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Abstract. Audiovisual active speaker detection (ASD) in egocentric
recordings is challenged by frequent occlusions, motion blur, and au-
dio interference, which undermine the discernability of temporal syn-
chrony between lip movement and speech. Traditional synchronisation-
based systems perform well under clean conditions but degrade sharply
in őrst-person recordings. Conversely, face-voice association (FVA)-based
methods forgo synchronisation modelling in favour of cross-modal bio-
metric matching, exhibiting robustness to transient visual corruption
but suffering when overlapping speech or front-end segmentation errors
occur. In this paper, a simple yet effective ensemble approach is pro-
posed to fuse synchronisation-dependent and synchronisation-agnostic
model outputs via weighted averaging, thereby harnessing complemen-
tary cues without introducing complex fusion architectures. A reőned
preprocessing pipeline for the FVA-based component is also introduced
to optimise ensemble integration. Experiments on the Ego4D-AVD vali-
dation set demonstrate that the ensemble attains 70.2% and 66.7% mean
Average Precision (mAP) with TalkNet and Light-ASD backbones, re-
spectively. A qualitative analysis stratiőed by face image quality and
utterance masking prevalence further substantiates the complementary
strengths of each component.

Keywords: Face-voice association, Audiovisual active speaker detec-
tion, egocentric recordings

1 Introduction

Audiovisual active speaker detection (ASD) involves identifying the framewise
speaking activity of a candidate speaker through the joint analysis of audio sig-
nals and temporally aligned face tracks [2,11,14,20,22,27,30]. Traditional ASD
systems rely on modelling the temporal correspondence between speech in the
audio signal and visual speech-related cuesÐsuch as lip movement or cheek pos-
ture [11]Ðin the candidate speaker’s face track. These synchronisation-based
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approaches assume audiovisual alignment as a prerequisite for detecting speech
activity; this assumption dominates modern methods [22,24,30,33]. Extensions
to this framework incorporate contextual cues pertaining to inter-speaker rela-
tionships [21, 24] and latent information describing the audible context of each
scene [9], these extensions help to address multi-talker scenarios and environmen-
tal noise, respectively. However, such methods remain fundamentally contingent
on the discernibility of audiovisual synchrony, resulting in these approaches still
being vulnerable to the challenges posed in egocentric settings [10,15].

In egocentric recordings, e.g. captured by head-worn recording devices, such
as smart or augmented reality (AR) glasses, synchronisation-based ASD perfor-
mance deteriorates signiőcantly when compared to their performance on exo-
centric benchmarks [27]. This is largely attributed to the prevalence of visual
occlusions, motion blur, and audio interference from overlapping speech or en-
vironmental noise [9, 10, 15, 17, 18, 33], all of which are common challenges in
egocentric data. Since sychronisation-based methods require sustained discern-
able audiovisual cues, these challenges signiőcantly degrade their performance.

To circumvent these limitations, recent work by the authors of this paper has
explored using face-voice association (FVA) for the task of ASD, as exempliőed
by the Self-Lifting for Audiovisual Active Speaker Detection (SL-ASD) archi-
tecture [3]. Generally, FVA [7, 25, 28, 34] concerns the task of attributing pre-
segmented speaker-invariant utterances to visible identities using cross-modal
biometric information rather than temporal alignment. The SL-ASD architec-
ture [3] builds upon this concept by adapting FVA [7] for ASD. This type of
approach identiőes and leverages transient high-quality facial frames to estab-
lish robust voice-face mappings, bypassing the need for őne-grained audiovisual
cues being consistently discernable. Prior work [3] has demonstrated robust per-
formance in the context of egocentric recordings achieving mAP scores close
to the state-of-the-art despite using signiőcantly less learnable parameters, ex-
clusively for the task of ASD. However, it has been observed [3] that solely
relying on face-voice associations introduces two main limitations: face-voice as-
sociations falter during speaker-variant utterances (i.e. overlapping speech), and
missed speech detections by the speaker-invariant front-end are harshly penalised
when the pipeline is evaluated for ASD, holistically. These shortfalls are distinct
to the limitations of synchronisation-based methods which struggle more with
visual degradation but typically have good recall when the speech signal is audi-
ble [9,10,19]. By leveraging the complementary strengths of these two paradigms,
this work extends the existing SL-ASD approach [3] and proposes a simple yet ef-
fective ensemble approach that combines the beneőts of synchronisation-agnostic
(i.e. FVA-based) and synchronisation-dependent methods of ASD.

More precisely, the presented system integrates two symbiotic components as
an ensemble: (i) a synchronisation-based model that captures temporal audiovi-
sual correspondence [22,30], and (ii) a speaker-invariant segmentation front-end
paired with a FVA module, derived from prior work [3] but with reőnements
for enhanced ensemble performance. The proposed ensemble aggregates output
probability sequences from both systems, via weighted averaging, which miti-
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gates each component’s divergent failure modes. Although the ensemble mecha-
nism is architecturally lightweightÐrequiring only a weighted mean fusion of two
probability streamsÐits empirical efficacy demonstrates that synergistic modal-
ity insights can be leveraged without complex cross-model attention or gating
networks. This simplicity encourages easier deployment on resource-constrained
wearable devices.

Contributions:

1. A lightweight late-fusion ensemble method for ASD that combines synchro-
nisation-based and FVA-based models, improving robustness under visual
occlusion and audible noise.

2. A reőned preprocessing pipeline for SL-ASD to optimise ensemble perfor-
mance.

3. Empirical validation on Ego4D-AVD: the ensemble achieves 70.2% and 66.7%
mAP for two synchronisation-based components (TalkNet and Light-ASD),
marking a new state-of-the-art in the domain of egocentric ASD.

4. Qualitative analysis of performance including granular evaluations strati-
őed by Face Image Quality Assessment (FIQA) and randomised utterance
masking prevalence to demonstrate the vulnerabilities and strengths of each
component of the ensemble.

2 Methodology

This section őrst provides a brief overview of the typical single-candidate syn-
chronisation-based paradigm used for ASD in Section 2.1, and then describes
the FVA-based approach to ASD used by this work in Section 2.2. Finally, the
details of the proposed ensemble method, which effectively combines the two
synergistic approaches, are presented in Section 2.3.

2.1 Synchronisation-based Approach to Active Speaker Detection

Conventional single-candidate ASD systems operate by assessing the temporal
alignment between cues indicative of speech in a given face track signal and the
concurrent audio signal as illustrated in Figure 1.

A face track VS = {VS,1, . . . ,VS,T } is deőned as a sequence of T contiguous
bounding box face crops VS,t ∈ R

H×W of height H and width W , centred on a
single candidate speaker S and the concurrent audio signal is deőned as a vector
of TA waveform samples a ∈ R

TA (note that TA differs from T due to frame rate
differences in audio and video modalities).

First, an audio encoder processes the audio signal a, and a video encoder
processes face tracks VS , each producing an embedding with shared dimen-
sions. Speciőcally, the audio branch yields FA ∈ R

T×d and the video branch
yields FV ∈ R

T×d, where d is the embedding dimension of the respective en-
coders. These two embeddings are then fused to create a single multimodal rep-
resentation FAV. Common fusion operations include channel-wise concatenation,
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Fig. 1. Typical synchronisation-based single-candidate approach to ASD [22,30].

element-wise summation [22], or attention-based weighting [30]. Regardless, FAV

encodes both audio and visual information at each video-frame.
Finally, a temporal decoder (e.g. a lightweight transformer or temporal con-

volutional network) is applied along the T dimension of FAV to model longer-
range dependencies in speech activity. A frame-wise classiőcation head then
produces probabilities indicating whether the candidate is active at each video-
frame. This pipelineÐembodied by architectures such as TalkNet [30] and Light-
ASD [22]Ðrelies fundamentally on audiovisual synchrony, requiring high-quality
lip motion and clean audio to be consistently available for accurate detection.

2.2 Face-Voice Association for Active Speaker Detection

The faceśvoice association approach to ASD replaces the need for explicit au-
diovisual synchronisation-based modelling by leveraging cross-modal biometric
correspondence. This paper follows prior work, speciőcally the SL-ASD architec-
ture [3], but deviates in terms of preprocessing implementation which has been
optimised by this study for the ensemble approach described in Section 2.3.
Hence, the method proposed here will be denoted as SL-ASD†, which is outlined
as follows.

Front-end Segmentation and Embedding Let C denote the set of video
clips in a given dataset. First, an off-the-shelf speaker-diarisation front-end [4]
is applied to the audio signal ac of each clip c, segmenting each clip into a
set of speaker-invariant utterances. Each utterance uc,i is then embedded by a
pretrained speaker-recognition model [12] yielding an embedding u′

c,i ∈ R
dS for

all utterances, where dS is the embedding dimension of the speaker recognition
model. Collectively, these embeddings form U ′ =

{

u′
c,i | c ∈ C, i = 1, . . . , Nc

}

,
where Nc is the number of utterances in clip c. For this segmentation, the Pyan-
note Audio diarisation model [4] is used because of its robust performance in the
task of audio-only diarisation [32].

Additionally, every face-crop image VS,T in the dataset is embedded by a pre-
trained face-recognition model [29] yielding a hierarchical set of face-recognition
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embeddings X =
{

Xc,s | s ∈ Sc, c ∈ C
}

, where each matrix
Xc,s = [xc,s,1,xc,s,1, ...,xc,s,Tc,s

] contains face embedding vectors per speaker
s in clip c and different Xc,s may be of different size due to variability of frames
Tc,s per clip and speaker. Sc is the set of visible identities in clip c, and Tc,s is
the number of frames for identity s in clip c.

Self-Lifting for Active Speaker Detection During training, the audio com-
ponent of each batch consists of several speaker-embeddings u′

c,i sampled from
U ′ ensuring each utterance was taken from the same clip and spoken by the same
identity (as per groundtruth annotation). During inference, since groundtruth
annotation for utterance identity is not available, the audio component of each
batch is simply a single speaker embedding. For both training and inference,
the visual component of each batch comprises

{

Xc,s | ∀s ∈ Sc,
}

, where c refers
to the clip from which the speaker embedding(s) in the audio component of the
batch were taken from. Each component of the batch is then fed through the rel-
evant branch of the pretrained Self-Lifting [3] model, resulting in U′′ ∈ R

Nu×d

and X′
c ∈ R

|Sc|×(maxs∈Sc
Tc,s)×d, from the audio and visual branches, respec-

tively. Here, Nu denotes the number of utterances in the audio component of
the batch, which is set to 1 during inference. To account for variable visual
qualityÐcommon in egocentric footageÐa lightweight transformer encoder is
applied over each sequence dimension (frame dimension) for each visible iden-
tity in X′

c. Through its self-attention mechanism, low-quality frames (e.g. blurred
or occluded) are down-weighted, and the resulting sequence is mean-pooled to
produce a single quality-aware face-recognition embedding for each identity in
the visible component of the batch, resulting in X′′

c ∈ R
|Sc|×1×d.

Finally, cross-modal association scores are computed by measuring similarity
between the embedded utterance and each aggregated face-recognition embed-
ding in the video component of the processed batch, as illustrated in Figure 2.
Speciőcally, scaled dot-product cross-attention is used to produce a matching
probability that a given utterance was spoken by each visible identity. This pure
faceśvoice association pipeline thus attributes each speech segment to the most
likely visible identity, relying only on biometric consistency rather than audio-
visual synchrony.

2.3 Ensembling Synchronisation-Based and FVA-based Approaches

to Audiovisual Active Speaker Detection

While synchronisation-based (cf. Section 2.1) and FVA-based approaches (cf. Sec-
tion 2.2) offer complementary strengths, each exhibits vulnerabilities under chal-
lenging audiovisual conditions when used in isolation. To mitigate these lim-
itations, an ensemble strategy is employed which fuses predictions from both
paradigms by averaging their respective probability sequences.

Let psync ∈ [0, 1]T denote the frame-level speaking probabilities predicted
by a synchronisation-based model for a given face track. Let passoc ∈ [0, 1]T

denote the probability sequence derived from the FVA-based model for the same
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Fig. 2. SL-ASD† framework. Colours indicate modality. Bars adjacent to faces on the
right indicate probability of a face-voice match.

hypothesis track as in psync. Forming passoc is acheived by projecting the face-
voice matching probability uniformly across all concurrent frames in each face
track that temporally overlaps with the given utterance. The őnal ensemble
prediction pens is then computed via framewise weighted mean averaging, where
α is a mixing coefficient determined empirically:

pens = αpsync + (1− α)passoc. (1)

This late-fusion scheme requires no additional training and yields a probability
sequence that integrates both dynamic synchronisation cues and cross-modal
biometric consistency. The resulting ensemble consistently outperforms either
constituent method when used in isolation, particularly in scenarios with de-
graded visual quality or non-frontal faces (cf.Section 4.1).

3 Experiments

This section brieŕy introduces the egocentric Ego4D dataset used in this work in
Section 3.1, the implementation details in Section 3.2, and the evaluation metrics
used throughout in Section 3.3.

3.1 Ego4D Dataset for Egocentric Audiovisual Diarisation

The Ego4D dataset [15] comprises egocentric video recordings, totalling 572
unique clips each lasting őve minutes in duration, some of which were captured
simultaneously. The data was obtained using various wearable devices using
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1080p video. The audio signals are standardised to a single-channel in 16 kHz
format. Video-frames were recorded at 30 Hz. The dataset reŕects real-world
conditions ś featuring ŕuctuating lighting, frequent occlusions, and continuously
changing viewpoints ś making it a particularly demanding testing scenario for
ASD. Ego4D-AVD is divided into three non-overlapping folds: 379 clips for train-
ing, 50 for validation, and 133 for testing. Because test labels are withheld, the
original training set was further split by this work into 110 clips for model
training and 23 for development, preserving the reserved validation set for őnal
evaluation. Splits were created to ensure that no individual appears in more than
one fold.

3.2 Implementation Details

Synchronisation-Based Models For this component of the ensemble two
different ASD systems were used as baselines, namely TalkNet [30] and Light-
ASD [22]. These architectures were implemented under the exact conőgurations
and hyperparameters speciőed in their original manuscripts apart from the train-
ing duration. Each model was trained independently 10 times for 30 epochs, and
the checkpoint achieving the best performance on the development-set of Ego4D
was selected. Finally, the selected checkpoints were employed to generate the
synchronisation-based predictions incorporated into the ensemble.

Self-Lifting for Audiovisual Active Speaker Detection The SL-ASD† im-
plementation was similar to that described in [3]. Speciőcally, the front-end utter-
ance segmentation was performed on a clipwise basis using the Pyannote.audio-
speaker-diarization-3.1 system [4] to extract speaker-invariant utterances. Speaker-
recognition embeddings were obtained from these utterances using the ECAPA-
TDNN [12] model, pretrained on VoxCeleb2 [8]. Face-recognition embeddings
were extracted from all face-track frames in the dataset via Inception-V1 [29]
pretrained on VGG-Face2 [5]. For őnetuning of the Self-Lifting audio and video
encoder branches, the model was instantiated with the implementation described
in its original manuscript [7], except the number of cluster centroids, which was
reduced to 50 to better reŕect the number of distinct identities present in Ego4D.
In the ASD adaptation (SL-ASD [3]), all original framework parameters were
frozen, and only the transformer encoder, the cross-attention module, and the
feed-forward layer were trained explicitly for ASD (cf. Figure 2). During train-
ing, each batch’s audio component comprised all utterances for a single clipwise
identity, while its video component included all face-track frames for every vis-
ible identity in the clip; during validation and inference, the audio component
was limited to single utterances. Optimisation was carried out using Adam with
an initial learning rate of 1 × 10−5, decayed by a factor of 0.2 every 5 epochs,
and a single transformer layer with four attention heads was employed for both
the encoder and cross-attention.

Face Quality Assessment To perform a granular evaluation of the various ap-
proaches to ASD considered by this work (cf. Section 4.2), a method to quantify
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the visual quality of the frames in each face-track was employed. In analogy to the
well-established domain of Face Image Quality Assessment (FIQA) [16, 23, 31],
the per-frame recognisability of the candidate speaker was inferred via the con-
ődence score produced by the pretrained Multi-task Cascaded Convolutional
Neural Network (MTCNN) face detector [35]. Speciőcally, every cropped face
image in a groundtruth track was passed through MTCNN, and the resulting
detection probabilities were recorded. These per-frame scores were then averaged
to yield a single, track-level quality metric.

3.3 Evaluation Metrics

For holistic evaluation, each system is evaluated for ASD using the Cartucho
object detection mAP metric [6], which is in alignment with the mAP protocol
established by the PASCAL VOC2012 challenge [13]. This evaluation strategy
is consistent with the framework adopted by the Ego4D audiovisual diarization
challenge [15] and is widely employed in recent ASD research [9, 10]. Owing to
the absence of ground truth annotations for the test folds in Ego4D, all results
are reported on its validation folds, in accordance with prevailing conventions
in the literature [1,2, 9,20,24,33]. The validation fold is exclusively reserved for
testing purposes and are not used during model development. For the evaluations
presented in Section 4.2, the problem is reformulated as a binary classiőcation
task, with metrics computed using the scikit-learn [26] implementation of average
precision.

4 Results

4.1 Comparison with State-of-the-Art Methods

To assess the efficacy of the proposed ensemble, its performance is evaluated
holistically against leading ASD systems. Table 1 summarises mAP and param-
eter counts for each method on the validation fold of the Ego4D-AVD benchmark.

When fused via weighted averaging, the synchronisation-based TalkNet model
in conjunction with the faceśvoice association-based SL-ASD† model yield a
combined mAP of 70.2%, outperforming both individual baselines (TalkNet:
51.0%; SL-ASD: 60.7%) by a substantial margin. Crucially, this gain cannot be
attributed merely to increased model capacity. This is illustrated by compar-
ing the performance of an ensemble of two synchronisation-based approaches
(TalkNet + Light-ASD) of 64.1% with that of Light-ASD + SL-ASD† of 66.7%.
While the former yields a signiőcant improvement over its respective baselines, it
still exhibits weaker performance than the latter, despite requiring signiőcantly
more learnable parameters. This indicates that combining synchronisation-based
approaches with FVA-based approaches leverages truly complementary cues.

Moreover, the TalkNet + SL-ASD† ensemble establishes a new state of the
art, surpassing the recent LoCoNet [33] model by 1.8% absolute mAP while us-
ing fewer than half of its learnable parameters exclusively dedicated to ASD.
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Table 1. Comparison with state-of-the-art ASD systems on the validation fold of
Ego4D.łASD Params. [M]" denotes the number of learnable-parameters each sys-
tem uses exclusively for the task of ASD. All values are taken from published liter-
ature except ensemble approaches. SL-ASD† indicates the modiőed implementation of
SL-ASD [3] used by this work.

Model Ensemble mAP [%] ASD Params. [M]

TalkNet [15] ✗ 51.0 15.1
Light ASD [10] ✗ 54.3 1.0

SL-ASD [3] ✗ 59.7 0.4
SPELL [18] ✗ 60.7 >22.5

LoCoNet [33] ✗ 68.4 33.5

Light ASD + TalkNet ✓ 64.1 16.1
Light ASD + SL-ASD† ✓ 67.1 1.4
TalkNet+SL-ASD† ✓ 70.2 15.5

This demonstrates that simple late fusion of heterogeneous ASD paradigms can
yield superior accuracy-efficiency trade-offs compared to monolithic architec-
tures, even those that effectively leverage contextual information.

4.2 Qualitative Analysis

To further investigate the hypothesis that FVA-based models leverage informa-
tion complementary to that of synchronisation-based approaches, a stratiőed
evaluation was conducted. Face tracks were grouped into discrete bins based on
their average face quality scores, enabling a detailed analysis of model perfor-
mance under varying degrees of visual degradation, including factors such as
blur, occlusion, and suboptimal lighting conditions.

The results of this evaluation, shown in Figure 3, reveal that synchronisation-
based models, as speculated [3,9,10], exhibit a signiőcant decline in performance
as face quality deteriorates. This sensitivity is attributed to their reliance on pre-
cise visual cuesÐparticularly lip movements and cheek posture [11]Ðthat must
be consistently discernible throughout the duration of the face track. In contrast,
the FVA-based model, SL-ASD†, demonstrates a more stable performance across
all quality bins. Its robustness stems from the ability to identify and utilise even
a limited number of high-quality frames within a sequence. The transformer en-
coder within SL-ASD† effectively down-weights low-quality frames and empha-
sizes those that are most informative for identity recognition. This mechanism
allows the model to maintain reliable speaker attribution despite transient visual
distortions.

Conversely, Figure 4 conveys the effect of audio degradation on each ap-
proach. As the probability of randomised utterance masking is increased, only a
modest reduction in average precision is exhibited by the synchronisation-based
model, owing to its ability to leverage cross-modal information, in this case video,
when the audio is obscured. By contrast, a steeper decline is observed for the
faceśvoice associationśbased SL-ASD†, since uninterrupted utterance segments
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Fig. 3. Comparison of synchronisation-based (TalkNet [30] pink bar), FVA-based
(SL-ASD [3], green bar), and ensemble-based (blue bar) approaches to ASD, evalu-
ated on strata of equal size (each comprising tracks with similar average face quality
scores). Lower face quality scores indicate tracks with greater visual distortion or oc-
clusion. Irregular face quality score incrementation is due to a non-uniform distribution
of trackwise visual quality.

are required by its speaker-invariant front-end for robust speaker embedding ex-
traction. Crucially, higher overall performance across all masking levels is main-
tained by the ensemble approach, which leverages both streams to compensate
for audio distortions that would otherwise impair faceśvoice association. These
őndings further substantiate that synchrony-dependent and synchrony-agnostic
paradigms leverage complementary information for ASD.

Fig. 4. Comparison of three approaches to ASD on the Ego4D validation set:
synchronisation-based (TalkNet [30], pink bar), FVA-based (SL-ASD [3], green bar),
and ensemble-based (blue bar) methods. The evaluation is performed with randomised
masking applied speciőcally to utterance regions within the audio signals, simulating
various levels of audio signal degradation.
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5 Conclusion

In this work, a lightweight late-fusion ensemble for ASD was proposed, combin-
ing synchronisation-based and FVAśbased models to enhance robustness under
visual occlusion and audio interference. The preprocessing pipeline of SL-ASD
was reőned to optimise its integration within the ensemble, leading to consis-
tent performance gains. Empirical validation on the Ego4D-AVD validation set
demonstrated that the ensemble attains 70.2% and 66.7% mAP when paired with
TalkNet and Light-ASD backbones, respectivelyÐestablishing a new state-of-
the-art in ASD. Finally, a qualitative analysis stratiőed by face quality and utter-
ance masking prevalence was conducted, revealing the complementary strengths
and failure modes of each model component. Collectively, these őndings substan-
tiate that simple yet principled fusion of synchrony-dependent and synchrony-
agnostic streams can reliably mitigate modality-speciőc degradations in chal-
lenging egocentric scenarios.
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