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One-Shot Robust Imitation Learning for Long-Horizon Visuomotor

Tasks from Unsegmented Demonstrations

Shaokang Wu, Yijin Wang, and Yanlong Huang∗

AbstractÐ In contrast to single-skill tasks, long-horizon tasks
play a crucial role in our daily life, e.g., a pouring task requires
a proper concatenation of reaching, grasping and pouring
subtasks. As an efficient solution for transferring human skills
to robots, imitation learning has achieved great progress over
the last two decades. However, when learning long-horizon
visuomotor skills, imitation learning often demands a large
amount of semantically segmented demonstrations. Moreover,
the performance of imitation learning could be susceptible
to external perturbation and visual occlusion. In this paper,
we exploit dynamical movement primitives and meta-learning
to provide a new framework for imitation learning, called
Meta-Imitation Learning with Adaptive Dynamical Primitives
(MiLa). MiLa allows for learning unsegmented long-horizon
demonstrations and adapting to unseen tasks with a single
demonstration. MiLa can also resist external disturbances
and visual occlusion during task execution. Real-world robotic
experiments demonstrate the superiority of MiLa, irrespective
of visual occlusion and random perturbations on robots.

I. INTRODUCTION

Learning long-horizon visuomotor tasks is challenging due

to dynamical visual observations and long-horizon decision-

making processes. In the context of imitation learning, many

methods have been developed towards solving long-horizon

tasks [1]±[3]. However, these approaches may show limited

generalization to new objects [1], require an impractical

number of demonstrations [4], [5], or become inefficient

when learning from unsegmented demonstrations [2]. In

addition, imitation learning can be easily susceptible to

external perturbations [3] (e.g., the robot’s proprioceptive

states dramatically change as a consequence of sudden

interventions from human users) and visual occlusion, which

further impedes its deployment in real robotics tasks.

One promising avenue to achieve perturbation resilience

is to encode skills via an autonomous dynamical system

(DS) [6], [7]. Unlike end-to-end mapping using deep neu-

ral networks, DS can handle out-of-distribution states and

resist disturbances, where the convergence property of DS

is theoretically guaranteed. However, DS usually requires

predefined task parameters (e.g., the 3D location of an

object in a reaching task), limiting its scalability to high-

dimensional visuomotor tasks where only visual observations

are available.

In this paper, we aim to endow robots with the capability

of rapidly acquiring new long-horizon visuomotor tasks
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while ensuring robustness throughout task execution. To

do so, we propose a novel approach called Meta-Imitation

Learning with Adaptive dynamical primitives (MiLa), which

leverages meta-imitation learning for one-shot learning and

dynamical movement primitives (DMP) for robustness and

smoothness in task execution. Specifically, MiLa enables

the learning of unsegmented long-horizon demonstrations,

without additional semantic parsing or phase prediction for

demonstration segmentation [2].

MiLa is predicated on the assumption that long-horizon

tasks are composed of elementary subtasks. We build a

skill repertoire consisting of movement primitives and en-

code them using a well-known dynamical system approach

DMP, where only a single demonstration is needed for each

primitive. On top of that, we learn a high-level policy via

meta-imitation learning to predict the corresponding task

parameters from visual observations for each subtask. Within

each subtask, the predicted task parameters are fixed and

the entire sequence of robot actions is generated using the

appropriate DMP under the predicted task parameters. Since

each motion primitive represents a type of motion pattern

(e.g., reaching, placing, or pushing), robot actions throughout

the same subtask are expected to be more consistent and

legible, as opposed to the continuous prediction of robot

actions as per the current visual observations [2], [3].

The contribution of this paper is a robust meta-imitation

learning framework that is capable of

(i) learning from unsegmented long-horizon visuomotor

demonstrations,

(ii) adapting to new tasks with only one-shot demonstration,

(iii) resisting external perturbations on robots and visual

observations.

II. RELATED WORK

A. Imitation Learning of Movement Trajectories

Many imitation learning algorithms with a focus on mo-

tion planning have been proposed and various successful

applications have been reported [6], [8]±[11]. For instance,

DMP learns the motion pattern of a single demonstration

using a spring-damper system, wherein the equilibrium of

the system corresponds to the desired target of the robot’s

motion. Probabilistic movement primitives (ProMP) [8] and

kernelized movement primitives (KMP) [9] respectively em-

ploy basis and kernel functions to capture the probabilistic

characteristics of multiple demonstrations. These approaches

exhibit high sample efficiency, allowing for skill learning

from just one or a few demonstrations. However, this type



of approach targets the learning of demonstrations associated

with time input or multiple-dimensional inputs and becomes

inappropriate when dealing with high-dimensional visual

inputs (i.e., images).

To connect imitation learning for motion planning with

image inputs, there are some works on learning a map-

ping from images to DMP parameters (e.g., basis function

weights, motion target and duration) [12], [13]. Once these

parameters are obtained, smooth trajectories can be naturally

generated via DMP. However, these approaches are restricted

to the learning of single-skill tasks.

B. Imitation Learning of Long-Horizon Tasks

Many recent works addressed long-horizon visuomotor

tasks via imitation learning. In [14]±[17], hierarchical im-

itation learning was studied, where a high-level policy was

used to make ‘plans’ for compound tasks and a low-level

controller was designed to execute these ‘plans’ (e.g., latent

variables or sub-goals). In [18], [19], one-shot imitation

learning was investigated, aiming to learn a new task from

a single demonstration in the form of a complete or partial

trajectory and video. Notably, meta-imitation learning has

earned a relevant place due to its reliable performance [20]±

[22]. The objective of meta-imitation learning is to exploit

shared structures among the tasks sampled from the same

distribution and search for an optimal policy capable of

adapting quickly to new tasks. Most works in this line only

consider learning a single skill, without tapping the learning

of long-horizon skills.

A work on meta-learning that is closely related to ours

is [2], which tackles long-horizon tasks by segmenting

them into subtasks and subsequently performing meta-

imitation learning on subtasks. However, this approach re-

quires primitive-level demonstrations to train an additional

motion phase predictor. The predictor is used for segmenting

demonstrations into subtasks, acting as an indispensable step

during meta-training. In fact, collecting unsegmented long-

horizon demonstrations is more straightforward and raw

demonstrations are more easily accessible. In this paper, we

propose to meta-train a policy on unsegmented visuomotor

demonstrations, without any specific treatment on demon-

stration parsing or segmentation. Besides, we leverage the

dynamical feature of DMP to ensure that our framework

is robust to external perturbations (e.g., from visual inputs

and the robot’s proprioceptive states), leading to another

advantage against existing imitation learning methods [1],

[3], [20]±[22].

III. PRELIMINARIES

A. Dynamical Movement Primitives

Suppose we have access to a demonstration of time-length

N , i.e., {tn, ξn, ξ̇n, ξ̈n}
N
n=1. Here, ξn ∈ R

O represents

O-dimensional position (or joint angles) at the n±th time

step, while ξ̇n and ξ̈n respectively denote the corresponding

velocity and acceleration. DMP encodes the demonstration

using a second-order dynamical model:

τ ṡ = −αs, (1)

τ2ξ̈ = Kp(g − ξ)− τKvξ̇ + s(g − ξ0)⊙ fw(s), (2)

fw(s) = W

[

φ1(s)
∑H

h=1 φh(s)

φ2(s)
∑H

h=1 φh(s)
· · ·

φH(s)
∑H

h=1 φh(s)

]

⊤

.

(3)

Equation (1) is utilized to convert time into the phase variable

s, thereby eliminating explicit time dependence. Here, τ

denotes the motion duration, and α signifies the decay factor.

In (2), Kp and Kv denote the user-specified stiffness and

damping matrices, respectively. g and ξ0 represent the goal

(end-point) and start-point of a trajectory. The symbol ⊙
stands for the element-wise product. fw(s) represents the

forcing term, typically expressed as a linear combination of

pre-defined Gaussian basis functions (see (3)). W ∈ R
O×H

means learnable parameters corresponding to the motion

pattern of the demonstration.

B. Model-Agnostic Meta-learning

Model-agnostic meta-learning (MAML) is a meta-learning

algorithm proposed to rapidly learn new tasks using a small

number of data [23]. It operates under the assumption that

a shared structure exists among meta-training and meta-test

tasks (i.e., all tasks are drawn from the same task distribu-

tion). Consider imitation learning using MAML with a policy

πθ parameterized by θ and gauged by behaviour cloning

(BC) loss function LBC. During meta-training, MAML ran-

domly selects a meta-training task T from the task distri-

bution p(T ) and partitions demonstrations from the task T
into training dataset Dtr

T
and validation dataset Dval

T
. MAML

then optimizes the policy parameters θ such that one (or a

few) gradient update on Dtr
T

leads to favourable performance

on Dval
T

. The objective function of MAML is formulated as

min
θ

∑

T ∼p(T )

LBC(θ − α∇θLBC(θ,D
tr
T ),D

val
T )

= min
θ

∑

T ∼p(T )

LBC(φT ,D
val
T ),

(4)

where α > 0 refers to the step size of gradient descent, and

φT corresponds to the updated parameters after learning on

Dtr
T

. During the meta-testing (i.e., model inference) phase,

the policy adapts to a new task DTtest
by utilizing the updated

parameters φTtest
= θ − α∇θLBC(θ,DTtest

).

IV. META-IMITATION LEARNING WITH ADAPTIVE

DYNAMICAL PRIMITIVES

We assume that we have access to a dataset {dh}
H
h=1 com-

prising H demonstrations across K tasks {Tk}
K
k=1, with dh

represents the h-th unsegmented, long-horizon visuomotor

demonstration. Each demonstration dh = {vh,κh} consists

of a sequence of visual images vh = {ot}
T (h)
t=1 , as well as

the corresponding robot trajectory κh = {ξt}
T (h)
t=1 . Here,

T (h) denotes the time length, ot and ξt represent image

observation and robot action (e.g., end-effector position or

joint angles), respectively. We assume all demonstrations can

be decomposed into C different subtasks and the order of the

subtasks is known. Formally, we write the robot trajectory
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Fig. 1: An overview of the MiLa framework. After learning from dtr (indicated by yellow arrows), MiLa acquires the capability to adapt to new tasks dval

(see blue arrows). Instead of predicting robot actions as per visual inputs at each time step, MiLa predicts task parameters for each subtask and a set of
dynamical movement primitives are employed to generate robot trajectories across different subtasks.

as κ = κ1 ⊕κ2 · · · ⊕κC , where κc represent the trajectory

in subtask c and ⊕ denotes the concatenation of trajectories.

To learn from unsegmented demonstration, we first estab-

lish a repertoire of motion primitives and use DMP to encode

each primitive. Given the elementary motion primitives, we

propose to learn a high-level policy, referred to as MiLa,

for predicting task parameters for motion primitives and

composing primitives.

A. Skill Repertoire

The objective of constructing a skill repertoire is to

provide a set of reliable primitives for a high-level policy.

By reusing and composing motion primitives, complex and

long-horizon tasks can be accomplished. For each type of

skill (e.g., reaching, placing, and pushing), we collect one

demonstration of robot trajectory via kinesthetic teaching.

By feeding the demonstration into the DMP model in (3),

the motion pattern that underlies the demonstration can be

determined. Repeating the same procedure for all primitives,

we can obtain a skill repertoire comprising different DMPs,

denoted by {ρc}Cc=1.

Given a DMP ρc, we can use it to generate an adapted

trajectory for a new task, where we only need to specify

starting point ξ0, desired target g, and motion duration τ .

The adapted trajectory is given by

κ̂
c(t) = ρc(ξ0,g, τ, t), (5)

where κ̂
c(t) ∈ R

O denotes the planned robot actions at time

t via ρc. Therefore, DMP builds a connection between task

parameters (i.e., {g, τ}) and robot trajectories. Specifically,

the adapted trajectory via DMP maintains the motion style

extracted from the demonstration, which is expected to be

legible and predictable by human users.

B. Meta-Imitation Learning with Adaptive Dynamical Prim-

itives

Instead of predicting robot actions according to visual

inputs at each time step, we propose to predict task pa-

rameters for each subtask instead. Formally, given an initial

image observation o1 and the goal image oT (i.e., the

last observation) of a demonstration, we propose to learn

the policy πθ(g
(1), τ (1)|o1,oT ) that predicts the end-point

and motion duration of the first subtask. These predicted

task parameters, together with the robot’s initial state ξ
(1)
0 ,

will be passed onto the motion primitive ρ1, yielding a

robotic trajectory κ̂
1(t) = ρ1(ξ

(1)
0 ,g(1), τ (1), t). Similarly,

new task parameters (g(2), τ (2)) for the second subtask are

predicted using observations at o1+τ (1)/δ together with the

goal image oT , and a new robot trajectory is planned as

κ̂
2(t) = ρ2(ξ

(2)
0 ,g(2), τ (2), t). Here, δ denotes the time

interval between two consecutive robot actions. ξ
(2)
0 is the

end-point of the trajectory κ̂
1(t). By repeating the prediction

procedure, we can predict C groups of task parameters and

generate C trajectories for the robot.

Before we measure the difference between the predicted

robot trajectory {κ̂1, κ̂2, . . . , κ̂C} and the demonstrated

robot trajectory κh = {ξt}
T (h)
t=1 , we exploit the covariance

weighted loss function. As pointed out in numerous works

on probabilistic imitation learning [8], [24], [25], different

demonstrations could be collected even for the same task

and such variability is naturally reflected by the variance of

demonstrations. In addition to the demonstrations collected

for training DMPs in Section IV-A, we collect additional

(approximately 5±6) demonstrations to model the intrinsic

variability for each type of skill. We use Gaussian mixture

model to learn the joint distribution P(t, ξ) and adopt

Gaussian mixture regression [26] to compute the covariance

function Σc(t) = D(ξ(t)|t). Now, we formulate the co-

variance weighted loss function between the predicted and

demonstrated long-horizon robot trajectories as

Lcov(θ,dh) =
1

T (h)

C
∑

c=1

τ (c)
∑

t=1

γc
(

κh(tc + t)− κ̂
c(t)

)

⊤

(

Σc(t)
)−1(

κh(tc + t)− κ̂
c(t)

)

,

(6)

where tc =
∑c−1

i=1 τ
(i) (tc = 0 if c = 1), γc represents an



Algorithm 1 Meta-Imitation Learning with Adaptive Dy-

namical Primitives

Require: α: step size for gradient descent

Require: skill repertoire ρc and covariance function Σc(t),
c = 1, 2, . . . , C

1: randomly initialize θ

2: while meta-training do

3: Sample a task T ∼ p(T )
4: Random partition DT as (Dtr

T
,Dval

T
)

5: Sample one demonstration dtr ∼ Dtr
T

6: Predict C groups of task parameters along dtr

7: Generate robot trajectories for all subtasks with task

parameters from line 6

8: Compute adapted parameters φT = θ − α∇θLcov(θ,d
tr)

via (7)

9: Sample one demonstration dval ∼ Dval
T

10: Predict C groups of task parameters along dval

11: Generate robot trajectories for all subtasks with task

parameters from line 10

12: Update parameters θ via minimizing (7)

13: end while

14: return θ

adjustable weight parameter for each subtask. The entire loss

function for meta-training becomes

J(θ) =
∑

T ∼p(T )

∑

(dtr,dval)∈DT

Lcov(φT ,d
val)

with φT = θ − α∇θLcov(θ,d
tr).

(7)

With the loss function in (6), we can compute the training

error without segmenting demonstrations beforehand, which

largely facilitates meta-training on unsegmented demonstra-

tions. Note that Lcov achieves its minimum value only when

the predicted subtasks (i.e., task parameters) are accurate.

Therefore, minimizing the loss function in (6) drives the

policy towards learning all subtasks in each long-horizon

task precisely. An overview of the proposed approach MiLa

is depicted in Fig. 1. To comply with meta-testing where the

goal image is not provided after the one-shot demonstration,

we sample a random image as the goal image oval
T and

replace the embedding of the goal image with a vector z0
during the meta-training phase. The entire procedure of MiLa

is summarized in Algorithm 1.

MiLa predicts task parameters by ‘casting a glance’ at

the environment, it makes predictions solely from image

observations at the beginning of each subtask, enabling it

to resist visual occlusion over the course of the execution

of the subtask. Furthermore, MiLa ensures that the robot

convergences to the predicted target point owing to the

dynamical feature offered by DMP [6], even when the

robot encounters dramatic perturbations. Last, MiLa provides

smooth trajectories for robots since the action trajectory for

each subtask is planned as a whole by DMP.

V. EXPERIMENTS

In this section, we aim to answer the following questions:

Training Testing

Camera

Setup

Fig. 2: The experimental setup as well as objects for training and testing in
long-horizon tasks.

(1) Is MiLa competitive with state-of-the-art baselines

in long-horizon tasks, including MAML and goal-

conditioned BC?

(2) Can MiLa effectively resist external disturbances and

visual occlusion during real-world task execution?

We consider the long-horizon visuomotor task that re-

quires the robotic arm to reach and grasp a target object,

place it into a basket, and finally push the basket to a desired

location (i.e., the red squared marker). We collected 1,260

demonstrations as the training set using a 7-DoF Franka

Emika Panda robotic arm and a top-view Intel RealSense

D455 camera. The experimental setup is shown in Fig. 2

(left plot). The middle plot of Fig. 2 depicts the objects used

for demonstration collection. All demonstrations, including

videos and corresponding trajectories, were collected at the

frequency of 30 Hz, where each demonstration lasts approx-

imately 20 seconds. The demonstrations used to establish

the skill repertoire and estimate the covariance function are

depicted in Fig. 3.

We compare MiLa’s performance against state-of-the-art

approaches:

• Model-Agnostic Meta-Learning (MAML): a meta-

imitation learning policy follows the implementation of

[2], [20], [22], [23], which requires the segmentation

of long-horizon tasks into subtasks and then computes

adapted parameters on the subtasks.

• Goal-conditioned Behaviour Cloning (GCBC): a

goal-image conditioned policy that takes as input a real-

time image and the robot’s current state, along with a

final image of the subtask [27].

As an ablation study, we evaluate MiLa without using the

covariance weighted loss function, i.e.,

• MiLa-NoWeight: setting Σc(t) as an identity matrix in

(6).

To ensure a fair comparison, all methods use a similar

network architecture and each method is evaluated with its

optimal hyperparameters. As MAML requires the segmen-

tation of long-horizon tasks into distinct subtasks, we train

an individual model for each subtask. Similarly, GCBC also

involves training an individual model for each subtask. In

contrast, for MiLa and MiLa-NoWeight we train a single uni-

fied policy to directly learn the unsegmented, long-horizon

demonstrations.

To assess the generalization capability in new settings

(i.e., held-out objects, see the testing objects in Fig. 2), we
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Fig. 3: Demonstrations utilized to establish the skill repertoire {ρc}3
c=1

. Dynamical movement primitives for the reaching, placing, and pushing skills are
learned from demonstrations depicted in (a)±(c), respectively. Additionally, we collect 5 demonstrations for each skill to model the intrinsic skill variability,
as shown in (d)±(f ).

TABLE I: Success rates of different methods.

Method
Success

(inappropriate placing)
Success

(proper placing)
Overall Success Rate

GCBC 25% 20% 45%

MAML 40% 5% 45%

MiLa-NoWeight 15% 55% 70%

MiLa 0% 70% 70%

provide one-shot demonstration for MiLa, MiLa-NoWeight,

and MAML to adapt their policy parameters. For GCBC,

we collect goal images for each subtask separately per

evaluation.

A. Evaluations on Reaching-Placing-Pushing Tasks

An illustration of the long-horizon task is provided in the

first row of Fig 4. We carry out 5 groups of evaluations on

the held-out objects (see the right plot in Fig. 2) and each

group includes 4 trails by altering the locations of the target

object and the basket. In total, we have 20 trials to evaluate

each method.

The results in the second column of Table I indicate that

GCBC and MAML frequently place the grasped objects

in the wrong places although the entire task is completed

successfully due to the move and rotation of the basket,

see examples in the fourth and fifth rows in Fig. 4, where

the grasped object collides with the basket. A smaller

number of inappropriate placements are also observed in

MiLa-NoWeight, as displayed in the third row of Fig. 4.

In comparison, MiLa consistently places objects into the

basket appropriately, see an example in the second row of

Fig. 4. This finding highlights the importance of using the

covariance weighted loss function to mitigate the effect of

large skill variability in the placing task.

The fourth column of Table I (i.e., the sum of the sec-

ond and third columns) also shows that MiLa and MiLa-

NoWeight achieve higher success rates than MAML and

GCBC. We suggest that the low success rate in GCBC

may be attributed to visual occlusion. The robot could

obscure the object when approaching it since the camera

is mounted over the object (see the left plot in Fig. 2). In

comparison, MiLa requires only a single image to perform

each subtask, effectively mitigating issues related to visual

occlusion. Finally, we find that many failure cases across

these four approaches are attributable to the reaching subtask.

Although the robot’s gripper either touches or nearly touches

parts of the objects, it still fails to grasp them. This issue has

also been observed in [2]. Considering that MiLa-NoWeight

is an ablation study of MiLa and its performance is inferior

to MiLa, we only use MiLa for comparison with MAML and

GCBC in the following evaluations.

B. Evaluations in the Presence of External Pertubations

Now, we consider exerting external perturbations on the

robot arm directly. Specifically, the perturbations are imposed

by dragging the robot’s joints or end-effector arbitrarily.

In Fig. 5, the yellow arrows depict the direction of

perturbations. We can see that MiLa is the only method

capable of recovering from the disturbances, whereas MAML

and GCBC fail to do so, see the second and third rows of

Fig. 5. Note that MAML and GCBC may exhibit abnormal

behaviours under perturbations. For example, at the last

column of the second and third rows, MAML becomes

immobilized and GCBC moves to an area that is far away

from the demonstrated robot workspace.

The ability to resist disturbances exhibited by MiLa is

attributed to the use of DMP to ensure goal-oriented motion,
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Fig. 4: Snapshot of the long-horizon task evaluations. First row shows the kinesthetic teaching of the reaching-placing-pushing task. Second and third rows

correspond to the evaluations of MiLa and MiLa-NoWeight, respectively. Fourth row illustrates an evaluation of MAML. Fifth and sixth rows present the
success and fail cases using GCBC, respectively.
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Fig. 5: Snapshot of the long-horizon task in the presence of external disturbances and visual occlusion (i.e., human arm). First, second, and third row

correspond to evaluations using MiLa, MAML and GCBC, respectively.

where the goal, inferred from visual observation at the

start of each subtask, remains fixed throughout the subtask

execution. In contrast, MAML and GCBC predict actions

based on image observations and proprioceptive states at

each time step. Any perturbations during task execution

may disrupt these predictions, potentially resulting in task

failure. We emphasize that external perturbations applied to

the robotic arm also introduce visual disturbances, as the

user’s arm is unseen in the training dataset, evidencing that

MiLa can resist disturbances in terms of visual observations

and robot states.

C. Evaluations in the Presence of Visual Occlusion

In addition to external pertubations, we evaluate the perfor-

mance of different methods by considering visual occlusion

during task execution. In our evaluations, visual occlusion

is caused by the user’s hand moving in front of the camera.

The extreme case corresponds to the full occlusion of the

camera’s view.

The snapshots illustrating the evaluation of MiLa under

visual occlusion are presented in the first and second rows

of Fig. 6. The first row captures the robot’s perspective, while

the second row provides the human user’s view. Despite

significant occlusion by the user’s hand, MiLa successfully

executes the long-horizon task. This success is achieved

because MiLa processes only the first frame at the beginning

of each subtask, thereby enabling it to disregard any subse-

quent frames affected by occlusion. In contrast, MAML and

GCBC predict actions in a per-timestep or per-frame fashion

and visual occlusion can adversely affect their predictions

due to the introduction of out-of-distribution images, as

illustrated in the third to sixth rows in Fig. 6, where both
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Fig. 6: Snapshot of the long-horizon task in the presence of visual occlusion.
First and second rows correspond to evaluations using MiLa, with the depth
camera’s perspective and the user’s view, respectively. Similarly, third and

fourth rows correspond to evaluations using MAML. Fifth and sixth rows

are evaluations with GCBC.

MAML and GCBC are unable to execute the placing task

properly. Additionally, since MiLa operates at the trajectory

level rather than on a per-timestep basis, this treatment

provides smoother trajectories for the robot, compared to

those generetated by MAML and GCBC.

VI. CONCLUSION

In this paper, we introduced a novel meta-imitation learn-

ing approach, MiLa, which is capable of rapidly learning

new long-horizon visuomotor tasks and effectively resisting

perturbations during task execution. MiLa establishes a skill

repertoire capturing various elementary motion primitives

and subsequently solving long-horizon tasks by reusing and

composing motion primitives. Experimental results indicate

that MiLa achieves superior performance compared to state-

of-the-art baselines. Furthermore, MiLa enables learning

from unsegmented demonstrations and demonstrates robust

resistance to perturbations from both the robot’s propriocep-

tive states and visual inputs.

While we assume that the order of subtasks is fixed, an

important extension is to simultaneously learn both the order

of primitives and their corresponding task parameters. As a

long-term goal, it would be promising to extend MiLa to

learn long-horizon tasks from cross-domain demonstrations,

including those from humans and robots with different

embodiments.
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