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Abstract

In theUK, poor air quality is estimated to contribute to 36,000 deaths annually. Since 2021 local

authorities have introducedCleanAir Zones (CAZs) to tackle the pollution caused by road traffic.

These aim to improve air quality within theCAZby deterring high polluting vehicles from entering.

As of August 2024, there were sevenCAZs active in England. This work focuses on Sheffield, UK and

explore how the implementation of the CAZhas affected air quality in the city. The impact of

Sheffield’s CAZonNO2 and PM2.5was assessedwith data sourced from threeDEFRA sites within

Sheffield.Weather normalisationwas conducted to isolate the impacts of weather. Then the impact of

Sheffield’s CAZwas evaluated using aDifference-in-Difference (DiD)method. The changes in traffic

following theCAZwere also evaluated to assess the potential for spillover. Our results showed that

reductions in air pollutions happen both inside and outside the CAZ, but neither PM2.5 orNO2were

significantly reducedwithin theCAZ. Therewere no signs of negative spillover with only 5 out of the

33 traffic sensors (16%) showing an increase in traffic post-CAZ. The results were generally in line

with the studies on London’sULEZ andBirmingham’s CAZ that showed no significant changes in

PM2.5 and small changes inNO2. This work differs from literature by suggesting that theCAZdid not

drive thisNO2 reduction, withNO2 concentrations reducing both inside and outside the CAZ. This

was likely down tofleetmodernisation, with the proportion of non-compliant vehicles across Sheffield

reducing by 18%post-CAZ. This highlights howCAZmay be one policy implemented to improve air

quality withmultiple policies working in conjunction to reduce air pollution.

1. Introduction

Air pollution is estimated to contribute to 1 out of every 9 deaths globally [1] and poor air quality (AQ) is

estimated to contribute to nearly 36,000 deaths per year in theUnited Kingdom (UK) [2]. A significant

contributor to air pollution in urban areas is traffic, with vehicles contributing to a range of pollutants such as

Nitrogen oxides (NOx), nitric oxide (NO)nitrogen dioxide (NO2), CarbonMonoxide (CO) and Sulphur

Dioxide (SO2), and ParticulateMatter (PM2.5, PM10). The impact of exposure to pollutants has beenwidely

studied and shown to be detrimental to humanhealth. Exposure to air pollution significantly increases the rates

of respiratory disease, lung cancer, cardiovascular disease and non-accidentalmortality [3–5]. Reducing air

pollution tomeetWorldHealthOrganization (WHO) guidelines could prevent up to 327,000 avoidable deaths

across the EU [4], highlighting the need tomanage and reduce air pollution. TheUK government has previously

described air pollution as the ‘largest environmental risk to public health in theUK’ [6], highlighting the need to

manage air pollution.

Local authorities have recently implementedCleanAir Zones (CAZs)which function by charging high-

polluting vehicles to enter a designated zone, with the aimbeing to discourage thosewith older or higher

polluting vehicles from entering certain areas. Thefirst such zone in theUKwas London’s Low-Emission Zone

(LEZ), leading to 13% reductions in PM10 [7], and the expandedULEZ leading to 36% reduction inNOx [8].
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There are now seven active CAZs in England as of August 2024 [9], however, there is limited research on the

efficacy of these new policies, with studies found for Birmingham’s CAZ and London’sULEZ, but none for other

CAZs such asNewcastle, Bristol, Bath or Sheffield.

This paper focuses on Sheffield and analyses how the implementation of theCAZ in Sheffield City Centre has

impacted air quality and traffic in the city. Sheffield, a city located in South Yorkshire, England, introduced a

Class CCAZ in February 2023. This Class CCAZ charges non-compliant buses, taxis,HGVs and vans, but not

personal cars ormotorcycles. TheCAZwas introduced as part of SheffieldCity Council’s (SCC) 2015Action

Plan [10]which showed that 50%ofNOx pollution and 40%of PM10 in the city centre was caused by road traffic.

The Sheffield CAZ covers the entire area encircled by theA61 as shown infigure 1 [11]. TheA61 ring road is

includedwithin theCAZboundary.

This work presents an exploratory analysis of Sheffield’s CAZusing an evidence-based approach. 1.Air

quality data one year before and after the implementation onCAZwas sourced from sensors inside and outside

theCAZ.Weather normalisationwas then applied to remove the impact of weather on air pollution. Then, the

changes in air quality was analysed by employing a difference-in-differences (DiD) based approach, using data

from a control group (outside CAZ) and treatment group (inside CAZ) to assess the impact of the intervention.

Thismethod has previously been used to analyse air quality policy [12–15]. 2.Traffic volumeswere also collected

and analysed using aWilcoxon signed-rank test to provide new insight into the changes in traffic volume pre/

post CAZ.We also assess the potential spatial spillover effect, which is a phenomenon that traffic does not

reduce, but is instead diverted into other roads surrounding theCAZ.

In short, our results show limited evidence of CAZ-specific effects on air qualitywithin CAZ. This was likely

due to pollution generally falling across all sites, regardless of location.However, there is statistically significant

reduction of trafficwithin theCAZ.Our results also suggest that therewas no evidence for spatial spillover.

CAZs have been employed across the country to attempt to reduce air pollution, but their efficacy is not yet

fully known.With only limited existing studies on evaluating CAZs and LEZs in theUK [16, 17], this work aims

to build upon these previous studies, adopting an evidence-based approach in exploring the efficacy of policy

interventions such asCAZs and LEZs. This study provides initial evidence for the efficacy of Sheffield’s CAZ in

reducing air pollution and traffic volumes, serving as a foundation for future,more comprehensive evaluations.

Better understanding the efficacy of such policy interventions can also better inform future policy decisions,

allowing for better informed decisions to bemade surrounding public health, sustainability and urban planning.

The rest of the paper is organised as follows. Section 2 reviews the relevant literature. Section 3 details the

data sources andmethodology. Section 4 reports the analysis results and section 5 presents the discussion.

Section 6 concludes the paper and suggests possible future directions.

Figure 1.Map showing the area covered by Sheffield’s CAZ.Map data fromOpenStreetMap, CAZ area boundaries provided by
SheffieldCity Council1.

1
https://www.sheffield.gov.uk/clean-air-zone-sheffield.
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2. Relatedwork

2.1. Evaluating impacts of Interventions onAirQuality

Bigazzi andRouleau [18] conducted a bibliographical review to assess the impact of different policies on air

pollution. They found therewas a limited evidence base for pre-post evaluations of policies and called for an

evidence-based approach to transport systems planning.Multiple studies were found using real-world data (as

opposed to simulated data) to evaluate the efficacy of various trafficmanagement policies, withmany of the

studies occurring after 2017.

In the literature, Regression-discontinuity design (RDD) [19–22] and difference-in-differences (DiD)

[12–15, 23–26] are two commonly usedmethods to evaluate the impacts of intervention, such as theCAZ

implementation, and theCOVID-19 lockdown restrictions.

In fact, only a few articles and studies were found assessing any of theCAZs active in theUK.Ma et al [17]

analysed the impact of the introduction of theULEZ in central London. Similar to their previous work analysing

the impact of COVID-19 on air quality [27], they conductedweather normalisation and used a sharpRDD

model. RDD compares air quality before and after an intervention to estimate the policy’s impact, assuming any

changes can be attributed to the intervention. They found that theULEZhad not caused significant reductions in

pollution, when considering the context of long-term trends. Reductions inNO2, O3 and PM2.5were observed,

but their analysis showed that the concentrations did not vary significantly following theULEZ.However, this

analysis was only conducted for a period of threemonths post-ULEZ. Potentially too short a period for the

impacts of behavioural and vehicle fleet changes to be observed.

Conversely, Liu et al [16] conducted an analysis of the air quality changes for a period of one year after the

implementation of Birmingham’s CAZ, using a synthetic controlmethod to analyse the impact of theCAZ. This

method aims to construct an artificial control group tomodel the value as if there had been no intervention

(Business-as-usual or BAU) [28]. The counterfactual BAU casewas then compared to theweather-normalised

data to assess the impact of the CAZ. Their results indicated significant reductions in pollution both inside and

outside theCAZ following its implementation. Liu et al [16] also analysed the potential for spillover caused by

theCAZ. This effect is when air pollution is displaced to other areas by restrictions, rather than an overall

reduction in traffic emissions [29]. Liu et al [16] quantified spillover by assessing the changes in pollution, citing

that therewere no signs of spillover as indicated by the reduction in pollution surrounding theCAZ, however

they suggest the potential for futurework to include the assessment of traffic volumeswhen conducting analysis

onAQpolicy.

No studies were found analysing the impact of Sheffield’s CAZ, which is the focus of this work.

2.2. Traffic and air quality

Previouswork on source apportionment has shown that traffic contributes to numerous pollutants such as

PM2.5, NOx, NO2 and dust [30–34].

The topic of the relationship between traffic and air policy has beenwell studied. Siciliano et al [35] found the

decrease of air pollutants was not directly proportional to the vehicular flux reduction, when analysing the

impact of lockdowns in Brazil, but other studies seem to suggest a link between traffic and air pollution. Blagoiev

et al [36] analysed the association between traffic and air pollution in Timisoara, Romania. The correlation

coefficient was calculated for CO, SO2, NO2, and PM.NO2was the least correlated, with correlations of−1.2%

to−0.58% to, however COand SO2weremore strongly correlated. Salama andZafar [37] investigated the

association between traffic and air pollution at a causeway in Saudi Arabia. The correlation coefficient between

themean pollutant concentration and the trafficflowwas calculated. The correlations ranged from0.46 forO3

to 0.78 for PM, showing that trafficwas related to pollutant concentrations.

Several studies were found analysing the impact of interventions similar toCAZpolicy on traffic. Boogard

et al [38] found on average, trafficwas reduced by 5.1% following interventions. Similarly, Tassinari [39]

conducted a pre-post analysis following the introduction ofMadrid’s LEZ,finding that trafficflow reduced an

average of 8.1%withinMadrid’s LEZ, but saw a small average increase of 3.3% in sites surrounding the LEZ,

which is evidence of the spillover effect.

3.Data andmethodology

In this sectionwe detail the data sources and analysismethodology. Section 3.1 gives the data source of air quality

data and traffic data. Sections 3.2 and 3.3 presents Difference-in-Differencesmodel on air quality data and

Wilcoxon Signed-rank Test on traffic volume data, respectively. The data and code used in this paper can be

found in our repository [40].
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3.1.Data source

Datawas sourced from the SheffieldUrban FlowsObservatory (SUFO)
2, a project which collectsmultiple data

streams such as air pollution, trafficflow andmeteorological conditions from various sources, including data

fromSheffield City Council (SCC), TheDepartment for Energy, Farming andRural Affairs (DEFRA) and

SUFO’s own air quality network.

The analysis periodwas initially defined as February 2022 to February 2024 (one year either side of CAZ

implementation in February 2023), with this period later extended to June 2024 to increase the number of

samples.

3.1.1. Air quality (AQ) data

Hourly air pollution datawas collected forNO2 and PM2.5 at 7 sites across Sheffield, including both inside and

outside theCAZ, as shown inTable 1.We designate a site to be primary AQ site if it provides sufficient data

across the period to develop the difference-in-differencesmodel, and to be secondary AQ site otherwise for the

additional insights. All sites designated as primary AQ sites were policy-grade sensors, belonging to the

AutomaticUrban andRuralMonitoringNetwork (AURN), theUK’smain network for compliance reporting.

More details of the air quality sites can be found in appendix.Missing and inconsistent values were handled

throughmedian imputation, given the skewed nature of the data.

Only one AQ site with suitable data quality for aDiDmodel was identified. To ensure this site was

representative of AQ trends within theCAZ,we compared the readings ofDG1with other sensors inCAZ, the

readings are deemed to be following the trends of thewhole zone, with further detail on the comparison in the

appendix.

Figure 2 shows the location of the seven sites, with two sites within the city centre,one to theWest, two to the

North and two towards the East. Sheffield’s topography presents unique challenges to air pollution, with the city

Figure 2.Map of the seven identified AQ sensors.Map data fromOpenStreetMap.

2
https://urbanflows.ac.uk/.
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characterised by hills rising up from the valleys caused by the riversDon and Sheaf. These valleys can cause

temperature inversions which prevent the dispersal of pollutants and potentially exacerbate air pollution [41].

The three primary sites are located out of these valleys, with elevations of 89 m forDG1, 82 m for BR0 and 90 m

for TN0.

3.1.1.1.Weather normalisation

Weather plays a crucial role in the formation, transport and deposition of air pollution [42], potentiallymasking

fluctuations in pollutant concentration, and thusmasking the potential impact of policy interventions. It is

therefore important to performweather normalisation to remove the effects of weather conditions on air

pollution concentrations. VariousMLmethodswere proposed forweather normalisation, which utilise

observed pollution and variousweather variables to buildmodels that predict the pollutant concentration

without the impact of weather.Ma et al [17] developed gradient-boosted decision trees, whileGrange et al [43]

developed a package rmweather3, a RandomForestmodel, to conduct weather normalisation to allow for the

robust analysis of AQ trends.

Following Liu et al [16], we use the rmweather package to conduct weather normalisation, applying it to the

primary AQ sites. Theweather variables available were thewind direction, wind speed and air temperature.

Details on how this packagewas appliedmay be found in appendix.

3.1.2. Traffic volume data

Wealso explore the changes in traffic volumes and potential spatial spillover post-CAZ. SCC traffic sensors were

used to characterise traffic volumes surrounding primary AQ sites, allowing for traffic changes in these areas to

be assessed, and for the correlations between traffic volume andAQmade. As seen in previous literature [38], the

number of cars per daywas used to represent the traffic volume. Thus, themean of the total number of per day

surrounding eachAQ site was taken to provide a single value expressing the traffic volume in the area.

Traffic sites within a 0.5 km radius of Primary AQ sites were used to characterise the traffic volumes, aside

fromone site (TN0)which had no sensors within 0.5 km, instead a radius of 1 kmwas used. In total, traffic

volume data from25 traffic sites around the AQ sites are aggregated to their corresponding AQ site to compare

the traffic volume changes. 33 traffic sites within proximity to but outside theCAZwere used to assess spillover.

These sites were located outside of theCAZ, butwithin 2 kmof the city centre. The list of traffic sites can be

found in appendix.

3.2.Difference-in-differencesmodel on air quality data

In a similarmanner to AQdata reported byDEFRA, changes in AQwere first evaluated by considering themean

annual daily concentration pre and post CAZ, with pre-CAZdefined as 27-Feb-2022 to 26-Feb-2023 and post-

CAZ as 27-Feb-2023 to 26-Feb-2024.

Figure 3.Representation of theDifference-in-Differencesmodel, showing how themodelmay be used to assess the difference
between control and treatment groups Post-CAZ.

3
https://github.com/skgrange/rmweather.
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The impact of theCAZwas assessed using aDifference-in-Differences (DiD) approach.DiDwas chosen over

othermethods such as RDD for its simplicity to implement, only requiring dummy variables to represent the

control variables. Additionally, DiDprovides interpretable coefficients that represent the difference between the

two groups.

DiD is a statisticalmethod that uses a regression-based analysis, comparing the trends of two groups before

and after an intervention, and assessing if they significantly vary, as shown infigure 3. In the context of analysing

the impact of a CAZ, the pollutant concentrationY at time t and location i can be described as:

( )Y T P T Pit i t i i0 1 2 3b b b b= + + + *

where:

• Yit is the concentration for a particular pollutant (e.g. NO2)

• Ti a binary variable indicating if an observation belongs to the treatment group, inside theCAZ (Ti = 1), or the

control group, outside theCAZ (Ti = 0).

• Pt a binary variable indicating if an observation is pre-CAZ (Pt = 0) or post-CAZ (Pt = 1).

• ( )T Pi i* an interaction termbetween treatment and post-CAZ periods. This term only equates to 1when the

observation is inside theCAZ and is post-CAZ, allowing for its impact pollution Yit to be assessed.

The impact of an intervention is assessed by evaluating themagnitude and statistical significance of the

coefficient 3b , also called the coefficient of the interaction.

While AQ changes could be calculated for both primary and secondary sites, DiDwas only conducted on the

primary sites, due toDiD requiring sufficient data points one year either side of theCAZ. Three sites were used,

twowere outside theCAZ and onewas inside. Table 2 provides a summary of theDiDmodels developed. DiD

returns the value and statistical significance of each coefficient. A threshold ofα= 0.05was used. A negative

interaction coefficient would indicate theCAZ led to a greater reduction in pollution.

3.3.Wilcoxon signed-rank test on traffic volume data

Traffic changes pre and post-CAZwere evaluated by considering the total number of vehicles in each period.

Additionally, aWilcoxon signed-rank test was used to evaluate statistically significant differences in traffic pre/

post CAZ.

A potential phenomenon of traffic restrictions was spatial spillover, where traffic does not reduce, but is

instead diverted into other roads surrounding theCAZ. This phenomenonwas investigated by acquiring data

for sites surrounding theCAZ. The spatial spillover was also assessed using aWilcoxon signed-rank test. The

proportion of traffic sensors that indicated a significant increase was considered. Ifmost sensors showed there

was no significant increase in traffic volume, then it was concluded that no spillover occurred.

Table 2.Parameters for each of the 6DiD scenarios evaluated.

Scenario Treatment Control Pollutant

1a DG1 BR0 NO2

1b DG1 BR0 PM2.5

2a DG1 TN0 NO2

2b DG1 TN0 PM2.5

3a DG1 Mean of BR0 andTN0 NO2

3b DG1 Mean of BR0 andTN0 PM2.5

Table 1.Descriptions of the identifiedAQ sites.

Designation CAZLocation Site ID SiteName Site Type Source Sensor Type Pollutants

Primary (ForDiDModel) Inside DG1 Devonshire Green Background DEFRA PolicyGrade NO2, PM2.5

Outside BR0 Barnsley Road Roadside DEFRA PolicyGrade NO2, PM2.5

TN0 Sheffield Tinsley Background DEFRA PolicyGrade NO2, PM2.5

Secondary Inside HS1 Hannover Street Roadside SUFO Low-Cost NO2, PM2.5

Outside CB0 Catch Bar Lane Background SUFO Low-Cost NO2

EC0 Endcliffe Crescent Background SUFO Low-Cost NO2

KR0 Kendal Road Background Luftdaten Low-Cost PM2.5

6
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Finally, the correlation between traffic volume and air quality was assessed usingmethods similar to previous

literature [36, 37]. In particular, the correlation coefficient between the total number of cars in a day and the

mean daily pollutant concentrationwas calculated. Additionally, a linear regressionmodel was developed to

assess the relationship. The independent variable was the total number of cars per day and the dependent

variable themean daily pollutant concentration. The adjusted R2was used in conjunctionwith the correlation

coefficient to assess the relationship between traffic and air pollution.

4. Results

We report the analysis results in this section. Section 4.1 presents the results of CAZon air quality and theDiD

analysis. Section 4.2 reports the results of CAZon traffic volume, spatial spillover. Section 4.3 gives the

correlation analysis between air quality and traffic volume.

Figure 4.Mean daily concentrations ofDe-weatheredNO2 and PM2.5. for Primary sites.

Figure 5.Distribution ofDe-weatheredNO2 and PM2.5 concentrations for primary sites.
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4.1. Effect on air quality

4.1.1. Changes inmean daily air quality concentration

Figure 4 shows themean daily de-weathered (i.e., weather normalised) pollutant concentration ofNO2 and

PM2.5 for the three primary AQ sites throughout the analysis period, where the red dashed line indicates the date

of CAZ implementation, and the shaded gray regions indicate the analysis period.We can observe that there is a

decline inNO2, particularly in TN0 andBR0, after the CAZ implementation, while PM2.5 generally shows

smallerfluctuations.

Based onfigure 4, we also looked at the pre-CAZdata to test the parallel trends assumption in theDiD

model. In particular, the pre-CAZ trends for PM2.5 appear reasonably parallel across the treatment and control

groups, particularly betweenDG1 andBR0. ForNO2, while the trends are not perfectly parallel, there is no

strong evidence of divergent behavior that would invalidate theDiD approach.

To better understand the distribution of the pollutant data, boxplots of themean daily concentrations for the

three primary sites are presented infigure 5. It shows that forNO2 therewere few outliers, with the data generally

grouped together. In contrast, therewas a low IQR for PM2.5, leading to a large number of outliers. These

outliers are potentially genuine events, for example caused by high-traffic events or construction.

Additional plots and histograms for observed (i.e., non-normalised data) and for secondary sites can be

found in the appendix. Comparing the distribution of observed and de-weathered data, we observed that

performingweather normalisation closer grouped bothNO2 and PM2.5, as expected due to the aggregating effect

of random forest. For example, the standard deviation forNO2 atDG1pre-normalisationwas 12.42 μg m−3

compared to 1.03 μg m−3 post normalisation.

Themean annual daily concentration ofNO2 andPM2.5were compared one-year pre- and post-CAZ for

both sensor-read data and de-weathered data. Table 3 provides the changes in pollutant concentration for the

three primary sites. Changes in observed pollutionwere generally higher than those post-normalisations, with

average changes of -10.5% forNO2 and−7.8% for PM2.5. In contrast, de-weatheredNO2 reduced between

Table 3.One-year Pre-/Post-CAZ changes inNO2 and PM2.5 concentrations for primary sites.

Observed (μgm−3) De-Weathered (μgm−3)

Site Site location (w.r.t. CAZ) Pre-CAZ Post-CAZ Changes Pre-CAZ Post-CAZ Changes

NO2 DG1 Inside 17.256 14.812 −13.82% 16.873 15.853 −6.04%

BR0 Outside 34.203 33.750 −1.32% 33.765 34.486 +2.13%

TN0 Outside 22.604 18.882 −16.47% 22.277 19.455 −12.67%

PM2.5 DG1 Inside 8.017 6.874 −14.26% 7.848 7.261 −7.48%

BR0 Outside 9.329 8.520 −8.67% 9.685 8.730 −9.86%

TN0 Outside 6.946 6.912 −0.49% 7.186 7.305 +1.65%

Table 4.One-year Pre-/Post-CAZ changes inNO2 and PM2.5 concentrations for secondary
sites.

Observed (μgm−3)

Site Site location (w.r.t. CAZ) Pre-CAZ Post-CAZ Changes

NO2 CB0 Outside 16.563 7.657 −53.77%

EC0 Outside 5.361 9.476 +76.77%

HS1 Inside 5.265 4.185 −20.52%

PM2.5 KR0 Outside 5.309 5.319 +0.19%

HS1 Inside 215.955 207.181 −4.06%

Table 5.Results of the SixDiD scenarios showing themagnitude and significance of DiD coefficients.

Scenario Treatment Control Pollutant Post Treatment Interaction

1a DG1 BR0 NO2 0.59 (<0.000) −16.89 (<0.000) −1.45 (<0.000)

1b DG1 BR0 PM2.5 −1.19 (<0.000) −1.91 (<0.000) 0.59 (<0.000)

2a DG1 TN0 NO2 −3.39 (<0.000) −5.40 (<0.000) 2.53 (<0.000)

2b DG1 TN0 PM2.5 0.30 (<0.000) 0.91 (<0.000) −0.90 (<0.000)

3a DG1 OutsideMean NO2 −1.40 (<0.000) −11.15 (<0.000) 0.55 (<0.000)

3b DG1 OutsideMean PM2.5 −0.45 (<0.000) −0.50 (<0.000) −0.15 0.120
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−12.67%and 2.13%,with amean change of−5.5%. PM2.5 concentrations reduced between−9.86% and 1.65%

with amean change of−5.2%.

Secondary site data allowed for further insight into concentration changes. These sites howeverwere not de-

weathered due to the lack of localisedmeteorological data. Table 4 shows largerfluctuations inNO2, with

changes varying from−53.77% to 76.77%,while that of PM2.5 aremore stable. Large variability was seen for

CB0 and EC0.We investigated the potential reasons. These sensors did not function from July 2022 toApril

20244, with readings significantly different following their refurbishment. This was not seenwith other sensors,

for instancewhen data frompre-normalised BR0was filtered for the same time periods used for EC0, the

percentage changes were amoremodest+6.3%. The large swings and difference in readings could be caused by

sensor calibration or servicing that occurred during the downtime.

4.1.2. Difference-in-differences results

Difference-in-Differences was conducted to determine if therewas a significant difference in air quality post-

CAZ. SixDiDmodels were developed (in table 2) to compare the pollutant concentrations. Table 5 shows the

results of theDiD analysis for the six de-weather ed scenarios.

Therewere significant changes inNO2 caused by theCAZ in every scenario. However, the direction of

change varied. Scenario 1a indicated a−1.45 μg m−3 greater reduction inNO2 due to theCAZ. Yet, comparing

Scenario 2a that the CAZ led to a 2.53 μg m−3 lesser reduction inNO2. This was also observedwith PM2.5, with

Figure 6.Distribution of themeannumber of cars per day surrounding each primary AQ site.

Figure 7.Boxplots describing themean number of cars per day surrounding each primary AQ site.

4
Because of this data availability issue, we use them as secondary sites to provide additional information.
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scenario 1b indicating a lesser reduction in PM2.5, while 2b indicated a−0.9 μg m
−3 greater reduction.Overall,

the analysis shows a lesser reduction of 0.55 μg m−3 inNO2within theCAZ, and no significant change for PM2.5.

4.2. Traffic volumes

Building upon previous work, the changes in traffic pre-/post-CAZwere analysed to determine if traffic

volumes varied significantly post-CAZ (section 4.2.1), if therewere any indications of negative spillover caused

by theCAZ (section 4.2.2), and the correlation between traffic volume and air quality (Section 4.2.3).

4.2.1. Changes in traffic volumes

Figure 6 shows the histograms of themean number of cars per day surrounding each site. All three sites show

similar patterns, withmost counts clustered around 7,500 cars per day.

Figure 7 shows a boxplot describing the distribution of the number of cars per day for the three sites. Traffic

surrounding each site was broadly similar, with TN0presenting the lowestmedian and IQR, potentially due to

many sensors being located on access points to a shopping centre (Meadowhall), rather than commuter or other

types of roads. However, this valuewas not significantly lower thanDG1 andBR0. All distributions presented a

significant number of outliers, however this was expected for numerous reasons, such as sensor calibration, road

closures, and one-off traffic events (e.g. extremeweather) all affecting traffic volumes.

AKolmogorov-Smirnoff test was conducted to determine if the data was normally distributed. The null

hypothesis was that the data is normally distributed, and the alternative hypothesis that the data was notwith a

threshold ofα= 0.05. Before performing theKS test, the data was normalisedwith Z-score normalisation. The

results of the KS test are shown in table 6. All KS tests returned a significance of less than 0.05 indicating that

Table 6.Results of Kolmogorov-Smirnoff tests conducted to
test normal distribution.

Site Test Stat p-value Normally distributed?

DG1 0.048 0.036 No

BR0 0.138 <0.000 No

TN0 0.112 <0.000 No

Table 7.Results of theWilcoxon signed-rank test used to assess the
significance of traffic changes pre/post CAZ for traffic surrounding primary
AQ sites. (α= 0.05).

Site

Wilcoxon

Statistic p-value

Statistical

Significance

Median

Difference

DG1 20210 <0.000 Yes −618.6

BR0 32281 0.580 No 96.1

TN0 30769 0.193 No 93.1

Table 8.Changes in the total number of cars pre-/post- CAZ for traffic
surrounding primary AQ sites.

Site Total Cars Pre-CAZ Total Cars Post-CAZ Change

DG1 3,142,491 2,953,353 −6.02%

BR0 3,285,294 3,332,921 1.11%

TN0 2,581,818 2,595,856 0.54%

Table 9.Assessing spatial spillover effect.

Wilcoxon signed-rank test

outcome

Number of traffic sites within 2 km

of City Centre but outside CAZ

SignificantDecrease Traffic 14 (42.4%)

Significant Increase Traffic 5 (15.2%)

Non-Significant Change 14 (42.4%)

Total 33
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none of the distributions were normally distributed, thereforeWilcoxon signed-rank tests were used to assess

the changes in traffic volume.

The changes in traffic volumes pre/post CAZwere evaluated using aWilcoxon signed-rank test with the null

hypothesis that therewas no difference in themedian number of cars per day before and after the CAZ. The

alternative hypothesis was that therewas a difference in themedian number of cars. Themedian of the difference

was also calculated to provide an indication of the directions of any significant changes. The results are shown in

table 7. Traffic volumes outside theCAZdid not significantly vary, with traffic volumes surrounding BR0 and

TN0 showing a significance of 0.580 and 0.193, respectively. Traffic surroundingDG1however showed a

significant change, with amedian difference of−618.6 cars/day, suggesting that traffic volume reducedwithin

theCAZ following its introduction.

This can also be seenwhen estimating the total number of cars pre-/post-CAZ. Table 8 shows the estimated

total number of cars one year either side of theCAZ. YoY therewas a 6% reduction in traffic inside theCAZ.On

the other hand, while traffic slightly increased outside, this was shown to not be statistically significant.

Figure 8. Scatter plots showing the correlation between themean number of cars per day surrounding primary AQ sites, and theDe-
weathered pollutant concentration.

Table 10.Correlation coefficients and adjustedR-Square for the association
between themean number of cars per day andNO2 or PM2.5 concentration.

TrafficVolume toNO2 TrafficVolume to PM2.5

Site Coefficient Adj-R2
(%) Coefficient Adj-R2

(%)

Non-Normalised

DG1 0.06 0.2% 0.06 <0.000%

BR0 0.14 0.037% 0.01 <0.000%

TN0 0.10 0.007% −0.02 <0.000%

De-Weathered

DG1 0.26 0.421% 0.30 0.744%

BR0 0.03 <0.000% <0.00 <0.000%

TN0 0.06 0.001% 0.02 <0.000%
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4.2.2. No evidence of spatial spillover

Spillover effect was further assessed by considering a further 33 traffic sensors within a 2 km radius of Sheffield

City Centre (Sheffield PeaceGardens), providing data in proximity to, but notwithin theCAZ. Again, a

Wilcoxon signed-rank test was used to assess the significance of difference inmeans pre-/post-CAZ. The full test

resultsmay be found in appendix. Table 9 shows a summary of the number of sites which displayed significant or

non-significant changes in traffic volume. In total, therewere 19 sensors that indicated a significant change in

traffic volume.Of those, 14 showed a significant decrease, and only 5 a significant increase, resulting in only 5

out of the 33 sensors (16%) showing a significant increase in traffic post-CAZ. This therefore suggests therewas

no evidence of negative spatial spillover caused by theCAZ.

4.3. Correlation between traffic volume and air quality

The correlation between traffic and air quality was evaluated by considering themean daily pollutant

concentration and the total of cars per day. The results of this analysis are shown infigure 8. For readability the

PearsonCorrelationCoefficient andAdjusted-R2 values are shown in table 10. The correlation analysis shows a

weak correlation between PM2.5 concentration and traffic surroundingDG1 and shows aweak association for

NO2. Therewere no associations between eitherNO2 or PM2.5 for BR0 andTN0.

5.Discussion

5.1. Air quality

The analysis results showed that the concentrations of both PM2.5 andNO2 fell post-CAZ. The average

reductions for de-weathered datawere 5.53% and 5.23% forNO2 and PM2.5, respectively. The reductions in

NO2 are broadly in line with those observed in literature that analyses other cities.Ma et al [17] found average

reductions inNO2 of less than 3%across all of London following theULEZ. Similarly Liu et al [16] found average

NO2 reductions of 3.4% inBirmingham’s CAZ.Neither of these studies found significant changes in PM2.5.

We also compare our results with the information released by SheffieldCity Council. In July 2024, SCC

reported there had been a 16% reduction inNO2 concentrations within theCAZ, and a 21% reduction across

thewider Sheffield area [44, 45]. This report does not describe themethodology used, however it is broadly

similar to our result of 14% reductionsNO2 in the case withoutweather-normalisation.

Table 11.Air quality limits forNO2 and PM2.5.

Pollutant Limits(s)

NO2 Mean annual daily concentration below 20 μg m−3

200 μg m−3not to be exceededmore than 18 times a

year (1 hmean)

PM2.5 Mean annual daily concentration below 40 μg m−3

Figure 9.PM2.5 concentrations atDG0 andHS1 for thewhole analysis period.
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The previous work conducted byMa et al [17] and Liu et al [16] showed that policy interventions led to

significant reductions inNO2, but had no impact on PM2.5. TheDiD analysis conducted in this study shows that

the CAZdid not significantly reduce PM2.5 concentrations, in linewith results fromprevious work.

Additionally, theDiD analysis showed thatNO2was significantly changed following post-CAZ, again similar to

otherwork.However, the coefficient of interaction, as seen previously in table 5was 0.55 (p< 0.000). This

positive coefficient suggests that following theCAZ, the concentrations ofNO2within theCAZwere reduced less

than pollutant concentrations outside theCAZ.While this finding is contrary to previous work, this can be

consistent with SCC’s press release [44]. They estimated (pre-weather normalised) reductions inNO2 of−16%

within theCAZ, and−21%across thewider Sheffield area. These figures corroborate the results of theDiD

analysis, showing thatNO2 reduced both inside and outside theCAZ, but with greater reductions outside.

As Liu et al [16] points out, while CAZs and LEZs are one formof policy implemented to improve air quality,

they are not the only ones. Policies work in conjunction to reduce air pollution. This can be seen in the analysis

conducted. The post term indicates the trend in air pollution following the intervention, forNO2was−1.40

(p< 0.000), indicating that overall NO2 levels fell inside and outside theCAZ,withNO2 levels not reduced to the

same extent inside theCAZ as theywere outside.

We additionally consider the compliance of AQ sites to regulatory requirements. These requirements, set

out byDEFRA, detail the limits for air pollution [46]. They are defined in table 11 and define amaximumannual

mean concentration.

The compliance to these regulations pre- and post-CAZwas evaluated. All sitesmet themean annual daily

NO2 concentration of 20 μg m
−3. Additionally, therewere no instances where primaryNO2 sites exceeded

200 μg m−3. Some secondary sites exceeded this limit. CB0 exceeded the limit for an equivalent of 84 times pre-

CAZ, and 0 times post-CAZ. Additionally, EC0 exceeded 200 μg m−3 ofNO2 at an annual equivalent of 42 times

pre-CAZ, and 4 post-CAZ.

All sites but onemet themean annual PM2.5 limit of 40 μg m−3. The site in breach of this wasHS1, which saw

mean PM2.5 levels of 200 μg m
−3.While still breaching this limit post-CAZ, the PM2.5 levels were reduced by

4.06%post-CAZ.

The high pollutant concentrations shown byHS1 led to further analysis. Figure 9 shows the PM2.5

concentrations atHS1 overlaidwith another site, DG0, a policy-grade sensor approximately 200 maway.

Figure 9 shows that PM2.5 atHS1was significantly higher than that atDG0, while these sits differ in nature,HS1

is a roadside site andDG0 a background site, the concentrations atHS1were on average 40 times larger than

those at DG0. Additionally, such high levels of PM2.5 concentrationwere not seen in any other sensors,

regardless of position, suggesting the readings seen abovewere the result of sensor issues.However, it does not

significantly impact our analysis, as our focus is to compare the differences before and after CAZ.

Comparing this result to the traffic composition during the same period of time, that is, the share of vehicles

that were non-compliant. SCCdata [44], shows that pre-CAZ 37%of journeys inside theCAZwere non-

compliant, and 39%across Sheffield. Post-CAZ, this number fell to 13%within theCAZ, and interestingly to

32%across Sheffield. This change in traffic composition highlights the knock-on effect of policy interventions.

We also compared our result with the observed traffic composition data released by Sheffield City Council

[44], which reported the proportion of non-compliant vehicles at two different time points, November 2022

(pre-CAZ) andOctober 2023 (post-CAZ), both outside and inside CAZ, as shown in table 12. The non-

compliance percentages of both inside and outside CAZhave been reduced. This reduction could be partly

attributed to theCAZpolicy, but could also be influenced by other relevant policies such as the financial

assistance schemes for vehicle upgrades5, as well as the implementation of bus gate onArundel Gatewhich is

inside theCAZ6. This shows how a policy such as a CAZworks in conjunctionwith other policies to improve

overall air quality, but at the same time it shows a limitation of this study, that the ‘Control’ groups used in the

DiD analysismay not be true control groups, as despite being significantly outside theCAZ are still subject to its

impact.

The impact of weather normalisation on the results also provided points for discussion. The difference

between pre- and post-CAZ concentrations were reduced, and in some instances reversedwith increases

Table 12.Proportion of non-compliant fleet (Source: Sheffield City Council [44]).

Non-compliance percentage Nov 2022 (Pre-CAZ) Oct 2023 (Post-CAZ) Percentage reduction

InsideCAZ 37% 13% 64%

Outside CAZ 39% 32% 18%

5
https://www.sheffield.gov.uk/clean-air-zone-sheffield/apply-financial-support-upgrade-or-replace-polluting-vehicle.

6
https://www.sheffield.gov.uk/travel-transport/bus-lanes-gates.
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reported post-normalisation for some sites. Isolating the impacts of weather on pollutant concentrations plays a

key part in understanding the impact of interventions. For example, the analysis initially suggested that for DG1

andBR0, therewas no significant change inNO2. However, post-normalisation therewas a significant decrease

inNO2within theCAZ.However, the impacts of weather normalisation did not affect the overall (combined)

results.

5.2. Traffic

Analysis showed that the changes in traffic surroundingDG1was statistically significant, with a 6.02%decrease

in the total number of cars post-CAZ. This change is in line with the 5.1%decrease observed by Boogaard et al

[38] across 5Dutch cities, and the 8.1% reduction found byTassinari [39] followingMadrid’s LEZ. Tassinari

(2024), however, found that traffic increased surrounding theCAZ, indicating the possible effects of spillover.

Our research assessed the spillover effect utilising the traffic sensors surrounding Sheffield’s CAZ, and found

no evidence for spillover. Of the 33 outside-CAZ traffic sites analysed, 14 showed no significant changes, and only

5 (16%) indicated a significant increase in traffic post-CAZ. Liu et al [16] also found no evidence of spillover

following Birmingham’s CAZ citing reductions in air pollution both inside and outside.

Therewas no significant association found between traffic volume and air quality, the highest correlation

was shown forNO2 and PM2.5 forDG1with correlations of 0.26 and 0.3, respectively.

Previous studies have found associations between traffic and air pollution [36, 37]; the difference between

these studies and this work could be attributed tomeasurement criteria. Salama andZafar [37] analysed the

correlation on a singular stretch of highway, providing extremely localised data. In contrast, traffic readings in

our studywere taken near to AQ sites, but not directly from. For example, the nearest traffic sensor toDG1was

located approximately 380 m away, on amajor road. This could potentially influence the results, as the traffic

measurement takenmay not reflect the traffic conditions directly from eachAQ sensor.

6. Conclusion

This study offered an exploratory analysis on the efficacy of Sheffield’s Clear Air Zone (CAZ) as a tool for

improving air quality.We used an evidence-based approach, utilising data before and after CAZ from sites

throughout Sheffield. Our analysis showed that air quality within theCAZdid not significantly differ from the

trends in air pollution outside theCAZ. Reductions of 6.04% inNO2 and 7.48% in PM2.5were observed inside

theCAZ, and 5.27% inNO2 and 4.1% in PM2.5 outside theCAZ. The lack of difference between the control and

treatment group found in this study could be explained by traffic composition, with the number of high-

polluting vehicles reducing both inside and outside theCAZ.We also assessed traffic changes post-CAZ. There

were no significant differences at sites outside theCAZ,with traffic volumes reducing 6%YoYwithin theCAZ.

Spillover was then assessed using 33 sensors surrounding theCAZ, inwhich 28 or 84% showed no significant

change, or a significant decrease, indicating therewere no negative spillover effects caused by theCAZ.

This study serves as the foundation for understanding the impact of Sheffield’s CAZ and inform future

research, whichwe suggest several directions as follows.

First, additional sensors (and thus data) should bemade available for analysis. One limitation in our analysis

was the availability of data and the number of sites used in the analysis. 46 potential sites were identified

reporting eitherNO2 or PM2.5, however only three of these sites provided sufficient data to be primary sites for

complete analysis, with an additional four with sufficient data to be secondary sites for partial analysis. In

contrast, similar literature usedmore sites, withMa et al [17] using 58 sites across four pollutants, and Liu et al

[16] using 16 sites for two pollutants. Additional sites were identified, however these either provided insufficient

data for analysis, or were not paired tometeorological conditions. Analysis conductedwith a limited number of

sensors risk skewing results by inadvertently focusing on local trends rather than broader contextual changes.

Therefore, future researchwould benefit from an increased density of bothAQ andmeteorological sensors, both

background and roadside, bothwithin and outside CAZ, tomore effectively and comprehensively assess and

understandCAZ. TheAQ sensors could also be deployed alongsidemeteorological sensors in order to provide

weather variables for normalisation.

Second, in this research, theweather variables usedwerewind speed, wind direction and air temperature,

since these were the onlyweather parameters available. Previous research however has considered additional

variables such as pressure and relative humidity [16, 31]. In the future, additional weather variables could be

included, for example theMetOffice providesweather station archive data7, or usingNOAAdata.

Third, a promising direction for future research is to strengthen the casual analysis of the CAZ impact,

possibly through the synthetic controlmethod [16]. Our study employed the difference-in-differences approach

7
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/index.

14

Environ. Res. Commun. 7 (2025) 085009 GWilliams et al

https://www.metoffice.gov.uk/research/climate/maps-and-data/data/index.


and used sites outside CAZ as ‘Control’ group, but as highlighted in the discussion, these areasmay also be have

been indirectly influenced byCAZ. The advantage of the synthetic controlmethod is that it creates control sites

fromunaffected regions (or other cities) tomirror the pre-CAZ trends, and thus provide amore accurate

baseline for comparison and enable amore robust casual inference.

Fourth, while Sheffield’s CAZdoes not charge private vehicles, the electrification of cars should not be

ignored. As of August 2025 it is estimated there are over 1.5million battery electric vehicles s on theUK roads

[47]. These vehicles do not emit exhaust gases such asCO andNO2, but they do emit particulatematter [48].We

have discussed in this research the changes in traffic volumes andnumber of compliant vehicles, but future work

could also analyse the changes in the number of private EVs or other vehicle types on the road, and the impact of

this on air pollution. For example, sensors with AutomaticNumber-Plate Recognition (ANPR) sowe can cross

correlate plate number withDVLA, so and could know the kind of vehicle passing the camera, including

engine type.

Fifth, future studies can take a comparative approach by examining other cities’CAZor low-emission zone

to assess their impact, providing additional insights, such aswhy someCAZs appearmore effective than others,

andwhat factors drive success. It would also be interesting to compare the results of different classes of CAZs.

Acknowledgments

Thiswork is supported by Engineering andPhysical Sciences ResearchCouncil, UKResearch and Innovation

(EP/R013411/1).

Data availability statement

The data that support thefindings of this study are openly available at the followingURL/DOI: https://github.

com/harryckh/Sheffield-CAZ, https://anonymous.4open.science/r/Sheffield-CAZ-Analysis.

Appendix

A.1. AQ site locations

Figure A1 shows themap of chosen sites forNO2 and PM2.5. HS1 andDG1were both locatedwithin theCAZ

andwithin 200 mof each other, while all other sensors were outside and locatedmore sparsely.

Sensors from three families were used,DEFRA, SUFO and Luftdaten (also called Sensor. Community).

DEFRA and SUFOhave been discussed previously, and Luftdaten is a community sensor network that allows

anyone to purchase a simple AQmonitoring kit. Thismeans the network has over 9000 sensors globally

(About Sensor.Community, n.d.).

Only one site was provided sufficient data for the entire analysis period. To ensure this sensor was a suitable

representation of the air quality within theCAZ, this sensor was compared to other sensors. These alternate

sensors presented data up toMarch 2023.

Figure A2 presents boxplots showing the distribution of themean daily concentration for the sensors within

theCAZ. These boxplots are based on a period of 1 year Pre-CAZ. It shows thatDG1, our primary site, have

readings fall into the range of typical values among the sensors.

We conducted further analysis on the representativeness ofDG1 for the air quality within theCAZ, focusing

on the pre-CAZperiod fromFebruary 2022 to February 2023, duringwhichmore sensor datawere available.

Table A1 lists 10 sensors locatedwithin theCAZ and threemetrics:

• %DataAvailable:The proportion ofNO2 readings recorded by the sensor.

• Correlation coefficientwith dailymean:Wefirst calculate the overall dailymeanNO2 concentration, and

thenmeasure the correlation between the site’s daily readings and the overall dailymean. A higher value

indicates stronger alignment with the overall trend and thus better representativeness.

• MAE:Wecalculate theMeanAbsolute Error between the site’s dailyNO2 readings and the corresponding

overall dailymean, reflecting the average size of deviation. A lower value indicates smaller deviation and thus

better representativeness.
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Figure A1. Location of all identifiedAQ sites reportingNO2, PM2.5 of both.Map data fromopenstreetmap.

Figure A2.Boxplots showing pre-CAZNO2 concentration for the 10 sites within theCAZ.
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DG1 recorded the fourth highest NO2 concentration among the ten sensors, showed amoderate correlation

with the dailymean, and a reasonableMAE,making it to be a reasonable representative of air quality within

theCAZ.

A.2.Weather normalisation

Weather normalisation is a process of removing the effect of weather conditions on air pollution concentrations.

Weather plays a crucial role in the formation, transport and deposition of air pollution (Ceballos-Santos et al

2021), potentiallymasking fluctuations in pollutant concentration. This can result in the effectiveness of an

intervention being obscured by thewider conditions.

Variousmethods exist to performweather normalisation, but eachmethod functions similarly.Models are

developed to usemeteorological variables to explain variation in the pollutant concentration. Ceballos-Santos

et al (2021) andMa et al (2021) performed this process using boosted regression trees, while Grange et al (2018)

used a random forestmodel. Following this workGrange developed a package for theweather normalisation of

air pollution, named rmweather.

This package allows a user to provide air pollution andmeteorological variables and quickly de-weather the

data. The package develops 300 decision trees with each tree using an 80/20 split of training to test data. Each

tree then develops its ownmodel to predict the pollutant concentration given themeteorological conditions.

This is applied to each observationwith the de-weathered pollutant concentration calculated through aggregate

voting, taking themean of all decision trees. A Tibblewith the timestamp and de-weather pollutant

concentrationwas returned. This packagewas observed in the literature, used by Liu et al (2023)when analysing

the effectiveness of the BirminghamCAZ among other uses in air-pollution research (Lin et al 2022; Lv et al

2022; Yao andZhang, 2024).

Since this package usedR, a conversion between Python andRwas required using the rpy2 library. This

allowed for bothR and Python to be accessed and convertedwithin the same Jupyter notebook. Themerged data

containing air pollution andmeteorological variables was converted from aPandasDF to anRDF, theweather

normalisation performed, then the output converted back into a PandasDF.

Themeteorological variables used to performweather normalisationwerewind speed, wind direction and

ambient temperature. Additional variables relevant to the formation and dispersion of pollutants such as

pressure and relative humidity were not available for the selected sensors through data retrieved fromDEFRA.

Figure A3 presents a scatter plot of the observed against predictedmean daily concentration for eitherNO2

or PM2.5, alongside the R
2 for the sixweather normalisationmodels.

[17] found theirmodel performedwith between 30%and 90%agreement depending on the pollutant and

site location. Themodels developed in this paper present R2 in the range of 38% to 75%,within those observed

by [17], but withmarginally lower performance. The lower performancemay be due to the number of weather

variables used, and futurework could include additional variables, but the performance of theweather

normalisationmodels are still suitable for use in further analysis.

A.3. Traffic data description

A.3.1. Primary sites

Traffic sites were initially selected for areas surrounding the primary AQ sensors. A 0.5 km radiuswas considered

and the traffic data surrounding the sites assessed. Figure A4 shows the number of traffic sites identified in

relation toDG1.

Nine sensors were identifiedwithin 0.5 kmof this site. Their data between February 2022 and June 2024was

downloaded. Figure A5 shows the traffic flowperminute for the sensors surrounding this site with theCAZ

introduction shown as a vertical line and shading denoting 12 and 24monthwindows surrounding this date.

TableA1. Site IDs, locations and representativeness study for sites within theCAZ from 27/02/2022 to 27/02/2023.

Site ID SiteName %Data Available NO2MeanConcentr-ation CorrelationCoefficient withDailyMean MAE

DG1 DevonshireGreen 98.47% 17.31 0.590 6.095

RS1 Regent Street 47.30% 17.87 0.571 4.171

LR1 Leavygreave Road 21.60% 16.93 0.838 2.841

GS1 Gell Street 23.83% 12.36 0.322 3.320

UT1 UoSTramStop 18.78% 14.34 0.149 3.806

US1 University Square 10.92% 17.98 0.005 4.776

BH1 BrookHill 18.31% 13.80 0.755 9.720

BL1 Broad Lane 30.40% 13.70 0.320 6.908

SL1 Surrey Lane 18.31% 18.72 0.703 4.003

HS1 Hannover Street 41.08% 8.86 0.472 6.879
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Figure A3.Weather normalisationmodel performancewith scatter plots showing the observed versus predicted pollutant
concentrations (meanmonthly).

Figure A4.Map showing the locations of traffic sites identifiedwithin 0.5 kmof primary sites DG1.Map data fromOpenStreetMap.
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Themissing number of values for each site was also calculated. As seen infigure A5, DET002 presented the

highest number ofmissing values at 86.81%of all data. Sensors with a high proportion ofmissing values (>10%)

were removed fromanalysis. The sensors removed from analysis wereDET002,DET003 and 1YRD3.

The same process was conducted for BR0,figure A6 shows the traffic sites surrounding this AQ sensor. There

were only four traffic sensors within 0.5 kmof BR0 (note that the AQ sensor is obscured by the label for 1BND2

on the abovemap). Figure A7 shows the sensor-read flow for each of these sites. The largest proportion of

missing values for these sensors was 2.34%, however as can be seen infigure A7, 1BUD1 presented valuesmuch

Figure A5. Sensor-Read Traffic Flow for the nine traffic sites surroundingDG1with theCAZ introduction shown as a vertical line and
shaded regions representing 12 and 24month spans.

Figure A6.Map showing the locations of traffic sites identifiedwithin 0.5 kmof primary site BR0.Map data fromOpenStreetMap.
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lowerwhen compared to its sensor pair 1BUD2. This raised concerns regarding sensor calibration and thus

1BUD2was removed from further analysis. Therefore, three sensors were used for this site.

Therewere no traffic sensors within 0.5 kmof the TN0 site, the searchwaswidened to 1 km andfigure A8

shows the traffic sensors identified. Therewere 16 sensors identifiedwithin 1 kmof this site with themajority of

Figure A7.Traffic Flow for the four traffic sites surrounding BR0with the CAZ introduction shown as a vertical line and shaded
regions representing 12 and 24month spans.

Figure A8.Map showing the locations of traffic sites identifiedwithin 1 kmof primary site TN0.Map data fromOpenStreetMap.
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sensors surroundingMeadowhall Shopping Centre and its connections to theM1. Figure A9 shows the sensor-

readflows for the 16 sensors. The largest number ofmissing valueswas 3.22% therefore no sensors were

removed from further analysis resulting in 16 sensors being included.

A.3.2. Accessing spillover

Traffic sites surrounding theCAZwere used to assess spillover. Figure A10 shows 39 identified sites. Of those, 33

sites were used to evaluate if spatial spillover had occurred due to theCAZwith six removed due to a large

number ofmissing values or poor data quality. Similar to the traffic surrounding PrimaryAQ sites, the total

number of cars per daywas calculated andWilcoxon signed-rank tests were used to determine if the CAZ

significantly changed traffic volumes surrounding theCAZ (see appendix for plots showing trafficflows).

A.4. Air quality histograms

Figures A11 andA12 show the distribution of AQdata for all sites. As can be seen the datawas skewed, therefore,

median imputationwas used to handlemissing values.

Themean daily pollutant concentrationwas then calculated for each site and pollutant. Themean daily

concentration can be seen for the primary sites infigure A13 and secondary sites infigure A14. Secondary sites

CB0 and EC0only provided data for sixmonths, hence the large gap between data points shown infigure A6.

Figures A15 andA16 present descriptive statistics formean daily concentration ofNO2 and PM2.5 for both

primary and secondary AQ sites pre-normalisation.

Figure A9.Traffic Flow for the sixteen traffic sites surrounding TN0with theCAZ introduction shown as a vertical line and shaded
regions representing 12 and 24month spans.
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Figure A10.Map showing the traffic sensors located outside theCAZ, butwithin proximity to theCity Centre used to evaluate
spillover.Map data fromOpenStreetMap.

Figure A11.Histogram showing the distribution of sensor-readNO2 and PM2.5 concentrations for Primary AQSites.
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Figure A13.Mean daily concentrations ofNO2 and PM2.5 for primary AQ sites with theCAZ introduction and 12 and 24month
windows annotated.

Figure A12.Histogram showing the distribution of sensor-readNO2 and PM2.5 concentrations for Secondary AQSites.
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Figure A14.Mean daily concentrations ofNO2 and PM2.5 for secondary AQ sites with the CAZ introduction and 12 and 24month
windows annotated.

Figure A15.Boxplots showing the pre-normalisedNO2 and PM2.5 concentrations for primary sites.

Figure A16.Boxplots showing the pre-normalisedNO2 and PM2.5 concentrations for secondary sites.
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A.5. Spillover full results

Figures A17 andA18 show the sensor-read trafficflow for the 39 sites initially assessed for spillover analysis. Of

these sites, the six that were removedwere [SCC]1FBD1, [SCC]1FGD2, [SCC]1FJD1, [SCC]1AAD1, [SCC]

1VAD2, [SCC]1VFD1 leaving 26 sites for further analysis. Threewere removed for not providing data in the

analysis period, with [SCC]1AAD1 ,[SCC]1VAD2 and [SCC]1VFD1 removed for their large gaps ofmissing

values.

For each of the sites, below table A2 containing theWilcoxon Signed RankTest outcome for the 33 sites used

in spillover analysis. Of those, 14 showed a significant decrease, and only 5 a significant increase, resulting in only

5 out of the 33 sensors (16%) showing a significant increase in traffic post-CAZ. This therefore suggests therewas

no evidence of negative spatial spillover caused by theCAZ.

Figure A17.Traffic Flow for 20 out of the 36 Traffic sensors identified for spillover analysis.
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Figure A18.Traffic Flow for the remaining 16 out of the 36Traffic sensors identified for spillover analysis.

Table A2.Wilcoxon signed rank test for each traffic sensor used in spillover
analysis.

Site Test statistic p-value <0.05

Median

difference

[SCC]1BCD1 24436.5 8.9E-06 Yes −200

[SCC]1BCD2 20255 7.25E-11 Yes −656.8

[SCC]1BCD3 22192.5 2.78E-08 Yes −200.8

[SCC]1BDD1 32477.5 0.648327 No 4

[SCC]1BDD2 32468.5 0.645122 No 5.6

[SCC]1FAD1 33095.5 0.880989 No 24

[SCC]1FAD2 31245 0.285929 No 46.4

[SCC]1FAD3 32477 0.648149 No 17.94286

[SCC]1FCD1 23124 3.52E-07 Yes −266.4

[SCC]1FCD2 23394.5 7.09E-07 Yes −106.4

[SCC]1FCD3 30243 0.117857 No 262.4

[SCC]1FFD1 20735 3.44E-10 Yes 308.8

[SCC]1FFD2 26047.5 0.000269 Yes 177.6

[SCC]1FGD1 30200.5 0.112988 No 64.8

[SCC]1FJD2 20196 5.97E-11 Yes −701.6

[SCC]1FKD1 17016.5 4.63E-16 Yes −383.2

[SCC]1GBD1 33179 0.913741 No 178.4

[SCC]1GBD2 31229 0.282363 No −275.2

[SCC]1GBD3 31093 0.253268 No −87.2

[SCC]1GCD1 25119.5 4.06E-05 Yes 219.2

[SCC]1QFD1 17061 5.55E-16 Yes −935.657

[SCC]1QHD1 14126.5 1.25E-21 Yes −794.4

[SCC]1QID1 20287.5 8.07E-11 Yes −321.143

[SCC]1VAD1 26432.5 0.000735 Yes −277.6

[SCC]1VAD3 28613.5 0.017709 Yes −344

[SCC]1VBD1 32991 0.840291 No 83.2

[SCC]1VBD2 30649.5 0.173099 No −93.6
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