPOD is particularly powerful for multivariate outlier detection as it can capture complex

dependencies between variables. COPOD computes outlier scores by measuring how well each data

point őts the learned copula-based dependency model, making it effective for detecting contextual

outliers. However, COPOD’s point-wise evaluation approach prevents it from recognizing entire clus-

ters as cohesive outlier sets, instead treating each anomalous point as an isolated deviation from the

modeled dependencies.

Complementing these approaches, Lightweight On-line Detector of Anomalies (LODA) (Pevnỳ ,

2016) utilizes sparse random projections to transform high-dimensional data into multiple one-dimensional

spaces, where outlier detection is performed using histogram-based density estimation. LODA is com-

putationally efficient and particularly effective for high-dimensional datasets, as it reduces the curse of

dimensionality by working with multiple random projections simultaneously. The method aggregates

outlier scores across all projections to provide a őnal anomaly score for each data point, making it

robust against noise and capable of detecting various types of outliers. However, LODA’s projection

based strategy suffers from the same fundamental limitation as the previous methods: it fragments

outlier set detection by evaluating points individually across different projection spaces.

Despite their diverse approaches, these methods share a common limitation when applied to outlier

set detection: they are designed to evaluate individual data points rather than recognizing cohesive

points as outlier sets. This limitation is challenging for large scenario ensembles, exploratory mod-

eling, and applications requiring understanding of outlying sets patterns. The increasing complexity

of datasets emphasizes the need for methods that efficiently identify and characterize meaningful out-

lier sets patterns involving groups of related observations, which existing approaches fail to address

effectively.

3 Methodology

This section describes our proposed methodology Outlier Set Two-step Identiőcation (OSTI). OSTI

integrates probabilistic clustering and a Mahalanobis distance-based statistical test to detect data

points that cluster together as outlier sets. Our approach involves two main steps, (A) the identiőcation

of candidate outlier sets with Gaussian Mixture Models, and (B) the identiőcation of outlier sets with

a chi-square test based on Inter-cluster Mahalanobis distance.

A. Identiőcation of candidate outlier sets using Gaussian Mixture Models

We perform probabilistic clustering, using Gaussian Mixture Models (GMM) due to their well-

recognized capacity to handle clusters of different sizes, shapes, and densities (Day , 1969). GMMs

assume all the data points are generated from a mixture of a őnite number of Gaussian distri-

butions. In this study, we emphasize the utility of GMMs for extracting component weights and

highlight the relationship between number of clusters and component weights. The probability
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density function of a GMM is given by equation (1):

p(x) =

K
∑

k=1

πkN (x|µk,Σk), (1)

where K is the number of mixtures (or clusters), and the k-th mixture component has a Gaussian

distribution N (x|µk,Σk) with mean µk and covariance Σk, and the πk are called the mixing

weights. They represent the prior probabilities of different clusters or components, and sum up

to 1. Each weight πk reŕects the proportion of the data that belongs to that cluster, i.e., a higher

πk means that the kth cluster has more points.

Next, we label candidate outlier sets as the components of the GMM that are below a weight

threshold πth. The rationale for this is that above that threshold, the presence of that cluster

is a feature of the data rather than a potential outlier set. Setting a threshold is also key to

avoiding the detection of large group of inliers as a false positive in Step B. On the other end of

the spectrum, setting the weight threshold too low risks missing relatively large outlier sets.

GMMs are sensitive to the choice of the number of clusters K, a hyperparameter that needs to be

decided in advance (Kasture and Gadge, 2012), and K directly determines the weight of typical

outlier sets. Therefore the choice of K and πth are linked, as the choice of K must not impede

the identiőcation of outlier clusters. Multiple methods can be used for choosing K, e.g., Bayesian

Information Criterion or Akaike Information Criterion (Cheong and Lee, 2008; Schwarz , 1978;

Ishioka et al., 2005). Our practice, based on several datasets similar to Figure 4, suggests that it

is appropriate to choose K such that 1/K is larger than, but close to, the threshold πth, so the

threshold applies to smaller-than-average clusters.

B. Outlier set identiőcation with a chi-square test based on Inter-cluster Mahalanobis

distance

Mahalanobis distance is a measure of the distance between a point and a distribution that

accounts for its covariance structure (Mahalanobis, 1933), as deőned by the following equation

(2).

MD(x;µ) = (x− µ)TΣ−1(x− µ), (2)

where MD is the squared Mahalanobis distance, computed between a point represented by vector

x in N-dimensional space, and vector µ is the distribution mean. Σ
−1 is the inverse covariance

matrix used to transform into an orthogonal set of coordinates where each variable is independent,

and T denotes the transpose operation.

Instead of measuring the deviation between individual points and a distribution’s center, in OSTI

we compute the distance between the mean of a candidate outlier cluster and mean of the rest

of the dataset and refer to it as the Inter-cluster Mahalanobis distance (IMD).

We deőne IMD in equation (3) by updating equation (2) as follows:

IMD(µcl;µ) = (µcl − µ)TΣ−1(µcl − µ), (3)
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where µcl represents the mean of the cluster, and µ is the mean vector of the entire dataset. IMD

accounts for the variance and covariance of the data in exactly the same way as MD, and aids

in identifying clusters that are farthest from the mean of the dataset. By utilizing IMD rather

than Euclidean distance, we ensure that scale differences across dimensions have no impact on

the identiőcation of outlier sets.

Next, we test for each identiőed candidate outlier and set the null Hypothesis (H0) that its mean

µcl is the same as that of the rest of the dataset, µ. The alternative hypothesis (H1) is that µcl

is signiőcantly different from µ. Under H0, IMD, as deőned in equation (3) as the sum of the

squares of independent standard normal variables, follows by deőnition a chi-square distribution

with N degrees of freedom (Ghorbani , 2019). Therefore, we reject H0 at the signiőcance level α

when (and only when) µcl is greater than the (1 − α/2) quantile of the chi-square distribution

with N degrees of freedom χ2(N) as represented in equation 4:

pvalue = P
(

IMD(µcl;µ) > χ2(N)
)

≤ α, (4)

The pseudo code for the implementation of OSTI is given in Algorithm 1.

Algorithm 1 Outlier Set Two-step Identiőcation (OSTI)

Require: Dataset X ∈ R
n×d, number of clusters K, weight threshold πth, signiőcance level α

Ensure: Set of detected outlier sets O
1: Step A: GMM Clustering for Candidate Identiőcation
2: Initialize GMM with K components
3: Fit GMM on dataset X using EM algorithm
4: Extract cluster parameters: {πk,µk,Σk} for k = 1, . . . ,K
5: Ccandidates ← ∅
6: for k = 1 to K do
7: if πk ≤ πth then
8: Ccandidates ← Ccandidates ∪ {cluster k}
9: end if

10: end for
11: Step B: Statistical Veriőcation using Chi-square Test
12: O ← ∅
13: Compute dataset mean µ and covariance matrix Σ

14: for each cluster c in Ccandidates do
15: Compute cluster centroid µcl

16: Calculate IMD = (µcl − µ)TΣ−1(µcl − µ)
17: Compute p-value = P (χ2(d) > IMD)
18: if p-value ≤ α then
19: O ← O ∪ {cluster c}
20: end if
21: end for
22: return O
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4 Evaluation of OSTI

This paper formally poses the new problem of detecting outlier sets, to the exclusion of individual

outliers. It then proposes a new methodology, OSTI, to solve this problem. We have two main

evaluation objectives. Our őrst objective is to verify that OSTI performs qualitatively differently from

existing individual outlier detection methods. Our second objective is to verify across a large sample of

diverse inlier / outlier set conőgurations (1) that OSTI’s őrst clustering step correctly identiőes outlier

sets, and (2) that the statistical test in OSTI’s second step is powerful for the detection of outlier sets.

For these tasks, we cannot rely on existing benchmark repositories such as the Outlier Detection

DataSets (ODDS) Library (e.g., (Campos et al., 2016b; Rayana, 2016)) and UCI Machine Learning

Repository (Kelly et al., 2017). Indeed, these and similar benchmarks datasets label each observation

as either an outlier or inlier, but they do not label coherent groups of outliers that should be treated as

uniőed entities (Campos et al., 2016c; Emmott et al., 2013). They are not benchmarks for the outlier

set detection problem that this paper addresses - which is expected, as this is a formally new problem.

OSTI solves a problem that is qualitatively different from the problem of correctly labelling individual

observations because it labels whole clusters as inliers or outlier sets. In other words, OSTI is explicitly

not suited to label single observations, making it inappropriate to apply to existing benchmarks.

However, we need to check whether conversely, methods designed for labelling individual points as

inliers and outliers, are appropriate or not for the problem of exclusive detection of outlier sets. This

corresponds to our őrst evaluation objective, and for this we use an existing real-world dataset for

which we know the ground truth, as described in detail in Section 4.1.

After this, we use synthetic dataset to provide a clearly interpretable evaluation of OSTI’s capabili-

ties ś our second evaluation objective. This is because synthetic datasets enable meaningful evaluation

with clear anomaly characteristics compared to benchmark datasets with unknown collective anomaly

properties (Steinbuss and Böhm, 2021); they also allow controlled experimentation in a way real-world

benchmarks do not (Emmott et al., 2015). We detail our synthetic dataset approach in Section 4.2.

4.1 Cross-Method Comparison

The cross-method comparison serves primarily as a qualitative demonstration of the fundamental

methodological differences between OSTI and existing approaches rather than comprehensive quanti-

tative benchmarking. We utilize a single real-world dataset for this purpose because existing bench-

mark repositories lack established ground truth for outlier sets, making quantitative comparison across

multiple real-world datasets methodologically challenging. The IRB dataset provides an ideal proof-

of-concept case where distinct outlier sets are visually apparent, enabling clear demonstration of how

existing methods either fragment outlier set detection or incorrectly ŕag scattered individual points.

This qualitative analysis effectively illustrates the conceptual gap that OSTI addresses, while our com-

prehensive quantitative evaluation is conducted using synthetic datasets with known ground truth in

subsequent sections.

First, we evaluate OSTI against other state-of-the-art methods using a subset from a large ensemble

of scenarios where ground truth is known to detect outlier sets. An example of outlying behavior is

represented in Figure 1, which shows irrigation-scarcity relationships for 3,000 scenarios of the Indus
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Figure 1: Cotton irrigation water withdrawals
(km3) versus water scarcity for the Indus River
Basin in 2100. Scatter plot showing 3,000 scenarios
with two distinct outlier sets circled in red, each
representing a cluster of points that collectively de-
viates from the main distribution pattern, indicat-
ing unusual combinations of irrigation withdrawals
and water scarcity levels.

River Basin (IRB) in 2100. These scenarios are extracted from a 6TB dataset generated using the

Global Change Analysis Model (GCAM) (Dolan et al., 2021). GCAM has played an integral role in

Intergovernmental Panel on Climate Change (IPCC) reports for over two decades, offering in-depth

insights into socio-economics, water supply-demand dynamics, and land use changes (Calvin et al.,

2017; Ou et al., 2021), and enabling a comprehensive exploration of interactions between human and

Earth system processes (Calvin et al., 2019). Figure 1 clearly shows two sets of outliers, which we

circled in red. We use this IRB dataset to implement multiple approaches discussed in Section 2 with

different properties to evaluate their respective ability to detect these outlier sets.

To systematically evaluate existing methods, we implemented representative approaches from four

major categories of outlier detection. For distance-based detection, Mahalanobis distance was imple-

mented. REDCLAN was employed as a representative of density-based methods. Clustering-based

approaches included Clustering-Based Local Outlier Factor (CBLOF) and Detection with Explicit

Micro-Cluster Assignments (D.MCA). We further evaluated two ensemble-based methods: Feature

Bagging and Differential Potential Spread Loss (DPSL). Lastly, we tested three additional techniques:

Deep Support Vector Data Description (Deep SVDD), Lightweight On-line Detector of Anomalies

(LODA), and Copula-Based Outlier Detection (COPOD).

We used the Python library PyOD (Zhao et al., 2019) to implement Feature Bagging with Isolation

Forest and CBLOF. For Mahalanobis distance, REDCLAN, D.MCA, DPSL, SVDD, COPOD, and

LODA, we implemented custom code based on the original algorithms described in their respective

papers.

10



4.2 Synthetic Datasets

We conduct systematic validation against thousands of synthetic datasets where different ground truth

conditions are deőned. This allows rigorous testing of OSTI’s performance across different inlier

conőgurations and outlier set characteristics. These synthetic datasets provide an objective benchmark

for assessing OSTI’s outlier set detection capabilities by answering both the following questions: (Q1)

Can clusters of outlying points be identiőed as outlier sets?, and (Q2) To what extent do identiőed

outlier sets overlap with true outlier sets? Firstly we describe the synthetic generation of datasets

(Section 4.2.1). Secondly, we establish the ground truth against which we apply OSTI (Section 4.2.2).

Thirdly, we deőne clear performance metrics to answer both questions (Section 4.2.3). And őnally we

detail the numerical experiments we conduct to evaluate OSTI (Section 4.2.4).

4.2.1 Synthetic Datasets Generation

We use make_blobs, a function from the Python library scikit-learn (Pedregosa et al., 2011) (see

Appendix C), to generate inlier sets with 1,500 data points, 15 centers, 6 standard deviation and the

bounding range within which the cluster centers are randomly generated is (-10,10) for each of the

2D features, ensuring variability in the spatial distribution of the generated data points. Next, four

different shape conőgurations are applied to these inliers, i.e., circle, ellipse, triangle and irregular with

no transformation. Still using make_blobs, we also generate smaller ŕoating sets of clustered points,

potentially detectable as outlier sets based on three parameters. dout represents the radial distance

from the centroid of the inlier set in a polar coordinate system, ranging from 0 to 100 units. ϑout

denotes the angular position of the ŕoating sets, ranging from 0 to 360 degrees. Standard deviation

σout, ranging from 1 to 10 units, measures the spread of data points within the ŕoating sets. We

explore the potential of OSTI in cases where only one ŕoating set is generated, and in cases where two

are generated, as follows:

• In Case 1, we introduce a single ŕoating set. For each inlier set conőguration (circle, ellipse,

triangle, irregular), and a őxed size of the ŕoating set, we generate 1,000 synthetic datasets using

Latin hypercube sampling (LHS) (McKay et al., 2000) of the three parameters (dout, ϑout, σout)

across the ranges stated above.

• In Case 2, we introduce two ŕoating sets to evaluate whether and how the detection of one

outlier set interferes with that of the other. They have respective parameters (dout1,ϑout1,σout1)

and (dout2,ϑout2,σout2). The centroid of the second ŕoating set is at an angle ϑout1 +180+ ϑout2

in degrees, so that the two outlier sets can only overlap when ϑout2 is close to 180 degrees.

Furthermore, the likelihood of both ŕoating sets overlapping is less than 10% due to the manner

in which they are generated. For each inlier set conőguration (circle, ellipse, triangle, irregular),

and a őxed size of the ŕoating sets, we generate 1,000 synthetic datasets using LHS of the six

parameters across the ranges stated above.

4.2.2 Ground Truth

In each synthetically generated dataset, we need to label the ŕoating set(s) as either an outlier set or

not. In some cases, this is straightforward. For instance, the sets of red triangles in Figure 2 (a) and
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(b) have their convex hulls fully separated from those of the inlier sets, and clearly are outlier sets.

Conversely, still in Figure 2 (b) the ŕoating set represented with black squares is not, and its convex

hull is almost entirely inside the convex hull of the inlier set. In another case however, such as Figure

2 (c) the convex hull of the ŕoating set is overlapping with that of the inlier set (irregular shape).

Figure 2: Illustration of ground truth Explanation for Case 1: Circle (One outlier set) (b) Case 2:
Ellipse (Two outlier sets), (c) Case 1 for Irregular (no transform) and (d) Case 2 for Triangle

To account for these cases we propose two different types of ground truths. The strict ground truth

labels a ŕoating set as an outlier set if it has no point within the convex hull of the inlier set. Under

the relaxed ground truth however, a ŕoating set is labeled as an outlier set when the set’s centroid lies

outside the convex hull of the inlier set. These two types of ground truths agree in Figure 2 (a) and

(b), where red-triangle ŕoating sets are labeled as outlier sets whereas the black-square ŕoating set is

not. In panel Figure 2 (c), the ŕoating set is considered an outlier set only under the relaxed ground

truth, not under the strict ground truth.

Note this deőnition of ground truth only applies to the position of outlier sets with respect to inlier

sets. For instance in Figure 2 (d), both the ŕoating sets (in red triangles and black squares) are clearly

outlying under both ground truths. They are also overlapping because they are generated with ϑout2

close to 180 degrees as explained in section 4.2.1. They are considered as two separate outlier sets, as

a way to understand how the methods works in such cases.

4.2.3 Performance Metrics

To evaluate the ability to detect outlier sets, for each set of 1,000 synthetic datasets we call a result

positive when an outlier set is identiőed, and record true positives (TP ), false positives (FP ), true

negatives (TN) and false negatives (FN). We use these to compute the classic metrics of precision P

(Powers, 2011) and recall R (Van Rijsbergen, 1977) as deőned in equation 5:

P =
TP

TP + FP
and R =

TP

TP + FN
(5)
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From this we derive the F1 score (Chinchor and Sundheim, 1993; Sasaki et al., 2007) deőned by

equation ??:

F1 = 2 ·
P ·R

P +R
(6)

We also need to evaluate the extent to which identiőed outlier sets overlap with the synthetically

generated set. For this we deőne a purity metric which is a point wise comparison of the sets. Thus,

the purity Pi deőned by equation 7 of the i-th cluster can be deőned as the fraction of outliers within

that cluster.

Pi =
1

ni

ni
∑

j=1

outlier_labelsj , (7)

where outlier_labelsj is the label of the j-th point in the i-th cluster and ni is the total number of

points in the i-th cluster. This purity metric is quantiőed on a scale from 0% to 100%, where 0%

means all points in the detected outlier sets were generated as inliers, and 100% signiőes the complete

point-wise identiőcation of an outlier set. This metric evaluates the performance of clustering for

the aim deőned in the OSTI methodology, i.e., the identiőcation of candidate outlier sets. For this

reason, we do no implement traditional clustering metrics such as Davies-Bouldin Index (Davies and

Bouldin, 1979) or Silhouette Index (Rousseeuw , 1987) which have the distinct objective of evaluating

the performance of clustering throughout the whole dataset. Purity metrics are evaluated only on true

positive results, as it is irrelevant to know whether a false positive set is constituted of inlier points or

ŕoating sets.

4.2.4 Design of experiments

We generated a total of 8,000 synthetic datasets, comprising 1,000 synthetic datasets for each of the

four inlier shapes in Case 1 with 150 points in the ŕoating set, and 1,000 synthetic datasets for each of

the four inlier shapes in Case 2 with 75 points in each ŕoating set. For each dataset, we applied OSTI

with a threshold weight πth = 0.1, ensuring no cluster representing more than 10% of the dataset can

be a candidate outlier set, and used K = 8 clusters for Gaussian Mixture Model (GMM) clustering (see

Appendix B). To benchmark our method, we applied the best-performing approach from Section 5.1 to

all synthetic datasets. To check OSTI’s robustness to hyperparameters, we conducted two additional

experiments: őrst, re-applying OSTI to the same 8,000 synthetic datasets with K = 7 and K = 9,

and second, generating 8,000 new synthetic datasets with only one-third the number of points in each

ŕoating set to verify detection of smaller outlier sets while maintaining the weight threshold πth = 0.1.

We repeated these experiments őve times for each dataset to produce robust results and demonstrate

the low variability between experiment sets.

All experiments were conducted on a system equipped with a 64-bit OS, 24 GB of RAM, and

an Intel(R) Core(TM) i7-9700 CPU at 3.00GHz. All the code, results, and datasets (Sarfraz et al.,

2025) associated with this work can be found in the University of Sheffield’s data repository https:

//doi.org/10.15131/shef.data.28227974.v2.
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Figure 3: OSTI implementation on the dataset in Figure 1. Step A: GMM clustering with eight clusters
(weights in legend); clusters with weights ≤ 0.1 are marked as candidate outliers (‘x’). Step B: IMD
evaluation, with shaded regions representing the covariance structure.
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5 Results

The rest of this section details evaluation results of OSTI. We őrst assess outlier detection methods

on the IRB dataset (Section 5.1). Then we evaluate OSTI’s performance on synthetics datasets,

through F1 score (Section 5.2) as well as purity metrics (Section 5.3), and we benchmark OSTI against

existing approaches on synthetic data (Section 5.4). The analysis concludes by examining OSTI’s

hyperparameter robustness (Section 5.5).

5.1 Cross-Method Comparison Results

First, we demonstrate OSTI’s two-step approach applied to the IRB dataset in Figure 3. In Step A,

GMM clustering identiőes 8 clusters (shown in different colors) with their respective weights, marked

by cluster centroids. Several clusters (1, 4) have weights ≤ 0.1 (marked with ‘x’), identifying them

as candidate outlier sets. The dataset centroid is marked with a yellow triangle. In Step B, these

candidate clusters are evaluated using IMD. The shaded regions highlight the covariance structure

considered when computing distances between cluster means and the dataset centroid. This two-step

process successfully identiőes the two distinct outlier sets while maintaining cluster coherence.

We now examine how the outlier detection methods (detailed in Section 4.1) tackle our problem of

detecting outlier sets, to the exclusion of outlying individual points. Across Figure 4, points labeled

as outliers are represented in red, the others in blue. In (panel a), we implemented a distance-based

approach to point outlier detection. Mahalanobis Distance treats the data as coming from a single

distribution, and evaluates single points solely based on their distance from that distribution. As a

result, it is unable recognize structured deviations that form coherent groups, even though they are

visually distinct.

REDCLAN (panel b) detects outliers based on density, and identiőes central portions of outlier

sets as inliers, and ŕags as outliers arbitrary portions of the outer parts of both inlying and outlying

regions. This reveals its struggle with varying density patterns, particularly when outlier sets have

their own internal density structure different from the main distribution. Clearly, it is not meant to

tackle our problem of exclusively őnding outlier sets.

CBLOF’s effectiveness proves highly dependent on initialization parameters. In panel (c) we show

parameters that lead to identify all points in both outlier sets, as well as two smaller sets on the edge

of the main inlier set of points. The lack of a veriőcation mechanism for the outlier clusters identiőed

by CBLOF hinders the approach’s ability to address our problem of exclusive outlier set identiőcation.

D.MCA (panel d) struggles with coherent outlier set detection due to its point-wise scoring ap-

proach. This results in fragmented outlier identiőcation where some points within outlier clusters

are detected while others are missed, failing to preserve the structural integrity of outlier sets. Also

note that D.MCA shows high sensitivity to hyperparameter choices, and őne-tuning is necessary on a

dataset by dataset basis.

Similarly, Feature Bagging (panel e) detects more outliers than our problem warrants, by identifying

many outliers all along the dataset’s boundaries. This suggests that this method aggregates ensemble

model scores in a way that is not compatible for identifying coherent outlier sets.

DPSL (panel f) performs best among existing methods, accurately identifying most points in the
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Figure 4: Inliers and outliers as identiőed by a range of Outlier Detection methods on Figure 1 dataset
of cotton irrigation water withdrawals (km3) vs water scarcity for the Indus River Basin (IRB) in
2100. The benchmark is to identify the two clusters circled in red. (a) Mahalanobis Distance on IRB,
(b) Relative-KNN-kernel density-based clustering (REDCLAN) on IRB, (c) Clustering Based Local
Outlier Factor (CBLOF) on IRB, (d) Detection with Explicit Micro-Cluster Assignments (D.MCA)
on IRB, (e) Feature Bagging on IRB, (f) Differential Potential Spread Loss (DPSL) on IRB, (g)Deep
Support Vector Data Description (Deep SVDD) on IRB, (h) Lightweight Online Detector of Anomalies
(LODA) on IRB, (i) Copula-Based Outlier Detection (COPOD) on IRB.
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outlier sets. However, its effectiveness requires careful parameter tuning and its point-by-point evalu-

ation limits scalability for large datasets where outlier sets need to be identiőed efficiently.

Deep SVDD (panel g) employs a neural network trained to map input data into a hypersphere

of minimum volume in learned feature space, evaluating each point based on its distance to the hy-

persphere center. Deep SVDD shows scattered outlier detection throughout the dataset, identifying

some points within the circled outlier regions but also ŕagging points elsewhere. This highlights its

fundamental limitation: the point-wise evaluation approach prevents recognition of entire clusters as

cohesive outlier sets despite identifying some individual points within such regions.

LODA (panel h) aggregates scores from multiple random one-dimensional projections to determine

outlier status for each point. LODA exhibits excessive outlier detection, ŕagging numerous points

throughout the dataset including within the circled outlier regions but also multiple false positives.

This over-detection occurs because LODA identiőes statistical extremes in individual projections rather

than recognizing meaningful collective patterns. While it successfully detects points within true outlier

clusters, the high false positive rate demonstrates its inability to distinguish between outlier sets and

inliers making it unsuitable for exclusive outlier set detection.

COPOD (panel i) analyzes marginal and conditional distributions using copula models to assign

outlier scores based on unusual feature dependencies. The method produces scattered outlier identiő-

cation throughout the IRB dataset, detecting some points within the circled regions but also ŕagging

points elsewhere. This fragmented detection pattern demonstrates how marginal distribution analysis

cannot preserve the cluster coherence essential for outlier set identiőcation.

In summary, among all methods tested, DPSL (panel f) performs best on the IRB dataset: it

successfully identiőes nearly all points in both outlier clusters while maintaining a low false-positive

rate among inliers. While it remains sensitive to parameter settings, its relative precision and ability

to recover outlier set structure make it the most promising baseline. Accordingly, we carry DPSL

forward as a benchmark for subsequent comparative analysis. Our rationale is that if an approach

cannot handle the outlier sets (which again, it is not designed to do) in this case where they are

obvious, further testing is futile. The results point to the need for an approach speciőcally designed

for outlier set detection with low hyperparameter sensitivity. By designing OSTI as an approach that

both preserves cluster structure and identiőes outlying behavior, we aim to address these limitations,

and next section will now provide evidence of this.

5.2 F1-Score Evaluation

Table 1: Summary of Performance Metrics for Case 1: One outlier set and Case 2: Two outlier sets
Inlier shapes Ground truth

Case 1: One outlier set Case 2: Two outlier sets
Precision Recall F1 score Purity (%) Time CPU (sec) Precision Recall F1 score Purity (%) Time CPU (sec)

Circle Strict 0.93 0.96 0.94 99.70
0.27

0.89 0.95 0.92 99.14
0.24

Relaxed 1.00 0.83 0.91 97.75 0.98 0.87 0.92 97.66

Ellipse Strict 0.95 0.87 0.91 99.50
0.23

0.89 0.95 0.92 99.15
0.19

Relaxed 1.00 0.72 0.83 98.95 0.98 0.85 0.92 98.29

Triangle Strict 0.83 1.00 0.91 99.34
0.25

0.87 0.95 0.91 99.18
0.19

Relaxed 0.97 0.96 0.97 96.15 0.98 0.87 0.92 96.93

Irregular Strict 0.89 0.99 0.93 99.81
0.27

0.87 0.95 0.91 99.64
0.24

Relaxed 1.00 0.87 0.93 97.89 0.98 0.88 0.93 98.21

Note: The run times in Table 1 are for each 1,000 datasets, with OSTI processing a single dataset in approximately 0.3
seconds on average (or about 3.34 minutes for all 1,000 datasets).
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Figure 5: Scatter plot displaying 1,000 datasets across varied distances and angles, illustrating distinct
regions for True Positives (TP, in green), True Negatives (TN, in blue), False Positives (FP, in black),
and False Negatives (FN, in yellow) for Case 1 with both strict and relaxed ground truth categories.
The Figure shows results for: (a-b) Circle, (c-d) Ellipse, (e-f) Triangle, and (g-h) Irregular shapes.
Each point represents a single dataset’s outcome, plotted based on its distance (x-axis, 0-100 units)
and angle (y-axis, 0-360 degrees).

In Table 1, the F1-score is consistently above 0.90 for both Cases 1 and 2. As expected, the strict

ground truth decreases the number of false negatives compared with the relaxed ground truth, and

increases the number of false positives. This leads to comparatively higher recall and lower precision

across all eight experiments in the strict case. In contrast, the relaxed case offers often near perfect

precision, highlighting that OSTI detects very few false positives then, i.e., ŕoating sets whose centroid

lies within the convex hull of the inlier set. This is an encouraging sign of performance. This also leads

to large numbers of false negatives in the relaxed case, culminating in Case 1 with Ellipse inliers.

To visualize this further, Figure 5 illustrates the performance of OSTI on a synthetic dataset shaped

as a circle and an ellipse under both strict and relaxed ground truth conditions, in Case 1. For the

circle shape, in Figure 5, (a) and (b) the shift from a strict to a relaxed ground truth condition turns

most or even all false positives (FP) into true positives (TP), showing the ability of OSTI to detect

ŕoating sets whose centroid, but not all points, are outside of the convex hull of the inliers. In the

case of the ellipse shape, as shown in Figure 5 (c) and (d), the same trend is observed with the TP

increasing under relaxed conditions. However, many ŕoating sets close to the inlier sets are labeled as

outlying where OSTI cannot detect them (false negatives, FN, in yellow). This causes the F1 score for

ellipse to decreases from 0.91 under strict conditions to 0.83 when relaxed. Note how in both ground

truths the separation between positives and negatives varies notably with the angle, showing a zigzag
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Figure 6: Heatmap showing the relative importance of the three parameters varied across Case 1 (one
outlier set) for both strict and relaxed ground truth categories for all four shapes. Information gain
was computed using a random forest classiőer model, with darker colors representing higher values.
Distance is the most inŕuential parameter across all shapes and ground truth categories.

pattern mirroring the shape of the ellipse.

The triangle shape evaluates OSTI’s ability to handle sharp geometric features. OSTI achieves

F1-scores of 0.91 under strict conditions and improves to 0.97 under relaxed conditions. This notable

improvement is evident in Figure 5 (e) and (f), where the strict condition shows a distinctive pattern

of FP (black points) clustered particularly around the triangle’s vertices. The transition to relaxed

ground truth demonstrates how these ambiguous cases are more appropriately classiőed, as many FP

convert to TP (green points) while a smaller number become FN (yellow points) where ŕoating sets

partially overlap the inlier set’s convex hull. The detection boundaries show clear angular dependencies

that correspond to the triangle’s corners, illustrating how OSTI naturally adapts its detection criteria

to reŕect the underlying geometry of the inlier set.

For the irregular shape, OSTI maintains consistent performance with F1-scores of 0.93 across both

strict and relaxed conditions, demonstrating its robustness to complex boundary conőgurations. Figure

5 (g) and (h) represents how the method handles an inlier set with no regular geometric pattern. Under

strict conditions, the detection boundary exhibits more fragmentation, directly reŕecting the irregular

geometry of the inlier set. The transition to relaxed ground truth reveals more continuous detection

zones while maintaining perfect precision (1.00), with FN (yellow points) appearing primarily in regions

where the complex boundary creates ambiguity.

Thus, results show that ground truth deőnition can impact OSTI’s performance in some cases.

Results also highlight how distance (always) and angle (when the inlier is heterotropic) can alone

explain detection by OSTI. It is positive to see OSTI’s detection ability depend on the inlier shape. To

go further, we conducted a parameter importance analysis (see Figure 6) to conőrm that ‘distance’ is

more inŕuential followed by ‘angle’ and ‘standard deviation’ in detecting outlier sets across all shapes

and ground truth categories in Case 1.

We observe similar performance in Case 2, with a F1-score consistently above 0.90. As in Case 1
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Figure 7: Purity results for True Positives (TP) represented by box plots for Case 1 (one outlier set) (a)
Circle, (b) Ellipse, (c) Triangle, (d) Irregular and for Case 2 (Two outlier sets) (e) Circle, (f) Ellipse,
(g) Triangle, (h) Irregular representing TP for both ground truth categories. The counts represent the
TP identiőed for each respective ground truth category.

we have higher recall for the strict ground truth, indicating effective identiőcation of TP. Conversely,

for the relaxed case, almost perfect precision is achieved, reŕecting a minimal rate of FP predictions.

These őndings indicate that OSTI maintains high accuracy and robustness even in the presence of two

outlier sets. More details can be found in Appendix D, Figure 9. Besides, a similar feature analysis

to Figure 6 conőrmed that ‘distance’ is the most inŕuential determinant of detection for both outlier

sets (Appendix D Figure 10).

5.3 Purity Evaluation

In Table 1, the purity of TP outlier sets is represented and is consistently above 96% for both cases,

which implies that OSTI consistently identiőes the correct outlier sets. Unsurprisingly, this purity

is higher (around or above 99%) under the strict ground truth, where the TP outlier sets are well-

separated from the inliers, and the purity decreases under the relaxed ground truth (on average 97%),

where some TP outlier sets mix with the inliers.

This distribution of purities across the true positive results is also illustrated by the box plots in

Figure 7. We observe that in all cases, around 90% of TP detected by OSTI have perfect purity.

Because of this, the full box plot is not visible; instead, the 5th (red) and 10th percentile (blue) lines

are represented. For both cases, in Figure7, both percentiles (5th- red line and 10th-blue line), show
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that 95% of the datasets have (almost) perfect purity with a strict ground truth, and over 90% with a

relaxed ground truth (with the exception of the triangle inlier). Across all four panels, labels indicate

the TP counts, with as expected lower counts for strict compared to relaxed ground truth. For Case

1, in Figure 7, panels (a) and (b) show high purity values for over 99% of true positives, illustrating

OSTI’s ability to correctly identify outlier sets. From Table 1, the strict categories have higher purity

(approx. 99.60%) than the relaxed categories (approx. 97.68%) because the strict criteria only count

as outlier sets the ŕoating sets that are clearly demarcated from the inliers. This is also evident on

Figure 7 panels (a) and (b), which shows more TP values with purity < 1% identiőed only under the

relaxed ground truth. Panels (c) and (d) reveal different patterns - the triangle shape shows notably

lower purity values particularly under relaxed conditions, with more scattered points below 60%, while

the irregular shape maintains high purity comparable to circle and ellipse. From Table 1, the strict

categories have higher purity (approx. 99.60%) than the relaxed categories (approx. 97.68%) because

the strict criteria are more selective. This is evident in all panels, which show more TP values with

purity less than 1% identiőed only under the relaxed ground truth.

For Case 2, in Figure 7, panels (e) and (f), similar to Case 1 shows high purity values, but there

is a noticeable increase in outliers as compared to Case 1. Panels (g) and (h) follow similar patterns,

the triangle shape again shows more scattered low-purity points, while the irregular shape maintains

more consistent high purity values. This increased presence of outliers across all shapes is due to case

where the two ŕoating sets overlap in Case 2. Despite this, the high overall purity values demonstrate

OSTI’s effectiveness in handling multiple outlier sets. Note that the TP counts are nearly double in

Case 2 for both ground truths (1216 for strict Circle, 1066 for strict Ellipse, 1396 for strict Triangle,

1199 for strict Irregular and their corresponding relaxed values of 1345, 1180, 1588, and 1360). This

doubling of TP counts is a mechanical consequence of the presence of two ŕoating sets per dataset.

These őndings reinforce the strong performance and reliability of the OSTI method in achieving high

purity levels across different inlier and outlier conőgurations.

5.4 Benchmarking OSTI

Table 2: DPSL results on synthetic dataset for Case 1 & Case 2

Inliers shapes
Case 1 Case 2

One outlier set Two outlier sets

F1-score Purity (%) F1-score Purity (%)

Circle 0.75± 0.34 78.77± 35.60 0.76± 0.23 79.44± 35.30
Ellipse 0.60± 0.41 63.10± 42.88 0.65± 0.26 66.90± 42.14
Triangle 0.85± 0.23 89.46± 23.72 0.84± 0.17 88.33± 25.68
Irregular 0.76± 0.33 79.33± 34.35 0.75± 0.23 79.49± 35.08

Next, we implement the best performing method (DPSL) from Section 5.1 on the synthetic datasets

used for OSTI’s validation. For both Cases 1 and 2 we adopted n: 25, t: 10 and hmax: 10, the
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same hyperparameter choice as in Section 1, Figure 4 (f). The F1 score and purity for all geometric

conőgurations for both cases are summarized in Table 2. These results show an average F1 score of

0.75 and purity of 79.00% across both cases and all geometric conőgurations. Each iteration of the

analysis took approximately 15 seconds per dataset (258 minutes on average to evaluate 1,000 datasets)

and were performed on the same hardware as OSTI. This makes DPSL about 80 times slower than

OSTI. The DPSL results are approximately 23% less for F1 score and 26% less for purity as compared

with OSTI. This conőrms that similar to other approaches aimed at labeling individual outliers, DPSL

cannot consistently repeat its performance of Figure 4 (f) without a hyperparameter őne tuning that

is inconsistent with the rapid examination of a large number of datasets.

Table 3: Summary of Additional Analysis for Case 1: One outlier set and Case 2: Two outlier sets
with Number of clusters=8, Outliers =50 and πth = 0.1

Inlier shapes Ground truth
Case 1: One outlier set Case 2: Two outlier sets

Precision Recall F1 score Purity (%) Time CPU (secs) Precision Recall F1 score Purity (%) Time CPU (secs)

Circle Strict 0.93 1.00 0.96 99.91
0.23

0.95 0.97 0.95 99.86
0.23

Relaxed 1.00 0.94 0.97 99.20 0.99 0.86 0.92 99.21

Ellipse Strict 0.91 0.99 0.95 99.83
0.24

0.95 0.93 0.95 99.79
0.23

Relaxed 1.00 0.87 0.93 99.38 0.99 0.82 0.89 99.24

Triangle Strict 0.86 1.00 0.93 99.98
0.23

0.93 0.95 0.94 99.78
0.23

Relaxed 0.98 0.99 0.99 98.15 0.98 0.86 0.92 98.39

Irregular Strict 0.88 1.00 0.94 99.95
0.18

0.92 0.96 0.94 99.91
0.18

Relaxed 0.99 0.99 0.99 99.28 0.98 0.88 0.93 99.35

Table 4: Summary of Additional Analysis for Case 1: One outlier set and Case 2: Two outlier sets
with Number of clusters=7, Outliers =150 and πth = 0.1

Inlier shapes Ground truth
Case 1: One outlier set Case 2: Two outlier sets

Precision Recall F1 score Purity (%) Time CPU (secs) Precision Recall F1 score Purity (%) Time CPU (secs)

Circle Strict 0.94 0.96 0.95 99.78
0.23

0.90 0.95 0.93 99.69
0.21

Relaxed 1.00 0.82 0.90 99.42 0.99 0.86 0.92 97.25

Ellipse Strict 0.95 0.87 0.91 99.84
0.20

0.90 0.8 0.92 99.49
0.22

Relaxed 1.00 0.72 0.84 99.60 0.98 0.85 0.91 98.96

Triangle Strict 0.84 1.00 0.91 99.41
0.18

0.88 0.95 0.92 99.42
0.20

Relaxed 0.98 0.95 0.97 96.99 0.98 0.86 0.92 95.68

Irregular Strict 0.90 0.99 0.94 99.96
0.13

0.88 0.95 0.92 99.72
0.24

Relaxed 1.00 0.86 0.93 98.95 0.98 0.88 0.93 96.98

Table 5: Summary of Additional Analysis for Case 1: One outlier set and Case 2: Two outlier sets
with Number of clusters=9, Outliers =150 and πth = 0.1

Inlier shapes Ground truth
Case 1: One outlier set Case 2: Two outlier sets

Precision Recall F1 score Purity (%) Time CPU (secs) Precision Recall F1 score Purity (%) Time CPU (secs)

Circle Strict 0.92 0.96 0.94 99.69
0.21

0.90 0.95 0.92 99.14
0.21

Relaxed 1.00 0.84 0.91 97.25 0.99 0.87 0.92 97.59

Ellipse Strict 0.95 0.87 0.91 99.49
0.20

0.90 0.94 0.92 99.15
0.24

Relaxed 1.00 0.71 0.83 98.96 0.99 0.85 0.91 98.27

Triangle Strict 0.82 1.00 0.90 99.42
0.21

0.88 0.95 0.92 99.08
0.21

Relaxed 0.97 0.96 0.97 95.68 0.98 0.87 0.93 96.52

Irregular Strict 0.87 0.99 0.93 99.72
0.22

0.88 0.96 0.92 99.62
0.21

Relaxed 1.00 0.89 0.94 96.98 0.98 0.88 0.93 98.04
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5.5 Hyperparameter Robustness Checks

In contrast to DPSL, with a single hyperparameter choice, OSTI achieves a robustly high and consistent

level of accuracy in detecting outlier sets across various geometric conőgurations, with a computational

efficiency that is two orders of magnitude better. It maintains robust outlier detection whether the

outlier set size is similar to the weight threshold (Case 1) or half the weight threshold (Case 2). To

provide further evidence that outlier set detection has low sensitivity to its weight being well-below

the weight threshold, we also checked that keeping the same weight threshold with outlier set weight

divided by three does not affect OSTI performance (Table 3), maintaining high F1 scores (average

0.94) and purity (average 99.38%) with consistent computational efficiency (0.2 secs per dataset).

This suggests that setting the weight threshold at the maximum weight at which one will consider a

set to be small enough an outlier set (and not part of the inliers) is a choice that enables to capture

outlier sets of all sizes. Our experiments therefore indicate that a weight threshold such as πth = 0.1

(10% outliers), relating to a value of K slightly smaller than 1/πth = 10, is a sensible choice for OSTI

hyperparameters. We also veriőed that OSTI is robust to the exact choice of K, with K = 7 (Table

4: average F1 score 0.92, average purity 98.86%, 3.31 minutes per 1000 datasets) and K = 9 (Table 5:

average F1 score 0.91, average purity 98.11%, 3.46 minutes per 1000 datasets) delivering results close to

those of Table 1. In practice, setting the optimal threshold will depends on the speciőc characteristics

of a dataset and on the desired sensitivity to outliers.

The weight threshold πth is a key hyperparameter as it determines the maximum proportion of

data points that can constitute an outlier set. Recall that over this threshold, a cluster is considered

part of the main data distribution and not a potentially outlying cluster. In practice, πth should be

set based on domain knowledge and the speciőc characteristics of the dataset being analyzed. For

exploratory data analysis where the goal is to identify meaningful deviations from typical patterns,

we recommend πth = 0.1 (10% of the dataset) as a robust starting point. This value ensures that

clusters representing more than 10% of the data are considered part of the main distribution rather

than outliers, which aligns with conventional outlier detection principles where outliers represent a

small fraction of the data. The choice of πth is intrinsically linked to the number of clusters K in

the GMM. To ensure effective outlier set identiőcation, we recommend choosing K such that 1/K is

slightly larger than πth, allowing the method to detect clusters smaller than the average cluster size.

For instance, with πth = 0.1, setting K = 8 yields an average cluster weight of 0.125, creating the

necessary sensitivity to identify outlier sets. Our extensive robustness analysis demonstrates that OSTI

maintains consistent performance across different threshold values and cluster numbers (K = 7, 8, 9),

with F1 scores remaining above 0.90 and purity exceeding 98% even when outlier sets are signiőcantly

smaller than the threshold. This robustness eliminates the need for precise parameter tuning, making

OSTI practical for rapid analysis of large datasets. For datasets where smaller anomalous groups are

expected, πth can be reduced (e.g., 0.05 for 5% threshold), while larger thresholds (e.g., 0.15) may be

appropriate when focusing on more substantial deviations from normal patterns.
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6 Discussion

OSTI őlls a gap by providing a means to detect an outlier cluster in a large dataset with a single label,

while excluding individual outlying points from detection. State-of-the-art outlier detection methods

tested in this paper are not designed to tackle this problem. Indeed, they are unable to detect outlier

sets without also ŕagging individual outlying points. In contrast, OSTI’s two-step approach combining

GMM clustering with statistical veriőcation provides an effective solution for detecting cohesive outlier

sets.

Our approach addresses a real-world need as demonstrated through the IRB climate scenario anal-

ysis, where coherent anomalous patterns cannot be identiőed in isolation through traditional outlier

detection methods. This makes the insights from outlier set detection unattainable through indi-

vidual point analysis. However, existing benchmark repositories are designed for individual point

detection and lack established ground truth for collective outlier patterns, creating a methodological

gap for evaluating outlier set detection approaches. Therefore, our synthetic dataset approach pro-

vides methodological advantages that would be impossible to achieve with existing real-world datasets.

First, it enables rigorous evaluation with known ground truth, allowing us to measure precise metrics

such as purity, which quantiőes how accurately our detected outlier sets correspond to the true syn-

thetically generated outlier sets. Second, it allows systematic exploration of diverse scenarios across

8,000 datasets with varying inlier geometries and outlier set characteristics, providing comprehensive

evidence of OSTI’s robustness. Third, it enables controlled experimentation where we can isolate spe-

ciőc factors inŕuencing performance, such as distance, angle, and cluster spread. Our validation across

these synthetic datasets demonstrates OSTI’s robust performance with F1 scores consistently above

0.90 and average purity of 98.58% for detected outlier sets.

A next step is the development of specialized benchmark datasets for outlier set detection. It is

beyond the scope of this work because there is not yet a need to compare methods for the exclusive

detection of outlier sets. This follows an established precedent in anomaly detection, where founda-

tional methods are typically introduced well before systematic benchmarks are constructed to compare

a growing number of approaches. For example, classic techniques such as Grubbs’ procedures (1969)

(Grubbs, 1969) and Mahalanobis distance (1930s) (Mahalanobis, 1933) were developed decades prior

to the release of the őrst comprehensive benchmark repository in 2016 (Campos et al., 2016c). Our

synthetic dataset approach aligns with this pattern, providing the necessary methodological founda-

tion, evaluation criteria, and characterization of outlier sets that can inform the eventual construction

of real-world benchmarks for this newly formalized problem.

Even though results showcased the superior computational efficiency of OSTI compared with DPSL,

these points should be discussed in more detail. The GMM step operates on the entire dataset of n

points with a computational complexity of order O(I ·n·K ·d2) (Chivers and Sleightholme, 2015), where

I is the number of EM iterations, K the number of clusters, and d the data dimensionality. In contrast,

the Mahalanobis distance computation is applied only to the K cluster centroids and thus requires

signiőcantly fewer operations, of order O(K · d2). Therefore, OSTI’s computational time is dominated

by the GMM clustering step rather than the inter-cluster Mahalanobis distance computation. Given

that K is typically small between 7 and 9 compared to n, which ranges from hundreds to thousands, the

GMM step dominates the overall runtime. In practical terms, with parameters n = 1500, d = 2, K = 8,
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and I = 20, the number of operations remains under a million and yields an empirical runtime of 0.3

seconds per dataset on standard hardware. This computational proőle scales linearly with dataset size,

cluster number, and EM iterations, and quadratically with dimensionality due to covariance operations.

Compared to DPSL, which exhibits quadratic complexity in n, OSTI’s linear scaling and low runtime

enable it to process datasets approximately 50 times faster without compromising detection accuracy,

making it well-suited for exploratory tasks involving multiple low-dimensional projections.

The evaluation we provide for OSTI focuses on two-dimensional analysis. A limitation of our

approach is that the chi-square test used in OSTI’s second step loses statistical power as the number

of degrees of freedom increases (Fisher , 1922; Wilson and Hilferty , 1931), and this could compromise

OSTI’s ability to reliably detect outlier sets in higher dimensions. However, this apparent limitation

can be overcome by breaking complex high-dimensional problems into multiple interpretable low-

dimensional analyses. Rather than attempting to detect outlier sets in high-dimensional space where

relationships become increasingly difficult to interpret. OSTI enables systematic exploration of low-

dimensional projections where patterns remain interpretable and statistically veriőable.

If OSTI were to be scaled to higher dimensions, several reőnements should be considered, including:

(1) Dimension reduction techniques like Principal Component Analysis as a preprocessing step (Reddy

et al., 2020; Fodor , 2002), (2) Enhanced GMM initialization and convergence criteria to handle high-

dimensional spaces efficiently (Zhao et al., 2018), and (3) Alternatives to the chi-square test that

maintain statistical power in higher dimensions e.g., (Hotelling et al., 1931; Holloway and Dunn,

1967; Rousseeuw and Driessen, 1999). However, these modiőcations would involve trade-offs with

OSTI’s current advantages in low-dimensional settings, where it provides clear beneőts: statistical tests

maintain their power and reliability, computational efficiency is preserved (0.3 seconds per dataset),

results can be easily visualized and interpreted, and the method can be systematically applied across

multiple low-dimensional projections of complex data.

The hyperparameter sensitivity of OSTI, particularly regarding the weight threshold (πth) and

number of clusters (K), warrants careful examination. The weight threshold πth fundamentally deter-

mines what proportion of points can constitute an outlier set ś setting this parameter too high risks

missing genuinely outlying patterns, while setting it too low may lead to excessive fragmentation of

clusters. Our empirical testing suggests πth = 0.1 provides a robust balance, successfully detecting

outlier sets while maintaining high purity (98.58%) across diverse scenarios.

The number of clusters K interacts with πth in important ways. Theoretically, K must be large

enough to allow identiőcation of small outlier clusters, yet small enough to avoid over-segmentation

of the data. We found that setting K slightly below 1/πth (e.g., K = 8 for πth = 0.1) consistently

produces reliable results. This relationship is intuitive: if K is too small relative to 1/πth, then the

average cluster size would exceed the outlier threshold, potentially preventing detection of genuine

outlier sets.

Remarkably, our evaluation demonstrates that OSTI results remain consistent across different clus-

tering parameters (K = 7, 8, 9), and even when outlier sets are signiőcantly smaller (one-third the size)

than the weight threshold. This robustness to parameter choices indicates that OSTI can reliably de-

tect outlier sets of varying sizes without requiring precise parameter tuning - a signiőcant practical

advantage compared to methods like DPSL that require careful hyperparameter optimization. Future
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work could explore multi-scale detection frameworks that identify outlier patterns at different granu-

larities, streaming applications for real-time outlier set monitoring, and domain-speciőc validations in

őelds requiring collective anomaly understanding (Jiang et al., 2019).

7 Conclusion

This paper introduces a new type of outlier, the outlier set which is deőned as a cluster of points

that deviates signiőcantly from the rest of the dataset, and that we consider and evaluate as a single

entity. This new term addresses an emerging gap in outlier detection ś as datasets grow larger and

more complex, identifying and interpreting individual outlying points becomes impractical compared

to detecting meaningful outlying patterns involving groups of points.

Existing outlier detection methods focus on detecting individual outlier points, and are therefore

not trained to consistently detect these outlier sets while excluding isolated outlying points. To address

this gap, we propose a new methodology, Outlier Set Two-step Identiőcation (OSTI), which combines

Gaussian Mixture Models (GMM), Inter-cluster Mahalanobis distance (IMD), and chi-square based

hypothesis testing. We evaluate OSTI on 8,000 synthetic datasets featuring varied inlier geometries and

outlier set characteristics. This extensive validation demonstrates OSTI’s effectiveness in 2D spaces,

where it consistently achieves F1 scores above 0.90 and maintains high purity (98.58%) across diverse

conőgurations. A key area for future work is to evaluate OSTI’s performance higher dimensions,

where the theoretical power of its statistical testing is set to decrease, and where interpretability and

efficiency might become challenges. This would also require careful consideration of how the GMM-

based clustering and statistical veriőcation steps scale with dimension. Alternative distance metrics

and dimension reduction techniques could help address the curse of dimensionality while preserving

OSTI’s ability to identify meaningful pattern deviations.

OSTI has demonstrable potential for applications in multiple domains, such as anomaly detection

in large-scale networks, healthcare, bio-informatics, and climate risk modeling, to name a few. In all

these őelds, the ability to efficiently detect and analyze groups of outlying points as cohesive sets rather

than individual outliers could provide crucial insights for decision-making.
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Appendices

A Key Terminologies

• Outlier Set: A cluster of data points that collectively deviates signiőcantly from the rest of the

dataset, which we consider and evaluate as a single entity. Unlike traditional individual outliers,

outlier sets represent groups of points that are anomalous together.

• Inlier Set: The main body of data points that represent typical or expected behaviour in the

dataset. These points form the reference against which potential outlier sets are compared.
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• Floating Set: In our synthetic datasets, this refers to a group of points deliberately placed at

varying distances from the inlier set to test outlier detection. The position and spread of ŕoating

sets are controlled by parameters to evaluate method performance under different conditions.

• Strict Ground Truth: A ŕoating set is labelled as an outlier set only if it has no points within

the convex hull (boundary) of the inlier set. This represents the most conservative deőnition of

what constitutes an outlier set.

• Relaxed Ground Truth: A ŕoating set is labelled as an outlier set if its centroid (mean

position) lies outside the convex hull of the inlier set, even if some individual points overlap with

inliers. This allows for partial overlap between outlier and inlier sets.

• Purity: A metric measuring what percentage of points in a detected outlier set were actually

generated as outliers in our synthetic datasets. Higher purity indicates more accurate outlier set

detection.

• Latin Hypercube Sampling (LHS): A statistical method for generating near-random sam-

ples of parameter values from a multidimensional distribution, ensuring better coverage of the

parameter space than pure random sampling.

• Convex Hull: The smallest convex set that contains all points in a dataset. In 2D, can be

visualized as a rubber band stretched around the outermost points.

• Hyperparameters: Parameters that must be set before running the algorithm, such as the

number of clusters K and weight threshold πth.

B Determining The Number Of Clusters (K) For OSTI

In this study, we utilized Bayesian Information Criterion (BIC) (Ishioka et al., 2005) to calculate

optimal number of clusters. BIC helps select the optimal number of clusters among parametric models

with different cluster counts and is represented by equation 8:

BIC = ln(n) · k − 2 · ln(L) (8)

where:

• n is the number of observations;

• k is the number of clusters or parameters;

• L is the maximum likelihood of the model.

BIC penalises model complexity and is useful when trying to avoid overőtting. However, this

assumes that your data follows a normal distribution, which may not always be true (Cheong and Lee,

2008; Schwarz , 1978). The optimal number of clusters is usually the one that minimises the criterion.

Also, this study does not aim to present a systematic methodology for choosing K beyond the rule of

thumb that it is appropriate.
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Figure 8: Number of clusters selection using Bayesian Information Criterion (BIC) applied to 2D data
from Dolan Databases (DD). The x-axis shows the number of clusters (K) ranging from 1 to 20, while
the y-axis represents the BIC score. The blue line shows how BIC values change as the number of
clusters increases. The optimal number of clusters (K = 8) is identiőed at the point where adding
more clusters provides diminishing returns in terms of model őt, indicated by the elbow in the BIC
curve. This elbow point represents the balance between model complexity and goodness of őt - clusters
beyond this point add computational complexity without substantially improving the model’s ability
to represent the data structure. The elbow (encircled) at K = 8 suggests an appropriate choice for
OSTI’s clustering step when analysing 2D irrigation withdrawal patterns.
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The selection of K = 8 clusters is based on analysing the BIC curve behaviour across different

cluster numbers as represented in Figure 8. While the őrst local minimum appears at K = 8, this

selection is supported by several considerations:

1. BIC Stability: After K = 8, increasing K provides diminishing returns in terms of BIC

improvement, suggesting that additional clusters are not capturing meaningful structure.

2. Threshold Relationship: For outlier detection with a weight threshold πth = 0.1, K = 8

corresponds to an average cluster size of 1
8
= 0.125, slightly larger than the threshold. This

allows smaller-than-average clusters to be identiőed as candidate outlier sets.

3. Empirical Testing: Through extensive testing on synthetic datasets with known ground truth,

K = 8 consistently provided robust outlier set identiőcation across different data conőgurations.

4. Computational Efficiency: While larger K values might marginally improve BIC, they in-

crease computational cost without proportional gains in outlier detection accuracy.

C Synthetic Dataset Generation Using make_blobs

The synthetic dataset (inliers and outliers) was generated using make_blobs, a function from the

Python library scikit-learn scikit-learn and is represented by the equation 9.

X, y = make_blobs(nsamples, nfeatures,

centers, cluster_std, center_box,

shuffle, random_state)

(9)

where,

• X is the generated sample features;

• y is the integer labels for the clusters;

• nsamples is the number of data points;

• nfeatures is the number of dimensions;

• centers is the number of centres to generate blobs;

• cluster_std is the standard deviation of the clusters;

• center_box is the bounding box to generate centres;

• shuffle whether to shuffle the samples;

• random_state is used for reproducibility.
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Figure 9: Scatter plot displaying patterns for 1,000 synthetic datasets across Case 2 (two outlier sets).
Each row shows a different inlier shape conőguration (Circle, Ellipse, Triangle, Irregular) with four
panels per shape: strict and relaxed conditions for outlier set 1 (Out1) and outlier set 2 (Out2). Each
point represents a single dataset plotted by its distance (x-axis, 0-100 units) and angle (y-axis, 0-360
degrees). Points are coloured to show True Positives (TP, green), True Negatives (TN, blue), False
Positives (FP, black), and False Negatives (FN, yellow), illustrating OSTI’s detection performance
across different geometric conőgurations and ground truth conditions.
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D Case 2 Results

This section presents detailed visualization results for Case 2, where OSTI’s performance is evaluated

on detecting two outlier sets simultaneously. Figure 9 displays results across 1,000 synthetic datasets

for each inlier shape conőguration (Circle, Ellipse, Triangle, Irregular) under both strict and relaxed

ground truth conditions. The plots track OSTI’s detection performance for each outlier set (Outlier

set 1 and Outlier set 2) separately to demonstrate the method’s ability to detect multiple outlier sets

within the same dataset.

Figure 9 illustrates these results through 16 panels, organized in four rows by shape. For the circle

shape (panels a-d), detection patterns show clear separation between the two outlier sets, with Dis-

tance 1 vs Angle 1 plots revealing similar characteristics to Distance 2 vs Angle 2 plots. The ellipse

conőguration (panels e-h) maintains effective detection but shows more pronounced angular dependen-

cies, particularly visible in the distribution of FN (yellow points) along the major axis. Triangle shape

(panels i-l) demonstrates how OSTI adapts to sharp geometric features, with detection boundaries

showing distinct shifts near vertex angles. The irregular shape (panels m-p) reveals OSTI’s ability to

handle complex boundaries while maintaining reliable detection of both outlier sets.

A detailed feature importance analysis for Case 2 through a heatmap visualization of parameter

inŕuence across different inlier shapes and ground truth conditions is represented in Figure 10. The

analysis was conducted using random forest classiőer information gain, examined three key parame-

ters: distance 1, distance 2 (for OS1 and OS2 respectively), angle, and standard deviation for both

outlier sets. For őrst outlier set (OS1), distance 1 consistently shows highest importance (0.720-0.759)

across all shape conőgurations, particularly pronounced for irregular and circle shapes. Similarly, for

second outlier set (OS2), distance 2 demonstrates dominant inŕuence (0.670-0.777), with strongest

effects in irregular and circle conőgurations. Angle and standard deviation parameters show relatively

lower importance values (0.037-0.111), suggesting spatial positioning has greater impact on outlier set

detection than cluster spread. This systematic analysis conőrms that the radial distance of outlier

sets from inlier centroids is the primary determinant of detection success, while angular position and

cluster spread play secondary roles. This insight holds true across all geometric conőgurations and

ground truth deőnitions.
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Figure 10: Heatmap showing the relative importance of each of the three parameters varied across Case
2 (Two outlier set) for both ground truth categories strict and relaxed for all four shapes (circle, ellipse,
triangle, irregular) computed by information gain using random forest. Each cell in the heatmap
represents the information gain of a parameter for a speciőc shape type and target ground truth
condition. The colour intensity of the cells indicates the magnitude of the information gain, with
darker colours corresponding to higher values. Here, distance 1 is the most inŕuential parameter for
outlier set 1 and similarly distance 2 is the most inŕuential parameter for outlier set 2.
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