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A B S T R A C T

We present a deployment strategy for a multi-agent system (MAS) with a chain topology, where

leader agents communicate and direct the system using controllers designed from a Partial Differential

Equation (PDE) model. Both the leader and follower agents implement a consensus protocol, resulting

in a system that can be modeled by a semilinear parabolic PDE. Based on this model, we design global

controllers that utilize the information available to the leader agents, who can assess their deviation

from the target position. By enhancing communication between the leaders, we achieve more accurate

state estimation, which improves the performance of the global controllers. Additionally, we introduce

a Wentzell-type boundary control, enabling the boundary agents to balance swarm cohesion with

the deployment objective. We establish sufficient conditions for successful deployment, expressed as

Linear Matrix Inequalities (LMIs). Numerical simulations show that the proposed global controllers

outperform those used by non-communicating leaders.

1. Introduction

A multi-agent system (MAS) involves multiple agents

working together to achieve specific goals, such as forma-

tion control, fault detection, learning, security, and task

allocation [1]. The popular approach to modeling MAS

involves using graph theory to represent agent interactions

and ordinary differential equations (ODEs) to describe each

agent’s dynamics [2]. However, as the number of agents

increases, this method can lead to unmanageable system

representations and obscure system properties, resulting in

a scalability problem (see [3; 4], and Remark 2.4 in [5]).

Models that employ partial differential equations (PDEs)

can potentially resolve the scalability problem. It has long

been observed that biological swarms (flocks of birds,

schools of fish, and swarms of bees) resemble fluid-like

entities rather than discrete ones, suggesting the use of

continuum models for large-scale MAS [6; 7; 8; 9]. Since the

complexity of the continuum model does not depend on the

number of agents, they circumvent the scalability problem.

The control strategies for PDEs can be divided into

boundary and in-domain actuation. The backstepping-based

boundary controllers [10] have been adapted for MAS mod-

eled by Burgers-type PDEs [11], parabolic PDEs [12; 13;

14; 15], and hyperbolic PDEs [16; 17]. Other types of

boundary controllers were employed in [18] to ensure input-

to-state stability of the wave equation, in [19] to address

communication constraints in the 1D heat equation, and [21]

to achieve the finite-time deployment of large-scale hetero-

geneous MAS with semi-Markov switching dynamics. The

benefits of PDE-based modeling for MAS were emphasized

in [20] with a single boundary leader.
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Beyond boundary control, flatness-based motion plan-

ning was employed in [22] to achieve finite-time deployment

in MAS governed by nonlinear PDEs, distributed in-domain

control for dynamic average consensus was developed in

[23], and a neural network-based adaptive consensus scheme

was introduced in [24].

This paper adapts the in-domain control design for PDEs

to solve the deployment problem for MAS. We focus on a

MAS with a chain topology, where each agent knows its

current and desired positions relative to its nearest neigh-

bors. Using these local measurements, the agents imple-

ment a consensus protocol, leading to a system that can

be modeled by a semilinear diffusion PDE. This PDE may

exhibit instability, preventing the desired deployment. To

address this instability, [25] and [5] adapted the spatial

decomposition approach for in-domain PDE control, ini-

tially proposed by [26]. This approach uses leader agents

who possess additional information that the swarm uses to

obtain a piecewise constant state approximation for decision-

making. That strategy assumed no communication between

the leader agents.

This paper advances in-domain swarm deployment by

incorporating inter-leader communication, which enables a

more accurate approximation of the system state. To quan-

tify the benefits of this enhanced estimation, we derive two

bounds on the approximation error. The first bound recovers

the estimate presented in [25], albeit with a different proof

tailored to the piecewise linear approximation used by com-

municating leader agents. The second bound involves the

second-order spatial derivative and gives an error bound that

scales quadratically with the leader spacing. Consequently,

the proposed approach is theoretically guaranteed to perform

no worse than the method in [25], while offering potential

improvements under mild smoothness assumptions.

In addition to allowing for inter-leader communica-

tions, we improve the boundary control design by introduc-

ing Wentzell boundary conditions, which involve both the
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boundary value and its spatial derivative. In [25], dynamic

Dirichlet-type boundary conditions were causing boundary

agents to move aggressively toward the target. While this

leads to fast convergence at the boundary, it often breaks

coordination with interior agents, reducing swarm cohe-

sion. Our Wentzell-based boundary control avoids this by

maintaining smoother coupling between the boundary and

the interior, which preserves overall cohesion and improves

stability.

As a result of the above improvements, the presented

method achieves faster convergence of agents to the desired

target curve compared to [25], ensures that boundary leaders

move cohesively with the interior of the swarm to maintain

overall formation integrity, and reduces the number of leader

agents required to achieve successful deployment.

Notations: We use 𝑃 < 0 to denote that 𝑃 ∈ ℝ
𝑛×𝑛 is

a negative-definite symmetric matrix, with symmetric ele-

ments sometimes represented by “∗”. The Euclidean norm is

denoted by | ⋅ |, and the 𝐿2 norm by ‖ ⋅‖. The Sobolev space

𝐻1 is equipped with the norm ‖𝑓‖𝐻1 =
√‖𝑓‖2 + ‖𝑓 ′‖2.

Partial derivatives are indicated using indices, e.g., 𝜕𝑧∕𝜕𝑥 =

𝑧𝑥. The identity matrix of order 𝑛 is denoted by 𝐼𝑛.

1.1. Preliminaries
Lemma 1 (Poincaré’s inequality, [27]). If 𝑔 ∈ 𝐻1(0, 𝑙) is

such that ∫ 𝑙

0
𝑔(𝑥)𝑑𝑥 = 0, then ‖𝑔‖ ≤ 𝑙

𝜋
‖𝑔′‖.

Lemma 2 (Wirtinger’s inequality, [28]). If 𝑔 ∈ 𝐻1
0
(0, 𝑙),

then ‖𝑔‖ ≤ 𝑙

𝜋
‖𝑔′‖.

Lemmas 1 and 2 were used in [29] and [26] to bound

the error of the piecewise constant state approximation con-

structed using the averaged and point measurements. We will

use the following Lemma 3 to bound the error of a piecewise

linear approximation.

Lemma 3. If 𝑔 ∈ 𝐻2(0, 𝑙) with 𝑔(0) = 𝑔(𝑙) = 0, then

‖𝑔‖ ≤ 𝑙

𝜋
‖𝑔′‖ ≤ 𝑙2

𝜋2
‖𝑔′′‖.

Proof. Since 𝑔(0) = 0 = 𝑔(𝑙), Wirtinger’s inequality implies

‖𝑔‖ ≤ 𝑙

𝜋
‖𝑔′‖. Since ∫ 𝑙

0
𝑔′(𝑥)𝑑𝑥 = 𝑔(𝑙) − 𝑔(0) = 0,

Poincaré’s inequality gives

‖𝑔‖ ≤ 𝑙

𝜋
‖𝑔′‖ ≤ 𝑙2

𝜋2
‖𝑔′′‖.

2. PDE-based control design for a MAS

Consider a multi-agent system (MAS) with 𝑁+1 agents

in ℝ
𝑛 governed by

𝑧̇𝑖(𝑡) = 𝑓 (𝑡, 𝑧𝑖(𝑡))+𝑢𝑖(𝑡)+𝑣𝑖(𝑡), 𝑖 ∈  = {0, 1, ..., 𝑁}, (1)

where 𝑧𝑖 ∶ [0,∞) → ℝ
𝑛 are the states of agents and

𝑓 ∶ [0,∞) × ℝ
𝑛
→ ℝ

𝑛 describes the local dynamics. In

Section 2.1, we design local controllers, 𝑢𝑖 ∶ [0,∞] → ℝ
𝑛,

that keep the agents close to one another and make the MAS

amenable to PDE-based modelling. Then, in Section 2.2,

we employ the PDE model to design global controllers,

𝑣𝑖 ∶ [0,∞] → ℝ
𝑛, that guarantee the desired global be-

havior, which is the agent deployment onto a given curve

𝛾 ∈ 𝐶2([0, 1],ℝ𝑛), i.e., 𝑧𝑖(𝑡) → 𝛾𝑖 ∶= 𝛾(𝑖∕𝑁) as 𝑡 → ∞. We

solve the problem under the following assumptions:

A1. The function 𝑓 is differentiable with respect to 𝑧

and satisfies |𝑓𝑧(𝑡, 𝑧)| ≤ 𝐿 for some 𝐿 > 0. In

particular, 𝑓 is globally Lipschitz continuous in its

second argument.

A2. Each agent 𝑖 ∈ {1,… , 𝑁 − 1} measures its relative

positions to the two nearest neighbors, 𝑧𝑖(𝑡) − 𝑧𝑖−1(𝑡)

and 𝑧𝑖(𝑡) − 𝑧𝑖+1(𝑡), and knows its desired relative

positions, 𝛾𝑖− 𝛾𝑖−1 and 𝛾𝑖− 𝛾𝑖+1. The boundary agents

𝑖 = 0 and 𝑖 = 𝑁 know the current and desired relative

positions to the nearest neighbor 𝑖 = 1 and 𝑖 = 𝑁 −1.

All the agents know their local dynamics on the target

curve 𝑓 (𝑡, 𝛾𝑖).

A3. The leaders measure the differences between their

states and their target positions on the curve, 𝑧𝑖(𝑡)−𝛾𝑖.

Assumption A1 guarantees that the MAS can be de-

ployed using linear feedback with a large enough gain.

Assumption A2 implies that, if 𝑧𝑖−1(𝑡) = 𝛾𝑖−1 and 𝑧𝑖+1(𝑡) =

𝛾𝑖+1, then agent 𝑖 can reach 𝛾𝑖 without knowing its absolute

position. The agents also need to know 𝑓 (𝑡, 𝛾𝑖) to compensate

the local dynamics on the target curve. Assumption A3 is

needed to achieve the desired absolute position of the MAS.

2.1. Local Controllers Design
All but the boundary agents, 𝑖 ∈ ∖{0, 𝑁}, locally

implement the consensus protocol

𝑢𝑖(𝑡) =
𝑎

ℎ2

[
(𝑧𝑖+1(𝑡) − 𝑧𝑖(𝑡)) − (𝛾𝑖+1 − 𝛾𝑖)

+ (𝑧𝑖−1(𝑡) − 𝑧𝑖(𝑡)) − (𝛾𝑖−1 − 𝛾𝑖)
]
− 𝑓 (𝑡, 𝛾𝑖)

(2)

with ℎ = 1∕𝑁 and 𝑎 > 0. Namely, agent 𝑖 tries to keep

its relative position to agents 𝑖 + 1 and 𝑖 − 1 as 𝛾𝑖+1 − 𝛾𝑖
and 𝛾𝑖−1 − 𝛾𝑖, respectively, while compensating for the local

dynamics 𝑓 (𝑡, 𝛾𝑖) on the target curve. Substituting (2) into

(1), we obtain

𝑧̇𝑖 =
𝑎

ℎ2

[
(𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1) − (𝛾𝑖+1 − 2𝛾𝑖 + 𝛾𝑖−1)

]

+𝑓 (𝑡, 𝑧𝑖) − 𝑓 (𝑡, 𝛾𝑖) + 𝑣𝑖.

(3)

The idea of the PDE-based modelling of MAS is to introduce

distributed state and control 𝑧, 𝑣∶ [0,∞)×[0, 1] → ℝ
𝑛 such

that 𝑧(𝑡, 𝑖ℎ) = 𝑧𝑖(𝑡) and 𝑣(𝑡, 𝑖ℎ) = 𝑣𝑖(𝑡) for 𝑖 ∈  and

ℎ = 1∕𝑁 . Then

𝑧𝑥𝑥(𝑡, 𝑖ℎ) ≈
𝑧𝑖+1(𝑡) − 2𝑧𝑖(𝑡) + 𝑧𝑖−1(𝑡)

ℎ2
, 𝑖 ∈  ⧵{0, 𝑁}.

Similarly, the term with 𝛾𝑖 in (3) approximates 𝛾𝑥𝑥. Then,

when ℎ → 0, i.e., || = 𝑁 + 1 → ∞, (3) becomes ([30])
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𝑧𝑡(𝑡, 𝑥) = 𝑎[𝑧𝑥𝑥(𝑡, 𝑥) − 𝛾𝑥𝑥(𝑥)]

+ 𝑓 (𝑡, 𝑧(𝑡, 𝑥)) − 𝑓 (𝑡, 𝛾(𝑥)) + 𝑣(𝑡, 𝑥)

for 𝑡 ≥ 0 and 𝑥 ∈ (0, 1). The deployment error, 𝑒(𝑡, 𝑥) ∶=

𝑧(𝑡, 𝑥) − 𝛾(𝑥), satisfies

𝑒𝑡(𝑡, 𝑥) = 𝑎𝑒𝑥𝑥(𝑡, 𝑥) + 𝐹 (𝑡, 𝑥, 𝑒) + 𝑣(𝑡, 𝑥) (4)

with 𝐹 (𝑡, 𝑥, 𝑒) ∶= 𝑓 (𝑡, 𝛾(𝑥) + 𝑒) − 𝑓 (𝑡, 𝛾(𝑥)). Since 𝑓 is

Lipschitz continuous,

|𝐹 (𝑡, 𝑥, 𝑒)| = |𝑓 (𝑡, 𝛾(𝑥)+𝑒) − 𝑓 (𝑡, 𝛾(𝑥))| ≤ 𝐿|𝑒|,
∀𝑡 ≥ 0, 𝑥 ∈ [0, 1], 𝑒 ∈ ℝ

𝑛.
(5)

We assume that the boundary agents, 𝑖 ∈ {0, 𝑁}, are leaders

that implement the local controllers

𝑢0(𝑡) =
𝜎

ℎ
[(𝑧1(𝑡) − 𝑧0(𝑡)) − (𝛾1 − 𝛾0)]

− 𝜅(𝑧0(𝑡) − 𝛾0) − 𝑓 (𝑡, 𝛾0),

𝑢𝑁 (𝑡) = −
𝜎

ℎ
[(𝑧𝑁 (𝑡) − 𝑧𝑁−1(𝑡)) − (𝛾𝑁 − 𝛾𝑁−1)]

− 𝜅(𝑧𝑁 (𝑡) − 𝛾𝑁 ) − 𝑓 (𝑡, 𝛾𝑁 ).

(6)

The term with 𝜎 > 0 couples the boundary leader to its

nearest neighbor, aligning its motion with the local swarm

behavior. Instead of moving independently toward the target,

it stays coordinated with the group, improving cohesion. For

example, if a boundary leader is on the target curve and

𝜎 = 0, it remains there even if its neighbor is far away,

which weakens coordination. When 𝜎 > 0, it first moves

towards the swarm, and then returns to the target along with

the swarm, maintaining cohesion. The term with 𝜅 > 0

drives it towards the target position on the curve, while the

term with 𝑓 compensates local dynamics on the target curve.

Substituting (6) into (1) and taking 𝑁 → ∞, we obtain

𝑒𝑡(𝑡, 0) = −𝜅𝑒(𝑡, 0) + 𝜎𝑒𝑥(𝑡, 0) + 𝐹 (𝑡, 0, 𝑒(𝑡, 0)) + 𝑣(𝑡, 0),

𝑒𝑡(𝑡, 1) = −𝜅𝑒(𝑡, 1) − 𝜎𝑒𝑥(𝑡, 1) + 𝐹 (𝑡, 1, 𝑒(𝑡, 1)) + 𝑣(𝑡, 1).
(7)

Therefore, the designed local controllers (2) and (6) lead

to a MAS with the deployment error whose dynamics are

approximated by the PDE (4) with the boundary condi-

tions (7). This approximation becomes more accurate when

the number of agents, 𝑁 , grows. Note that the space domain

𝑥 ∈ [0, 1] is selected for convenience. A different space

domain would result in a different diffusion gain, which can

be transformed into the considered case using the change of

variables 𝑧̃(𝑥, 𝑡) = 𝑧(𝛼𝑥, 𝑡).

2.2. Global Controller Design
Without the global controller (𝑣 ≡ 0), the error system

(4), (7) may be unstable (e.g., for 𝐹 (𝑡, 𝑒) = 𝐿𝑒 with large

𝐿) meaning that the MAS fails to deploy onto the target

curve. The distributed state feedback 𝑣(𝑡, 𝑥) = −𝐾𝑒(𝑡, 𝑥)

with large 𝐾 would stabilize the system, but the deployment

error 𝑒(𝑡, 𝑥) is not available since only the leaders know their

positions relative to the target curve. Therefore, we construct

a piecewise linear approximation of 𝑒(𝑡, 𝑥) using the leaders’

measurements. We place 𝑀 + 1 (≤ 𝑁 + 1) leaders at 𝑥𝑗 ∈

{𝑖ℎ}𝑖∈ ⊂ [0, 1], 𝑗 = 0,… ,𝑀 , so that 𝑥0 = 0 and 𝑥𝑀 = 1.

That is, 𝑥𝑗 =
∑𝑗

𝑘=1
Δ𝑘 for 𝑗 ≥ 1, where Δ𝑘 is a multiple of

ℎ and is the spacing between two consecutive leaders. The

maximum space between the leaders is Δ ∶= max𝑘 Δ𝑘. The

leaders provide the measurements

𝑦𝑗(𝑡) ∶= 𝑒(𝑡, 𝑥𝑗) = 𝑧(𝑡, 𝑥𝑗)− 𝛾(𝑥𝑗), 𝑗 ∈ {0, 1,… ,𝑀}.

By communicating with each other, the leaders can construct

the piecewise linear state approximation: For 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

𝑒(𝑡, 𝑥) ≈ 𝑦𝑗(𝑡) +
𝑦𝑗+1(𝑡) − 𝑦𝑗(𝑡)

Δ𝑗+1

(𝑥 − 𝑥𝑗)

= 𝑦𝑗(𝑡)

(
1 −

𝑥 − 𝑥𝑗

Δ𝑗+1

)
+ 𝑦𝑗+1(𝑡)

𝑥 − 𝑥𝑗

Δ𝑗+1

.

Introducing

𝑏𝑗(𝑥) =

⎧⎪⎨⎪⎩

𝑥−𝑥𝑗−1

𝑥𝑗−𝑥𝑗−1
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗],

𝑥𝑗+1−𝑥

𝑥𝑗+1−𝑥𝑗
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],

0, 𝑥 ∉ [𝑥𝑗−1, 𝑥𝑗+1]

with 𝑥−1 = 0 and 𝑥𝑀+1 = 1, we obtain

𝑒(𝑡, 𝑥) ≈

𝑀∑
𝑗=0

𝑦𝑗(𝑡)𝑏𝑗(𝑥). (8)

This motivates the following global controller:

𝑣(𝑡, 𝑥) = −𝐾

𝑀∑
𝑗=0

𝑏𝑗(𝑥)𝑦𝑗(𝑡) = −𝐾𝑒(𝑡, 𝑥) +𝐾𝜈(𝑡, 𝑥) (9)

with a global controller gain 𝐾 > 0 and approximation error

𝜈(𝑡, 𝑥) = 𝑒(𝑡, 𝑥) −
∑𝑀

𝑗=0
𝑦𝑗(𝑡)𝑏𝑗(𝑥). Substituting (9) into (4)

and (7), we obtained the closed-loop system

𝑒𝑡(𝑡, 𝑥) = 𝑎𝑒𝑥𝑥(𝑡, 𝑥)+𝐹 (𝑡, 𝑥, 𝑒)−𝐾𝑒(𝑡, 𝑥)+𝐾𝜈(𝑡, 𝑥), (10)

accompanied by the boundary conditions

𝑒𝑡(𝑡, 0) = −(𝜅 +𝐾)𝑒(𝑡, 0) + 𝜎𝑒𝑥(𝑡, 0) + 𝐹 (𝑡, 0, 𝑒(𝑡, 0)),

𝑒𝑡(𝑡, 1) = −(𝜅 +𝐾)𝑒(𝑡, 1) − 𝜎𝑒𝑥(𝑡, 1) + 𝐹 (𝑡, 1, 𝑒(𝑡, 1)).
(11)

Now we derive two bounds on the approximation error

𝜈(𝑡, 𝑥). For 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗],

𝜈(𝑡, 𝑥) = 𝑒(𝑡, 𝑥) − 𝑦𝑗−1(𝑡)𝑏𝑗−1(𝑥) − 𝑦𝑗(𝑡)𝑏𝑗(𝑥)

since 𝑏𝑖(𝑥) = 0 when 𝑖 ∉ {𝑗 − 1, 𝑗}. Then, recalling that

𝑦𝑗(𝑡) = 𝑒(𝑡, 𝑥𝑗), we obtain

𝜈𝑥(𝑡, 𝑥) = 𝑒𝑥(𝑡, 𝑥) − 𝑒(𝑡, 𝑥𝑗−1)𝑏
′
𝑗−1

(𝑥) − 𝑒(𝑡, 𝑥𝑗)𝑏
′
𝑗
(𝑥)

= 𝑒𝑥(𝑡, 𝑥) −
𝑒(𝑡,𝑥𝑗 )−𝑒(𝑡,𝑥𝑗−1)

Δ𝑗

= 𝑒𝑥(𝑡, 𝑥) −
1

Δ𝑗

∫ 𝑥𝑗
𝑥𝑗−1

𝑒𝑠(𝑡, 𝑠) 𝑑𝑠.
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Since 𝜈(𝑡, 𝑥𝑗) = 0, Lemma 2 gives

‖𝜈(𝑡, ⋅)‖2
[𝑥𝑗−1,𝑥𝑗 ]

≤ Δ2
𝑗

𝜋2
‖𝜈𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ]

=
Δ2
𝑗

𝜋2
‖𝑒𝑥(𝑡, ⋅) − 1

Δ𝑗

∫ 𝑥𝑗
𝑥𝑗−1

𝑒𝑠(𝑡, 𝑠)𝑑𝑠‖2[𝑥𝑗−1,𝑥𝑗 ]
=

Δ2
𝑗

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ]

−
2Δ𝑗

𝜋2
∫ 𝑥𝑗
𝑥𝑗−1

𝑒𝑥(𝑡, 𝑥)𝑑𝑥 ∫ 𝑥𝑗
𝑥𝑗−1

𝑒𝑠(𝑡, 𝑠)𝑑𝑠

+
1

𝜋2
∫ 𝑥𝑗
𝑥𝑗−1

[∫ 𝑥𝑗
𝑥𝑗−1

𝑒𝑠(𝑡, 𝑠)𝑑𝑠]
2𝑑𝑥

=
Δ2
𝑗

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ] −

Δ𝑗

𝜋2
[∫ 𝑥𝑗

𝑥𝑗−1
𝑒𝑥(𝑡, 𝑥)𝑑𝑥]

2

≤ Δ2
𝑗

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ] ≤ Δ2

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ].

Since ‖𝜈(𝑡, ⋅)‖2
[0,1]

=
∑𝑀

𝑗=1
‖𝜈(𝑡, ⋅)‖2

[𝑥𝑗−1,𝑥𝑗 ]
, we have

‖𝜈(𝑡, ⋅)‖2
[0,1]

≤ Δ2

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2[0,1]. (12)

Using Lemma 3 and the relation 𝑏′′
𝑗
= 0, we also have

‖𝜈(𝑡, ⋅)‖2
[𝑥𝑗−1,𝑥𝑗 ]

≤ Δ4
𝑗

𝜋4
‖𝜈𝑥𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ]

=
Δ4
𝑗

𝜋4
‖𝑒𝑥𝑥(𝑡, ⋅)‖2[𝑥𝑗−1,𝑥𝑗 ].

Therefore,

‖𝜈(𝑡, ⋅)‖2
[0,1]

≤ Δ4

𝜋4
‖𝑒𝑥𝑥(𝑡, ⋅)‖2[0,1]. (13)

Remark 1. If the leaders do not communicate, the piecewise

linear approximation (8) can be replaced by a piecewise

constant one where 𝑏𝑗(𝑥) are the characteristic functions of

[(𝑥𝑗 + 𝑥𝑗−1)∕2, (𝑥𝑗 + 𝑥𝑗+1)∕2]. Then (12) still holds (with

a simpler proof, see [26; 31]), but (13) does not. That is,

communications between leaders allow for the bound (13),

which improves the stability analysis as illustrated by the

numerical simulations in Section 4.

2.3. Well-posedness of the closed-loop system
The well-posedness of (10), (11) with 𝜎 = 0 is estab-

lished in a manner similar to [32, Section III.C]. Here, we

consider the more difficult case when 𝜎 ≠ 0. Introduce the

Hilbert space

𝑋 = 𝐿2(0, 1) ×ℝ
2𝑛

with the scalar product: ∀𝑣𝑖 = (𝑓𝑖, 𝛼𝑖) ∈ 𝑋,

⟨𝑣1, 𝑣2⟩𝑋 = ⟨𝑓1, 𝑓2⟩𝐿2 +
𝑎

𝜎
𝛼𝑇
1
𝛼2.

The boundary conditions (11) can be rewritten in the Wentzell

form obtained by substituting the dynamics [33, Section 6]:

𝑎𝑒𝑥𝑥(𝑡, 0) − 𝜎𝑒𝑥(𝑡, 0) + 𝜅𝑒(𝑡, 0) = 0,

𝑎𝑒𝑥𝑥(𝑡, 1) + 𝜎𝑒𝑥(𝑡, 1) + 𝜅𝑒(𝑡, 1) = 0.

Introduce an operator on 𝑋


⎡⎢⎢⎣

𝑓 (⋅)

𝑓 (0)

𝑓 (1)

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝑎𝑓 ′′(⋅)

𝜎𝑓 ′(0) − 𝜅𝑓 (0)

−𝜎𝑓 ′(1) − 𝜅𝑓 (1)

⎤⎥⎥⎦
with the domain

𝐷() =
⎧
⎪⎨⎪⎩

⎡
⎢⎢⎣

𝑓 (⋅)

𝑓 (0)

𝑓 (1)

⎤⎥⎥⎦

||||||||

𝑓 ∈ 𝐶2[0, 1]

𝑎𝑓 ′′(0) − 𝜎𝑓 ′(0) + 𝜅𝑓 (0) = 0

𝑎𝑓 ′′(1) + 𝜎𝑓 ′(1) + 𝜅𝑓 (1) = 0

⎫⎪⎬⎪⎭
.

By [34, Theorems 1.1],  generates an analytic semigroup

on 𝑋. The PDE (10), (11) can be written in the following

abstract form

𝑑𝐸

𝑑𝑡
= 𝐸 +  (𝑡, 𝐸), (14)

where 𝐸(𝑡) = col{𝑒(𝑡, ⋅), 𝑒(𝑡, 0), 𝑒(𝑡, 1)} and

 (𝑡, 𝐸) =

⎡⎢⎢⎣

𝐹 (𝑡, ⋅, 𝑒(𝑡, ⋅)) −𝐾
∑𝑀

𝑗=0
𝑏𝑗(𝑥)𝑒(𝑡, 𝑥𝑗)

𝐹 (𝑡, 0, 𝑒(𝑡, 0)) −𝐾𝑒(𝑡, 0)

𝐹 (𝑡, 1, 𝑒(𝑡, 1)) −𝐾𝑒(𝑡, 1)

⎤⎥⎥⎦
.

The scalar product in 𝑋 was selected to ensure that  is

negative-definite and, therefore, (−) 12 is well defined. Con-

sider 𝑋 1

2

= 𝐷((−) 12 ) with the norm ‖𝐸‖ 1

2

= ‖(−) 12𝐸‖𝑋 .

We show that ∶ 𝑋 1

2

→ 𝑋 is Lipschitz continuous. Since 𝑓

is Lipschitz, the last two components of  are Lipschitz and

‖𝐹 (𝑡, ⋅, 𝑒1(𝑡, ⋅))−𝐹 (𝑡, ⋅, 𝑒2(𝑡, ⋅))‖ ≤ 𝐿‖𝑒1(𝑡, ⋅)− 𝑒2(𝑡, ⋅)‖.
By the Sobolev embedding theorem (see, e.g., Lemma 3 of

[35]), there exists 𝐶 such that

max
𝑥∈[0,1]

|𝑒1(𝑡, 𝑥) − 𝑒2(𝑡, 𝑥)| ≤ 𝐶‖𝑒1(𝑡, ⋅) − 𝑒2(𝑡, ⋅)‖𝐻1 .

Since 𝐾 > 0 and
∑𝑀

𝑗=0
𝑏𝑗(𝑥) = 1, this yields

‖‖‖𝐾
∑𝑀

𝑗=0
𝑏𝑗(⋅)[𝑒1(𝑡, 𝑥𝑗) − 𝑒2(𝑡, 𝑥𝑗)]

‖‖‖≤ 𝐾 max𝑥∈[0,1] |𝑒1(𝑡, 𝑥) − 𝑒2(𝑡, 𝑥)|‖∑𝑀

𝑗=0
𝑏𝑗(⋅)‖≤ 𝐾𝐶‖𝑒1(𝑡, ⋅) − 𝑒2(𝑡, ⋅)‖𝐻1 ≤ 𝑀‖𝐸1(𝑡) − 𝐸2(𝑡)‖ 1

2

for some 𝑀 > 0. Therefore,  is Lipschitz continuous.

Then, [36, Theorem 6.3.1] guarantees that (14) has a unique

solution

𝑒 ∈ 𝐶([0, 𝑇 ), 𝐿2(0, 1)) ∩ 𝐶1((0, 𝑇 ), 𝐿2(0, 1))

for 𝑒(0, ⋅) ∈ 𝐻1(0, 1). Since (𝑡, 0) = 0, [36, Theorem 6.3.3]

guarantees that 𝑇 = ∞.

3. Stability Analysis

In this section, we derive stability conditions for the

closed-loop error system, ensuring that agents converge to

the target curve when their number is sufficiently large. In

Section 3.1, we consider 𝜎 > 0, meaning the boundary

leaders must account for swarm dynamics. If 𝜎 = 0, the

conditions in Section 3.1 become infeasible. However, for a

linear system, they can be modified to accommodate 𝜎 = 0,

as shown in Section 3.2.
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3.1. Stability of the nonlinear system
Theorem 1. Consider the closed-loop system (10), (11) with

a diffusion coefficient 𝑎 > 0, positive controller gains 𝐾 , 𝜎,

and 𝜅, maximum gap between leaders Δ, and nonlinearity

𝐹 subject to (5). For a given decay rate 𝛿 ∈ (0, 𝐾), let there

exist positive scalars 𝑝, 𝜇, and 𝜆𝑖, 𝑖 ∈ {1, 2, 3}, such that

 =

⎡
⎢⎢⎢⎣

11 0 1 𝐾

∗ 22 −𝜇 −𝜇𝐾

∗ ∗ −𝜆2 0

∗ ∗ ∗ 44

⎤
⎥⎥⎥⎦
≤ 0, (15)

 =

⎡⎢⎢⎣

11 12 𝑝

∗ −2𝜎𝜇 −𝜇

∗ ∗ −𝜆3

⎤⎥⎥⎦
≤ 0, (16)

where

11 = −2(𝐾 − 𝛿) + 𝜆2𝐿
2,

22 = −2𝜇𝑎 + 𝜆1Δ
4∕𝜋4,

44 = −𝜆1 − 2(𝜇(𝐾 − 𝛿) + 𝑎)𝜋2∕Δ2,

11 = −2𝑝(𝜅 +𝐾 − 𝛿) + 𝜆3𝐿
2,

12 = 𝜎𝑝 + 𝜇𝜅 − 𝑎.

Then the closed-loop system (10), (11) is exponentially sta-

ble in the 1 norm with the decay rate 𝛿, i.e.,

∃𝐶 > 0∶ ‖𝑒(𝑡, ⋅)‖1 ≤ 𝐶𝑒−𝛿𝑡‖𝑒(0, ⋅)‖1 . (17)

Proof. Consider the Lyapunov functional

𝑉 = 𝑉1 + 𝑉𝐵 ,

𝑉1 = ‖𝑒(𝑡, ⋅)‖2 + 𝜇‖𝑒𝑥(𝑡, ⋅)‖2,
𝑉𝐵 = 𝑝|𝜂(𝑡)|2, 𝜂(𝑡) = col{𝑒(𝑡, 0), 𝑒(𝑡, 1)}.

(18)

Differentiating 𝑉1 along the trajectories of (10), (11) and

integrating by parts, we obtain

𝑉̇1 = 2⟨𝑒(𝑡, ⋅), 𝑒𝑡(𝑡, ⋅)⟩ + 2𝜇⟨𝑒𝑥(𝑡, ⋅), 𝑒𝑥𝑡(𝑡, ⋅)⟩
= 2⟨𝑒(𝑡, ⋅), 𝑒𝑡(𝑡, ⋅)⟩ + 2𝜇

(
𝑒𝑇
𝑥
𝑒𝑡
|||
1

0
− ⟨𝑒𝑥𝑥(𝑡, ⋅), 𝑒𝑡(𝑡, ⋅)⟩

)

= 2∫
1

0

(𝑒 − 𝜇𝑒𝑥𝑥)
𝑇
(
𝑎𝑒𝑥𝑥 + 𝐹 −𝐾𝑒 +𝐾𝜈

)

− 2𝜎𝜇|𝜂𝑥|2 − 2𝜇(𝜅 +𝐾)𝑒𝑇
𝑥
𝑒
|||
1

0
+ 2𝜇𝑒𝑇

𝑥
𝐹
|||
1

0

(19)

with 𝜂𝑥(𝑡) = col{𝑒𝑥(𝑡, 0),−𝑒𝑥(𝑡, 1)}. Integrating by parts, we

obtain

2(𝑎+𝜇𝐾)∫
1

0

𝑒𝑇 𝑒𝑥𝑥 = 2(𝑎+𝜇𝐾)

(
𝑒𝑇 𝑒𝑥

|||
1

0
− ‖𝑒𝑥(𝑡, ⋅)‖2

)
.

(20)

From (5), (12), and (13), we have

0 ≤ 𝜆0

(
Δ2

𝜋2
‖𝑒𝑥(𝑡, ⋅)‖2 − ‖𝜈(𝑡, ⋅)‖2

)
, 𝜆0 > 0, (21a)

0 ≤ 𝜆1

(
Δ4

𝜋4
‖𝑒𝑥𝑥(𝑡, ⋅)‖2 − ‖𝜈(𝑡, ⋅)‖2

)
, (21b)

0 ≤ 𝜆2
(
𝐿2‖𝑒(𝑡, ⋅)‖2 − ‖𝐹 (𝑡, ⋅, 𝑒(𝑡, ⋅))‖2) , (21c)

0 ≤ 𝜆3
(
𝐿2|𝜂(𝑡)|2 − |𝜂𝐹 (𝑡)|2

)
, (21d)

where 𝜂𝐹 (𝑡) = col {𝐹 (𝑡, 𝑒(𝑡, 0)), 𝐹 (𝑡, 𝑒(𝑡, 1))}. Using (20) in

(19), adding the right-hand sides of (21a)–(21c) to 𝑉̇1, and

taking 𝜆0 = 2[𝜇(𝐾−𝛿)+𝑎]
𝜋2

Δ2 to zero the coefficient in front

of ‖𝑒𝑥(𝑡, ⋅)‖2 (note that 𝜆0 > 0 since 𝐾 > 𝛿), we obtain

𝑉̇1 +2𝛿𝑉1 ≤ ∫
1

0

𝜁𝑇 (𝑡, 𝑥)( ⊗𝐼𝑛)𝜁 (𝑡, 𝑥) 𝑑𝑥−2𝜎𝜇|𝜂𝑥(𝑡)|2

+ 2(𝜇𝜅 − 𝑎)𝜂𝑇 (𝑡)𝜂𝑥(𝑡) − 2𝜇𝜂𝑇
𝑥
(𝑡)𝜂𝐹 (𝑡),

where 𝜁 (𝑡, 𝑥) = col{𝑒(𝑡, 𝑥), 𝑒𝑥𝑥(𝑡, 𝑥), 𝐹 (𝑡, 𝑒), 𝜈(𝑡, 𝑥)}. Differ-

entiating 𝑉𝐵 along the trajectories of (11), we find

𝑉̇𝐵 + 2𝛿𝑉𝐵 ≤ 2𝑝𝜂𝑇 (𝑡)𝜂𝑡(𝑡) + 2𝑝𝛿|𝜂(𝑡)|2 + (21d)

=
(
−2𝑝(𝜅 +𝐾 − 𝛿) + 𝜆3𝐿

2
) |𝜂(𝑡)|2

+ 2𝑝𝜎𝜂𝑇 (𝑡)𝜂𝑥(𝑡) + 2𝑝𝜂𝑇 (𝑡)𝜂𝐹 (𝑡) − 𝜆3|𝜂𝐹 (𝑡)|2.
Setting 𝜁𝐵(𝑡) = col

{
𝜂(𝑡), 𝜂𝑥(𝑡), 𝜂𝐹 (𝑡)

}
, we have

𝑉̇ + 2𝛿𝑉 ≤ ∫
1

0

𝜁𝑇 (𝑡, 𝑥)( ⊗ 𝐼𝑛)𝜁 (𝑡, 𝑥) 𝑑𝑥

+ 𝜁𝑇
𝐵
(𝑡)(⊗ 𝐼2𝑛)𝜁𝐵(𝑡).

Since  ≤ 0 and  ≤ 0, we have 𝑉̇ (𝑡) ≤ −2𝛿𝑉 (𝑡),

which implies 𝑉 (𝑡) ≤ 𝑒−2𝛿𝑡𝑉 (0). By Lemma 3 of [35]),

𝑉𝐵(𝑡) ≤ 𝑐𝐵‖𝑒(𝑡, ⋅)‖2𝐻1
for some 𝑐𝐵 . Then,

𝑐1‖𝑒(𝑡, ⋅)‖2𝐻1
≤ 𝑉 (𝑡) ≤ 𝑐2‖𝑒(𝑡, ⋅)‖2𝐻1

,

where 𝑐1 = min{1, 𝜇} and 𝑐2 = max{1, 𝜇} + 𝑐𝐵 . Therefore,

‖𝑒(𝑡, ⋅)‖2
𝐻1

≤ 𝑉 (𝑡)

𝑐1
≤ 𝑒−2𝛿𝑡

𝑐1
𝑉 (0) ≤ 𝑐2

𝑐1
𝑒−2𝛿𝑡‖𝑒(𝑡, ⋅)‖2

𝐻1
,

which implies the exponential stability in the 1 norm.

Remark 2. The conditions of Theorem 1 are feasible when

𝐿 and Δ are sufficiently small, and 𝐾 is sufficiently large.

Moreover, if the conditions hold for some Δ = Δ𝐹 , then they

are feasible for all Δ ∈ (0,Δ𝐹 ].

Proof. Since 𝜎 > 0, the relation

2∶3 =

[
−2𝜎𝜇 −𝜇

−𝜇 −𝜆3

]
< 0

holds for a large enough 𝜆3 > 0. Then, by the Schur

complement lemma,  < 0 follows from

−2𝑝(𝜅+𝐾−𝛿)+𝜆3𝐿
2+

[12 𝑝
]−1

2∶3

[12 𝑝
]𝑇

< 0,

which holds for a large enough 𝐾 > 0. Furthermore, the

Schur complement lemma implies that  < 0 if

[11 0

0 22

]
−
[

1 𝐾
−𝜇 −𝜇𝐾

] [ 𝜆−1
2

0

0 −1
44

] [
1 −𝜇
𝐾 −𝜇𝐾

] ≤ 0.
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Since |44| → ∞ when Δ → 0, the above holds for

𝐿 = 0, large enough 𝜆2 > 0, and small enough Δ > 0.

By continuity, it remains true for a small enough 𝐿 > 0.

To prove the second part, note that Δ appears only in

the diagonal entries 22 and 44, which decrease when Δ

decreases. Therefore, if  ≤ 0, it remains so for smaller

values of Δ > 0.

3.2. Stability of the linear system
Theorem 1 cannot be used if 𝜎 = 0 because (16) becomes

infeasible. However, the conditions can be adjusted to allow

for 𝜎 = 0 if the system is linear, i.e., 𝑓 (𝑡, 𝑧𝑖) = 𝐿𝑧𝑖 in (1).

In this case, the closed-loop error system (10), (11) with

𝐹 (𝑒) = 𝐿𝑒(𝑡, 𝑥) simplifies to

𝑒𝑡(𝑡, 𝑥) = 𝑎𝑒𝑥𝑥(𝑡, 𝑥) − (𝐾 − 𝐿)𝑒(𝑡, 𝑥) +𝐾𝜈(𝑡, 𝑥),

𝑒𝑡(𝑡, 0) = −(𝜅 +𝐾 − 𝐿)𝑒(𝑡, 0) + 𝜎𝑒𝑥(𝑡, 0),

𝑒𝑡(𝑡, 1) = −(𝜅 +𝐾 − 𝐿)𝑒(𝑡, 1) − 𝜎𝑒𝑥(𝑡, 1).

(22)

The following theorem provides simplified stability condi-

tions that can be used with 𝜎 = 0, in which case they can be

simplified further (see Corollary 1).

Theorem 2. Consider the closed-loop system (22) with a

diffusion coefficient 𝑎 > 0, reaction coefficient 𝐿 > 0, and

maximum gap between leaders Δ. For a given decay rate

𝛿 > 0 and controller gains 𝐾 > 𝐿 + 𝛿, 𝜅 > 0, and 𝜎 ≥ 0,

let there exist positive scalars 𝑝, 𝜇, and 𝜆1 such that

̄ =

⎡
⎢⎢⎣

̄11 0 𝐾

∗ ̄22 −𝜇𝐾

∗ ∗ ̄33

⎤⎥⎥⎦
≤ 0, (23)

̄ =

[
−2𝑝(𝜅 +𝐾 − 𝐿 − 𝛿) 𝜎𝑝 + 𝜇𝜅 − 𝑎

∗ −2𝜎𝜇

]
≤ 0, (24)

where

̄11 = −2(𝐾 − 𝐿 − 𝛿),

̄22 = −2𝜇𝑎 + 𝜆1Δ
4∕𝜋4,

̄33 = −𝜆1 − 2[𝜇(𝐾 − 𝐿 − 𝛿) + 𝑎]𝜋2∕Δ2.

Then the closed-loop system (22) is exponentially stable in

the 1 norm with the decay rate 𝛿 in the sense of (17).

Proof. Consider the Lyapunov functional 𝑉 defined in (18).

Calculations similar to (19) give

𝑉̇1 = 2∫
1

0

(𝑒 − 𝜇𝑒𝑥𝑥)
𝑇
(
𝑎𝑒𝑥𝑥 − (𝐾 − 𝐿)𝑒 +𝐾𝜈

)

− 2𝜎𝜇|𝜂𝑥|2 − 2𝜇(𝜅 + 𝐾 − 𝐿)𝑒𝑇
𝑥
𝑒
|||
1

0

with 𝜂𝑥(𝑡) = col{𝑒𝑥(𝑡, 0),−𝑒𝑥(𝑡, 1)}. Integrating by parts,

adding the right-hand sides of (21a) and (21b), and taking

𝜆0 = 2[𝜇(𝐾 − 𝐿 − 𝛿) + 𝑎]
𝜋2

Δ2 to zero the coefficient in front

of ‖𝑒𝑥(𝑡, ⋅)‖2, we obtain

𝑉̇1+2𝛿𝑉1 ≤ ∫
1

0

𝜁𝑇 (̄⊗𝐼𝑛)𝜁+2(𝑎−𝜇𝜅)𝑒
𝑇
𝑥
𝑒
|||
1

0
−2𝜎𝜇|𝜂𝑥|2,

where 𝜁 (𝑡, 𝑥) = col{𝑒(𝑡, 𝑥), 𝑒𝑥𝑥(𝑡, 𝑥), 𝜈(𝑡, 𝑥)}. Differentiating

𝑉𝐵 along the trajectories of (22), we find

𝑉̇𝐵 + 2𝛿𝑉𝐵 = 2𝑝𝜂𝑇 (𝑡)𝜂𝑡(𝑡) + 2𝑝𝛿|𝜂(𝑡)|2
= [−2𝑝(𝜅 +𝐾 − 𝐿 − 𝛿)] |𝜂(𝑡)|2 + 2𝑝𝜎𝜂𝑇 (𝑡)𝜂𝑥(𝑡).

Setting 𝜁𝐵(𝑡) = col
{
𝜂(𝑡), 𝜂𝑥(𝑡)

}
, we have

𝑉̇ + 2𝛿𝑉 ≤ ∫
1

0

𝜁𝑇 (𝑡, 𝑥)(̄ ⊗ 𝐼𝑛)𝜁 (𝑡, 𝑥) 𝑑𝑥

+ 𝜁𝑇
𝐵
(𝑡)(⊗ 𝐼2𝑛)𝜁𝐵(𝑡).

Therefore, (23) and (24) guarantee 𝑉̇ ≤ −2𝛿𝑉 . The rest of

the proof is similar to that of Theorem 1.

Corollary 1. Consider the closed-loop system (22) with a

diffusion coefficient 𝑎 > 0, reaction coefficient 𝐿 > 0, and

maximum gap between leaders Δ. Given controller gains

𝐾 > 𝐿 + 𝛿, 𝜅 > 0, and 𝜎 = 0, let there exist a positive

𝜆1 such that (23) holds with 𝜇 = 𝑎∕𝜅. Then the closed-loop

system (22) is exponentially stable in the 1 norm with the

decay rate 𝛿 in the sense of (17).

Proof. If 𝜎 = 0, then (24) holds for 𝜇 = 𝑎∕𝜅. If (23) holds

for this 𝜇, then the conditions of Theorem 2 are satisfied,

implying the exponential stability of (22).

Remark 3. The conditions of Theorem 2 and Corollary 1

are feasible when Δ is sufficiently small and 𝐾 is sufficiently

large. The proof is similar to Remark 2.

4. Numerical Simulations

Consider the MAS (1) with 41 agents (𝑁 = 40), each

having a three-dimensional state (𝑛 = 3). Let the control

objective be to deploy the agents from (0, 0, 0) onto the

target curve 𝛾(𝑠) = (1.5 sin 𝑠, 1.5 cos 𝑠, 6), 𝑠 ∈ [0, 1]. We

consider two cases: (i) linear local dynamics, 𝑓 (𝑡, 𝑧𝑖) = 𝐿𝑧𝑖,

and (ii) non-linear local dynamics, 𝑓 (𝑡, 𝑧𝑖) = 𝐿 sin(𝑧𝑖). In

both scenarios, local controllers 𝑢𝑖 are designed according

to (2) for interior agents and (6) for boundary agents. These

controllers rely on agents measuring their relative positions

to immediate neighbors, which is susceptible to noise. To

mitigate the impact of noise, we select a small interaction

gain 𝑎. The resulting error dynamics can be described by

the PDE (10), (11). Using this PDE model, we design global

controllers of the form 𝑣𝑖 = 𝑣 (𝑡, 𝑖∕𝑁) with 𝑣 defined in (9).

In Section 4.1, we demonstrate that the control strategy

proposed in this paper for interacting leaders requires fewer

leaders compared to the control strategy developed for non-

communicating leaders. Note that stability conditions for

non-interacting leaders are given by Theorems 1 and 2 with

𝜆1 = 0 since (13) does not hold in this case (see Remark 1).

Then, in Section 4.2, we highlight the benefits of choosing

𝜎 > 0, which leads to Wentzell boundary conditions and

forces boundary leaders to account for the swarm dynamics.
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Table 1

Allowable leader spacing Δ from Theorem 2, with and without
leader communication, for (25) and various 𝑎.

Local controller gain 𝑎 0.001 0.004 0.01 0.14

Communicating leaders 0.08 0.17 0.27 1
Non-communicating leaders 0.04 0.08 0.14 0.53

4.1. Enhanced connectivity requires fewer leaders
Consider the linear error system (22) with

𝐾 = 1.4, 𝜅 = 1, 𝜎 = 6, 𝐿 = 0.3, 𝛿 = 1. (25)

Table 1 presents the maximum values of Δ for different

choices of 𝑎 such that the LMIs of Theorem 2 are feasible.

In all cases, inter-leader communication allows for larger

Δ, implying that fewer leaders are required to successfully

deploy the MAS. Specifically, for 𝑎 = 4 × 10−3, we obtain

Δ ≤ 0.17, meaning that seven leaders are needed: 1 +

1∕0.17 ≈ 6.8. Without inter-leader communication, the

feasible value decreases to Δ ≤ 0.08, requiring twice as

many leaders: 1 + 1∕0.08 ≈ 13.5. Table 2 further illustrates

that, across various parameter configurations, enabling inter-

leader communication consistently reduces the number of

leaders needed for stabilization. Similarly, Table 3 provides

admissible values of Δ for the nonlinear system, confirming

that inter-leader communication allows for fewer leaders.

Figures 1 and 2 show the maximum feasible values of

Δ from Theorems 1 and 2, respectively, for interacting and

non-interacting leader cases, versus local control gain 𝑎. As 𝑎

increases, the feasible Δ also increases, indicating that fewer

leaders are needed for stability. For instance, when 𝑎 = 0.14,

then Δ = 1, meaning the system can be stabilized using

only two boundary leaders (see Figure 2 and Table 1). Since

the spatial domain is normalized to [0, 1], Δ must lie in the

interval 0 < Δ ≤ 1. Notably, Δ = 1 remains feasible for all

𝑎 ≥ 0.14.

Table 4 shows how the allowable leader spacing Δ varies

with the global gain 𝐾 . For small 𝐾 , the effect of the

approximation error 𝐾𝜈(𝑡, 𝑥) in (10) is moderate, so using a

more accurate piecewise linear approximation significantly

improves performance, allowing larger Δ and fewer leaders.

As 𝐾 increases, even small estimation errors are amplified,

reducing the advantage of improved approximation. Both

strategies then yield similar Δ, and the difference between

communicating and non-communicating leaders narrows.

For very large 𝐾 , the LMIs become infeasible.

4.2. Wentzell boundary control improves stability
Using the parameter values in (25) (with 𝑎 = 0.004),

Figure 3 shows the corresponding boundary error evolution

log ‖𝑒(𝑡, 0)‖ and log ‖𝑒(𝑡, 1)‖ for 𝜎 = 0 and 𝜎 > 0,

and Figure 4 shows the evolution of log ‖𝑒(𝑡, ⋅)‖ for four

scenarios: 𝜎 = 6 with (orange) and without (dashed-orange)

leader communication, and 𝜎 = 0 with (red) and without

(dashed-red) communication. Figure 3 shows that with

𝜎 = 0 the boundary leaders reach the target faster than in

the Wentzell case, yet Figure 4 makes clear that this faster

Table 2

Required number of leaders with and without communication
for various system parameters with 𝑎 = 0.01, based on LMIs in
Theorem 2.

Global controller gain, 𝐾 5 2.1 2 1.5 1
Boundary controller gain 𝜅 4 1 2 3 2
Boundary controller gain 𝜎 1 2 1 1 4
Decay rate, 𝛿 2 1 0.8 1 0.4
Lipschitz constant, 𝐿 2 1 1 0.4 0.5

Communicating leaders 7 6 6 5 4
Non-communicating leaders 10 13 9 9 7

Table 3

Allowable leader spacing Δ from Theorem 1, with and without
leader communication, for 𝐾 = 1, 𝜅 = 2, 𝜎 = 6, 𝐿 = 0.1, 𝛿 =

0.8, and various 𝑎.

Local controller gain 𝑎 0.001 0.01 0.1 0.25

Communicating leaders 0.13 0.24 0.78 1
Non-communicating leaders 0.10 0.19 0.62 0.99

Table 4

Allowable leader spacing Δ from Theorem 2, for different values
of 𝐾, with and without leader communication (𝑎 = 0.01; other
parameters as in (25)).

Global gain 𝐾 1.31 1.45 5 10000

Communicating leaders 0.27 0.27 0.24 Infeas.
Non-communicating leaders 0.04 0.16 0.24 Infeas.

Figure 1: Plot of Δ versus 𝑎 from Theorem 1 for 𝐾 = 1, 𝜅 = 2,
𝜎 = 6, 𝐿 = 0.1, and 𝛿 = 0.8.

boundary motion does not improve overall performance:

the global error decays slower for both communicating and

non-communicating leaders (solid and dashed red) than

for their Wentzell counterparts (solid and dashed orange).

Thus, regardless of leader communication, Wentzell bound-

ary control (𝜎 > 0) yields lower error and stronger co-

hesion. Communication among leaders further accelerates

convergence, irrespective of the boundary control used, as

the solid curves consistently outperform their dashed coun-

terparts. The combination of communication among leaders

and Wentzell control therefore delivers the best overall con-

vergence.

Figure 5 shows that log ‖𝑒(⋅, 𝑡)‖ converges faster with

7 communicating leaders than with 7 non-communicating
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Figure 2: Plot of Δ versus 𝑎 from Theorem 2 for (25).

Figure 3: Evolution of log(‖𝑒(𝑡, 𝑥)‖) against 𝑡 from (22), at
𝑥 = 0 and 𝑥 = 1 for 𝜎 ≠ 0 and 𝜎 = 0.

Figure 4: Plot of log(‖𝑒(𝑡, ⋅)‖) against 𝑡 from (22), considering
𝜎 = 6 or 𝜎 = 0, with and without communication among seven
leaders, for 𝑎 = 0.004 (Top) and 𝑎 = 0.001 (Bottom).

leaders. In the non-communicating case, at least 14 leaders

are required to theoretically guarantee the deployment using

Theorem 2 with 𝜆1 = 0 (see Table 1 with 𝑎 = 0.004). As

evident from the figure, the 7-leader communication strategy

performs better than the 12 non-communicating leaders,

highlighting the efficiency of leader interaction.

Figure 6 shows the target curve (orange) and the tra-

jectories of 41 agents (black), including seven leaders with

𝑖 = 0, 7, 13, 20, 27, 33, 41 (yellow) for the parameters

in (25) and 𝑎 = 4 × 10−3. Figure 7 depicts the effect

of the control gain, 𝜎, with and without leader communi-

cation. As expected, interacting leaders always outperform

isolated leaders. Furthermore, larger value of 𝜎 improves

Figure 5: Plot of log(‖𝑒(𝑡, ⋅)‖) vs 𝑡 given by (22) under Wentzell
boundary control with and without leader communication for
different numbers of leaders.

Figure 6: Phase-portrait for 41 agents with 7 leaders (yellow)
and target curve (orange).

Figure 7: The deployment error given by (22) under the
Wentzell boundary control for different values of 𝜎.

convergence. Figures 8 and 9 show 3D surface plots of the

deployment error 𝑒(𝑡, 𝑥) for 7 leaders with and without com-

munication, respectively (with parameter values in (25)).

The deployment error decreases faster with communication,

highlighting the critical role of leader interaction in improv-

ing performance.

5. Conclusion

We demonstrated how PDE-based modeling of large-

scale MAS can enhance agent deployment by taking advan-

tage of inter-leader communications. These communications
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Figure 8: 3D surface plot of PDE (22), using (25), 𝑎 = 0.004,
and 7 communicating leaders.

Figure 9: 3D surface plot of PDE (22), using (25), 𝑎 = 0.004,
and 7 non-communicating leaders.

enable a piecewise linear approximation of the state, with its

error bounded using Wirtinger’s and Poincaré’s inequalities.

This bound informs the Lyapunov-based analysis, leading

to linear matrix inequalities that ensure convergence of

the deployment error. Numerical simulations showed that,

in some cases, inter-leader communications reduce the re-

quired number of leader agents by 50%. Additionally, we

highlighted the advantages of Wentzell-type boundary con-

trol, which compels boundary agents to account for swarm

dynamics. The results were derived for both linear and

semilinear PDEs, with simulations confirming the benefits

of inter-leader communications and Wentzell boundary con-

trol.
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