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Abstract: Biodiversity in human-dominated landscapes is declining, but evidence-based
conservation targets to guide international policies for such landscapes are lacking. We present a
framework for informing habitat conservation policies based on the enhancement of habitat
quantity and quality and define thresholds of habitat quantity at which it becomes effective to
also prioritize habitat quality. We applied this framework to insect pollinators, an important part
of agroecosystem biodiversity, by synthesizing 59 studies from 19 countries. Given low habitat
quality, hoverflies had the lowest threshold at 6% semi-natural habitat cover, followed by
solitary bees (16%), bumble bees (18%), and butterflies (37%). These figures represent
minimum habitat thresholds in agricultural landscapes, but when habitat quantity is restricted,
marked increases in quality are required to reach similar outcomes.

(9]
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Main Text: We are currently in a period of rapid biodiversity loss (/), a trend so drastic that
scientists have raised the alarm of a possible global sixth mass extinction event (2). Species loss
causes an associated decline in ecosystem functioning (3, 4), which jeopardizes the delivery of
critical ecosystem services on which humans rely (5, 6). In an effort to slow and reverse this
decline, conservation targets have been formulated for expanding protected areas, such as the
Global Biodiversity Framework (GBF) target to conserve 30% of land, waters and sea by 2030
(7). The GBF also recognizes the role of human-dominated landscapes in biodiversity
conservation, as all areas need to be managed to prevent biodiversity loss, and indicates that
restoration should be conducted in 30% of degraded ecosystems and that biodiversity-friendly
practices should be substantially increased (7). Conservation in so-called working landscapes (§),
namely the agricultural areas that cover 44% of global habitable land (9), is essential to ensure
the provision of services such as food production, soil retention, and cultural values (6, 10).
However, few area-based conservation targets exist for biodiversity within working landscapes,
despite such targets being essential and persistent pillars of global conservation policies due to
their feasibility and measurability at scale (/7). Targets to date either remain general
approximations (/2, 13) or focus exclusively on ecosystem service provision (/4, 15), which
excludes the host of species that are not primary service providers (/6). To enact biodiversity
conservation in working landscapes, there is therefore an urgent need to determine evidence-
based targets for international policy.

Here we present a framework to inform habitat requirements in decision making based on the
response of species to changes in habitat quantity and quality, which can directly support
conservation policy and practice. Currently enacted conservation policies in agricultural
landscapes promote or in some cases mandate local-scale greening measures that typically either
aim to increase habitat quantity, for example by planting native hedgerows, or aim to improve
habitat quality, for example through the extensification of grassland management (/2, /7). There
is evidence that both strategies can contribute to biodiversity conservation (/7), but how they
interplay to impact species populations at landscape levels is unknown. Complex landscapes
with greater natural habitat coverage generally support higher biodiversity levels in agricultural
areas (3), but the need for food production imposes an inherent limit on natural habitat area in
agricultural landscapes (/2). It is therefore also important to invest in improving habitat quality,
but these two strategies should be applied in a way that maximizes conservation impacts.
Assuming greater species abundance with larger habitat area (Fig. 1A), the effect of enhancing
habitat quality on species abundance will increase with increasing habitat area (Fig. 1B), as
larger areas of habitat will have a greater effect than small ones. This leads to a habitat quantity
threshold at which it is more effective to also enhance habitat quality (Fig. 1C). An effective
minimum in terms of habitat area conservation can thus be defined as the point at which the
marginal benefit for the population size of a focal species group from further increasing habitat
area is less than that from improving habitat quality (Fig. 1C). Investing in habitat area up until
this point, and also in habitat quality improvements after this point, represents an application of
conservation policy in agricultural landscapes that is most beneficial in terms of outcomes for
biodiversity.

We utilize this framework to calculate minimum habitat thresholds for the conservation of insect
pollinators, a species group linked to food production that faces multiple threats recognized at
the highest levels of international policymaking (7, /8). Conservation efforts in agricultural areas
generally positively impact local pollinator densities because of increased floral resource
availability (/9), an aspect of habitat quality that can directly indicate suitability for insect
pollinators since they rely on floral resources to complete their life cycles (20). Pollinators have

6
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been proposed as useful bioindicators of ecosystem health (27) and are already monitored as
such to estimate conservation progress (22), so results for this group are highly relevant for
decision making in habitat conservation. However, to inform an evidence-based threshold for
such policies that are increasingly aimed at pollinators, we need to know the relative impact of
increasing habitat quantity or quality for conserving pollinator populations.

To determine a minimum habitat threshold across a wide range of agroecosystems, we
synthesized 59 datasets representing 24487 sampling events of 178885 individual insect
pollinators in 1250 agricultural landscapes from 19 countries (predominantly US and in Europe,
figs. S1-S2; tables S1-S2). Pollinators were sampled in various types of natural and semi-natural
habitats (hereafter referred to collectively as semi-natural habitats), but not crop fields, and
included four main wild pollinator groups in temperate areas: bumble bees, solitary bees,
hoverflies, and butterflies. Our systematic literature screen (see materials and methods, 23) also
identified a small number of datasets from the tropics (n=3), from which we could analyze bees
as a pollinator group. First, we tested the effects of habitat quantity and quality on the local
densities of pollinators in semi-natural habitats using mixed effects models (23). We focused on
pollinator densities (abundance measurements) but not species richness because densities can be
linearly extrapolated to landscape-level abundances in relation to habitat area (24). (Abundance
and richness were highly correlated, see fig. S3.) We used local flower abundance (percentage
cover) and richness as habitat quality indicators, and the amount of semi-natural habitat in the
surrounding landscape (500 m radius (25-28)) as a habitat quantity indicator. While nesting and
oviposition resources are also key components of habitat quality for insect pollinators, we
focused on floral resources because they are more readily measured and are generally the most
limiting resource for insect pollinators (20, 29). We included the presence of mass-flowering
crops in study landscapes as a covariate, because these crops can alter pollinator population
dynamics in agroecosystems (30). To examine how these local relationships translate to
landscape-level abundances (37), we extrapolated modelled pollinator densities to the landscape
scale by multiplying densities by the area coverage of semi-natural habitat in a landscape (23).
Following the method of Fijen et al. (32), we used 20 quantiles representing the range of habitat
quantity and quality measured in our datasets to vary levels of these variables in our predictions.
At each of the 400 quantity-quality combinations, we calculated the relative gain in landscape-
level pollinator abundance from enhancing habitat quantity or quality by one quantile step (23).
With these calculations we identified the landscape context in which the marginal benefit of
increasing habitat quality equals that of increasing habitat quantity, that is, how much semi-
natural habitat should be conserved to support insect pollinators before also investing in habitat
quality enhancements. These baseline minimums can be used to guide conservation practice in
working landscapes.

Minimum habitat thresholds depend on species group

We found habitat coverage minimums that ranged from 5.5-38.1% (Fig. 2) depending on species
group. In temperate regions, hoverflies had the lowest minimum habitat quantity level, at 5.5%
semi-natural habitat cover, and butterflies the highest, at 37.0% (Figs. 2C-2D). Bumble bees and
solitary bees had similar minimums, at 17.9% and 15.9%, respectively (Figs. 2A-2B). In the
tropics, however, bees seemed to benefit from greater habitat area, as the minimum habitat
coverage for this group was 38.1% (Fig. 2E). These differences across species groups suggest
that there is no one-size-fits-all approach to pollinator conservation in agricultural areas, but that
reaching minimums of 16-18% semi-natural habitat cover has greater impact than quality
enhancements in temperate regions for both bees and hoverflies, the two groups that provide the
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majority of pollination (and, in the case of aphidophagous hoverflies, pest control) services to
agriculture (33). Butterfly communities might only thrive in more complex landscapes with
greater overall habitat coverage (34-36), indicating the importance of conserving larger habitat
areas in landscapes where it is feasible to do so, to ensure effective butterfly conservation.

These differences in habitat minimums can largely be explained by differences in drivers of local
pollinator densities across species groups (see figs. S5-S10 and tables S3-S7). For example,
hoverflies had high densities (and large total abundances; Fig. 3C; fig. S4C; fig. S8), and
comparatively strong relationships with floral resource variables (significantly predicted by
flower richness, but marginally by flower cover; fig. S5B), so the relative gain in landscape-level
abundance from enhancing habitat quality increased more rapidly than for other species groups
(Fig. 2). The feeding ecology of hoverflies is diverse, but these high densities in relatively simple
landscapes may be due to a majority of hoverfly individuals, made up of common species,
utilizing cropland as oviposition sites to meet larval feeding requirements (37). Butterflies, on
the other hand, were the only group whose density was significantly positively related to semi-
natural habitat cover (fig. S5C), and had low densities (and relatively low total abundances; Fig.
3D; fig. S4D; fig. S9). Despite a positive relationship with flower cover (fig. S5C), habitat
quantity thus had a strong influence on landscape-level butterfly abundance. While some
butterflies, such as Pieris rapae, also can oviposit on crops, butterfly larval habitat requirements
are often specialized, so butterflies are generally very sensitive to landscape simplification (36).
This general reliance on surrounding habitat could explain the low butterfly densities in
simplified agricultural areas (35, 38), and could be driven by the importance of larger semi-
natural habitat elements that act as butterfly population sources (38).

Furthermore, bees and hoverflies had comparatively lower habitat thresholds because of weak to
absent effects of semi-natural habitat cover on local densities (figs. SSA-B; marginal effect fig.
S5D; opposing trends fig. S6D), which challenges the generally held assumption that these
groups are positively affected by surrounding landscape habitat quantity (39). While these
groups have been found to respond to landscape resources at a number of scales, landscape
effects on local densities are typically observed for pollinators within crop fields (3, 39), whereas
here we examine landscape effects on local densities in semi-natural habitats. Since crop fields
are often disturbed habitats that do not provide permanent resources for pollinators, they are used
transiently by pollinators that concentrate within fields from the surrounding landscape (30). Our
finding suggests that in semi-natural habitat patches, which provide permanent resources for
pollinators, bee and hoverfly densities and in turn the carrying capacity of a habitat patch are
primarily determined by local habitat parameters (40), such as habitat quality. As with hoverflies,
bumble bee and tropical bee densities were positively predicted by both flower cover and
richness (figs. S6A-B; fig. S5D), while solitary bees were only significantly related to flower
richness (fig. S5A). These results indicate that habitat quality enhancements can support bees
and hoverflies regardless of surrounding landscape context. While our results refer to pollinator
densities and not species richness, the strong effects of flower richness could be due to the
support of a wider diversity of pollinator species (fig. S3), for example pollen specialists (20).
Thus, our findings also suggest that when enhancing habitat quality, a particular emphasis should
be placed on increasing the diversity of floral resources available to pollinators (20), rather than
large displays of only a few flower species that may limit phenological resource availability (417).

The minimum habitat threshold for tropical bees should be interpreted with caution because only
three studies, representing two countries and five study years, were analyzed for this group.
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While conservation strategies should be context-dependent, our results tentatively suggest that in
general relatively large amounts of semi-natural habitat should be conserved to support bees in
the tropics. This could be due to tropical bee communities being relatively dominated by social
bees (e.g., Apini and Meliponini), which are typically more sensitive to habitat loss and require
season-long availability of diverse floral resources (42). Our results may have also been driven
by the relatively small range in habitat quality represented by these three studies, which would
have created relatively small marginal gains in landscape bee abundance with each quantile step.
The number of studies detected for inclusion in our synthesis was likely biased due to our search
language being English (23, 43), as the three studies we included were conducted by English-
speaking teams. Despite these uncertainties, habitat conservation for pollinators in the tropics
will likely be important due to the high proportion of small farms that rely on biodiversity-
mediated ecosystem service provision in these areas (44).

Conservation below, within, and beyond minimum habitat thresholds

Our framework for defining minimum habitat thresholds relies on the dual effects of habitat
quantity and quality on upscaled landscape-level pollinator abundance. These thresholds assume
that landscape habitat quality is low (Q1 in Fig. 2), which supports them as absolute minimums
up to which habitat area conservation should be prioritized. With greater habitat quality, similar
abundances are achieved with lower habitat cover than our minimums (fig. S4). However, our
findings indicate that with greater habitat quality, the habitat quantity threshold actually
increases (Fig. 2). This is because the gains from further improving the quality of a habitat that is
already high in quality are smaller than those attained by increasing the area of high-quality
habitat in the landscape. In other words, increases in habitat quality see diminishing returns in
landscape-level abundances (Fig. 3). Hence, above our minimum habitat targets, the focus of
conservation should be on a combination of quantity and quality enhancements. Furthermore, our
data confirmed that in agricultural landscapes, both semi-natural habitat quality and quantity are
typically low (45): across the temperate datasets, half of all surveys recorded flower cover and
semi-natural habitat cover in the lowest quarter of the range (Fig. 3). This indicates that our
framework, which is grounded in the restoration of intensive agricultural landscapes, is a realistic
conceptualization that can inform conservation policy and practice. The framework can likely be
generalized to various intensive agricultural contexts for pollinator conservation but also for
other species groups for which simple habitat indicators can be defined. This prevalence of
simple landscapes also indicates, however, that landscapes with large areas of existing semi-
natural habitat should be conserved as much as possible, since they are likely important, and rare,
harbors of farmland biodiversity.

Within our calculations of habitat minimums we assumed an equal feasibility of enhancing
habitat quantity and quality (23), which does not consider the context-dependent costs or effort
to increase quantity or quality that inherently influence the relative effectiveness of applying
these conservation measures. For example, increasing habitat area may in some contexts be
relatively more costly due to necessitating losses in agricultural production. To achieve the same
increases in landscape pollinator abundances as increasing habitat quantity, habitat quality would
have to be greatly enhanced. Given a landscape that could only sustain maximum 5% semi-
natural habitat coverage, the quality of that habitat would have to be improved by increasing
flower cover to approximately 4.8% and adding approximately 3.8 flower species (assuming
equivalent nesting resource availability) to reach an equivalent bumble bee community size as
supported by 17.9% habitat cover (fig. S4). While these numbers may sound meager, this flower
cover level is greater than 82% of all observations across studies, indicating that it is a rather rare
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occurrence in agricultural landscapes. This tradeoff shows that in simple landscapes where
increasing pollinator habitat may not be an option, efforts to enhance the quality of existing
habitat should aim to increase flower abundance and diversity significantly.

Conservation tools outside of semi-natural habitats also have the potential to support pollinators.
Our results showed that mass-flowering crop presence elevated bumble bee and solitary bee
densities (figs. S6C-D; fig. SSA), but not those of other groups (figs. SSB-D). For bumble bees,
however, this effect only occurred in simple landscapes (fig. S6C), possibly due to the presence
of sufficient alternative floral resources in complex ones (46). Because we modelled average
pollinator densities across all surveys in a given landscape regardless of crop flowering period
(23), we likely captured an overall effect of mass-flowering crop presence, as opposed to
detecting specific dilution, concentration, or spillover dynamics (47). However, these patterns
are likely driven by abundant, common species that preferentially visit agricultural crops (76).
This general effect suggests that mass-flowering crops, although non-permanent resources due to
blooming periods and crop rotation, can complement the restoration and enhancement of semi-
natural habitats in supporting part of the bee community in temperate agricultural areas.

Finally, while habitat minimums provide useful guidelines, the types of habitats relevant to
specific local contexts and their configuration should also be considered in conservation. For the
purposes of estimating pollinator community sizes across landscapes, we assumed equal value of
different types of semi-natural habitats, as well as equal distribution of pollinators among these
habitat types (23). This might overestimate community sizes, leading to lower estimates of
minimum habitat quantity due to more rapid increases in marginal benefits from habitat quality.
In reality, we know that different pollinators prefer certain habitat types, for example due to their
foraging, nesting or oviposition requirements (34, 48), and that they can move between habitat
types depending on their resource needs in space and time (49). This means that within the
minimum recommendations for semi-natural habitat coverage, multiple types of semi-natural
habitat (e.g., woody and herbaceous) should be conserved as much as possible (50) to increase
nesting resources and the temporal continuity of floral resources (41, 49). Conserving a variety
of habitat types and ensuring connectivity of habitat patches has the potential to support a more
diverse pollinator community (39, 50), which is important for ecosystem functioning and
resilience (517).

The minimum habitat thresholds identified in our synthesis can guide the design of conservation
strategies by balancing quantity and quality enhancements for pollinators in working landscapes.
The application of this framework to management decisions or other species groups should be
further informed by local knowledge and conservation priorities, such as species of conservation
concern and the specific resources they need for viable populations, which is not captured by our
study. Overall, our findings demonstrate that current policy targets, such as the EU Biodiversity
Strategy for 2030 goal of 10% high-diversity landscape features in agricultural areas (/3), and
the GBF restoration indicator of 10% natural cover in agricultural lands (7), are well below the
thresholds that would most benefit pollinators, given that on average habitat quality is low.
Future conservation policy for working landscapes should more strongly emphasize the need to
conserve and restore more semi-natural habitat areas to achieve biodiversity gains, and should
compensate landowners with incentives for marked improvements in habitat quality in
landscapes where increases in habitat area are not feasible.
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Fig. 1. Minimum habitat quantity level for application of conservation measures as defined
by the relative effectiveness of enhancing habitat quantity or quality. (A) Population size
increases with increasing habitat quantity (a, which itself depends on habitat quality). This
causes (B) the effect of habitat quality on population size (b) to increase with increasing habitat
quantity (from small to medium [med.] to large), as enhancing larger habitat areas will have a
greater effect than enhancing small ones. This leads to (C) increasing quality:quantity population
response ratios (b/a) with increasing habitat quantity. The habitat quantity level at which the
population response ratio = 1 can be seen as a minimum (min.) quantity level after which
application of conservation practice should also enhance habitat quality.

Fig. 2. Relationships between the habitat quality to quantity population response ratio and
the cover of landscape semi-natural habitat (SNH) for landscape-level pollinator
abundances. (A) bumble bees, (B) solitary bees, (C) hoverflies, and (D) butterflies in temperate
regions, and (E) tropical bees. Ratios < 1 indicate that increasing habitat quantity is most
beneficial, while those > 1 indicate that habitat quality should also be prioritized. Q1-Q20
indicate quantiles of flower availability (flower cover and richness) based on the observed range
across all studies (one quantile = 5% of the range). Minimum values of landscape SNH are
marked where increasing habitat quality becomes more beneficial than increasing habitat
quantity, assuming the lowest level of habitat quality (flower cover and richness quantile Q1; at
Q20 the only option is to increase habitat quantity, so it is not shown).

Fig. 3. The relative gain in landscape-level pollinator abundances from increasing habitat
quantity or quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, and (D) butterflies in
temperate regions, and (E) tropical bees. Quantity and quality are expressed across the 20
quantiles of the ranges observed in the datasets. Rightward or upward arrows indicate that
increasing habitat quantity or quality is most beneficial, respectively. Arrow transparency
indicates the number of samples that fall within a given quantity-quality combination (darkest
arrows, highest number of samples; lightest arrows, no samples). Q1-Q20 indicate quantiles of
flower availability (flower cover and richness) based on the observed range across all studies
(one quantile = 5% of the range). SNH, semi-natural habitat.
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Materials and Methods
Criteria definition

We predefined a list of criteria for the inclusion of datasets based on our research objective,
which was to synthesize the effects of habitat quantity and quality variables on local pollinator
densities and landscape pollinator abundances. We defined four main topic-based criteria (Box 1
“Criteria”) to ensure studies measured wild insect pollinators and flowers in semi-natural habitats
within agricultural areas. We focused on bees, hoverflies, and butterflies (including burnet
moths) because they are best studied in agricultural landscapes due to their contributions to crop
pollination (33) and their conservation concern (34). We used floral resources as habitat quality
indicators because they are important to all the pollinator groups within our study (20, 29). While
nesting and oviposition resources can also be considered habitat quality indicators because they
are important for pollinator reproduction, we chose to focus on floral resources because these are
more easily and commonly measured and because resources for reproduction are generally
captured by the amount of non-productive habitat in a given landscape (29). We considered all
natural and semi-natural herbaceous and woody habitats, including extensive grasslands and
perennial (older than one year) wildflower strips but excluding rotational or otherwise
intensively managed areas, as semi-natural habitats. We defined seven specific criteria related to
sampling methods and sample size for standardization and data quality purposes. We required
studies to have sampled pollinators in a defined surface area and for a defined time duration to be
able to calculate a standardized density of pollinators per area and sampling time, which was
necessary for upscaling pollinator densities to the landscape scale. Butterfly sampling was not
required to have a defined sampling duration because the standard accepted method in the field
for sampling this group (“Pollard walks”; (53)) is not timed. We furthermore required studies to
have sampled both flower richness and flower cover, since we use these variables as habitat
quality proxies. We required flower cover to be measured quantitatively, such as flower counts
or area coverage, so that flower cover for all studies could be uniformly calculated in units of
percentage cover. Studies had to have measured pollinators in different landscapes (i.e.,
sufficient spatial replication; minimum 500 m radius), with at least ten landscapes and 20 total
data points (sampling events). This allowed us to evaluate the effect of landscape context (%
semi-natural habitat cover) and have a base level of replication to do so. If datasets met these
requirements, we asked data owners to confirm two additional criteria. We required site
coordinates for calculating surrounding landscape characteristics and spatial autocorrelation. We
also required that studies covered a minimum gradient of 10% in semi-natural habitat cover, that
is, that the study sampled a variety of landscape contexts, since evaluating the effects of habitat
quantity and quality across a range of landscape contexts was a primary research objective.



Box 1. Criteria
Title-abstract screening
a. Species groups: wild bees, wild bumble bees, hoverflies, or butterflies
(including burnet moths)
b. Locations: agricultural landscapes
c. Habitat types: semi-natural habitats (not crop fields)
d. Environmental variables: flowers

Full-text screening
a. Sampling method: defined area (not e.g. pan traps)
b. Sampling method: defined time per unit area (excl. butterflies)
c. Environmental variables: floral richness and floral cover at the time of
pollinator sampling
Sampling method: quantitative* measure of floral cover
Locations: different landscapes (buffer min. 500 m)**
Sample size: at least 10 landscapes
Sample size: at least 20 data points

e A

Additional screening
a. Data: coordinate availability
b. Locations: range in landscape semi-natural habitat cover > 10%

*We accepted studies that counted flowers or that measured flower area or percentage cover. We
only accepted studies using qualitative scales if the scale could be readily and accurately
translated into percentage cover (e.g., Domin scale; (54)).

**The study might not have organized its sampling locations into landscapes, but we required
enough spatial replication to do so.

Literature search and screening

We followed guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) (55) in conducting our literature screening. We utilized two literature
databases to evaluate published literature, and additionally solicited research networks for
unpublished datasets. We first created a “naive” search string based on our four main topic
criteria. This search string of 19 terms (Box 2 “Search strings”) was expanded to a string of 87
terms using litsearchr, an R package that performs quasi-automatic search string development for
systematic reviews (56), according to the approach of Grames et al. (57). We retrieved articles in
English from Web of Science and Scopus on 19/09/22. We first screened titles and abstracts
based on our first four criteria. When relevant review or synthesis papers were encountered, we
retained these (17 in total) for reference “snowballing”, i.e., adding the studies that those papers
cited and/or synthesized to the overall group of studies for screening. Studies that met our criteria
at the title and abstract stage were evaluated based on the full text for our seven additional
criteria. All screening was performed by one author using the online tool CADIMA (58). When a
study met all of our full-text criteria, we contacted the corresponding author to request the
dataset and to evaluate our two additional criteria, which could not always be deduced from the



text. We additionally gathered eight datasets external to our literature screen that met our criteria.
The PRISMA flow diagram representing our study screening is presented in fig. S1.

Box 2. Search strings
“Naive” search string
("pollinator*" OR "bee*" OR "bumblebee*" OR "hoverfl*" OR "hover f1*"
OR "butterfl*") AND ("floral resource*" OR "flower*" OR "forb*") AND
("landscape*" OR "semi-natural habitat*" OR "natural habitat*") AND ("agricultur*"
OR "agroeco*" OR "farm*")

Final Scopus search string
(“floral* visitor*” OR “flower-visit* insect®” OR “flower* visitor*”” OR

“hover* flies” OR “pollin* insect™” OR apida* OR apoidea* OR bee OR bombus*
OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin*
OR syrphid* OR bumble bee*) AND (“forag™ avail*” OR “forag* plant*” OR
“forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR
pollen*) AND (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR
“field* boundar*” OR “field* margin®*” OR “flower-rich* habitat*”” OR “flower*
field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR ‘“habitat™*
featur®” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*” OR
“landscap* featur®” OR “natur* area*” OR “natur* habitat*”” OR “non-crop*
habitat*” OR “pollin* habitat*”” OR “suitabl* habitat*” OR “wood* habitat*” OR
“field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur® OR “road*
verg*” OR semi-natur®* OR “wildflow* plant*”) AND (“agricultur* area*” OR
“agricultur® ecosystem*” OR “agricultur* environ*” OR “agricultur* field*” OR
“agricultur* habitat*” OR “agricultur®* manag*” OR “agricultur* practic*” OR
“agricultur* product®*” OR “agricultur* region*” OR “agricultur* site*” OR
“agricultur* system*” OR ““arabl* field*” OR “cultiv* field*” OR “cultiv* land*” OR
“manag™ agricultur®*” OR “manag* field*” OR “manag* grassland*” OR “manag*
landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur®* OR agro-ecosystem* OR agroecosystem™ OR “‘arabl* land*” OR crop*
OR cultiv* OR farm* OR “‘adjac* field*”)

(cont. below)




Box 2 (cont.). Search strings

Final Web of Science search string (variation in formatting)

(((TI=(“floral* visitor*” OR “flower-visit* insect*” OR “flower* visitor*”” OR “hover* flies” OR
“pollin* insect*” OR apida* OR apoidea*™ OR bee OR bombus* OR butterfi* OR hoverfi* OR lasioglossum®* OR
lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumblebee*)) OR (AB= (“floral* visitor*” OR “flower-
visit* insect*” OR “flower* visitor*” OR “hover* flies” OR “pollin* insect*”” OR apida* OR apoidea* OR bee
OR bombus* OR butterfl* OR hoverfl* OR lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid*
OR bumblebee*)) OR (AK= (“floral* visitor*”” OR “flower-visit* insect*” OR “flower* visitor*”” OR “hover*
flies” OR “pollin* insect*”” OR apida* OR apoidea* OR bee OR bombus* OR butterfl* OR hoverfl* OR
lasioglossum* OR lepidoptera* OR osmia* OR pollin* OR syrphid* OR bumble bee*))) AND ((TI= (“forag*
avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*”” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AB= (“forag*
avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*)) OR (AK= (“forag*
avail*” OR “forag* plant*” OR “forag* resourc*” OR “habitat* qualit*” OR “resourc* abund*” OR “resourc*
avail*” OR “resourc* provis*” OR floral* OR flower* OR forb* OR nectar* OR pollen*))) AND ((TI= (“adjac*
habitat*” OR “buffer* strip*” OR “field* border*” OR “field* boundar*” OR “field* margin*” OR “flower-rich*
habitat*” OR “flower* field*” OR “flower* patch*” OR “flower* strip*”” OR “forag* habitat*” OR “habitat*
featur®” OR “habitat™ patch*” OR “habitat* type*” OR “landscap* element*” OR “landscap* featur*”” OR “natur*
area*” OR “natur* habitat*”” OR “non-crop* habitat*” OR “pollin* habitat*” OR “suitabl* habitat*” OR “wood*
habitat*” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-
natur® OR “wildflow* plant*”’)) OR (AB= (“adjac* habitat*” OR “buffer* strip*” OR “field* border*” OR “field*
boundar*” OR “field* margin*” OR “flower-rich* habitat*” OR “flower* field*”” OR “flower* patch*” OR
“flower* strip*” OR “forag* habitat*”” OR “habitat* featur*”” OR “habitat* patch*” OR “habitat* type*” OR
“landscap* element™” OR “landscap™* featur®” OR “natur* area*” OR “natur* habitat*” OR “non-crop* habitat*”
OR “pollin* habitat*”” OR “suitabl* habitat*” OR “wood* habitat*” OR “field* edge” OR “forest* edge” OR
grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-natur* OR “wildflow* plant*”)) OR (AK= (“adjac*
habitat*” OR “buffer* strip*” OR “field* border*” OR “field* boundar*” OR “field* margin*” OR “flower-rich*
habitat*” OR “flower* field*” OR “flower* patch*” OR “flower* strip*” OR “forag* habitat*” OR “habitat*
featur*” OR “habitat* patch*” OR “habitat* type*” OR “landscap* element*”” OR “landscap* featur*”” OR “natur*
area*” OR “natur® habitat®” OR “non-crop* habitat®” OR “pollin* habitat*”” OR “suitabl* habitat*”” OR “wood*
habitat*” OR “field* edge” OR “forest* edge” OR grassland* OR hedg* OR pastur* OR “road* verg*” OR semi-
natur* OR “wildflow* plant*”))) AND ((TI= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur*
environ*” OR “agricultur® field*” OR “agricultur* habitat*”” OR “agricultur* manag*” OR “agricultur* practic*”
OR “agricultur* product*” OR “agricultur* region*” OR “agricultur* site*”” OR “agricultur* system*” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag*
grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*””)) OR (AB= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* environ*” OR
“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur* practic*” OR
“agricultur* product®” OR “agricultur* region*” OR “agricultur* site*” OR “agricultur* system*” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag*
grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur* OR agro-ecosystem* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*”)) OR (AK= (“agricultur* area*” OR “agricultur* ecosystem*” OR “agricultur* environ*” OR
“agricultur* field*” OR “agricultur* habitat*” OR “agricultur* manag*” OR “agricultur® practic*” OR
“agricultur* product®” OR “agricultur® region*” OR “agricultur* site*”” OR “agricultur* system*”” OR “arabl*
field*” OR “cultiv* field*” OR “cultiv* land*” OR “manag* agricultur*” OR “manag* field*” OR “manag*
grassland*” OR “manag* landscap*” OR “rural* landscap*” OR agri-environ* OR “agricultur* land*” OR
agricultur®* OR agro-ecosystem™* OR agroecosystem* OR “arabl* land*” OR crop* OR cultiv* OR farm* OR
“adjac* field*”)))




Data preparation

We extracted data on three local-scale and two landscape-scale variables from each dataset. The
three local-scale variables were pollinator (bumble bee, solitary bee, hoverfly, butterfly)
densities, flower cover, and flower richness. We separated bumble bees and solitary bees due to
their differences in life history and different geographic distributions (57). While Halictidae do
exhibit social behaviors (58), here we separate truly eusocial bees (Bombus) from other bees and
for simplicity refer to all non-Bombus bees in temperate regions as solitary. We separately
analyzed datasets from the tropics, and we had enough data to include bees from tropical regions
as a pollinator group, but not enough data for other species groups. In the tropics social bees
(e.g., wild Apis spp.) can make up a majority of the bee community (57), so these were combined
with other wild bees. Apis mellifera counts were excluded from all datasets because they were
always managed, and our study focused on the conservation of wild pollinators. The landscape-
scale variables were the percentage cover of semi-natural habitat and the presence of a blooming
mass-flowering crop in the surrounding landscape (500 m radius) during the sampling period.

Local variables

Pollinator densities and floral resources (flower cover and richness of plants in bloom) were first
calculated on the lowest sampling unit per study (e.g., quadrat or transect). If flower data were
provided as counts, the flower area was calculated according to the methods of Scheper et al. (61)
by multiplying the number of flowers per species (in some cases approximate, if flowers were
recorded in umbels, heads, or stems) by an average flower area based on direct measurements
and key botanical resources (62—77) and summing the area across species to yield total flower
area. This area was divided by the sampling area to result in percentage flower cover. When
flowers were sub-sampled (e.g., in sub-quadrats) within the sampling area, flower cover was first
calculated per sub-sample and then averaged across sub-samples, while flower richness was
calculated as the total number of unique species across sub-samples. To combine studies into one
model, data were aggregated to landscapes within studies, which was the lowest common
grouping factor across studies. This allowed us to model general relationships between habitat
variables and pollinator densities regardless of differences across studies in sampling periods or
number of surveys. We furthermore aggregated data across sampled habitat types to generalize
these aforementioned relationships, which themselves capture inherent quality differences among
habitats. Floral resource variables were averaged across samples within landscapes. Bee and
hoverfly densities were standardized per landscape according to the following equation:

n
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with D being the average pollinator density per 150 m? and 15 min sampling effort, P;being the
abundance of pollinators recorded in a sample within a landscape, and 4; and 7; being the area
and time surveyed per sample within a landscape, in m? and min, respectively. We chose to
standardize to densities per 150 m? and 15 min because these were the median survey efforts
used for bees and hoverflies. For butterflies, the equation was slightly different, because surveys
were not necessarily timed. In addition, the median survey area was larger (300 m?), so we
divided the sum of butterflies by the sum of area surveyed over 300, per landscape. If a study had



> 50% of landscapes with zero pollinators recorded for a given species group, we excluded that
species group from the study for data quality purposes.

Landscape composition

While landscape composition can be represented by several variables, we chose total pollinator
habitat quantity as a landscape habitat indicator so that we could model pollinator density
responses to landscape habitat availability and to extrapolate local densities to landscape
abundances (see subsection Analysis). We calculated the % semi-natural habitat in a 500 m
radius surrounding the center of each study landscape. We chose this radius because it captured a
landscape habitat resources scale relevant to all pollinator groups included in our study (25-28),
in particular because it represents the upper end of average foraging distances for the central-
place foraging pollinators in our study (25). For studies that did not have sampling locations
already grouped into landscapes, individual sampling sites were manually assigned to groups to
create landscapes of minimum 500 m radius (i.e., minimum | km apart). The center of a
landscape was defined as the geodesic centroid between grouped sampling locations, when
applicable. Using these points, the semi-natural habitat cover was calculated in a 500 m buffer
based on available land use/land cover GIS data relevant to the study area and period (72-89)
using the sf (90) and raster (97) R packages. Semi-natural habitat was defined as forests
(plantations were not distinguishable), shrublands, heath, (semi-)natural grasslands, wetlands,
and (semi-)natural vegetation elements within the agricultural matrix. The only exception to this
was Study G (table S1), for which we only included the habitat type in which sampling occurred
(grasslands), because otherwise nearly the entire study area was estimated to be semi-natural
habitat by the available data source (89) due to the high classification of tree cover. If no GIS
data were available, or if zeroes were produced due to the coarseness of GIS data layers, we
either a) used the semi-natural habitat cover in a 500 m radius provided by the dataset, b)
estimated road verge semi-natural habitat cover, often the only remnant pollinator habitat in
nearly cleared agricultural landscapes (92), by applying a 1 m buffer around roads in the study
landscapes (72, 93-96), or ¢) estimated semi-natural habitat cover manually by tracing habitat
patches using satellite images in GoogleEarth. We furthermore estimated the presence or absence
of a blooming mass-flowering crop (Yes/No) in study landscapes (at any point in the study
period, since samples were averaged within landscapes) based on available cropland GIS layers
(97-103) and information provided by the data owners.

Analysis

All statistical analyses were conducted in R version 4.1.2 (104). We constructed linear mixed
models using glmmTMB (705) for the four separate pollinator groups (bumble bees, solitary
bees, hoverflies, and butterflies) from temperate regions, and an additional model for bees from
tropical regions. These models tested the effects of local and landscape variables on the local
densities of pollinators in semi-natural habitats. The logio(+1)-transformed densities of
pollinators were used as response variables, and flower richness, flower cover, % semi-natural
habitat, and blooming mass-flowering crop presence were predictor variables. We included an
interaction between blooming mass-flowering crop presence and % semi-natural habitat to test if
the effect of crop floral resources on pollinator densities depended on the amount of alternative
habitat available in the landscape (and therefore alternative floral resources). We did not include
an interaction between flower variables and % semi-natural habitat (habitat quality and habitat
quantity interaction) since here these variables represent effects on the local scale only. While a



plausible interaction, it did not represent our research objective, which was to explore the
combined effects of habitat quantity and quality on pollinator abundance at the landscape scale
instead (see below). We did however check that we were not missing this interaction (see
below). We furthermore included the average survey area and average survey minutes per
landscape as covariates to control for the effect of actual survey effort on our calculated
densities. Because they were right-skewed, average survey area, average survey minutes, flower
cover, and flower richness were all log-transformed to improve the linearity of the modelled
relationship. All continuous predictor variables were standardized (i.e., z-scores) across all
studies to aid model convergence and to compare effect sizes. We additionally added weights to
each datapoint using the number of observations per landscape (on which the standardized
pollinator densities were based) to control for variation in sample sizes, and therefore robustness
of the relationships, both within and across studies.

Following the methods of Dainese et al. (3), we used study-year combinations as the highest
hierarchical unit because the majority of studies (n=40) only had one year of data collection and
studies with multiple years often varied site locations across years. Furthermore, interannual
variability in pollinator abundances (/06) can allow different years of data collection within the
same study to be regarded separately. Study-year was thus fit as a random intercept to capture
differences between studies, and random slopes were fit for each study-year for both of the floral
resource variables. This allowed us to control for differences among studies in flower abundance
sampling methods and in the total area of the flower survey, which would influence floral
richness. We did not include a random slope for semi-natural habitat cover because it was
calculated uniformly for all datasets, and because we aimed to model the effect of this variable
across its entire range instead of only within the ranges in each individual study. Because random
slopes caused model convergence issues in the tropical bees model (due to the small number of
studies), we instead centered floral resource variables within studies before standardizing across
studies, which approximates within-study relationships between floral resources and pollinator
density (107). However, this prevents floral resource variables from being expressed on an
absolute scale in landscape-scale extrapolations (see below). Due to the presence of spatial
autocorrelation in the four temperate region models, which was evaluated with the DHARMa
package (108) and by comparing semivariograms to expected semivariances (/09), we included a
Matern correlation structure using the spatial coordinates of each study landscape. We inspected
residual plots to evaluate model assumptions, and we confirmed that all variance inflation factors
were below 4 (710) using the performance package (/11). Partial residual plots were inspected
using the effects package (/72) to ensure the linearity of relationships and the absence of
unmodelled interactions (/73). We used log-likelihood ratio tests to evaluate model fixed effects
and dropped the interaction term from the model if it was not significant.

Since mass-flowering crop presence was not necessarily a within-study factor for every study
(i.e., some studies had all landscapes with mass-flowering crops, or all landscapes without), we
checked the robustness of our results for this fixed effect by repeating our models with only the
subset of studies that had mass-flowering crop presence as a within-study factor. This check
revealed that effects for this factor were consistent (table S8).

As a secondary analysis step, we extrapolated pollinator densities to the landscape scale to
evaluate the relative impact of improving habitat quantity or quality in different landscape
contexts. Following the method of Fijen et al. (32), we separated both habitat quantity (%

landscape semi-natural habitat) and habitat quality (both floral resource variables) into 20



quantiles (i.e., steps representing 5% of the range) along the entire range observed in the
included studies. For the tropics model, this was a relative range for the floral resource variables,
since we centered these variables within studies and thus the values were not comparable across
studies. We then created a matrix made up of predicted pollinator densities based on our models
at each of the combinations between the 20 quantity and quality quantiles, while holding crop
flowering and sampling effort constant (mass-flowering crop = no; area surveyed = 150 m? [or,
for butterflies, 300 m?]; time surveyed = 15 min). For the bumble bee model, which had a
significant interaction between mass-flowering crop flowering and landscape semi-natural
habitat (Fig. 4D; table S3), we predicted at an “average” level of mass-flowering crop flowering
to more accurately model the effect of habitat quantity (/74). Next we extrapolated these
pollinator densities to the landscape scale by multiplying the (back-transformed) density per m?
(predicted density / 150 or 300) by the coverage in m? of semi-natural habitat in the landscape
(% semi-natural habitat of the given quantile / 100 *  * 500%) (31, 46), assuming a linear
abundance-area relationship (24). Using these results we calculated the quality:quantity
population response ratio by dividing the population increase with one quantile increase in
habitat quality by the population increase with one quantile increase in habitat quantity for each
quality-quantity combination in the matrix. This ratio assumes equal feasibility of enhancing
either quality or quantity by one quantile. We defined the habitat quantity level at which the ratio
=1 for the lowest quality quantile as the minimum recommended landscape habitat coverage for
application of habitat conservation measures for pollinator community size. All plots were
constructed using the ggplot2 (/15), viridis (116), ggeffects (114), and gridExtra (117) packages.
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PRISMA flow diagram of study selection. T/A = Title / abstract. The total tally of included
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reported in multiple publications, and some publications report on multiple datasets.
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Fig. S3.

Relationships between species abundance and richness. Bumble bees (A, F), solitary bees (B, G),
hoverflies (C, H), and butterflies (D, I) in temperate regions, and tropical bees (E, J). (A-E)
Linear mixed models of species richness per landscape weighted by sample size, with study-
years marked with different colors and the overall trend marked with a dashed line and 95% CI.
(F-I) Meta-analytic models of Spearman coefficients per study-year, calculated across landscapes
within study-years. k indicates the number of study-years included in the model; not all studies
had species richness information available.
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Fig. S4.

The relative gain in landscape-level pollinator abundances from increasing habitat quantity and
quality. (A) bumble bees, (B) solitary bees, (C) hoverflies, and (D) butterflies in temperate
regions, and (E) tropical bees. Quantity and quality are expressed across the 20 quantiles of the
ranges observed in the datasets. Matrix values represent back-transformed predicted abundances,
rounded to the nearest integer. Q1-Q20 indicate quantiles of flower availability (flower cover and
richness). Shading indicates the transition from low to high pollinator abundances. SNH, semi-
natural habitat.
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Fig. SS.

Standardized beta coefficients and 95% confidence intervals for linear mixed model main effects
predicting local pollinator densities (log scale). (A) solitary bees, (B) hoverflies, and (C)
butterflies in temperate regions, and (D) tropical bees. See fig. S5 for bumble bee model main
and interaction effects. Dark confidence intervals do not overlap zero (p < 0.05). MFC, mass-
flowering crop presence. SNH, semi-natural habitat. For effects visualizations, see figs. S7-S10,
and for coefficient evaluations see tables S4-S7.
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Fig. Sé.

Conditional effects of local and landscape habitat parameters on local bumble bee densities. (A)
flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and D) landscape
semi-natural habitat (SNH). Panels (C) and (D) illustrate the significant interaction between SNH
and MFC presence. Abundances are expressed per 150 m? and 15 min sampling. Points represent
back-transformed partial residuals. SD, standard deviation. For model coefficients, see table S3.
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Conditional effects of local and landscape habitat parameters on local solitary bee densities in
temperate regions. (A) flower cover, (B) flower richness, (C) mass-flowering crop (MFC)
presence, and (D) landscape semi-natural habitat (SNH). Abundances are expressed per 150 m?
and 15 min sampling. Points represent back-transformed partial residuals. SD, standard
deviation. For model coefficients, see table S4.
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Fig. S8.

Conditional effects of local and landscape habitat parameters on local hoverfly densities in
temperate regions. (A) flower cover, (B) flower richness, (C) mass-flowering crop (MFC)
presence, and (D) landscape semi-natural habitat (SNH). Abundances are expressed per 150 m?
and 15 min sampling. Points represent back-transformed partial residuals. SD, standard
deviation. For model coefficients, see table S5.
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Conditional effects of local and landscape habitat parameters on local butterfly densities in
temperate regions. (A) flower cover, (B) flower richness, (C) mass-flowering crop (MFC)
presence, and (D) landscape semi-natural habitat (SNH). Abundances are expressed per 300 m?.
Points represent back-transformed partial residuals. SD, standard deviation. For model
coefficients, see table S6.
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Conditional effects of local and landscape habitat parameters on local tropical bee densities. (A)
flower cover, (B) flower richness, (C) mass-flowering crop (MFC) presence, and (D) landscape
semi-natural habitat (SNH). Abundances are expressed per 150 m? and 15 min sampling. Points
represent back-transformed partial residuals. SD, standard deviation. For model coefficients, see
table S7.
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Table S1.
Studies included in the synthesis. Landscapes are counted within year, and samples within

landscapes.
Study | Country Bumble | Solitary | Hoverflies | Butterflies | Tropical | Sampling effort | Habitat N N N Publication
bees bees bees type Years | Landscapes | Samples
m? min
A UK X Various | NA | Various 1 95 4173 Unpublished
B Spain X X X 200 30 Forest 1 16 112 (118)°
C India X 9 90 Various 1 20 60 (119)
D Germany X X X 400 10 Field 1 30 630 (120)
margins
E Germany X X X 250 5 Various 1 30 540 (121)
F Sweden X 50 20 Various 1 17 152 (122)
G Costa Rica X 400 15 Grasslands | 3 49 95 (123, 124)
H USA X X 200 60 Various 1 12 71 (125)
I UK X 400 NA | Riparian 2 19 366 (126)
margins
J UK X 400 NA | Various 2 31 343 (127)
K USA X X X X 10000 60 Grasslands | 3 30 98 (128, 129)
L France X X X 150 15 Various 1 25 206 (130)*
M Sweden X X X 150 15 Various 1 12 72 (131)
N Netherlands | X X X X 150 15 Various 1 16 131 Unpublished
(0] Italy X X X 150 15 Various 1 26 587 (132,133)
P Netherlands | X X X X 450> 45 Various 1 41 165 (20
Q Germany X X X 2 15 Grasslands 1 17 459 (134)
R Poland X 31416 60 Various 1 32 32 (135)
S UK X 31416 60 Various 1 41 46 (136)
T Germany X X X 200 240 | Wildflower | 1 14 28 (137)
strips
8] Portugal X 150 15 Various 1 29 79 Unpublished
\ Germany X X 100 15 Grasslands 1 32 32 (138)
w Germany X X Various | 15 Field 1 27 198 (139)
margins
X Germany X X 100 45 Grasslands 1 23 115 (140)
Y Germany X X X Various Grasslands 1 27 192 (37, 141)
Z Norway X 200 5 Various 2 52 3676 (142)
AA Netherlands | X X X 20 10 Various 2 40 606 31
AB Romania X X X X 300 20 Various 1 28 217 (143)
AC Germany X X X . Wildflower | 1 19 37 (144)
Various strips
AD Germany X X X X 1800 360 | Grasslands 1 28 143 (145)°
AE Israel X 800 60 Various 2 30 30 (146)*
AF India X 100 10 Various 1 12 117 (147)
AG Argentina X X X Various | 240 | Road 2 40 40 (148)
verges
AH USA X X 1 4 Various 1 16 455 (149)
Al Spain X X 10 5 Field 1 17 340 (150)
margins
Al Sweden X 100 10 Various 1 12 363 (151)
AK UK X X X 100 10 Road 1 19 285 (92)
verges
AL Germany X 100 10 Various 1 11 20 (152)
AM Ireland X 200 NA | Hedges 1 20 120 (153)
AN USA X X 40 5 Various 1 12 964 (154)°
AO Sweden X X X X 100 10 Various 1 20 235 (153)
AP Netherlands | X X X X 250 25 Various 1 10 40 (156)
AQ USA X 40 5 Grasslands 2 35 48 157)
AR Ireland X Various | NA | Grasslands 1 25 150 (158, 159)
AS Spain X X 150 15 Various 2 30 226 (30, 160)
AT UK X X X 150 15 Various 3 47 550 30, 61,
161)
AU Sweden X X X 150 15 Various 2 32 635 (30,61,
161)
AV Serbia X X X 150 15 Various 2 31 218 (30)
AW Netherlands | X X X 150 15 Various 3 50 799 (30, 61)
AX Germany X X X 150 15 Various 2 32 666 30, 61,
161)
AY Switzerland | X X X X 150 20 Various 2 34 552 (48)
AZ Netherlands X 1000 NA | Grasslands 1 11 64 (162)
BA UK X X 200 30 Grasslands 1 18 71 (163)
BB UK X 200 10 Forest 1 10 22 (164)
BC Germany X X X X 1 5 Various 3 43 2340 (165, 166)
BD Germany X X X X 1800 360 | Grasslands 1 70 160 (167)°
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BE USA X 10000 60 Wildflower 11 33 (168)
strips

BF UK X Various | NA | Grasslands 31 654 (169)

BG USA X X Various Various

56

320

(170)

aUnpublished at the time of literature screen.
"For bees and hoverflies only. Butterfly surveys varied in area and were untimed.

“These publications are supported by data references (/77) and (/72-177), respectively.
dNot gathered from literature screen.
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Table S2.

Sample sizes per species group. Landscapes are counted within study-year, and samples are
sampling events within landscapes.

Species group Studies Study-years Landscapes Samples
Bumble bees 37 55 1107 16675
Solitary bees 37 58 1124 13294
Hoverflies 31 47 885 11156
Butterflies 19 29 613 9994
Tropical bees 3 5 81 272
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Table S3.

Bumble bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficients for landscape SNH and MFC Bloom here are representative of the
“yes” level, as well as the slope of the interaction between landscape SNH and MFC Bloom. The
single terms of landscape SNH and MFC Bloom are not evaluated with log-likelihood ratio tests
because the interaction term is retained in the model. Coefficients are represented on the log

scale.
Variable Coefficient SE Chisq P
Flower cover 0.062 0.028 4.683 0.030
Flower richness  0.060 0.027 4.726 0.030
Landscape SNH  0.075 0.012 - -
MFC Bloom 0.235 0.018 - -
SNH:MFC -0.122 0.016 58.839 <0.001
Bloom
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Table S4.

Solitary bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The

interaction term is not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisq P
Flower cover 0.047 0.033 2.001 0.157
Flower richness  0.100 0.023 15.738 <0.001
Landscape SNH  -0.002 0.009 0.043 0.836
MEFC Bloom 0.196 0.016 158.149 <0.001
SNH:MFC - - 0.867 0.352
Bloom
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Table SS.

Hoverfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC
= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that
the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is
not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisq P
Flower cover 0.082 0.045 3.257 0.071
Flower richness  0.175 0.033 22.235 <0.001
Landscape SNH  -0.004 0.011 0.132 0.716
MEFC Bloom -0.013 0.019 0.470 0.493
SNH:MFC - - 0.374 0.541
Bloom
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Table S6.

Butterfly model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat; MFC
= mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept, meaning that

the coefficient for MFC Bloom here is representative of the “yes” level. The interaction term is
not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisq P
Flower cover 0.105 0.048 4.402 0.036
Flower richness  0.027 0.068 0.157 0.692
Landscape SNH  0.031 0.013 5.443 0.020
MEFC Bloom -0.021 0.038 0.300 0.584
SNH:MFC - - 0.024 0.876
Bloom
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Table S7.

Tropical bee model terms evaluated by log-likelihood ratio tests. SNH = semi-natural habitat;
MFC = mass-flowering crop. The “no” level of MFC Bloom is captured in the intercept,
meaning that the coefficient for MFC Bloom here is representative of the “yes” level. The
interaction term is not included in the final model. Coefficients are represented on the log scale.

Variable Coefficient SE Chisq P
Flower cover 0.039 0.015 7.029 0.008
Flower richness  0.143 0.017 59.749 <0.001
Landscape SNH  0.037 0.022 2.888 0.089
MFC Bloom 0.011 0.030 0.131 0.718
SNH:MFC - - 0.109 0.741
Bloom
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Table S8.

The effect of mass-flowering crop (MFC) presence evaluated by log-likelihood ratio tests on
models with a subset of the datasets that had this variable as a within-study factor. SNH = semi-

natural habitat.

Model SNH:MFC Bloom MFC Bloom

Chisq P Chisq P
Bumble bees 109.694 <0.001 - -
Solitary bees 0.293 0.588 379.260 <0.001
Hoverflies 2.431 0.119 0.270 0.604
Butterflies 0.306 0.580 0.360 0.549
Tropical bees 0.288 0.592 0.448 0.503
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