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THE ANTI-SPHERICAL HECKE CATEGORIES
FOR HERMITIAN SYMMETRIC PAIRS

CHRIS BOWMAN, MAUD DE VISSCHER, AMIT HAZI, AND EMILY NORTON

ABSTRACT. We calculate the p-Kazhdan—Lusztig polynomials for Hermitian symmetric pairs and
prove that the corresponding anti-spherical Hecke categories categories are standard Koszul. We
prove that the combinatorial invariance conjecture can be lifted to the level of graded Morita equiv-
alences between subquotients of these Hecke categories.

INTRODUCTION

Anti-spherical Hecke categories first rose to mathematical celebrity as the centrepiece of the proof
of the Kazhdan—Lusztig positivity conjecture and its anti-spherical counterpart [EW 14, LW22]. Un-
derstanding the p-Kazhdan—Lusztig polynomials of these categories subsumes the problem of deter-
mining prime divisors of Fibonacci numbers [Will7]; this is a notoriously difficult problem in number
theory, for which a combinatorial solution is highly unlikely. As p — oo the situation simplifies and
we encounter the classical Kazhdan—Lusztig polynomials; these are important combinatorial objects
which can be calculated via a recursive algorithm. We seek to understand this gulf between the
combinatorial and non-combinatorial realms within p-Kazhdan-Lusztig theory.

Over fields of infinite characteristic, the families of anti-spherical Kazhdan—Lusztig polynomi-
als which are best understood combinatorially are those for Hermitian symmetric pairs, P < W.
These polynomials admit inexplicably simple combinatorial formulae in terms of Dyck paths or
Temperley—Lieb diagrams [Boe88, Bre07, Bre09, BS1la, ESI16a]. Their importance derives from
their universality: these polynomials control the structure of parabolic Verma modules for Lie al-
gebras [E587]; algebraic supergroups [Bru03]; Khovanov arc algebras [BS12b, ES17, BW, BDHS24,
BDHS, BDD"a, BDD"b]; Brauer and walled Brauer algebras [BS12a, ES16b, Marl5, CD11]; cate-
gories O for Grassmannians [LLS81, BS11b]; topological and algebraic Springer fibres, Slodowy slices,
and W-algebras [ES16a].

Koszulity and p-Kazhdan—Lusztig theory. The first main result of this paper extends our
understanding of the Kazhdan—Lusztig theory for Hermitian symmetric pairs to all fields.

Theorem A. Let k be a field of characteristic p > 0 and (W, P) a Hermitian symmetric pair.
The Hecke category, Hew,py, is standard Koszul (in the sense of [ADLO3, Introduction]) and the
p-Kazhdan—Lusztig polynomials are p-independent (and hence admit closed combinatorial interpre-
tations).

It is very unusual that our infinite families of p-Kazhdan—Lusztig polynomials are independent of
p > 0. Indeed, it was pointed out to us by both Pramod Achar and the anonymous referee that our
result is surprising from a geometric perspective: in the non-parabolic setting, a typical geometric
explanation for characteristic-free behaviour is the existence of small resolutions for the relevant
Schubert varieties. In contrast, for our parabolic setting of Hermitian symmetric pairs Theorem A
provides infinite families of characteristic-free p-Kazhdan—Lusztig polynomials for which it is known
that many (but not all!) Schubert varieties admit small resolutions [Zel83, Per07].

Over a field of characteristic zero, Elias—Williamson and Libedinsky—Williamson have shown that
these 0-Kazhdan—Lusztig polynomials are the classical anti-spherical Kazhdan—TLusztig polynomials
[EW14, LW22]. Thus our Theorem A implies that the p-Kazhdan-Lusztig polynomials are equal to
the (classical) anti-spherical Kazhdan-Lusztig polynomials of [Deo87, Soe97]. Thus the combinato-
rial interpretations of these polynomials alluded to in Theorem A can be found in terms of the tiling
language of this paper in [Bre09] (building on earlier work of [LS81, Boe88, ES87]). Combinatorial
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interpretations in terms of oriented Temperley—Lieb algebras can be found in [BDF25] (building
on earlier work [BS12a, CD11]).

Tetris presentations and combinatorial invariance. The first step towards proving Theorem
A is to reduce to simply laced types. The graph automorphisms of Coxeter graphs of type A
and D give rise to fixed point subgroups of types B and C, respectively. A crucial step in the
proof of Theorem A is to lift this to the level of the corresponding Hecke categories of Hermitian
symmetric pairs of types (Bp, Bp—1) and (Agp—1, A2n—2) and of type (Cy, Ay—1) and (Dyy1, An) —
thus categorifying an observation of Boe, namely that the Kazhdan—Lusztig polynomials for these
pairs coincide. This is an example of Lusztig—-Dyer—Marietti’s combinatorial invariance conjecture:
which states that anti-spherical Kazhdan—Lusztig polynomials depend only on local isomorphisms
of the strong Bruhat graphs (and proven by Brenti [Bre09] for Hermitian symmetric pairs).

Theorem B. Let 11 = [\, pu] and IT = [N, 1] be subquotients of the Bruhat graphs of Hermitian
symmetric pairs \,p € (W, P) and N,/ € (W', P"). If I and II' are isomorphic as partially
ordered sets, then the corresponding subquotients H?WP) and %?I//V’,P/) are Morita equivalent (in the
sense of [Ben98, Section 2.2]) and this equivalence preserves the grading, cellular, and highest-weight
structures of these algebras.

In other words, Theorem B says that all important representation theoretic information is pre-
served. In order to prove Theorems A and B we must provide new presentations of the Hy,p)
for (W, P) a Hermitian symmetric pair, see Theorem 4.14. While the original presentations have
many advantages, they are ill-equipped for tackling the combinatorial invariance conjecture. This
is because these are “too local” and therefore cannot possibly hope to reflect the wider structure
of the Bruhat graph. Defining these new presentations requires the full power of Soergel diagram-
matics and the development of new “Tetris style” closed combinatorial formulas for manipulation of
diagrams in Hy,p). This provides an extremely thorough understanding of these Hecke categories,
and we expect that it will serve as a springboard for further combinatorial analysis of more general
Hecke categories.

Singular Soergel diagrammatics and proof of Koszulity. The standard Koszulity property
is a particularly beautiful property which is characteristic of complex Lie theory ([BGS96, ADLO03));
a much-loved consequence of this property is that we can explicitly calculate the radical filtrations of
projective and cell modules by way of the grading structure. Many well-loved objects in Lie theory
are Koszul over the complex field, for example the quantum Schur algebras [Shal?2], extended Kho-
vanov arc algebras [BS10], and the (diagrammatic) Cherednik algebras [RSVV16, Los16, Web17].

Koszulity of Lie theoretic objects is usually difficult to prove and it is an incredibly rare attribute
over fields of characteristic p > 0. Our proof of Koszulity explicitly constructs linear projective
resolutions of standard modules using the following theorem, which recasts the results of Enright—
Shelton’s monograph [[ES87] in the setting of Hecke categories and generalises their results to fields
of positive characteristic. We hence make headway on the difficult problem of constructing singular
Soergel diagrammatics.

Theorem C. Let (W, P) be a simply laced Hermitian symmetric pair, and suppose T is a simple
reflection in W. We explicitly construct the T-singular Hecke category' H(TWP) as a subcategory of
Hw,p)- We prove that ”szyp) 1s isomorphic to the Hecke category of a Hermitian symmetric pair
(W, P)" of smaller rank.

The combinatorial shadow of Theorem C is a graded bijection between paths in the smaller
Bruhat graph of (W, P)” and paths in a truncation of the larger Bruhat graph of (W, P). This
can be categorified to the level of “dilation” homomorphisms between the anti-spherical Hecke
categories. Sections 5 and 6 are dedicated to constructing these dilation maps and proving that
they are indeed homomorphisms. We depict an example of the embedding of Bruhat graphs and
the effect of the homomorphism on the fork generator in Figure 1.

IThis is a diagrammatic, anti-spherical analogue of the category JBSBim introduced in [Eli16] for J = {7}. Repeated
applications of our construction will give an analogue of JBSBim for J arbitrary.
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FIGURE 1. On the left we depict the embedding of the Bruhat graph of (As, A; x A1) into (A5, Ag X
Ag). On the right we depict the corresponding dilation map on the fork generator. Here i is a
primitive 4th root of 1. The tri-colouring 243 of single edges in the Bruhat graph and Soergel
diagram comes from a single tricoloured node in the truncated Coxeter diagram.

Structure of the paper. The paper is organised as follows. Section 1 contains the basic definitions
needed in this paper, namely, the tile combinatorics of Hermitian symmetric pairs and the original
definition of the Hecke category for an arbitrary parabolic Coxeter system. In Section 2, we prove
that in the case of Hermitian symmetric pairs, the presentation of the Hecke category can be
simplified dramatically, lifting to the Hecke category a result of Stembridge which states that these
parabolic quotients are fully commutative. In Section 3, we recall the construction of the light leaves
basis for these Hecke categories. Section 4 constructs Tetris style presentations and proves Theorem
B. In particular, we show that the Hecke categories corresponding to non-simply laced Hermitian
symmetric pairs are graded Morita equivalent to Hecke categories of simply laced types. Section 5
constructs 7-singular Hecke categories for simply-laced types by truncating the original categories
and identifies them with Hecke categories for Hermitian symmetric pairs of smaller ranks. (The
proof is given in Section 6.) This construction of 7-singular Hecke categories allows us to prove
results by induction on the rank. In Section 7, we use this, together with the reduction to simply-
laced types, to give a description of the graded decomposition numbers and prove Koszulity of the
Hecke categories for Hermitian symmetric pairs.

1. THE HECKE CATEGORIES FOR HERMITIAN SYMMETRIC PAIRS

Let (W, Sw) be a Coxeter system: W is the group generated by the finite set Sy subject to
the relations (o)™ =1 for o, 7 € Sy, myr € NU {oo} satisfying my, = m,o, and my, = 1
if and only if o = 7. Let £ : W — N be the corresponding length function. Consider Sp C Sy
a subset and (P, Sp) its corresponding Coxeter system. We say that P is the parabolic subgroup
corresponding to Sp C Sy. Let W C W denote a set of minimal coset representatives in P\W.
For w = 0109 - - - 04 an expression, we define a subword to be a sequence t = (t1,t2,...,ts) € {0, 1}5
and we set wt := 0?052 e O'?. We let < denote the strong Bruhat order on W: namely y < w
if for some reduced expression w there exists a subword ¢ and a reduced expression y such that
wt = y. The Hasse diagram of this partial ordering is called the Bruhat graph of (W, P). For
the remainder of this paper we will assume that W is a Weyl group and indeed that (W, P) is a
Hermitian symmetric pair, which are classified as follows:

Let W be a finite Coxeter group and P a parabolic subgroup. The (W, P) corresponding to
Hermitian symmetric spaces were first studied by Cartan [Car35] and have been classified (see for
example [Boe88]). There are five infinite families (A4,, Ax—1 X A,—k) with 1 < k < n, (Dp, An—1),
(Dy, Dy—1), (Bp, Bn—1), (Cpn, Apn—1) and two exceptional ones for n > 2, (Eg, Ds), or (E7, Eg). Our
main interest in these pairs (W, P) stems from the rich combinatorial and representation theoretic
structures associated to them (see for example [CIS88, ES87, Boe88, Bre07, Bre09, EHP14]); and
the fact that they are tractable and diverse enough to serve as milestones of our understanding of
Lie theoretic objects. This paper extends the work above on Hermitian symmetric pairs in order to
provide a new milestone in our understanding of anti-spherical Hecke categories.
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FIGURE 2. Enumeration of nodes in the parabolic Dynkin diagram of types of type (A4,, Ax_1 X
An—k), (Cn, An—1) and (B, By-1), (Dy, An—1) and (D, D,,—1) and (Eg, Ds) and (E7, Eg) respec-
tively. The single node not belonging to the parabolic is highlighted in pink in each case.

In Figure 2, we recall the Dynkin diagrams of Hermitian symmetric pairs explicitly. For type D,
we use a slightly unusual labelling of nodes, which will allow us to pass between types C' and D
more easily. The remainder of this section is dedicated to the combinatorics of Hermitian symmetric
pairs. This has been lifted from [FHP14, Appendix: diagrams of Hermitian type|, but has been
translated into a more diagrammatic language.

1.1. Tile partitions. The Bruhat graphs of Hermitian symmetric pairs can be encapsulated in
terms of tilings of “admissible regions” of the plane, which we now define. In type (A4,, Ax_1 X
Ap—k), the admissible region is simply a (k x (n — k + 1))-rectangle, and the tilings governing the
combinatorics are Young diagrams which fit in this rectangle. The general picture is as follows:

Definition 1.1. Let (W, P) be a Hermitian symmetric pair of classical type. We call a point
[r,c] € N? a tile. The admissible region Aw,py 18 a certain finite subset of tiles defined as follows:

o for type (W, P) = (Apn, Ap—1 X An_k), the admissible region is the subset of tiles
{[r,e]|r<n—k+1,ec<k}.
o for types (W, P) = (Cyp, An—1) and (Dy,, An—1), the admissible region is the subset of tiles
{[r,c] | r,e <n andr —c > 0}.
o for type (W, P) = (B, Bn—1), the admissible region is the subset of tiles
{Ir,e] |r=1and c <n}U{[r,c]|c=n and r < n}.
o for type (W, P) = (Dy, Dy,—1), the admissible region is the subset of tiles
{Ir,e]|r=1and c<n}U{[r,c]|c=n andr <n}U{2,n—1]}.

We draw tiles and admissible regions in the “Russian” style, with rows (i.e. fixed values of r ) pointing
northwest and columns (i.e. fived values of ¢) pointing northeast.

Example 1.2. We illustrate the admissible region for type (As, Ay x As) in Figure 3, for types
(D¢, As) and (Cg, As) in Figure 4, and for types (Bg, Bs) and (D7, Dg) in Figure 5. For the two
exceptional types (Eg, Ds) and (Er, Eg), the admissible region consists of the subset of tiles pictured
wn Figure 0.

Each tile [r, c| € oy, p) carries a coloured label, inherited from the Dynkin diagram of W. This
is explained in detail in [EHP 14, Appendix], but can be deduced easily from Figures 3 to 6. Given
[r,c] € Aw,p), we let s, ) denote the corresponding simple reflection in S. For example, in types
(An, Ag—1 X Ap—) and (Cp, Ap—1) the reflection s, is determined simply by the z-coordinate of
the tile [r, c] € oy, p) (i.e. it is determined by ¢ — 7). Given 7 € W a label of the Dynkin diagram,
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FIGURE 3. On the left we picture the admissible region for (As, A4 X As). We then picture two
tilings; the first of which is a tile partition, but the latter is not (the tile 2. 4] is not supported).

we refer to a tile [r,c] € Aw,p) as a T-tile if s 4 = 7. We emphasise this connection by colouring
the tile, [, ¢ € #(y,p), when appropriate.

FIGURE 4. We picture two admissible regions <y, py for types (Dg, A5) and (Cs, As) and a tile-
partition A = (1,2,3,4) € Py, p) for types (Cg, As). The + signs are explained in Subsection 1.3.

We say that a pair of tiles are neighbouring if they meet at an edge (which necessarily has an
angle of 45° or 135° to the horizontal axis, by construction). Given a pair of neighbouring tiles X
and Y, we write Y < X if X appears above Y (i.e. the y-coordinate of X is strictly larger than
that of Y). We extend < to a partial order on the tiles in A(w,p) by transitivity and we say that Y’
supports X if ¥ < X in this ordering. We say that a collection of tiles, A C &y, py is a tile-partition
if for every tile X € A and every Y € &y, py such that ¥ < X, we have that Y € \. We let 2y p)
denote the set of all tile-partitions. We depict a tile-partition A by colouring the tiles of A. See
Figure 3 for examples and non-examples of tile-partitions.

We define the length of a tile-partition A to be the total number of tiles [r,c] € A. We let QZ(EWP)

denote the subset of all tile partitions of length £. There is a natural bijection between W and
Pww,p) (see [EHP14, Appendix]) under which the length functions coincide. For A, u € Py, p), we
define the Bruhat order on tile partitions by A < p if

{[r.e] [ [r.e] € A} S{[r ] [ [ e] € )
Given A < v, we define the skew tile-partition v\ A to be the set difference of A and v.

Definition 1.3. Let [r,c| € Aw,py denote any tile. We define Ao to be the tile partition

A =2yl € Fwpy |z <y <c}
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FIGURE 5. The admissible regions for types (Bg, Bs) and (D7, Dg). The =+ signs are explained in
Subsection 1.3.

TR TR

FIGURE 6. The admissible regions .oy, py for the pairs (Eg, D5) and (E7, Eg) respectively. We think
of the violet node as being free to swing from left to right; in this way we continue to associate tiles
with the xz-coordinates of nodes in the Coxeter graph.

Remark 1.4. In type (An, Ak—1 X An_) a tile-partition X is the Young diagram (in Russian
notation) of a classical partition with at most k columns and (n — k + 1) rows. In this case A, is
the (r x c)-rectangle. In other types, it is this rectangle intersected with the region </, py.

1.2. Tile tableaux. The combinatorics of reduced and non-reduced words for Hermitian symmetric
pairs can be encapsulated in terms of tile-paths or tile-tableaux, which we now define. Given u €
P w,p), we define the set of all addable and removable tiles to be Add(u) = {[r, c] | uU[r,c] € Pw,p)}
and Rem(u) = {[r,c] | u\ [r,c] € Pw,p)} respectively. Abusing notation, we will write y + [r, c] for
wUlr,cl and p— [r,c] for p\ [r,c]. Any tile-partition p has at most one addable or removable tile
of any given colour 7 € Sy. Thus given |1, c| € oy, p) with 7 = s/, |, we often write 7 € Add(u)
or 7 € Rem(u) and we write u+ 7 or simply p7 for pur := pu+ [r, ¢|; we write or p— 7 := p— [r. cl.
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Definition 1.5. For A € &y p) we define a tile-tableau of length £ and shape X to be a path

[r1,c1] [r2,c2]

T:2 =X M UL I LN VDY
such that for each k =1,..., £, \y € Py p) and \i, salisfies one of the following
(1) Ak = Ag—1 + [1k, ck] with [rg, cx] € Add(A\g—1); or
(1) A = Ag—1 — [Tk, ck] with [rk, cx] € Rem(Ag_1); or
(ZZZ) AL = Ap_1 with [T‘k, Ck] S Rem()\k_l) or Add()\k_l);
We let Pathy(\) denote the set of all tile-tableauz of shape A and length €. We say that a tile tableau,
Ty € Pathy(\), is reduced if A € QZ(ZWP) and we denote the set of all such tableaux by Std(\). We

use uppercase (respectively lowercase) san-serif letters for general tile-tableauz (respectively reduced
tile-tableaux).

Remark 1.6. In type (A, Ax—1 X An_k), the notions of addable and removable tiles correspond to
the familiar notions of addable and removable boxes for Young diagrams. The set of reduced tile
tableauz coincides with the usual notion of standard Young tableauzx.

For \ € ‘@(éW,P) we identify a reduced tableau t € Std(\) with a bijective map t: A — {1,...,¢}
and we record this by placing the entry t~!(k) in the [r,c|th tile, in the usual manner. In this
fashion, we can identify Std(\) with the set of all possible fillings of A with the numbers {1,...,¢}
in such a way that these numbers increase alongs the rows and columns of A\. For v\ A a skew tile
partition, we can define Std(v \ A) in the obvious fashion. Given 1 <k < ¢, we let tl; ; denote
the restriction of the map to the pre-image of {1,...,k}. Examples are depicted in Figure 7.

Definition 1.7. Let \,u € Py py and fir t € Std(u) such that t([zg, yx]) = k for 1 <k < L. We
say that a tile-tableau

T:2=X [r1,e1] A [r2,c2] Ay [r3,ea] ~ [rescd] Ar= A

is obtained by folding-up t € Std(p) if Sjp, ;] = S[apyi) for 1 < k < L. We let Path(A,t) denote the
set of all paths obtained in this manner.

FIGURE 7. Tableaux s,t,u of shape (4,3,2%), (4,3,2,1) and (52,4, 3)\ (4, 3, 2%) respectively, in type
(As, Ay x A3). We have that s=t® 7 for 7 = s7 and t = s}y 10}-

Definition 1.8. Given \ € L@pr), t € Std(\) and [r,c] € Add(N), we let t @ T € Std(AT) denote
the reduced tableau uniquely determined by (t ® 7)[x,y] = tlz,y] for [x,y] # [r.c.
Example 1.9. We now provide an example of Definition 1.7. An element of Path((3,2),s) for
s € Std(4, 3,22) as in Figure 7 is given as follows:

G @6 ()66 323,21 G2 (3.21) (3,2
where the tile-labels of the arrows can be deduced from their colours (which match with the colours
of the tiles for s pictured in Figure 7). The 1st, 2nd, 3rd, 5th, 6th, 8th steps are all of the form (i)

Definition 1.5; the 11th step is of the form (ii) Definition 1.5; the jth, 7th, 9th, and 10th steps are
of the form (iii) Definition 1.5.
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Remark 1.10. For A € "W, the set of reduced tableauz Std()\) is in bijection with the set of reduced
expressions for X in a natural fashion. For example, the tableau t € Std(4,3,2,1) in Figure 7
corresponds to the reduced word ss 5685545756

1.3. Parity conditions for non-simply laced tiles. Finally, we are now ready to explain the
existence of + signs in Figures 4 and 5. For non-simply-laced Weyl groups (that is, (W, P) =
(Chn, Ap—1) or (By, B,—1) we allow a simple reflection s; € Sy to carry a parity label, si;). Given
A =0109---0p € PW we use this parity label to record the odd/even number of prior appearances
of this reflection (read from left-to-right). For example, in Figure 4 we picture the element A =
511595 15350545, 1538556 € TW for (W, P) = (Cg, As). We note that this + label is well-defined for
elements of PV (as these cosets are all “fully commuting” in the sense of [Ste96]). We record this
parity label in terms of the y-coordinate of tiles in &y, p) as in Figures 4 and 5. Given A, u € P, p)
and s € Std(u), we let Path®™ (), s) C Path(),s) denote the subset of paths which preserve this parity
condition. More precisely, using the notation from Definition 1.7, we insist that if sp;, ,,1 = s+
then we also have sy, .1 = s+; (with the same parity).

Example 1.11. Let (W, P) = (Cs, As) as in Figure /, we have that
(1) (1% (13- 1YH—(1,2,1%) > (1,2%,1) > (1,2%1) +(1,2%1) +(1,2,1%)—= (1Y
and
(1)~ (1% (13- 1YH—=(1,2,1%)(1,2%,1)—(1,2,3,1) + (1,2,3,2) > (1,2,3,2)— (1,2?)

are both elements of Path(\,s) for some A = (1%),(1,23) € PW and for the same s € Path(1,2,3,4).
The former of these paths belongs to Pathi(l, 2,3,4) whereas the latter does not as Slz10,10] = S[44] =

S—1 but S[p1.c10] = S[3,3] = S+1-

1.4. The diagrammatic Hecke categories. Almost everything from this section is lifted from
Elias-Williamson’s original paper [EW16] or is an extension of their results to the parabolic setting
[LW22]. Let (W, S) denote a Coxeter system for W a Weyl group. Given o € Sy we define the
monochrome Soergel generators to be the framed graphs

1y = 1, = spot? = ? forky . = )\ (G1)

and given any o, 7 € Sy with ms = m = 2,3 or 4 we have the bi-chrome generator braid_ 7 (m)
which is pictured as follows

XK W e

for m equal to 2,3 or 4 respectively. (We will also sometimes write braid7, braid 7, and braid 7.7
for braid 7 (m) with m = 2, m = 3, and m = 4 respectively.) Pictorially, we define the duals of these
generators to be the graphs obtained by reflection through their horizontal axes. Non-pictorially,
we simply swap the sub- and superscripts. We sometimes denote duality by *. For example, the

dual of the fork generator is pictured as follows

forkg” = Y

We define the northern/southern reading word of a Soergel generator (or its dual) to be word in the
alphabet S obtained by reading the colours of the northern/southern edge of the frame respectively.
Given two (dual) Soergel generators D and D’ we define D ® D’ to be the diagram obtained by
horizontal concatenation (and we extend this linearly). The northern/southern colour sequence of
D ® D' is the concatenation of those of D and D’ ordered from left to right. Given any two (dual)
Soergel generators, we define their product D o D’ (or simply DD’) to be the vertical concatenation
of D on top of D’ if the southern reading word of D is equal to the northern reading word of D’
and zero otherwise. We define a Soergel diagram to be any graph obtained by repeated horizontal
and vertical concatenation of (dual) Soergel generators.
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For w = 01 ... 0/ an expression, we define 1,, = 15, ®15,®- - -®1,, and given k > 1 and o, 7 € Sw
we set 1537_ =1,81,®1,®1, ... to be the alternately coloured idempotent on k strands (so that the
final strand is o- or T-coloured if k is odd or even respectively). Given o, 7 € Sy with ms, = 2,
let w = p1- pr(oT)prys - pe and w = p1--- pp(70)pr43--- pe be two reduced expressions for
w € W. We say that w and w are adjacent and we set

braid% = 1P1 Q- ® 1Pk ® braid:;@) ® 1Pk+3 Q& 1/)14'

Given a fized sequence of adjacent reduced expressions, w = wV, w®, ... w@ = w and the value
¢ is minimal such that this sequence exists, then we set

braidy; = H braidﬁzll).
- 1<p<q B
Given o, we define the corresponding “barbell” and “gap” diagrams to be the elements
bar(o) = spotgspotg gap(o) = spotgspotg,
respectively. Let A, u € Py py with £ = £(u) — £(A) and t € Std(p \ A) such that t([zg, yx]) = k for
1<k </l Welet
1t == 1

® Loy, @ ® 1y

Sley,y1] x9,y2] zg,yp]

and for o = S| we set

T Y]

gap(t — [zp, wkl) = Luyy, oy, @8AP(O) @ Loy,
We also define the corresponding “double fork” diagram to be the element
dorkZ o = forkZ 7 fork? .

It is standard (in Soergel diagrammatics) to draw the element cap?  := spot?fork”  simply as a

strand which starts and ends on the southern edge of the frame. (We define cup;™ := (cap? )*.)
For x = 0109 - - - 04 a word, we define z,., = 0y ---0201. Then we inductively define

capl , | = cap), y, 1y ® capy,o, © 1y )

where y = 0102 - - - 04_1. This diagram can be visualised as a rainbow of concentric arcs (with ca pg Loy
the innermost arc). Since we have zz,., = 1y when evaluated in the group W, we will simply write
capﬁgf1 for capg T,

In order to make our notation less dense, we will often suppress mention of idempotents by
including them in the sub- and super-scripts of other generators. This is made possible by recording
where the edits to the underlying words are with emptysets. For example

spot&%@ .= spot?, © 15 @ spot” forszgaa = fork]. ® 15 ® forkg,, bar(ay) = bar(a) ® bar(v).

We make use of all of the above notational shorthands (even within the same equation). Finally, for
distinct o, 7 € Sy we recall the entries of the Cartan matrix corresponding to the Dynkin diagram
of (W, P):
0 if o+ 7,
-1 ifo—r7
\% ’
Og, Qr) = .
(o, ar) -1 ifo =T,
-2 ifo<«=r.
Definition 1.12. Let W be a Weyl group, P be a parabolic subgroup, and let k be a field. We define

Hw,p) to be the locally-unital associative k-algebra spanned by all Soergel-graphs with multiplication
given by o-concatenation modulo the following local relations and their vertical and horizontal flips.
1ol =65+ 10, 1pl, =0, 15 =1y, (R1)
1pspot’ 1, = spot?, 15forkg  1s6 = forky,, 1" braid 7 (m)1,', = braid7(m), (R2)

For each o € S we have the fork-spot, double-fork, circle-annihilation relations

(spot? @ 1,)fork?? = 1,, (1, ® fork?,)(fork?” © 1,) = fork?% fork fork?  fork7? =0, (R3)

oo
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pictured in Figure 8 together with the cinching relation
1o ® 1y = spot’. @ fork?? + spotj ® fork7, — bar(o) @ dorkg g (R4)

pictured in Figure 9. For every ordered pair (o, 7) € S%V with o # T, the bi-chrome relations: The
o1-barbell,

bar(7) ® 1, — 1, ® bar(7) = (o}, a,)(gap(c) — 1, ® bar(c)). (R5)
J - /| - D -
FIGURE 8. The fork-spot, double-fork, and circle-annihilation relations of (R3).
-1 -
FIGURE 9. The cinching relation of (R4).
I - PP g - 1
F1GURE 10. The two-colour barbell relation of (R5).
For m = my, € {2,3,4} we also have the fork-braid relations
braidy 25 (forkg © 1771) (1 © braid?759) = (177! @ forkl )(brad 7 1)
braid7 727 (forkg, © 171) (1, @ braid?777) = (171 @ forkg,,) (braid}% 7% @ 1,)

form odd and even, respectively — these are pictured in Figure 11. We require the cyclicity relation,

(17, @ (capl,)) (1, © braid? (m) @ 1) (cupf”™ @ 177,) = braid}7::77
TO

(17, @ (cap?, ) (L, ® braid77(m) © 1,)(cupj” ® 12,) = braid} 777

for m odd or even, respectively.

(R7)

FIGURE 11. The fork braid relations of (R6) for m(o,7) = 2 and 3 and 4 respectively.

For m = 2,3, or 4 we have the double-braid relations’

1., = braid]7braid?]  1,,, = braid?;7braid;77 — spotZ;7forkg? fork?, spotZ’s. (R8)
lrore = braid}77%braid?2 77 + (o, ozT)spot:g:gforklgaforkiiaspot:gi;

2The double-braid relations can replace the usual Jones—Wenzl relations, by [EMTW20, Exercise 9.39(1)].
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+ (Y, ag)spot” 77 7 fork 277 fork "7 spot 20

Tolo TOoOO TOTO
TOTO TTO TO TO'@O' TOTO TOO TO 7'@7'0'
—spot g fork  ;“fork . spot o770 — spot’ 7 Tfork 77 fork 7 spot ;7

11

(R9)

respectively, pictured in Figures 12 and 13. For (o, 7,p) € SI%V with Mg, = mpr = 2 and Mg = m,

we have the commutating-braids relation
(braid, 777 ® 1,)braid) 72" = braid ;777 ”(1, ® braid ;77 [)

poOTTO pTOOT TO
s | TO..TO s OTOTP s | TOOTpP s |TO...OT
(braIdO'T...O'T ® 1P)bra|dpo'7'--~o'7' - braldp‘r'0'~~-0'7'(1p Y braldaT...‘ra’)'

for m odd or even respectively, this is pictured in Figure 1/.

(R10)

FIGURE 14. The commuting braids relation of (R10) for m(o, p) = 2 = m(7, p) and m(o,7) = 2

and 3 and 4 respectively.

Finally, we have the Zamolodchikov relations: for a triple o, 7,p € Sw with msr = 3 = My~ and

Mo~ = 2 we have that

YOV TOYY T AAOTYOTOYY T AOYTOTYY O TYOYT rJOTOYOT T ATOTYOT
braid,? ;7o braidg 77 braidg [ 77 Tbraidg 7 )% ) braid? 277 Tbraid L2 T0 T

_ FYOYTOY FYOTYOY F1YoOTOYOo FYTOTYO A\ TYOYTO F I TOYOTO
= braid) 7" 2 braid 77 7 sbraid 77 Tbraid [T 77 T braid )2 )75 braid 007 T

For a triple o, 7, € S such that mys-, = 4, m., = 2, My = 3, we have that

YOV TOTYOT T AYOYOTOYOT T AOTYOYTOYOT T AOTYOTYOYOT T AOTYOTOYOYT

T AOYTOTYOYT O TYOYTOTYY O TYOYOTOY O TOYOYTOY T ATOTYOYTO7Y
braIdUT’)’O”YTUT’\/braIdO'T’YO"\/O'TO”\/braIdO'TO"\/O"YTO”\/braldTUT’yU’yTU”ybraldTU"/TO’T’YU”\/

_ FYOYTOTYOT P YOYTOYTOT P YOTYOYOTO P YOTOYOYTO FYTOTYOYTO
- brald’ya'yTa"yTaT brald'ycr‘r’ya"ycha' brald’ycha"ycr'chr brald’yTUT’yO”YTU’ braIdT'ya'chr‘r’ya' X

A TYOYTOTYO I TYOYOTOYO N TOYOYTOYO I TOYOTYOYO I TOYOTOYOY
bra IdT’YO”‘/O’TU”‘/O’ bra IdTO"‘/O”‘YTO""/O’ bra Idra"yarfya"yo- bra Id‘ra”yo-‘ra"yo"y bra IdTO"'}’TO'T"/O"‘Y :

Further, we require the interchange law
(D1 ® D2) o (D3 ® D4) == (Dl o D3) ® (D2 o D4)
and the monoidal unit relation

lp@Dy=D1=D1®1y

(R11)

(R12)

(R13)

(R14)
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for all diagrams D1, Do, D3, Dy. Finally, we require the following non-local cyclotomic relations
bar(c) ® D =0 for all o € Sy and D any diagram, (R15)
1, D=0 for all T € Sp C Sw and D any diagram. (R16)

The algebra Hyy,py can be equipped with a Z-grading which preserves the duality *. The degrees
of the generators under this grading are defined as follows:

deg(ly) =0 deg(ly) =0 deg(spot’) =1 deg(fork?,) = —1 deg(braid?’(m)) =0

for o, 7 € Sy arbitrary and m > 2. We will define the p-Kazhdan—Lusztig polynomials of these
categories in (3.4).

Remark 1.13. Of the defining relations of Definition 1.12, we have only diagrammatically depicted
those which will explicitly appear in the arguments of this paper; the remaining relations can be
found for example in [EW16, Bow25]).

Remark 1.14. We can pre- and post-multiply the relation depicted in Figure 9 with spot generators.
We hence obtain the usual “one colour Demazure relation” as follows:

4

®
.\ N .( I: , 1 W)
| | :

¢ | |o

Remark 1.15. The Hecke category is usually defined in the literature using the one-colour Demazure
relation (1.1) instead of the cinching relation (R4), plus an additional technical assumption called
Demazure surjectivity [EW16, Assumption 3.7]. In this setting Demazure surjectivity is necessary
to prove the cinching relation, which is essential for the Hecke category to be well behaved (more
precisely, for the light leaves construction in Section 3 to yield a basis). However a careful analysis
of the proof in [EW16, §7] shows that Demazure surjectivity is not necessary for the Hecke category
to be well behaved if one assumes the cinching relation to begin with! In other words, our definition
of How,py ts always well behaved, and is equivalent to the usual definition of the Hecke category in
the literature when the latter is well behaved. We believe this trivial observation has been overlooked
until now due to historical motivation of the diagrammatic Hecke category from Soergel bimodules,
which rely on Demazure surjectivity much more heavily.

2. LIFTING FULL-COMMUTATIVITY TO THE
HECKE CATEGORIES OF HERMITIAN SYMMETRIC PAIRS

Stembridge proved that the parabolic quotients for Hermitian symmetric pairs are fully commuta-
tive [Ste96, Theorem 6.1]. In other words, in W the non-commuting braid relations are redundant.
(This is discussed in more detail in terms of Temperley—Lieb diagrammatics in the companion paper
[BDET25].) We now lift this idea to the 2-categorical level; in Hw,p) the non-commuting braid
generators are redundant.

Remark 2.1. By a “local relation” of the algebra Hy,py we mean any relation that can be applied
in an arbitrary local neighbourhood of a diagram (as opposed to the relations in (R15) and (R16)
which can only be applied to the leftmost edge of a diagram). In this section we state and prove
new local relations of Hy,py — our proofs will make use of the non-local relations of (R15)
and (R16). To see how this works, we first observe that any element of Hw,py can be obtained by
vertical concatenation of diagrams of the form 1, ® D® 1, for x and y two expressions for x,y € W
and D a diagram as in (C1) or (G2). Thus proving a local relation Dy o Dy = Ds is equivalent to
proving the non-local relation

1£®D10D2®1g:12®D3®1g
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for all possible x and y for x,y € W. In fact, by [LW22, Theorem 5.3}, it is enough to consider only
reduced expressions z,y for v,y € W.

Theorem 2.2. In Hy p) we have the local relation braid7;(m) =0 for any m = m(o,7) > 2.

Proposition 2.3. Let w € "W and let w,w' be a pair of reduced expressions for w. We have that

1, = braid, braid’ 1,/ = braid® braid,

Proof. For (W, P) a Hermitian symmetric pair, [Ste96, Theorem 6.1] implies that any two words
w and w’ in PW differ only by application of the commuting braid relations of the Coxeter group.
These lift to commuting braid generators in Hy,p) and the result follows. O

We are now ready to prove the main result of this section.

Proof of Theorem 2.2. As in Remark 2.1, it will suffice to prove that
1s ® braid? . (m) = 0,

for all s € Std()\) and all A € Py, p). We will proceed by induction on the £ = ((\). If A = &,
then braid? (m) = 0 for all m > 2 by relation R16. In what follows, we only explicitly consider the
cases for which neither of 13 ® 1, or 13 ® 1. is equal to zero by application of the commutativity
and cyclotomic relations (as these cases are trivial). Now assume that £(A) > 1. We have two cases
to consider.

Case 1. Either o or 7 € Rem()\). We consider the former case, as the latter is identical and we
set ;4 = A— o and we can assume that t € Std(u) so that t® o = s (by Proposition 2.3). For m > 2,
we have that

1s ® braid? ] (m)
=1 ® 1, ® braid? (m)
=1, ® (1, ® 1, ® 1) (1, @ braid?” (m))
=1 ® ((spot?. @ fork” + spot§ @ fork,, — bar(c’) @ dork%) ® 1™ 1) (1, @ braidZ7 (m)).

where the first two equalities are trivial and the final equality is an application of the cinching
relation (R4) visualised in Figure 9. This is depicted in diagrammatically in Figure 15. The first
term is zero by induction, since it factors through 1y ® braid?” (m) with ¢(t) = ¢(s) — 1. The other
two terms factor through a diagram of the form

L ® (forkg, ® 17,1) (15 ® braid?7(m)),
and we can apply the fork-braid relation (R6) visualised in Figure 11 and hence obtain

1; ® braid? )7 (1,5 ® fork? . )(braid 77 ® 1)

TOT oOTO
1¢ ® braid?777 (1,0, ® fork?,)(braid797% @ 1,)

for m = 3 or 4 respectively. In both cases, this is zero by induction.

1. ® =1® =1® +1® +L®
®

FIGURE 15. Case 1 of the proof of Theorem 2.2 with s =t ® o and m(o,7) = 3. The first term
after the second equality is zero by induction, the latter two terms require an application of the
fork-braid relation pictured in Figure 11 before they can be deduced to be zero.
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Case 2. It remains to consider the case that o, 7 ¢ Rem()). We first note that if there exists
p € Rem(\) with m(o, p) = 2 = m(7, p) then we can assume (by Proposition 2.3) that s =t ® p
for t € Std(A — p) and

1s ® braid? [ (m) = 1; ® (braid? 7 (braid?  (m) ® 1,)braid7;") = 0

TO...p pTO...
where the second equality follows by the commuting braid relation (R10) pictured in Figure 14.
and the third follows by induction (as £(t) = ¢(s) — 1). Thus for the remainder of Case 2 we can
assume without loss of generality that s = t® p such that p # 7,0 and that m(o, p) > 2 (and that
o, 7 ¢ Rem(})).
Subcase when o ¢ Add(\). We first consider the “generic” case in which o ¢ Add(\). Our
assumptions (and inspection of the <y py) imply that o € Rem()\ — p); furthermore if m(p, o) = 4,
then p € Rem(A — p — o). By Proposition 2.3 we can assume that

(2.1)

. tRo®p for m(p,o) = 3 and some s € Std(A — p — o)
C|tepeo®p for m(p,o) =4 and some s € Std(A — p — o — p)

this covers all instances of types (A, A x A), (C, A), and (D, A) cases. We consider the first generic
case in which m(p,o) =3 (and m = m(7, o) > 2). We have

1i ® 15, ® braid? (m)

=1 ® ((braid727braid277 @ 171 — spotgggdorkggspotg%z))(1Up ® braid?” (m))

(2.2)

using the double-braid relation. We now observe that

1 ® braid727 @ 171 = 0 1 ® 1, ® spot”) @ braid?7 (m) = 0

by induction (since £(t), ¢(t ® o) < £(s)) and so both terms in (2.2) are zero, as required. We now
consider the second generic case in which m(p, o) = 4 (which implies that m = m(7,0) = 3). We
have that
i ® 1,5, ® braid? 7
=1; ® (braid57£7braid 7077 ® 1.5 + (o, ap>spotzgppdorkzgspotzg’; @ lore

+ (o), ag)spot”7 7 fork7 7 fork)g spot?207 1.,

po poo popo
o popoTo ppoTo poldoroy popoTo pooTo pbpoTo s oTO
spot) o' fork) 0o g spot) g0 n %) — spot)) g forkp DT T spot) ot ) (1pep ® braid? 77)

and all of these terms are zero by induction on length (similarly to the m(p, o) = 3 case, above).
The righthand-side of this equation is depicted in Figure 16 in type (C, A).

N _ _ W ) ﬁ LU _
FIGURE 16. Rewriting the diagram 1 ® 1,5, ® braid?7 in type (C, A). The type (B, B) case is

TOT
similar, but with the coefficients on the last two terms switched.

Exceptional subcases where o € Add(\). If o € Add()\), this implies that = ¢ Add()\),
because the addable tiles for a tile partition must commute with each other. (This is a general
fact about fully commutative elements of Coxeter groups; for the analogous statement regarding
removable tiles see e.g. the proof of [Ste96, Theorem 4.2].) It remains to consider this case. We
remark that our assumptions on A and the fact that o € Add()\) implies that we must be in one
of types (Dyn, Dy—1), (Bn, Bn—1) and exceptional type and so we refer to this as the “exceptional”
case. In this case, we can write y C A\ where || — |u| = L is maximal such that t,\y = si, ... si,
and m(s;,,7) =2 for all 1 < k < L and such that 1z, = 0 for any s € Std(u) by (possibly repeated
application of) the double-braid (pictured in Figure 12) and cyclotomic relations (R16).
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FIGURE 17. Some examples of the “exceptional” examples for which o € Add()\) in Case 2 of the
proof of Figure 17. The region p C X is pictured in yellow (with p pictured in grey). In the first
case (o, 7) = (s2,51) and p = s3. In the second case, (o,7) = (s4,55) and p = s3. In the third
case (o, 7) = (s3,56) and p € {s2,s4}. The colouring of nodes is chosen to emphasise the roles of
o, T, p in each case (and so is inconsistent with the colouring of Figure 6).

Rather than go into the word combinatorics for each exceptional case in detail (as they are all
very similar) we simply check one of these exceptional cases here. Further illustrative examples
are in Figure 17 (and we leave these as an exercise for the reader). Let A = (12,2%) € Pw,p) for
(W, P) = (Eg, D) with o0 = s9 € Add(\) and p = s3 € Rem(\) with m(o, p) = 3 as pictured in
Figure 17. We have that (12) = u C A = (1%2,2%) and setting 7 = s we note that m(r,s;) = 2 for
$i € '\ A = s3848653. Using the colouring of the leftmost diagram in Figure 17, we have that

123463212 123463212 _ 123463212” v1234632'12”
123463121 123463121 123463121 123463121

The first equality follows by the double braid relation for m(s;, 7) = 2 of (R8) (pictured on the left
in Figure 12) for i = 3,4,6. The second equality follows by the double-braid relation (R8) (pictured
in Figure 12) and the cyclotomic relation (R15); the third equality follows by the commutation
relation (R8); the fourth by the cyclotomic relation (R15). O

We now state the obvious corollary, for ease of reference.

Definition 2.4. We define a simple Soergel diagram to be any Soergel diagram which does not
contain any barbells or braid? (m) for m = m(o,7) > 2.

Corollary 2.5. Let (W, P) be a Hermitian symmetric pair. We can define Hw,p) to be the locally-
unital associative k-algebra spanned by all simple Soergel diagrams with multiplication given by
vertical concatenation of diagrams modulo relations R1, R2, R3, R/, R5, R13, R1/, R15, R16, for
(7,7, p) € 8% with m(~, p) = m(p,7) = m(~,7) = 2, we have the commutation relations

+ =0
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and for m(o, ) = 4, we have the null-braid relation

L T E 2 O E| I VA

and their horizontal flips.

3. LIGHT LEAVES FOR THE HECKE CATEGORIES OF HERMITIAN SYMMETRIC PAIRS

In this section, we recall Libedinsky—Williamson’s construction of the light leaves basis in the case
of Hermitian symmetric pairs. This could have been done in Subsection 1.4, however we delayed
until now so that we could simplify the presentation of this material by virtue of Theorem 2.2.
We regard Hy,p) as a locally unital associative algebra in the sense of [BS24, Section 2.2] via the
following idempotent decomposition

Howr = D LHwrly
z€exp(x)
yEexp(y)
zyePw

Remark 3.1. Given s,t € Std()\), by Proposition 2.5 we have that
braid§ o 1y o braidf = 1 braid{ o 15 o braid; = 1,
Thus from now on, we may fix any preferred choice of tx € Std()), for each X € Py py.

By Remark 3.1, we can truncate the set of weights to be “as small as possible”.
Definition 3.2. We set
Yw.p) = Xpergnp - and  havp) = Lwpy Hovp) Lw.p):

Let A\, 1 € P(w,py and T € Pathy(A, t,) be a path of the form
T: =X =>A 2 A== X=X

and we let 7 € Add(u). If 7 € Add(N), we set AT = A7 = A+ 7 and A~ = \. If 7 € Rem()), we
set AT =Xand A~ =X — 7. Weset T" and T~ to be the paths

TH:o=XN—=AM—=d—= = XN=AT T 0= =X === X —= A,
For the empty path T we set cre = 1 to be empty diagram. We now inductively define the basis
via certain “add” and “remove” operators (denoted AT and R¥ respectively). If 7 € Add()), then
we define
At(cr) == braidziiéfr(cT ®1,;) A= (e7) := c1 @ spot?.

and we set ¢+ = AF(e1) and er- = A7 (c1). If 7 € Rem(\), then A = X7 and we define

R (ct) := braidp, o, (1y,, ® fork ) (braidy) “"cr @ 1)

R (ct) = (1, ® capgT)(braidB@TCT ®1;)

and we set ct+ = RI(ct) and ct- = R (ct). An example is given in the rightmost diagram in
Figure 18.

FIGURE 18. Construction of a light leaves basis element (for (As, A2 x As), whose Bruhat graph
is the leftmost of Figure 1) using the diagrammatic composition defined in Definition 3.9. The
rightmost diagram is equal to AT RT R A7 AT AT AT (1)




THE ANTI-SPHERICAL HECKE CATEGORIES FOR HERMITIAN SYMMETRIC PAIRS 17

We are hence able to equip the algebras hyy, py with powerful “light leaves” graded cellular bases
which encode a great deal of representation theoretic information.

Theorem 3.3 ([£W16, Section 6.4] and [LW22, Theorem 5.3]). Let A\; < Ag2 < --- < A be any total
refinement of the Bruhat order < on Py py. The algebra hy, py has a chain of two-sided ideals

0 C hav.pyIa hw,py C hw,py(Ia, + 1) haw,py C -+ C haw,py (I, + 1o, + -+ 1x)haw,py = haw,p)
such that
{cg‘lcr = cget |'S € Pathiy, py( Mk, ty), T € Pathay py( Ak, tw), 1, v € Py py} (3.1)

is a k-basis of h(WJD)1)\kh(wp)/h(mp)l/\kilh(vup). Thus he,py is is a graded cellular algebra in the
sense of [HM10] and a quasi-hereditary algebra in the sense of [CPS88].

Remark 3.4. The careful reader will notice that we have not assumed the parabolic property from
[LW22, §2.3], as this can fail in positive characteristic. It turns out that this condition is not always
necessary to obtain a light leaves basis as in Theorem 3.3 above. In our setting, the trick in [BHN22,
Example 1.11(1)] is always enough to show that the light leaves construction yields a basis in any
characteristic (including p = 2, by way of Remark 1.15). In more detail: let (K, O,k) be a p-modular
system. In other words, suppose O 1is a complete discrete valuation ring whose residue field is k
and whose field of fractions K is of characteristic 0. Since W is a Weyl group there is a standard
O-form 7-[81,_’}3) of the algebra Hy, py, which arises from the O-form of the geometric realisation of
W. This realisation is faithful (and thus satisfies the parabolic property) because the fraction field
K is of characteristic 0. By [LW22, Theorem 5.3] the light leaves construction yields a basis for
7—[81/713), which descends to a light leaves basis for Hy,p).

Remark 3.5. Whilst the quasi-heredity property is not mentioned explicitly in [EW 16, Section 6.4]
and [LW22, Theorem 5.3], one of the first theorems in the literature on cellular algebras was that
they are quasi-hereditary if and only if each layer of the cell-filtration has an idempotent, as above
(see [KX98, Proposition 4.1]). We refer to a quasi-hereditary algebra as having a highest weight
structure as in [CPS&8].

When it cannot result in confusion, we write cgt for cg\-l-. For u € P, p), we define one-sided
ideals
hilpy = Leuhqw.p) hiv.py = hiw.py Nk{cdr | S, T € Path(A), A < u}
and we hence define the standard or cell modules of hy,p) as follows
Ap) = {ck == cjg + hfvﬁP) | S € Path(u, t,),v € Pav,p) }- (3.2)

We recall that the cellular structure allows us to define, for each p € 2y py, a bilinear form (, )#
on A(p) which is determined by

cercyy = (cr,cu)tcly, (mod hfv’é,P)) (3.3)

for any S, T,U,V € Path(u,—). We obtain a complete set of non-isomorphic simple modules for
haw,py as follows

L(p) = A(p)/rad(( , )*)
for u € P, py. The projective indecomposable h(yy, p)-modules are the direct summands

Le, haw,py = €D dimg(L(A) 1y, ) P(N).
A<
For k a field of characteristic p > 0, the anti-spherical p-Kazhdan—Lusztig polynomials are defined as
follows,
P u(q) = dimg(Homyy,, o) (P(A), A()) = D [A() : L) (k)]g" (3.4)
keZ

for any A\, u € Py, p). These polynomials were first defined via the diagrammatic character of
[EW16, Definition 6.23] and [LW22, Section 8] and rephrased as above in [Plal7, Theorem 4.8].
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Elias-Williamson and Libedinsky—Williamson [EW14, LW22] proved that over a field of charac-
teristic p = 0, the (anti-spherical) p-Kazhdan-Lusztig polynomials are, in fact, equal to the clas-
sical (anti-spherical) Kazhdan—-Lusztig polynomials of [Deo87, Soe97] thus justifying the nomen-
clature. Interesting families of p-Kazhdan—Lusztig polynomials calculated in the literature include
Williamson’s torsion explosion examples [Will7] and examples of Fiebig, Lanini-McNamara and
Libedinsky—Williamson, [Fiel2, Fiel0, LM21, LW17]; algorithms for calculating the p-Kazhdan—
Lusztig polynomials are considered in [GJW23, JW17].

Remark 3.6. We note that Hy,py and hgy,py are graded Morita equivalent (as the latter is obtained
from the former by a truncation which does not kill any simple module).

Remark 3.7. The trivial and sign representations of the Hecke algebra give rise to the spherical
and anti-spherical Hecke categories, respectively. The latter of which are the focus of this paper and
are more well-studied than their spherical counterparts (see for example [RW18, LW18, GJW23,
BCHM22, BHN22, BCH23]). The spherical Hecke categories are much more mysterious: construct-
ing presentations of these categories (generalising Definition 1.12) is an important open problem.
The problem of constructing bases of these categories for type (An, Ax—1 X Ap_k) was solved in
[Pat22] using tiling combinatorics akin to this paper; generalising this to all parabolic Coxeter sys-
tems has been the subject of much recent work [EK23, EKLP, EKLP24]. The p-(in)dependence of
spherical p-Kazhdan—Lusztig polynomials is the focus of a recent preprint by Baine [Bai].

3.1. A “singular” horizontal concatenation. Singular Soergel bimodules were first considered
in Williamson’s thesis, where it was proven that they categorify the Hecke algebroid [Willl]. At
present, we do not have a diagrammatic construction of the category of singular Soergel bimodules
(although some progress has been made, see [EMTW20, Chapter 24]). In this paper, we will give
a complete realisation of singular Soergel bimodules within the diagrammatic Hecke category for
(W, P) a Hermitian symmetric pair. In order to accomplish this goal, we first need to provide a
Soergel-diagrammatic analogue of the tensor product (denoted @pg-) for singular Soergel bimodules
“on a 7-hyperplane” for 7 € Sy (which we will denote by ).

Definition 3.8. We suppose that a diagram D € 1. Hw,p)ly. is such that (i) the rightmost T
in the northern boundary is connected to the rightmost T in the southern boundary by a strand
and (ii) there are no barbells to the right of this strand. We say that such a diagram has a a final
exposed propagating 7-strand. Similarly, we define a first exposed propagating 7-strand by reflecting
this definition through the vertical axis.

Definition 3.9. We let D, € ].QTH(W’P) lyT and Dy € 1T@H(W7p)l.,.y. We suppose that Dy (respec-
tively Do) has a final (respectively first) exposed propagating T-strand. We define

Dy ® Dy = (Dl &® 12)(1Q® DQ) = (1£® D2)(D1 & ]'E) (35)
Now suppose that D} = braid%_leraidgT # 0. We extend the above definition as follows

D} & Dy = (braid% ® 1,)(Dy & Dy)(braids ® 1y). (3.6)

FIGURE 19. An example of & merging the rightmost and leftmost 7-strands.

Remark 3.10. Diagrammatically, we can think of & as identifying the rightmost T-strand of DY)
with the leftmost T-strand of Dy. For examples, see Figures 18, 19 and 50.
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Proposition 3.11. The operation & satisfies the interchange law:
(D1 @ Dg) o (D3 @ Dy) = (D10 D3) @ (Dg o Dy).
Proof. For equation (3.5), the result follows immediately by diagram chasing using the fact that
(D1 ®1u)(1y @ D2) = (1, ® D2)(D1 @ 1y) (3.7)

The case of equation (3.6) follows by applying commuting braid generators. O

We will abuse notation and use % as a shorthand as follows.

Definition 3.12. We let D, € ly-?-l(w,p)ly and Dy € 1TyH(W,P)1Ty- We suppose that Dy (re-
spectively Do) has a final (respectively first) exposed propagating T-strand. We define

Dy @ (spot? ® 1,)Dy) = (1, ® spot @ 1,)(D; @ Dy). (3.8)
We extend this via commuting braid generators in an analogous fashion to equation (3.6).

Remark 3.13. We note that the operation in equation (3.8) considers non-propagating 7 -strands
and therefore does not satisfy the interchange law (as equation (3.7) no longer holds).

4. CATEGORICAL COMBINATORIAL INVARIANCE

In this section we provide new presentations of the anti-spherical Hecke categories Hy,p) for
(W, P) a simply laced Hermitian symmetric pair. Our presentations encode the combinatorics of
the Bruhat graph more effectively than those of Definition 1.12 and Corollary 2.5.

Definition 4.1. We let A\, u € W and we set Il = [\, p] := {v | A< v < p}. We let

ezZly and szl,, (4.1)

ALy v<p

in How,py- We let H?W’P) denote the subquotient of Hy,py given by

'H%Tw,p) = f(Hw.p)/ Hw.pyeHw,p)))f-

We set hip = 1(W’p)H?WP)1(W’p) as i Definition 5.2.

Theorem 4.2. Let 11 = [\, p] and 11 = [N, 1] be subquotients of the Bruhat graphs of Hermitian
symmetric pairs \,u € (W, P) and N,u' € (W', P"). If II and II' are isomorphic as partially
ordered sets, then the corresponding subquotients HPW,P) and HFI//V/,P') are Morita equivalent (in the
sense of [Ben98, Section 2.2]) and this equivalence preserves the grading, cellular, and highest-weight
structures of these algebras.

This section is dedicated to the proof of Theorem 4.2. In order to do this, we must first provide
“Tetris-style” presentations of these categories.

4.1. Tetris combinatorics for “gaps” in reduced words. In what follows we let o, 7 € Sy
with m(o,7) =3 or 4. If m(o,7) =4 and (W, P) = (Cy,, Ap—1), then suppose that (o, 7) = (s1, s2)
or if that (W, P) = (By, Bn—1), then (o,7) = (s2,s1). Then (a),a,) = —1, and the two-colour
oT-barbell relation is

I ) I + . (4.2)

',

Using the one-colour barbell relation we then obtain

,,,,, ' - ol ) I ) : "
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Finally, for m(o,7) = 3 = m(o, p), by summing over the one and two colour barbell relations we
obtain the following

O I

We now provide inductive versions of the equation (4.2) and (4.3). First, we define a type A string
T C Sw to be an ordered set of reflections s;,, ..., s;, such that m(s;;,s;,) =2+ 6; 41 + 051 for
1 < j,k < t. By induction on equation (4.3) we have the following:

Lemma 4.3. Let T C Sy be a type A string. We have the following local relation

t t—1
18@‘151'2---8%,1 ® bar(s’it) = E :bar(sik) & 181'1 Sig-Siy_q Z 151'1 Sig-Sij_q ® gap(sik) ® lsikH---Sz‘t,l
k=1 k=1

By induction on equation (4.2) we have the following:

Lemma 4.4. Let T' C Sy be a type A string. We have the following local relation

t t
Z 181'281'3...8% ® bar(sik) - bar(sil) ® 15i25’i3"'5it + Z 15i25i3"'5ik—1 ® gap(slk) ® 18ik+1"'5it
k=1 k=2
Lemma 4.5. Let 3,7 € Sy be such that m(3,~) = 3. We have the following local relation
1, @ (bar(3) + bar(v)) ® 15 = 0. (4.5)

Proof. We have that
L, @ (bar(8) + bar(7)) © 15 = 1, ® 15 @ bar(7) + 1, @ gap(B)
= spotzg?y (17@7 + spotlggdork%spotz%) spotzgg
and so the result follows from the [B-~-null-braid relation. O

Lemma 4.6. Suppose that m(o,7) =3 =m(~,7) and m(o,~) = 2. We have that

= (—=1)x rm— —
? ] e L

Proof. We apply the 7- and o7-null-braid relation to the left and righthand-sides of (4.6) respec-
tively. The result follows.

(4.6)

Lemma 4.7. Suppose that m(o,7) =m(v,7) =m(p,7) =3 and m(o,~v) =m(p,v) = m(o, p) =

2. We have that
'\ 5l L i
 { b)Y ) ¢

Proof. We apply the 7p- (respectively 77-) and o7-null-braid relation to the lefthand-side (respec-
tively righthand-side) of equation (4.7) respectively. The result follows. O

(4.7)

Proposition 4.8. Suppose that we are in one of the following cases: (i) (W,P) = (Dy, An—1)
and {o, 7} = {so,s1} (ii) (W, P) = (An, An—1) and m(o,7) = 2 (iti) (W, P) = (Dy,Dp_1) and
m(o,7) =2 with {o, 7} # {s0,51}. Then we have the following local relation: 15+ = 0 in Hwy,p)-

Proof. As in Remark 2.1, it will suffice to prove that 1¢ ® 1, = 0, for all s € Std(u) and all
w € Pay,py- We will proceed by induction on £(x) = £ > 0 with the base case 15, = 0 being trivial
for any m(o,7) = 2 (by the commuting relations (2.3) and the cyclotomic relation (R16)). Now
assume that £(u) > 1. We let p € Rem(u) and set ¢/ = p— p. If p = o (or similarly 7), then

1,=1,0®1,01,; =1, ®1, ®1,r =1,y ® 1, ®braid7 1, ,braid ;7 =0
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and similarly, if m(p, o) =2 = m(p, 7) then
1,=1,®1,®1ly, =1, ®braid?77 1, ,braid?77 =0

oTp oTp
by induction (as £(u') < ¢(u)) by the leftmost and rightmost equations in (2.3) respectively. Thus
we can assume, without loss of generality, that m (o, p) = 3. We consider each type in turn.

For (W,P) = (Dy, A,—1) it remains to consider the case that p = s, € Rem(u) is the unique
removable node. We will assume that t, = t,» ® 5o ® s, (the case t, = t,» ® 51 ® s, is identical).

We have that
1

by induction on ¢(p") < £(). (We note that 1y, ® 1. 5, = 0 by further application of the commu-
tativity relation (2.3)).

For (W, P) = (A,, An—1) we can assume without loss of generality that o = s; and 7 = s, for
i <j—2 Let u=s1...5,and j <k +1, we have that 1;, ® 1,, ® 1., = 0 by the (s;_1, s;)-null-
braid relation, the leftmost commutativity relation of (2.3), and the cyclotomic relation (R16). For
j = k + 2 if follows immediately from the commutativity and cyclotomic relations.

1t“ & 18051 = 1tHH ® 1.5'0823051 = 71tM// & =0

For (W, P) = (D, Dy—1) we can assume without loss of generality that o = s; and 7 = s, for
1< j—2 If p € 8,-18-2...8280 OF Sp_1Sp—2...8281 the result follows as in type A. It remains
to consider $,_18,_2...5258150 C 1 and we assume without loss of generality that j > 3 if ¢ = 0. If
[ = Sp—15p—2...525180 then j —2 > ¢ > 2 and we can apply the (s, sj_l)—null—braid relation, the
leftmost commutativity relation of (2.3), and the cyclotomic relation (R16).

Finally, if 4 = sp—18p—2...52515082...s for k > 2. If j > k + 2 (respectively j < k + 1),
we apply the (s, sj11)-null-braid (respectively (s;, si4+1)-null-braid) relation and the commutativity
and cyclotomic relations. O

Definition 4.9. For (W, P) and o,7 as in Proposition /.8, we will call the corresponding braid

generator braid?. a zero braid generator.

Proposition 4.10. (1) Let W be simply laced and [r,c] € p € Poypy. If [r,c — 1] & Aw,p)
(respectively [r — 1,c] & w,py) then gap(t, — [r,c —1]) = 0 (respectively gap(t, — [r — 1,c]) =0).
(2) For (W,P) = (Cn, Ap—1), p € Pay,p) and [r,c] € p with [r,c — 1] ¢ A w,p)y we have
gap(t, — [r—1,¢]) = 0.
(3) For (W,P) = (By, Bn-1) and i € Pw,p), if [1,c] € p then gap(t, — [1,¢c — 1]) = 0 and if
[r,n| € p with r > 3 then gap(t, — [r —1,n]) = 0.

Proof. (1) First assume that 7 = 1 or ¢ = 1. In either case the result follows by the leftmost
commutativity relation of (2.3), and the cyclotomic relation (R16). We now consider the types
in turn. Note that (W, P) = (A, Ax X A,_i—1) follows from the » = 1 and ¢ = 1 cases. For
(W, P) = (Dy,, Ap,—1) we can assume that Sire—1] = 52 and s}, = So or s1 and the result follows
from Proposition 4.8. Type (D, D,—1) also follows from Proposition 4.8. For the exceptional
Weyl groups, there are two types of subcase to consider. If [r,c| is a # tile in Figure 20 then then
gap(t, — [r,c —1]) or gap(t, — [r — 1, ¢]) is zero immediately by the leftmost commuting relation of
(2.3) and the cyclotomic relation (R16).

We now consider the more interesting subcases where [r, ] is a & tile in Figure 20. The & cases
can all be treated uniformly using some applications of the null-braid relations and the leftmost
commuting relation of (2.3) and the cyclotomic relation (R16); rather than checking them all
explicitly, we will just provide an illustrative example. For (W, P) = (Eg, D5) with colouring as in
Figures 6 and 20 and [r, ¢| = [4, 3], with A, 5 = (12,2, 3) we have that

C R 1 VR L Ve
gap(t(z 23 —[4.2]) = = = =0

el ? . ? DAY
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FIGURE 20. The tilings for (W, P) of type (Es, Ds) or (E7, Eg). The cases that [r,c] is a & tile all
follow from commutativity and cyclotomic relations. The & cases further require some applications
of the null-braid relations.

he first equality is by definition, the second follows from the (s, s3)-null braid and the leftmost
commutativity relation of (2.3), the penultimate equality is again by commutativity, and the final
equality holds by the cyclotomic relation (R16).

Statement (2) and the first part of statement (3) are immediate from the commutation and
cyclotomic relation (R16). The second part of statement (3) follows by commutativity, repeated
application of the nullbraid relation and cyclotomic relation. O

4.2. Gaps as basis elements. Fix u € &y p for (W, P) = (Apn, Ag—1 x Ap_) or (Dy, Ap—1) and
let [r,c] € u. Let [, k be the maximal non-negative integer such that [r—i,c+1] € pforall 0 <i <,
[r—i+1l,c+iepforalll <i<land [r+j,c—jlepforal 0 < j<k, [r+jc—j+1€pn
for all 1 < j < k. Then define the path generated by the tile [r, c] € p1, denoted by (r,c),, to be the
collection of tiles

[r—kyc+kl,[r—k+1lc+k],...[r—1,c+1],[r,c+1],[r, ¢, [r+ 1,¢,[r+1,c—=1],...,[r+1,c—1]

see for example, the pink regions in Figure 21. Now, assume that [r — k,c + k + 1] ¢ p and
[r+1+1,¢c—1] & p. Suppose first that [r —k+ 1,c+ k + 1] ¢ p. In this case we choose A C v C p
such that v\ A = (r,¢), and t, such that t, = ty oty ot,, and we let sp_pcyp = s and
S[r4l,c—1] = 85 with 7 < j. We define

s = ((R;_—lAj_) ce (RZ-3A;+4)(RZ-1A;+2)A;(1tx)) ® 1t;4\u‘

Now suppose [r —k+1,c+ k+ 1] € u. Note that, as we assumed [r — k,c+ k + 1] ¢ p, this case can
only happen when (W, P) = (D, A) and s,_j c4x] = So or s1. Now take m > 1 maximal such that

p\v

r—k+lc+k+1,[r—k+2,c+k],...r—k+m,c+k—m+2] €p.
We let ((r,c)), denote the collection of tiles
r—k+lc+k+1,r—kc+k—1],...r—k+m,c+k—m+2,r—k+m-—1,c+k—m]
see for example, the blue region in Figure 21.

Now we choose A C v C i such that v\ A = (r,¢), U ((r,¢)), and t,, such that t;, =ty ot,\ ot
By assumption, s(._j c+x = So or s1 and in the former case we define

¢s = (Rop oy Aspparer) -+ (B 9420 43)) (B3 1 Ry Agyn 1 A3, - (R By Ag A7) Ag (1)) ®1,,

and in the latter case we define

cs = (RapiorAgisars) - (B2 Ao 3) (R Rop Agm 1 43,) - - (Bg By Ay A7) A7 (1)) @1, -
Examples are depicted in Figures 22 and 23.
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FIGURE 21. The first two cases depict (r,c), for [r,c] = [4,4],[5,4] € p = (7%,6%,5%,2) € Py, p)
with (W, P) = (A, A x A). In the first case we have k = 3 and | = 3. In the second case we have
k =2 and [ = 3. Notice that in the first case the x denotes the box [r + 1+ 1,¢ — (] € p. On the
right we depict (r, c), and ((r,c)), for [r,c] = [7,5] € (1,2,3,4,5,6,7,8% 3,1%), we note that in this
final case k = 1,1l =3 and m = 3.

Now, if [r —k,c+k+ 1] €por [r—1+41,¢c—1] € u we claim that
gap(ty — [r,d]) = gap(t, — [r +1,c —1]) = gap(t, — [r — k,c+ k]) = 0. (4.8)

The first two equalities follow by repeated applications of Lemma 4.6. The final equality is immediate

from the leftmost commuting relation of (2.3) and the cyclotomic relation (R16). Otherwise,

gap(t, — [r,c]) = gap(t, — [r +1,c —1]) = gap(t, — [r — k,c+ k]) = (—1)F"""ctes. (4.9)
where cs is defined above. The first two equalities follow directly from Lemma 4.6. To verify the

m = 0 case of the third equality, we simply apply Lemma 4.6 (k + [) times from left-to-right as in
Figure 22. For m > 0, we apply Lemma 4.7 m times, and then apply Lemma 4.6 k + [ — m times.

&

FIGURE 22. For pu = (72,62,53,2) and [r,c] = [3,6] we we depict on the left the operators applied
in the definition of ¢s. The thick lines break up the operators according to the bracketed terms
in the definition of c¢s. On the right we depict pu — (3,6),, obtained by deleting the pink tiles and
letting the white tiles fall under gravity.

4.3. Tetris combinatorics for barbells. We now provide closed combinatorial formulas for re-
moving barbells from diagrams.

Definition 4.11. Let u € Py p). Given [x,y] a (possibly non-admissible) tile, we set SWz,y] =
[x—1,y] and SE[x,y] = [x,y —1]. For a pair of such tiles [z,y]| and [2’,y'] we define a trail, denoted
Tlpy)—[a',y]> 0 be a (possibly empty) set of tiles

[3), Z/] =T1,Ts,... 7Tm+y—:p’—y’+1 = [x/7 y/] (410)
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FIGURE 23. For = (1,2,3,4,5,6,7,8%,3,1%) and [r, c] = [6,6] we depict on the left the operators
applied in the definition of cg. The thick lines break up the operators according to the bracketed
terms in the definition of c¢s. On the right we depict u— (6,6), — ((6.6)),, obtained by deleting the
pink and blue tiles and letting the white tiles fall under gravity.

FIGURE 24. Examples of trails T , the first 4 of which are maximal length (the 5th is not).
[,y]—=[1,1]

Here [z,y] = [5,4],[7,4],[8,3] and (W, P) = (Ag, A3 x As), (Ds, A7), (Eg, Ds) with p = (45,3),
(1,2,3,4,5%,4), and (12,2,42,2,12) respectively (only the distinct cases are listed). The 5th trail is
non-maximal length as it has length 6, whereas the 4th trail has length 8. The grey tiles [a, b] are
those such that gap(t, — [a,b]) = 0 by Lemma 4.6 and Proposition 4.10

such that Tr1 = SW(T;) or Tip1 = SE(T;) forl<i<xz+y—2a —y +1. We write

T ol = H N Tyl
and we define the p-length of the trail to be |Tf;7y]_)[$,’y,}|. Given T = [r,c] € Add(u), we let Hook, ()
denote any multiset of the form
2. Tﬁ,c_”_)[l’l] if [r —1,¢c] &€ Fw,py in type (Cp, An—1)
Hook (u) = Tﬁilﬂ]ﬂ[l’” L Tﬁm]ﬁ[l’” if [r,c — 1] & A w,py in type (B, Bn_1)
T/ LTt otherwise

[r—1,c]—[1,1] [r,e—1]—[1,1]

for any preferred choices of maximal p-length trails on the right-hand side.
This allows us to provide a closed combinatorial formula for rewriting barbells in diagrams, as

follows. This formula is essential to our proof of combinatorial invariance. Finding such formulas
for general (W, P) seems to be an impossible task.
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Proposition 4.12. Let (W, P) be a Hermitian symmetric pair. Let i € Py py and 7 = [1r,c] €
Add(p). We have that

L, @bar(r) = — 3 gap(t, — [2.9])- (4.11)
[z,y]€Hook (1)

Before embarking on the proof, we emphasise that equation (4.11) has a lot of redundancy. Many
of the terms on the righthand-side of this sum are zero, using the results of Subsection 4.1 (some
of these are highlighted in grey in Figure 24). We can pick preferred choices of the maximal length
trails in the definition of Hook,(u) and delete some of these redundant terms. In particular, in
classical types we have the following simplification.

Lemma 4.13. Let p € Ppy and 7 = [r,c] € Add(p). For (W,P) = (An, Ap—1 X An_k),
(Dn, Ap—1), or (Dy, Dyp—1), or finally (W, P) = (Cp, An—1) and r # ¢, we set

Hook. (1) = Tﬁ_l .
If (W, P) = (Cy, Ap—1) with r = ¢, we set
Hook. (u) = 2T#

[ryr—1]—[r1]"

n
1otr—1.2] Y Tirem 11511

If (W, P) = (B, Bn—1) then we set
[1,c— 1] ifr=1
Hook, (1) = 4 2[1, ] i [l = [2,7]
2[L,n|U[r—1,n] if[r,c = [r,n] withr > 3.

We have that
> et —[ny)= D gaplt.—[xy)).

[ ] €Hook- (1) [, )€Hook (1)

Proof. We need only to show that gap(t, — [z,y]) = 0 for [z, y] € Hook. (1) \ Hook (). This follows
from Lemma 4.6 and Proposition 4.10. (|

Examples of the multisets Hook, (x) are provided in Figure 25.

FIGURE 25. The multisets Hook (p). The first case is 7 = [6,4] and p = (52,43,3,1) in type
(A11, Ay x Ag). The second case is 7 = [6,4] and u = (1,2,3,4%,3,1) in type (Dg, A7). The third
and fourth cases are for u = (1,2,3,4,5%) and 7 = 51,6 in types (D, A) and (C, A) respectively.
We highlight the tiles in Hook (1) by placing a gap diagram in the tile and the multiplicity of that
tile within the multiset.

Proof of Proposition /.12. We consider the cases in which the parabolic is of type A. The other
cases are left as an exercise for the reader. By the commutativity relations, it is enough to prove
the result for 7 and p such that 7 = s, ; and u7 = A, for some r,c > 1 (in the notation of
Definition 1.3). If » = ¢ = 1 then the result is immediate from the cyclotomic relation. If » > 1 and
c=1orr=1and ¢ > 1, then the result follows by Lemma 4.3 and the cyclotomic relation. Thus
by Lemma 4.13 it is enough to show that 1y, @ bar(7) = — 371, 1cpook(r, 82P(t — [2,y]) for r,c > 1.
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Case 1. We now assume that r, ¢ > 1, and consider the case where [, ¢| is such that [r,c— 1], [r —
1,¢|] € p as this is uniform across all types. We set v to be the partition obtained by removing the
final box from each column of u, that is vo = A,_; . We have that

Ly, @ bar([r,c]) = 1o, @ bar([r.c)) ® 1, + Y Lo, @ bar([r.y) ® 1, — D gap(ty — [r.y])
y<c 1<y<c
by Lemma 4.3 and applying equation (4.2) we obtain
1y, ® bar([r,c]) = 1y, @ bar([r — Lc]) ® 1y, + Y 1y, @bar(fr,y]) ® 1, , — > gap(ty — [z,y]).
y<c [zylep\v

We set 7 to be the partition obtained by removing the final two rows of p, that is 7 = Aj,_3 4. By
Lemma 4.4, we have that

Z ly, ®bar([r,y]) ® Ly, , = L, @ bar([r,1]) ® Lt + Zgap(tu —[r—1,y)])
y<ce y<c

and we note that the first term after the equality is zero by the commutativity and cyclotomic
relations. Putting these two equations above together, we have that

1, @ bar((r.c)) = L, @ bar(lr — 1)) @1y, + (Y gaplty = [r = Ly) = > gan(ty — [z,3]))
y<e [z,yleu\v

and so the result follows by induction and Lemma 4.6 and Proposition 4.10. This inductive step
is visualised in Figure 26; we have bracketed the latter two terms above in order to facilitate
comparison with the rightmost diagram in Figure 26.

FIGURE 26. The first term on the left-hand side depicts 1y, ® bar([r — 1.¢|) ® 1, (known by
induction) the second term depicts the coefficients of the gap terms in the inductive step in the
proof. The first equality records the cancellations; the second equality follows from Lemma 4.6
and Proposition 4.10. The rightmost diagram depicts 1y, ® bar([r, ¢|) (for 7 # c in types C' and D).

Case 2. Now consider the type C and D cases for 7 = s, ,; with 7 > 1 and we let o0 = 52 € W.

1e, @ bar([r, ) = 1t,_, ® (bar(7) + 2bar(0)) ® 1, — 2gap(t, — [r,7 — 1]) in type C
u ’ 1y, ., @ (bar(7) + bar(0)) ® 1, — gap(t, — [, — 1) in type D

and the r = 2 case now follows by the cyclotomic relation.

Now suppose r > 2. We first consider the type C case. We set v to be the partition such that
VT = Ajp_1,—1]- By the commutativity and one-colour barbell relations, we have that

Ly, , ®bar(7) ® 15 = —1, ®bar(7) ® 1y, + 2gap(t, — [ — 1.7 — 1))
and so
Ly, ® bar([r,r]) =2 x 1, , @ bar([r,r —1]) ® 1, — 1y, @ bar([r — 1,7 — 1) ® 1;
+2(gap(t, — [ — 1.7 — 1]) — 2gap(t, — [r.7 — 1]))

and so the result follows by induction. This inductive step is visualised in Figure 27; we have
bracketed the latter two terms above in order to facilitate comparison with the rightmost diagram
in Figure 27.

p\v
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FIGURE 27. The left-hand side depicts 1, ® bar([r,7]) in type C. The first term on the right-hand
side depicts 2 x 1y, , ®@bar([r,7 — 1]) ® 15; the second term depicts —1t, @ bar([r — 1,7 — 1)) ® 1,
the third term depicts the coeflicients of the gap terms in the inductive step.

p\v?

We now consider type D. We colour sj,_;,_q] violet and set v, 7, and p to be the partitions
vtlr =1 =1 = Ap_ypqpy 7+ [0 — 2,7 2] =X, 5, o), and p = Aj,_3,_3. We have that

1y, @bar([r, 1)) = 1y, ®bar([r— Lr = 1))@ 1y, + > 1y, @bar(fr,y) @1, , — Y gap(t, — [z,y])
y=1 [z.ylen\v

by Lemma 4.3. The second term can be rewritten as follows

T T
> 1, @bar(fry]) @1, , =Y 1., @bar(fry)) @1y, .
y=1 y=1

r—1

= 1, ®@bar([r,y]) @1y, , +gap(ty —[r — 2,7 2))
y=1

r—2
=3 gap(t, — [r — 2.9)) + Lo, @ (bar([r, 1]) + bar([r,2])) ® 1, ,
y=1

r—2
= gap(tu — [r —2,9))
y=1

where the first equality follows by repeated applications of equation (4.4); the second from equa-
tion (4.2); the third from Lemma 4.4 and the commutation relations; the fourth from the com-
mutation and cyclotomic relations (notice that no tile in 7 has colour label corresponding to the
reflections sp,. 1) or s|.9)). Substituting this into the above, we obtain

r—2
1y, ®bar([r, 7)) =1y, @bar([r — 1,r = 1) @1y, + Y _gap(ty — [r —2,5]) — Y gap(ty — [z, 9])
y=1 [z.ylep\v

The result follows by induction (see Figure 28 for a visualisation of this step). O

FIGURE 28. The lefthand-side depicts 1y, @ bar([r, 7]). The first term on the righthand-side depicts
1y, ®@bar([r—1,7—1])®1;, , (known by induction); the second and third terms depict +3°, . gap(t,—
[r—2,y]) and — Z[I,y]e 1\ 82 p(t, — [z, y]) respectively, which provide the gap terms in the inductive
step in the proof.
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4.4. The Tetris-style presentation. We are now ready to provide a new presentation for the
Hecke categories of simply laced Hermitian symmetric pairs. One should notice that this pre-
sentation is mainly given in terms of the tiling combinatorics and not the usual Dynkin diagram
combinatorics (the exception to this being discussion of commuting relations which are “far apart”
in the Dynkin diagram).

Theorem 4.14. Let (W, P) denote a simply laced Hermitian symmetric pair. The algebra Hy, p)
can be defined as the locally-unital associative k-algebra spanned by simple Soergel diagrams with
multiplication given by vertical concatenation of diagrams modulo the following local relations and
their horizontal and vertical flips. Firstly, for any o € Sy we have the relations

ol = 65,10 1yl =0 15 =1
1@spotglo = spot” 1,fork? 1,5 = fork?, 1,5braid}71,, = braid.7

where the final relation holds for all ordered pairs (o, 7) € S&, with m(o, ) = 2. For each o € Sw
we have fork-spot contraction, the double-fork, and circle-annihilation relations:
(spot? @ 1,)fork? =1,, (1, @ fork?,)(fork?? @ 1) = forkZ fork forkg . fork]” =0,

oo

For (o,7,p) € S with Mop = Mpr = Mer = 2, we have the commutation relations

For p any partition tiling and o € Add(u), we have the monochrome Tetris relation

ly,, ®1le =1, ® (spot?. @ forkZ? + spoty ® fork7, ) + Z gap(t, — [r,c]) ® dorkZ 7.
[r,c]€Hooke ()

For any o, 7 € Sy with m(o,7) = 3, we have the null-braid relation
loro + (15 ®spoty ® 1, )dorkg o (15 ® spot? ©1,) =0

For p € Pyw,py and 7 € Add(p), we have the bi-chrome Tetris relation

Ly, ® bar(7) = — Z gap(t, — [r, ]).
[r,c]€Hook (1)

Further, we require the interchange law and the monoidal unit relation
(D1®D2)O(D3®D4) =<D10D3)®(D20D4) 1@®D1:D1:D1®1@
for all diagrams D1, Dg, D3, Dy4. Finally, we require the non-local cyclotomic relations

bar(c) @D =0 for all o € Sy and D any diagram
1, D=0 for all T € Sp C Sy and D any diagram.

Proof. In light of Corollary 2.5, we need only show that the one and two colour barbell relations
can be replaced by the monochrome and bi-chrome Tetris relations.

Given two simple Soergel diagrams D; and D, the one and two colour barbell relations allow us
to inductively move leftwards any barbell anywhere in D1Ds; once all barbells are at the leftmost
edge of the diagram these are zero by the cyclotomic relation. Thus the one and two colour barbell
relations allow us to rewrite a product of simple Soergel diagrams as a linear combination of simple
Soergel diagrams.

We now show that we can rewrite, using only the relations of Theorem 4.14, any diagram D;D»
as a linear combination of simple Soergel diagrams. Any diagram can be rewritten in terms of the
cellular basis and the cellular basis elements are all of the form cglt, ct. Thus it suffices to have a
list of rules which rewrites 1¢, ® bar(7) as a linear combination of simple Soergel diagrams. This is
precisely what the monochrome and bi-chrome Tetris relation do. The result follows. O
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4.5. Combinatorial invariance for simply laced types. Equipped with our Tetris style pre-
sentations, we are now ready to prove Theorem 4.2. We begin by restricting our explicit attention
to simply laced types only, as this case follows easily from our Tetris-style presentation.

Proposition 4.15. Let (W, P) and (W', P') be simply laced Hermitian symmetric pairs. Let II =
A u] and TI" = [N, 1] be closed subsets of Py py and Py pry respectively. Given a map j :
II = I, y(a) = o for A < o < p, we have that j is a poset isomorphism if and only if j sends
like-coloured tiles in « to like-coloured tiles in .

Proof. We consider the classical types, as the exceptional cases can be verified by exhaustion. We
identify A € p and X C p/ with their tilings A € g and X' C p/. If the tiling A € p can
appear as a subregion of @y py for W of type A (that is, [r,c],[r + 1,c + 1] € (u\ A) implies
[r,e+1],[r+1,c] € (u\\)) then the colouring on each « € I, & € II' is simply given by shifting the
x-coordinates of the diagonals (up to reflecting through the y—axis, see the first pair in Figure 29).
Otherwise, A C p and X' C p/ each have a single diagonal in which the colouring alternates (either
alternating between sp and s in type (D, A) as in the rightmost examples in Figure 29, or alternating
between s; and s3 in type (D, D)). If such a II fits within a 3 x 3 rectangle in type (D, A), then one
can check that there exists an isomorphic II' in type (D, D) and that the colourings match-up in
these small cases. Otherwise, if IT and II’ are two distinct isomorphic posets, then they are both of
type (D, A) and can be obtained by vertical translation (perhaps swapping so and s; in the process,
depending on the parity of the translation). (|

FIGURE 29. Two pairs of isomorphic tilings. The pair Il = {a | @ < o < (1,2,3)} and II' = {« |
(1,2,3%) < o < (1,2,3,4,5,6)} on the right can only appear in type D (note the jagged edge on
the left) and the recolouring of tiles is given by ¢(s9) = =, ¢( ) = s0, t(s2) = 59, t(53) = 53). The
pair on the left are IT = {a | (4,3%,2) < a < (5%,4)} and I' = {a | (3,1) < a < (4%,3)} and the
recolouring of tiles is given by ¢(s1) = s7, () = 56, t(s3) = S5, t(54) = 54, L(S5) = 53, L(s6) =
(note the flip through the vertical axis).

Definition 4.16. Let I (respectively ') be the set of colours of the tiles in 11 (respectively II'). We
let1:T — TV, be a surjective map. We lift this to a recolouring map on Soergel diagrams as follows.
For 4,6 € T with 1(y) =~ and 1(§) = &' we set

(1) =1, z(spotg) = spotg, o(forkl,) = fork%, z(braidgj) = braid},lii
and we set 1(D*) = (1(D))*. We then inductively define
Z(Dl &® DQ) = Z(Dl) &® Z(Dg) 7,(D1 o D2) = Z(Dl) o l(Dg)

and extend this map k-linearly.
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Proposition 4.17. Suppose we have a poset isomorphism 3 : Il = I for Il = [\, pu] and I = [N, 1//]
as in Proposition /.15 inducing a recolouring map 1. Then j extends to a unique graded isomorphism
of k-algebras j: hit — hi satisfying

)1y, ® D) = 1, ® (D)
for D any Soergel diagram , and
](1t)\ @7 D) = 1t>\/ @7/ Z(D)
for v € Rem(X), and D any Soergel diagram for which the ®-- and ®.-products makes sense.

Remark 4.18. We can regard the diagram D as being “coloured by” the initial Coxeter system W
and the effect of the map is to “recolour” this diagram according to the Cozeter system W'. The
effect of changing ty for ty is merely to identify the different regions II and II' within our Bruhat
graphs TW and ¥ "W'. An ezample is given in Figure 30.

We are now almost ready to prove Proposition 4.17. We first observe that the Tetris relations
are compatible with restriction to a closed subregion.

Lemma 4.19. Let IT = [\, u|. Given [x,y|] € A, we have that gap(ty — [z,y]) =0 in hi.

Proof. We suppose W is classical as the general case is similar. By (4.8) and (4.9) we can rewrite
gap(ty — [z, y]) = £c& (or zero) for a C A and the result follows as 1, = 0 € hry by definition. [

EEaY

'K —
1)
N D ty (D)

FIGURE 30. The left diagram, D, is an element from hy for II = {a | (12) < a < (3?)}
A4, A4 Ay) and the right diagram is the corresponding, (D), in hyy for II' = {a’ | (3, 12) < «
(3%} C Y Ag,Asx Az)- Compare the colouring with that of (As, A4 X A3) in Figure 3.

C
<

Proof of Proposition /.17. Let o € Il = [\, u] for A\, € Py, p). Each cellular basis element cgt
in Ay can be written in the form 1, ® D or 1i,, ®, D for some simple Soergel diagram D, so
7 is well defined. The monochrome and idempotent relations are trivially preserved by the map
7. Two commuting reflections, 7,0 € Sy correspond to tiles [z, y], [r,c| from II if and only if
(x —y) — (r — ¢) # +1; this distance is preserved by the map j: II — IT' (by Proposition 4.15) and
so the commuting relations are preserved.

The Tetris relations for .7{; are written entirely in terms of the addable and removable nodes of
tilings and the sets Hook,(«) for A\ < o < p and this is compatible with restriction to II (using
Lemma 4.19). The sets Hook, () depend only on information which is preserved under 7 : IT — TII'
(using Lemma 4.6 to flip left versus right in the definition of Hook (1), if necessary). Therefore the
Tetris relations go through 5. Finally, we note that the cyclotomic relations follow from the Tetris

relations and Lemma 4.19. Thus the map 7 is an algebra homomorphism.

One can similarly define 737! as the recolouring map in the opposite direction. We have that

90771 and 37! o 7 are both identity maps (as they amount to recolouring and recolouring again)
and so the map is indeed an algebra isomorphism. Il

4.6. Fixed point subgroups and non-simply laced types. We now consider the group au-
tomorphisms, f, for type Aoy_1 and D,41 given by flipping the Coxeter diagrams through the
horizontal and vertical axes, respectively. Explicitly, the map f is determined by #(s;) = s2,,—1—; for
the group of type As,—1. The map f is determined by f(sg) = s1, #(s1) = so and £(s;) = s; for the
group of type D,11. The fixed point groups of these automorphism are the groups (s;$2,—1—i, Sn |
1 <i < n) of type By, and (sps1,$; | 2 < i < n) of type C,. By restricting our attention from the
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group to its fixed point subgroup, we obtain a surjective map ¢ on the tile-colourings. These are
depicted in Figures 31 and 32.

Remark 4.20. For the remainder of this section, we will fit o = sy and T = s1 for (W, P) =
(Cn,Ap—1) and o = s1 and T = sy for (W, P) = (B, By—1).

We extend our colouring convention from Remark 4.20 by setting o = s,, in type As,_1 and
o = s in type Dypy1. We similarly set p = s, 1,7 = sp+1 in type Aop—1 and p = s, = s1 in
type Dap41 so that green and purple map to blue in both cases. We can easily extend this colouring
map to a map, ¢, on the level of paths and moreover we have the following:

Lemma 4.21. The colouring maps on paths map bijectively onto the subsets of parity preserving
paths from Subsection 1.5. In other words,

v:Pathip,, a,)(\ty) = Pathi, ,(At),  o:Pathia,, 4, o) (A t) = Pathiy 5 (At,)

are both grading-preserving bijections.

We now prove that h, a,_,) and h(p, p,_,) are graded Morita equivalent to h(p, ., a,) and
P(Agn_1,Azn_o) TESDECEIVELY.

F1cURE 31. An example of the colouring map @ from type D,11 to type C,.

) & ) 3

FIGURE 32. An example of the colouring map @ from type As,_1 to type B,.

Lemma 4.22. Let m(3,~) =3 or m(3,~) = 4. If m(3,~) = 4, then suppose that (3,~) = (7,0)
as in Remark /.20. We have that

forkg@(lg ® bar(vy) ® 13)forkg[3 =—lg (4.12)
cap%ﬂ(lg ® bar(v) ® 1g)cupgﬁ = —bar(3) (4.13)
forkgﬂ(lg ® bar(v) ® bar(v) ® lg)forkgﬁ = —13 ® (2bar(~) + bar(3)) (4.14)

Proof. Equation (4.12) follows by applying the ~3-barbell relation, followed by the 3-circle annihi-
lation relation and [-fork-spot contraction relation. Equation (4.13) follows from equation (4.12)
by apply the spot generator on top and bottom. Equation (4.14) follows by applying the ~3-barbell

relation to the lefthand-side, followed by equation (4.12). O
We will find the following shorthand useful,
trid”, . = fork” (1, @ spot’ @ 1,) trid? = spot®trid”_

the former of which can be pictured as a “trident”. We set
trid”7" = (trid7_, )" trid70 7 = trid”7 " trid .

TOT TOT TOT"®
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By equation (4.12), we have that —trid”J7 is an idempotent and that

TOT

(1o + trid797)trid797 = 0. (4.15)

TOT TOT

Definition 4.23. Let (W,P) = (Cp,Apn—1) or (Bn,Bn—1) and suppose o, € Sw satisfy the
assumptions of Remark /.20. For p € Pyypy and 1 < k < L. (), we set

or = (1,2,3,...,]{?)6@([/[/713) ZfW:Cn
and we set k = pp, — T — 0 — T and define
ek = braidi’.,, (1% ® trid™T @ 1tu_pk)braid§20t“’“. (4.16)

We define the idempotent
e = [Ticker, (Lt +€)

and set e, = 1y, if £ (p) < 1. We define e = ZNEQ(W,P) Cu-

FIGURE 33. The element e, for p = (1,2,3) in type C. The colouring is the same as that of

: ‘ 2 .3 2.3 :
Figure 31. The summands are 1, e;,, €;,, and e, e, respectively.

T

FIGURE 34. We picture the element e, for u = (4,13) for type (By, B3) as in Definition 4.23. The
colouring is the same as that of Figure 32.

We can extend the maps ¢ from Lemma 4.21 to injective k-linear maps ¢ : h(p, ., a,) = M, An_1)
and 20 Ny, 1 Asn_o) = P(B,,B,_y) DY setting i(csT) = cysy,(T)- We note that ¢ is not a k-algebra
homomorphism, but we will prove the following:

Theorem 4.24. The maps © : hp, | 4,) — e, .4, )¢ and © = hia, | A, ) = ehp, B, )€
defined by ©(a) = eor(a)oe are graded k-algebra isomorphisms. Moreover, as e is a full idempotent
these maps give rise to graded Morita equivalences between hp, ., a,) and h, a,_,) and between

h(AQn—I,AQn—2) and h(BnaBn—l) ‘

We note that the first isomorphism categorifies an observation of Boe in [Boe88]. This section is
dedicated to the proof. We begin with the simpler result for orthogonal groups.

4.6.1. The orthogonal case, type (B, B,—1). We first consider the case of the orthogonal group.
We can simplify the proof by focussing on the cellular basis. We prove that if csteyy = > axyexy
for coefficients axy € k, then we have that

O(csT)O(cuv) = Y axyO(cxy) (4.17)
for S, T,U,V,X,Y € Path(4,, , 4,,_,) and hence deduce that Theorem 4.24 holds for type (B, By—1).
For i = (¢ — 1) with [1. ¢/ € Add(p) with v = s/, and 1 < ¢ < n the elements gy are of the form

1y, 1tu®spotg, 1y, ®spoty, and 1y, ®gap(7).
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Thus rewriting products in equation (4.17) requires only the idempotent, bi-chrome Tetris, com-
mutativity and cyclotomic relations. We consider the bi-chrome Tetris relation as the others are
trivial. By Proposition 4.12 and Lemma 4.13, we have that

crer =1y, ®@bar(v) = —gap(t, — [L,c—1])

for T € Path(u,t,4~). For ¢ < n, we have that e = Lt,,) = 1(¢) and

Y(1)
O (1, ®bar(7)) = —1(—1) ® gap(e(7)) = O(—gap(ty — [1,c — 1]))
as required. For ¢ = n + 1 we have that +(y) = 7 and
O(ly,, ®bar(y)) =1(et) o (L(n1) + Ling) @ trid757) o o(cT)

= 1(p) ®@bar(7) + 1(,—1) ® gap(o)

=211y ®gap(o) + 1, 1) ® gap(o)

= O(—gap(t, — [1,n]))
where as required. Here the first equality follows from the definition of e; the second from the

7-fork-spot contraction relation; the third equality from Proposition 4.12 and Lemma 4.13; and the
fourth is trivial. For ¢ = n + 2, we have that

O(1y,,,, ®bar(vy)) =1y, , ®bar(y) +ex, , @ trid77" @ bar(v)

= _gap(t(n,l) - [nv 2]) - 2gap(t(n,l) - [n7 1}) — €9 ® tridaUTtridQ_UT
= —gap(tn1) — [n,2]) —ey,_, ® trida‘”tridg_(ﬂ

where the first equality is trivial; the second follows by applying Proposition 4.12 and Lemma 4.13
to the first term and applying the (7,2(+))-null-braid and «(~y)-fork-spot-contraction to the second
term; the third follows by applying (9) to the 7-strands in the second term, followed by Proposi-
tion 4.12 and the cyclotomic and commutativity relations. On the other hand,

O (1, ®gap(7))
= — (Ln1) + L) ®@trid757) (Le,,,) ® 8ap(7))(L(n,1) + Lin_o) @ trid737)
= —1n—2) ® (16 ®gap(7) + trid77 "spot7? 4 spot_ gy trid7 . +trid .77 ® bar(o))
= —1(_9) ® (Lo ® gap(7) — tridj 7 "trid? .. — bar() @ dork % + 1, ® gap(c) ® 1,)
—gap(t(n,1) — [m,2]) —ey,_, ® tridé’””trid?.a_r

as required. Here the penultimate equality follows by applying 9 to the middle two terms and
applying Proposition 4.12 and Lemma 4.13 to the final term; the final equality follows from Propo-
sition 4.12 and Lemma 4.13 and the commutativity and cyclotomic relations. Finally, we suppose
that ¢ > n 4+ 2. We have that

Oy, ®@bar(7)) = (L, .1, +€@m,1e-1-n)) @ bar(7)
= —2gap(t(n,1c-1-n) — [1,1]) — gap(t(n,1c-1-n) — [c — 1 —n,n])
= —gap(t(,1e-1-n) — [c = 1 —n,n])
= O(—gap(t(c1) — [Lc+ 1))

as required. For the second equality, we apply Proposition 4.12 and Lemma 4.13 to the first term and
observe that the second term is zero by applying the bull-braid relations followed by Proposition 4.12
and Lemma 4.13 and the commutativity and cyclotomic relations. The other equalities are trivial.
Thus the bi-chrome Tetris relation holds in all cases and we are done.

4.6.2. The symplectic case, type (Cyp, An—1). We now consider the, more difficult, case of the sym-

plectic group.

Lemma 4.25. For e oror = (Ligror +tid 07 @ 157 )(1roror + 1o @ trid727), we have that
(1, ®@trid? ., ®1:)eroror = —trid 07 (1, @trid] ., @ 7) — trid 27 & trid7 -

= —trid7Z7 (1, @ tridg , @ T)ergror
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Proof. We prove the first equality, the second follows as ey, is an idempotent which kills the
second term. Consider the m(o,7) = 4 braid relation and tensor it on the left by 1.. Vertically

concatenating trid” . ® 1, on top of this combination of diagrams, we obtain

L ootridl, +trid]  ®1o,+trid] 77 (1, ®trid] ., ®1,)+2trid 07 & trid]  +1,®trid] ,®1, = 0.

Moving the third term and one copy (of the two available) of the fourth term to the right, the result
follows. 0

We will split the proof of (the symplectic case of) Theorem 4.24 into two propositions. the first
one, Proposition 4.26, shows that © is an isomorphism of graded vector spaces. The second one,
Proposition 4.30, shows that © is an algebra homomorphism.

Proposition 4.26. We have that the map © : hp, ., A, — eh, a,_ e given by O(cst) =
eo(cst) o€ is an isomorphism of graded k-spaces.

Proof. We will show that the set
{eocsToe|S,Te Path?tcmAn_l)()\, t,)} (4.18)

form a basis of eh(c, 4,_,)e and thus deduce the result. We do this by considering A(A)e for all
A€ P, An_1)- We will prove the following claim:

A . +
cs + ZT?ZPath(icn,An,U()‘vtu) aret + h(<Cn,An71) if S e Path(cn,An,l)()" t,)

(cs +hQ: Je =
(Cn,Anfl) 0 OtherWiSe

from which we will immediately deduce the result. We first note that we can choose our t,, for each
p € P, A,_,) insuch a way that o always occurs immediately prior to a 7. We prove this for t,,
assuming it holds for t, (with the £(t,) = 0 case being trivial). Let S € Path(\,t,). For v # 7, we
have that
(AZ(cs))e = A% (cse)  (RE(cs))e = RE(cse)

for v € Add(X) or v € Add(A), respectively. (Whence £, (p + ) = £ (p) implies e,y = e, ® 1.)

Thus we may now assume that v = 7 € Add(p). In which case o = s5 € Rem(u) by our choice of
t,. Welet i/ = y—o. We suppose £, (1) is odd (the even case is identical) so that = € Add(x~!(u))
and p € Rem(x~'(1)). Given N C 4/, we let csr € Pathic, a, ,)(N,t). We construct cs for
S € Path(g, a,_,)(A, tur) by applying the inductive process twice: once for o and once for 7 as
follows,

s = X7 X5 (cs))

for X € {A, R}. Note that

0
cse = (XEXE(cse)) (L, +erth), (4.19)
We assume, by induction, that the claim holds for cs/. So we have
Al
cgre = cgr + ZT/QPath(iCn,An_l)()‘/’tu’) aTrctr + h(<Cn7An71)' (4.20)
Since T ¢ Path?cn,An,l)()‘/vt#’% this implies by definition X*XF(c1/) ¢ Path?[cn,An,l)()"tM)' We

will now consider

s = X; X5 (cs)
for ' € Path?tcm Anfl)()\/ ,t,). Before considering the above case-wise, we remark that either p €
Rem(2~1(\)) or Add(x (X)) (because it appears at the edge of the region).

Case 1. Suppose o € Add()\). This implies that p € Rem(:~()\')). The first two subcases which
we consider simultaneously are
AT AT (cs) =g @1, @ 1, AZA¥(cs) = cs ® 15 @ spot?.

Here we have that cs = AT A% (cg/) satisfies S € Path?tcn A,_1)- We have that

Lr S N\TOT
(AT A (es) + i) (1 + ew(ﬁ)“) = cs + s @ tridTgT + By = s+ Ry

_ = P T o
(A- At (csr) + hf&A))(l + ewr(ﬁf)ﬂ) =cs +cg @ (trid},. ® spoty ) + h(<c):A) =cg + h(<(;:,4)
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where in both cases the diagram cgs & ... factors through the idempotent labelled by ty and so
belongs to the ideal h(<cf‘ A)° The final two subcases which we will consider simultaneously are

RiA; (csr) = cgr @ trid R-A_(cs) = cg @ trid?

TOT TOT"®

Here cs = RT A (cs/) satisfies S ¢ Path?[CmAn_l). We note that eiﬁr(’;)ﬂ =1, , ® (Lrgr +trid777)

and hence applying equation (4.12) we obtain
_ 0 (n)+1
(REAZ (es) (1 + €, ) =0
as required.
Case 2. Suppose o € Rem()\). This implies that p € Add(z'()\’)). Since any two o-tiles in '

are separated by some 7-tile (and 7 ¢ Rem()\) but o € Rem())) we have that csr = cgn @ spot?
for some S” € Path(icn ) 71)()\’, p' — 7). Here we have that

Rl (cs) = csr @ fork®,, = csr @ spot? @ fork%,, R (cs) = cs @ cap?, = cgn @ spot? @ cap?
We start with o et
T T +
(ATR(cs)) (L, + &) (L, +en" 7).
and we first consider AF R} (cs/). We note that 7 € Add(\) but that p ¢ Add(z~1()\')) (rather, the
“wrong” colour p is). Therefore S ¢ Path?tcn A 71)()\, t,) and using Lemma 4.25 we have

(AFRE(es)) o (L, + i) o (L, +ei ™) € h2 )

since the terms in the sum factor through the idempotent A’ — 7. Therefore cse = 0 modulo hfg‘ A)

as required. Arguing in an identical manner, (or by simply “putting a blue spot on top of the above
calculation”) we have that

(A7 RE (cs) (L., + i) (1, +en ) €n
as required. The final two subcases which we will consider simultaneously are
cs = R R (cs/) = cgn @ spot? @ cap? & fork”
¢s = R R, (csr) = csn @ spot? @ cap? . @ cap?,

In both cases, S € Path(icn An 1)’ We have that

(RFR; (csr))(Ly,, + eﬁ}(“)ﬂ) = csn @ spot? @ capl, @ fork”, + csr @ spot® @ (fork” @ trid”

TO'T)
(RIR,(csr))(1y,, + eﬁ?(“)ﬂ) — csn @ spot? @ capl, @ cap”, + csn @ spotl @ (forkl @ trid? )

In each case the former term on the righthand-side of the equality is equal to cs and the latter term
is equal to ¢t for T ¢ Path?[ A )()‘7tu)- The result follows. O

n—1
Lemma 4.27. Let €076 = (Lroro +trid227 @ 1,), then we have
erorolroro€rore = _eTUTU‘(lT 029 tl’idg:g)ewyra

Proof. Applying e;o-» to both sides of the m(o,7) = 4 null-braid relations and using equa-
tion (4.15) immediately gives the result. 0

Corollary 4.28. Let p € (¢, .,,a,) and [r,c| € p. Define k,l,m as in Subsection /.2. If [r —
kie+k+1] ¢ por[r+1+4+1,c—1] ¢ u then we have e o gap(t, — [r,c]) oe = 0. Otherwise we have

k+l—m

eo gap(t, — [r.c]) oe = (~ 1) e o y(ess) o

where css is defined in Subsection J.2.

Proof. The proof follows exactly the same arguments as for the proof the corresponding statement
in type (Dyp+1, Ap) given in equation (4.8) and (4.9). There are only two additional things to check.
First we need to prove that for [r,r] € u we have eogap(t, — [r,r — 1]) oe = 0. This follows directly
from Figure 9 and equation (4.15). The second thing is that the (sg,s2) and (s1,s2)-nullbraid
relation is preserved under the map ©. This is precisely the statement of Lemma 4.27. O
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Lemma 4.29. For S € Path(p, ., 4,)(\ tu), we have that i(cs) o e =eo(cs) oe.

Proof. For 1 < k < £:(2())), we will show that e§i(cs) = 1(cs)ef, for some 1 < j < £, (1(p))
and hence deduce the result. Assume k is even (the odd case is identical). We can assume that
t,, is such that each p-strand is immediately preceded by a o-strand, so that ty = vopviomve
where £(1(vppviom)) = k and where v; does not contain p,o, 7. We can write t, in the form
wopwiowymwws such that the p, o, 7 in this expression are connected to the p, o, 7 in the expression
vgpv1oTUy by strands in the Soergel diagram. Moreover, we can assume that ¢(wp) and ¢(w3) are
maximal with respect to this property. We claim that w; and ws do not contain any occurrences of
p,o,m. Thus the specified p and 3 strands commute with all strands lying between them, except
for the specified o-strand. Under @ these correspond to 7-strands which commute with all strands
lying between them, except for the specified o-strand. Thus applying the trident on top/bottom of
these strands we get the same result, as required.

It only remains to verify the claim. Suppose one of the three colours does occur in w;. The first
colour to appear must be o (because it follows p) and this must be a A7 step in the basis (because
v, has no o and so it cannot be a X step and the prior p step was an X;{ and so it cannot be an
R step). After this o, there must be a 7 but this cannot be an R (as the prior p step was an
X 1) or be AL (because the prior o was a A;). Thus the claims follows for w;. The case of ws is
similar. 0

Proposition 4.30. The map © : hp, ., a,) — €h(c, A, )& given by Ocst) = eo(csT) o€ is a
k-algebra homomorphism.

Proof. We check this on the cellular basis by showing that
eo(csteyv) oe = O(esteyy) = O(esT)O(cyv) = eo(cst) oeor(cyy)oe

forS ¢ Path(Dn+17A7L)(1/, —), T € Path(Dn+17A7L)(1/, t#), Ue Path(Dn+17An)(77, t#), V e Path(Dn+17An)(77, —).
By Lemma 4.29, we have that

eou(cst)oeor(cyy)oe=-eo(cf)oeor(ct)oeor(cy)oeo(cy)oe.

We proceed by induction on ¢(x), the base case ¢(u) = 0 is trivial. We can assume £(m), £(p) < £(u)
as if () = £(p) = £(p) then 1, = 1, = 1, and this product becomes e o 1(csy) o e as required.
Similarly, if ¢(7w) = £(p) and £(p) < £(p) (or vice versa) this product becomes

eo(cs)oeor(c)oeofey) = (eor(cg) oeo(c)) oe)(eor(cy) oe) = O(cicy;)O(cv)

and so we can again appeal to our inductive assumption. We will focus on the middle of the product
and prove that

eo(ct)oeor(c))oe=eou(cTy)oe. (4.21)

As {(n),£(v) < €(n) we can then apply induction to deal with the products with eou(cg) and 1(cy)oe.
Now, the basis elements ct and c¢{j are constructed inductively and we will consider cases depending
on the last step in this inductive procedure.

Case 1. We first consider the case that et = Af(c1/) and ¢y = A (cy/). By induction, we can
assume that

eoufcr)oeoic)y)oe= ZX,Y ax,yeo(cxy) oe where cyicfy = ZX,Y ax,ycxy
If av # 7, p, then £, (v(p)) = €+ (2(n — ) and therefore
eofer)oeou(c) oe =D xvaxy(e(uexy) ® 1a)e).
If o« = 7 (the p case is identical) then et = AL At (c1r), cy = AL AL (cyr) and
eofcr)oeor(c))oe=e((tlerr)oeyroor(chn)) ® (Lror +trid707)) e

=e((tlerr)oeyrgor(cn)) ® ligr)e
=e((1f(ct)oey—rou(cy)) ®1,)e
= ZX’Y ax ye(u(exy) ® 1, )e

the first equality follows from the definition of the idempotents; for the second equality, we note
that the trident term in the sum is zero by equation (4.15); the third equality follows by definition
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of the cellular basis elements and the idempotents; the final equality holds by induction. Thus in
all cases, we have that

eorfct)oeor(c))oe= Z ax,ye(r(cxy) @ Lyay)e. (4.22)
XY

It remains to show that every e(i(cxy) ® 1,o))e = e(2(exy @ 1a))e for every X,Y appearing in the
above sum. We set A := Shape(X) = Shape(Y).

C e

CT/

) —ZGXY

)\
a(cy) / 1(cy)
)

C e

FIGURE 35. Case 1: a diagrammatic version of equation (4.22).

Subcase 1.1. If o € Add()) and 2(cx) € Add(2()\)) then 2(exy) ® 1) and exy @1, are both cellular
basis elements and we are done.

Subcase 1.2. If o« ¢ Add(\) and 2(«v) € Add(z()\)) then we can assume that o = 7 (the oo = p case
is identical). This implies that p € Add(A) (but by assumption o € Rem(\) and 7 € Rem(\ — o))
this implies that we can write cx and cy as

» @ forkZ cy = cyr @ spotp ® fork?,. (4.23)

for some X', Y" € Path(p, ., a,)(A+ p, V_,J_g). Now, as w € Rem(\ — o), using the wo-bull-braid
relations we get

cx = cxr ® spot

exy @ 1p = —(ex @ spot? @ fork™ )*(ey @ spot? @ fork™ ) (4.24)
On the other hand, using equation (4.23) and Lemma 4.25 we have
(lex @1 )e=—(1t, ® spot? @ fork”_)*(s(cx) @ spot? @ fork” )e
and similarly for (2(cy) ® 1,)e. Thus we get
e(r(exy) ®@ 17 )e
= e(1(cx) @ spot?. @ fork” )* (1, ® spot?. @ fork” 1, ® spot?. @ fork™_)*(1(cy) @ spot®. @ fork” e
= —e(u(cx) @ spot? @ fork” )*(a(cy) @ spot? @ fork” )e (4.25)

comparing equation (4.24) and (4.25) we are done.

C e

FIGURE 36. Subcase 1.2

Subcase 1.3. If o € Rem(A) and 2(cv) € Rem(2(A)) then the monochrome Tetris relation implies
that

exy @ 1o = (ex @ fork™ ) (ey @ spot?, @ 1,) + (ex @ spot?, @ 1.)*(cy @ fork™,,)
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+ (ex @ forkS )" (X[ yeHook . (\—a) 82P(tx — [2,9])) (ey @ forkg,,)
Similarly, we obtain
e(2(exy) @ 1yay)e
= e(i(ex) © fork!() )" (1(ey) @ spot! ) @ 1,())e
+e(1(ex) @ spot ) @ 1,(0)" (ey) = fork!lS) e
+e(u(ex) @ forkzggiz(a))*e(z[%y}em

where we have inserted extra idempotents e in the final summand using Lemma 4.29. Recall that
we need to check that

60— BAP(E — [ ])Je(ulev) © forki(C] ) )e

2 (o

e(Z(ny & 1a))e == e(Z(ny) & 11((1))6
where the first two terms in each of the above equations obviously agree. For the final term, note
that if o # p, ™ we have

Ma()‘ - a) = mz(a) (2<)‘ - Oé))
If o = p then 1(cx) = 7 (the o — 7 case is identical). Say s, = p € Rem()). We note that
Hook ,(A — p) U {[r,r — 1]} = Hook (2(A) — 7) (4.26)

where sy, ;] = 0. Note that e o gap(t, — [r,7 — 1]) o e = 0 using Corollary 4.28 so the result holds
in subcase 1.3.

)

| T

! L™

FI1GURE 37. Subcase 1.3.

Subcase 1.4. If o ¢ Rem(A\) and 2(cv) € Rem(z(\)) then we can assume that oo = 7 (the o = p
is identical). Then we must have that s, ,) = p € Rem()) and s, ,) = o and s, = 7. We
have that

cx =cx ® spotg Cy =cyr ® spotg

for X', Y’ € Path(p (A + o, —). Therefore

n+1,4n)
exy @ 1np = (¢ @ 1x)gap(tarotn — [7+ 1, 7)) (eyy ® 12) =0
using Lemma 4.7. On the other hand
eo(1exy) ®1r)oe=eo (1cx) @1;) oeogap(tynyroqr — [+ 1,7]) oo (sfey) @1;)0oe=0

where the first equality follows from Lemma 4.29 (inserting extra idempotents, e) and the second
follows by Corollary 4.28.

Subcase 1.5. If 1(r) ¢ Add(z(N\)) nor Rem(2())), then v ¢ Add(A) or Rem(A). Take [z, y] with
r + y minimal such that s, | = v and [, y| € A\. Then precisely one of [z,y — 1] or [ — 1,y] € A.
We assume € A and we set 7 = . We have

exy ® 1, = —(ex spotw @ forks ) *(ey spotQ) @ forks,,).

by the ya-null-braid relation. This might not be a cellular basis diagram, but can be rewritten as
such using equation (4.8) and (4.9). Similarly e(2(cxy) ® 1,())e can be rewritten in the same form
using Corollary 4.28. Subcase 1.5 follows.
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Case 2. We now consider the case that cr = Af(c1) and ey = A (cyr) (the dual case with T
and U swapped is similar). If o # 7, p, then

eo1(er) @ Loy 0 e ou(cly) @spoty ™) o e = e((1(er) o e oa(e)) @ spot))e
=e(u(l,_.. ®spotj))eoe(ulcr)oeor(c))e

and so the result follows by induction on ().

icT)
C e ) =

cty) l )
C_ e )

F1cure 38. Case 2 for o #

If « = 7, then et = AL At (e1v) and ey = A AL (cyr) and we also set e = AL (ctr) and cyr =
AT (cyr). Expanding out the final term of the middle idempotent e and applying equation (4.15),
we obtain

eo (1ctr) ®1gr)0eo (1) ® 1, @ spoty) oe
=e o ((s(cr) oeor(cy)’) @spoty) oe+eo (1(err) @ trid[77) o eo (scyr)* @ spot?) oe
—eo ((Z(CT’) oeo z(cU/)*) ® spota) oe

and so the result again follows by induction on length, as above.

F1GURE 39. Case 2 for .

Case 3. We now consider the case that ct = R (c1/) and cy = AL (cyr) (the dual case with T and
U swapped is identical). By the same inductive argument as we used in Case 1 (in order to deduce
equation (4.22)), we have that

eou(cr)oeou(ch)oe="Y axye((cy) ® fork!{")  )(i(ev) @ Lia)e. (4.27)
XY
We set A = Shape(X) = Shape(Y). Observe that o« € Add(A\) or Rem(\). If o« € Add()\), then
cx @ fork®,, = (X (ex:))* @ fork®,, = (XL (ex))*

for X € {R, A} and some X'. We have that ¢y ® 1, = A} (cy). In particular, both diagrams are
light leaves basis elements. If «v € Rem(\) then we move the fork through the centre of the product
cxy and notice that

ey @ forkS = R (ey)
and cx are both light leaves basis elements. Exactly the same is true replacing cx, cy, and a with
their images under ¢. The result follows.
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C

[¢]
—/
'
(0]

o8
D

FIGURE 41. Case 5 for o« = 0.

Case 4. Now suppose ¢t = R, (c1/) and ¢y = A (cyr). In this case, we are simply placing a dot
on the diagrams from case 3 and so the result follows from case 3 and induction on ¢(u).
Case 5. Let c1 = A_ (c) and cy = A (cyr). If o(cx) # 7 then £, (o(pn)) = € (2(n — ) and so
eoifct)oeorcy) oe=(eor(ct)oeor(cy) oe)® bar(u(a))
=eo(l,,, ®bar(i(cx))oeor(cr)oeor(cy) oe
and if 1(av) = 7 (say « = p as the 7 case is identical) we have
eotcr)oeoi(cy) oe=eo (1, ®bar(i(x))oeocrcr)oeor(cy)’e

reol(l, (4.28)

®gap(o)) oeo(ct)oeor(cy)’e

W(v)—o
this is picture in Figure 41. As observed in subcase 1.3, the rules for resolving 1;, ® bar(«) in type
(Dnt1, An) and 1y, ®@bar(y(cv)) in type (Cy, Ay—1) are identical ezcept when ¢(cr) = 7 in which case
we get an extra term; this term cancels with the second summand on the right of equation (4.28).
Using equation (4.8) and (4.9) versus Corollary 4.28 we see that

eofct)oeorcy) oe=eou(cTy)oe
by induction on ().

Case 6. Let et = Rf(cr) and ¢y = A_(cy) (the dual case is similar). If 2(c«r) # 7 then
- (1)) = £-(1(pp — ) and using the fork-spot relation we have

eorct)oeor(cy)*oe=-eocr)oeocr(cy)’e

and so the result follows by induction. If +(cv) = 7 then £, (2(n)) = £-(2(u — @) + 1 and we set
a = p (the o = 7 case is identical) and we must have ct = R} R (ct#). We have that

er)e = wler)ey = Uer)(Le, + e e ® 10) = er) (e - © 1)

as illustrated in Figure 42. So we have
eo(cr)oeyy oufcy) oe=eo(cr)o (eu)—r ®17)01(cy) 0ce=eor(ct)oeo(cy) oe
using the fork-spot relation as above. Again we are done by induction.

Case 7. The case ct = A_ (c1) and ¢y = R, (cyr) follows from case 6 (in the manner that case 4
followed from case 3).
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FIGURE 42. Case 6 for o« = 0.

Case 8. We now consider the case that et = R (c1) and ¢y = RJ(cyr). By the same inductive
argument as we used in Case 1 (in order to deduce equation (4.22)), we have that

eou(cr) oeou(ch)oe =Y axye(i(cy) @ fork!(") )(a(ey) @ fork!( ") e,
XY

We set A = Shape(X) = Shape(Y). Note that either o € Add(A) or in Rem(\). If o € Add(N),
then arguing as in case 3 we get that

cx @ forks,,  i(ex)* ® forkzgzgl(u) cy @ forks,, iley) ® forkZEZ;z(a)

are cellular basis elements and so we are done. If o € Rem(\), then we have

(cx @ forky,,)(cy @ forko™) = exy @ fork(, fork™ =0

oo oo

(oex)" = Fork (™). (o) o Fork () = a(exy) = Fork!(%),  fork!eH) — g
and so we are done.
Cases 9 and 10. The case in which ¢t = Rf(crv) and ¢y = R, (cys) and the case in which

cr = R (c1) and cy = R (cy) both follow from case 8 (in the manner that case 4 followed from
case 3). O

4.7. Proof of Theorem 4.2. Using Theorem 4.24, it is enough to consider the simply laced cases.
Now the result follows from Proposition 4.17.

5. COXETER TRUNCATION

In this section we prove one of the main results of this paper: that 7-singular Hecke categories
for Hermitian symmetric pairs (defined a la [Eli16]) are graded Morita equivalent to (regular)
Hecke categories for smaller rank Hermitian symmetric pairs. For the underlying Kazhdan—Lusztig
polynomials, this was first observed by Enright—Shelton [ES87]. Our result lifts theirs to the 2-
categorical level and to positive characteristic. By Theorem 4.24 we can focus on the simply laced
case without loss of generality. Let (W, P) a simply laced Hermitian symmetric pair of rank n and
fix 7 € Sy. We define

’@(TW,P) ={pn€ Pawp) | 7 € Rem(u)}.
We will show that the subalgebra of hyy, py spanned by

{CST ’ S e Path()‘atﬂ)7T € Path(Aatll)a A,V € ‘@(TVV,P)}

is isomorphic to hgy, py- for some Hermitian symmetric pair (W, P)™ of strictly smaller rank.
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FIGURE 43. The contraction tilings for (Ag, Ay X A3)™ with 7 = s5 and 7 = s, respectively. The
tiling is discussed in Subsection 5.1 and the Dynkin diagrams are discussed in Subsection 5.2.

FIGURE 44. The contraction tilings (Dg, As)” for 7 = sp, 51, 50 € W respectively. In the first two
cases, the grey node is labelled by 21320 and 20321.

FIGURE 45. The contraction tilings of (D7, Dg)” for 7 = sq, $2, S3, 55 in order.

5.1. The 7-contraction tilings. In what follows, we let (W, P) be a simply laced Hermitian
symmetric pair and 7 € Sy. We now introduce a contraction map which will allow us to work by
induction on the rank.
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FIGURE 46. The contraction tilings of (Es, Ds) in order.

Definition 5.1. Given (W, P) a Hermitian symmetric pair and 7 € Sy, we let [r1,c1] < [re, ca] <
- < [rk, ck] denote the completely ordered set (according to the natural ordering on r; + ¢; € N) of
all T-tiles in oy, py. Given two T-tiles, [r;,¢;] and [riy1,cip1] that are adjacent in this ordering, we

define
T =[xy [ ri <o <riy and ¢; <y < e and [3,y] # [, ¢il} N A p).-
Associated to the minimal tile [r1,c1] we define a corresponding null-region
Ty =Alz,y] |2 <7ryand y < ai} 0w, py
and for the mazimal tile [y, cx|, we define the mazximal null-region
T =A{[r,y] | re <z and ¢, <y and [x,y] # [rk, cx]} N w,p)

and we set N7 = Tj_,; UTL. We define the T-contraction tiling to be the disjoint union of the
T, 1 -tiles and all remaining tiles in oy, p) \N7. We refer to any tile in this overall tiling as
a T-contraction tile. Given T a 7-contraction tile. We define a reading word of T by recording the

constituent tiles [r,c] within T from bottom to top (that is, by the natural order on r + ¢ € Zx).

Remark 5.2. We note that any tile-partition A € @(TWP) can be obtained by stacking T-contraction
tiles on top of Ty, ;.

Example 5.3. In the leftmost diagram in Figure // the large contraction tiles are all identical.
These identical tiles both have two distinct choices for their reading word (as we can order the tiles
of the same height freely); explicitly, these reading words are 2 320 and 23 20. Notice that these
words differ only by the commuting relations in the Coxeter groups.

There is, in essence, only one type of large contraction tile: this is the contraction tiles of type
(A, A x A) and their augmentations pictured in Figure 49. We will see in Subsection 5.3 that these
augmentations merely “bulk out” the corresponding Soergel diagram (using degree zero strands)
without changing its substance. In more detail, we define the tricorne to be formed from three tiles
in a formation T = {[r, |, [r — 1, ¢], [r,c—1]}. Here the tile [r, ] is the only 7-tile in T. We augment
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FIGURE 47. The first 4 of 7 contraction tilings for (E7, Eg), in order.

FIGURE 48. The final 3 contraction tilings for (E7, Es), in order.

this picture by adding k tiles symmetrically above and below the brim (thus displacing the 7-tile)
to obtain an augmented tile augy (T) as depicted in the rightmost diagram of Figure 49.

5.2. The Dynkin types of 7-contraction tilings. We now identify the 7-tilings of &y, py with
the tilings of the admissible region of a Hermitian symmetric pair of smaller rank. The nodes of
(W, P)” will be labelled by the reading words of the tiles in the 7-contraction tiling.

Proposition 5.4. Let (W, P) be a simply laced Hermitian symmetric pair and let 7 € Sy . There
is an order preserving bijection @, @ Py pyr — ‘@(TWP) where (W, P)" = (W7, P7) is defined by
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FicURE 49. The first diagram depicts the construction of the type A “tricorne-like” 7-tile. The
second diagram depicts the augmented tiles aug; (T) for £ > 0; the original tiles are coloured. (The
right diagram is sometimes flipped through the vertical axis.)

Moreover, fixing a reading word for each T-contraction tile, this defines a reduced path p,(t) €
Std(¢-(N)) for each t € Std(A) and X € Py, py-.

Proof. This follows by inspection, comparing Figures 43 to 48 with Figures 3 to 6. O

We label the nodes of the smaller rank Coxeter system with the reading words of the 7-contraction
tiles of the larger Coxeter system. The positions of these labels can easily be deduced from the 7-
tilings, see for example Figures 50 to 52.

@e—eo—o—0—o ©—eo—@ ©—e—©
1 2 4 5 1 243 5 1 2 3

3

FIGURE 50. An example of a graph and its contraction at the vertices 3 and 5 respectively.

0 .\ 0 0

O O D),

3 ]
1 1 243 5 1 2 3
FI1GURE 51. An example of a graph and its contractions at vertices 3 and 5, respectively.
23120 23021§ 032 §

5 5}
3 3 4 g 132

FIGURE 52. The graphs obtained from the leftmost graph in Figure 51 by contraction at the type
D vertices 0, 1 and 2, respectively.

N

In fact, it can be shown that the map ¢, can be extended from reduced paths (where the
observation is trivial) to non-reduced paths. The proof of this involves much more substantial
combinatorics and so is postponed to the companion paper, [BDF " 25].

Proposition 5.5 ([BDF 25, Proposition 8.1]). We have a graded bijection
Or: Path(mp)r()\, t'u) — Path(W,P)(QOT()‘)7tgoT(u))-

Example 5.6. In Figure 50 we depict the pair (As, Ay X Ag) and the truncation at the node T =
s5 € Sy. We have that ¢, (213) =2 ® 1 ® 3. On the right of Figure 1 we depict the Bruhat graph
for (As \ Ay x A2)". The bottommost (and topmost) edge of this graph is tricoloured by 2 ® 1 ® 3
and maps to a concatenate of three distinct edges in the leftmost graph.
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5.3. The dilation homomorphism. We now lift the map ¢ of Proposition 5.5 to the level of a
graded k-algebra isomorphism. We let i denote a square root of —1. We first define the dilation maps
on the monoidal generators. Let o = s152 ... sy be a (composite) label of a node of the Coxeter graph
(W, P)". (Note that si,s2,...,5, € Sy belong to the dilated Coxeter group, whereas o € Sy-.)
We define the dilation map on the idempotent generators as follows

dil-(1,) =1, ®1;, ® 15, ®--- @ 14,.

For a non-zero braid generator (see Definition 4.9 for the list of zero braid generators) we define the
dilation map as follows
dil-(braid22) = 1, ® braid{:3152:+5¢

S$189...8pQx

Examples are depicted in Figure 53.

Touz Ty 913 273

FIGURE 53. Examples of the dil, map on idempotent and braid generators. The colouring corre-
sponds to that of Figure 43. The leftmost 7-strand is drawn as a dotted strand in order to remind
the reader that we horizontally concatenate these diagrams using @ (which identifies this blue
strand with an earlier blue strand in the diagram).

We now define the dilation map on the fork and spot generators. For o = s; a tile labelled by a
singleton s; € Sy~ (which necessarily commutes with 7 € Sy) we define
dil-(forkg ) = 1, ® forkgi, dil, (spot?) =1, ® spotgi.
We set o = ay7, the reading word of a tricorne tile. We define
dil (fork?, ) =i x 1, ® (forkZ,, ® fork], ® 1.)(1o ® braid% ® 1., )(1a- ® spot’ ® 1,-,)

dil,(spot?) = —i x fork” (1, ® spot’, ® spotg ®1).
Examples are depicted in Figure 54.

I'\ = TR ' B

2 4 3 2 4 3

FIGURE 54. Let (W, P) = (A5, A2 X Ag) and 7 = s3 € W (see also Figures 1 and 50). We depict
- (fork? ) and ¢ (spotg) for o = s95,53. The leftmost 7-strand is drawn as a dotted strand in order
to remind the reader that we horizontally concatenate these diagrams using @ (which identifies
this blue strand with an earlier blue strand in the diagram).

We now describe how one can “augment” the diagrams of tricornes to obtain arbitrary diagrams.
Let o be a label of a vertex in the graph (W, P)” of the form ¢ = za~yz~!7. (That is, o is the
reading word of an augmented tricorne.) We define dil - (fork? ) to be the element

"1, @ (forkg ., braid 2207 (1o, @ cap?, 1 @ Lay) (Laye—1 @ spot? ® 1yas)) ® 1y-1,)

and we define dil, (spot?) to be the element
(=)@ fork” (1, @ capgi_1 ®1:)(1z ® spot’ ® spotg ®@1,-1.).

Examples are depicted in Figure 55.
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213 2 021320 2 2 0

w

FIGURE 55. Let (W, P) = (Dg,As) and 7 = 55 € W (see also Figures 51 and 52). We depict
dil- (fork?_) and dil, (spot?) for o = so51535050. These diagrams are obtained from Figure 54 by
adding strands of degree zero.

Having defined dil- on all Soergel generators, we set dil-(D*) = (dil-(D))*. We now extend this
definition to arbitrary Soergel diagrams and hence define our contraction homomorphisms.

Definition 5.7. Given diagrams D1, Dy € Hwy,p), we inductively define
dil- (D1 ® D) =dil-(D1) @ dil-(D3) dil- (D1 0 Dy) = dil-(Dy) o dil-(D2)
and we extend this map k-linearly. We hence define o+ : Hw,p)- — Hw,p) as follows,
o (D) =17, ®dil-(D)

where we recall that To—,1 is the null region at the bottom of the T-contraction tiling of (W, P).

FiGURE 56. The map ¢, on a diagram, for the leftmost contraction tiling in Figure 43.

Remark 5.8. Fach null-region tile To—1 has a unique reading word and so there is no ambiguity
here. That the map dil- is well-defined on diagrams follows from the interchange law.

The map ¢, preserves the light leaves basis (because our map is defined on monoidal generators)
and thus lifts the map of Proposition 5.5 to an isomorphism of graded k-modules between

haw,py- = kiest | S € Path(A,t,), T € Path(\,t,), A, i, v € Py py- }
and h(TW p) C h(w,p) which we define to be the subspace with basis
k{cst | S € Path(p-(A), ty, () T € Path(or(A), ty, () @ (A), o7 (1), 07 (V) € Py py }-
In fact we will now lift this to the level of graded k-algebras.
Theorem 5.9. Let (W, P) be a Hermitian symmetric pair and 7 € Syy. We have a graded k-algebra

isomorphism SOT(h(W,P)T) = hz-W,P)'

6. PROOF OF THE COXETER DILATION HOMOMORPHISM

This section is dedicated to the proof that the map of ¢ is a homomorphism. This amounts to
checking the relations for these algebras. By Definition 5.7, we have that

o+ (D)o (D) = (1g,_,, @ dil-(D))(1g,_,, @ dil-(D") =11, ,, ® dil-(D o D’) (6.1)
using the interchange law and moreover
o-(DoD")y=1r,_, ®dil.(DoD"). (6.2)
Therefore for the local relations, it suffices to show that
dil-(D o D') = dil-(D) odil-(D"). (6.3)

Most of this section is dedicated to the proof that the relations of Corollary 2.5 are preserved under
equation (6.3) (but replacing ® with @ ). For the non-local relations, we check that equation (6.1)
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and (6.2) coincide at the end of the section. We now turn to the local relations. Relations R1 and
R2, and R14 are all trivial. Relation R13 is satisfied by Proposition 3.11.

In what follows, we let o be a reading word of some 7-contraction tile. In the case that o is an
augmented tricorne o = zayz 7, we set and & = o, ... 0. In diagrams we put a gradient which
reflects the ordering of the purple strands (with % the lightest and 1 the darkest). We label strands
in a diagram simply by 1 < j < k (rather than by o) for brevity.

6.1. The dilated fork-spot relation. We first consider the leftmost relation in R3, namely the
fork-spot relation

(dil-(1,) @ dil(spot?)) o dil,-(fork?”) = dil.-((1,) (6.4)

For o = s; € Sy, it follows trivially. For o = za~yz 17, the equality follows by one application of
each of the a- ~- and 7-fork-spot contractions and the ay-commutativity relation (and monoidal
unit relation); and by “straightening out” the z-strands via application of the fork-spot and double-
fork relations (this is sometimes referred to simply as “isotopy” in the literature). For a tricorne,
this relation is depicted in Figure 57. For an augmented tricorne, one side of this relation is depicted
in Figure 58 and it is easy to see that the argument goes through unchanged. The argument for the
horizontal and vertical flips of equation (6.4) is similar.

) - [

T & Y T T & Y T T & Y T

F1cURE 57. The dilation of the fork-spot relation and its flip through the vertical axis, for a tricorne
o = ay7. (We note that the scalar coefficient for both these products is i x —i = 1.)

T E 1 oy 1 & T T k1 oy 1k T

FicURE 58. The lefthand-side of the dilated fork-spot relation for an augmented tricorne o =
zayz~ 7. (We note that the scalar coefficient for both these products is i x —i =1 or 1 x 1 =1
depending on the parity of k > 1.)

6.2. The dilated double-fork relation. We now consider the rightmost relation in R3, namely,
the double-fork relation

(dil (1) @ dil, (fork?,)) o (dil, (fork2?) @ dil-(1,)) = dil,(fork??) o dil.- (fork?,,).

We apply the double-fork relation to every constituent doubly-forked strand in the diagram in turn,
and the result follows. See Figure 59 for the corresponding picture for tricornes, the augmented
tricorne picture can be obtained in a similar fashion to Figure 58.
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1
=2 N

FIGURE 59. The dilated double-fork relation for o = a7 the reading word of a tricorne. The
equality follows by applying the double-fork relation to the a- and ~-strands.

6.3. The dilated circle annihilation relation. We now verify the leftmost relation in R4, namely,
the circle-annihilation relation

dil,- (fork?,, )dil, (fork??) = 0. (6.5)

For a tricorne o = ay7 we have that dil(fork  )dil-(fork?”) is equal to

— 1, @ forkg, - braidg 507 (1o ® bar(7) @ 1o~ )braidg 15 forkgS7™) @ 1, (6.6)
by definition (note (—i)?> = —1). Applying equation (4.3) to the 7~-strands in equation (6.6) we
obtain

— 1, ®forkg ), - braidg 907 (1o @ bar(7) ® 1,4 )braidg 27 forkg S 7 @ 1,

— 1, ® fork(,,, braid 257 (Lo © bar(7) @ 1y )braida 2 forkas " ® 1,

+ 1, @ forkg - braidg 507 (1o ® gap(y) ® la )braidg 27 forkg S 77 @ 1,

(these three terms are depicted in Figure 60). Now, the first term is zero by the ay-commutativity
relation and the ~-circle annihilation relation. The second and third terms are zero by the ay-
commutativity relation and the a-circle annihilation relation.

o\

= 0 L
DARNA MDA R D)
F1GURE 60. The circle annihilation relation for o = ay7. We apply the ~y7-barbell relation to the

lefthand-side. The first term (respectively latter two terms) on the righthand-side is zero by the
circle annihilation relation for v (respectively «) and the ay-commutativity relations.

We now consider the case of an augmented tricorne o = zayz~'7, with 2 = o....01. The

diagram dil-(fork? )dil-(fork?“) has a 7-barbell in the centre of k concentric circles with the in-
nermost circle labelled by o and the outermost labelled by o (as pictured in the diagram on the
lefthand-side of Figure 61). We pull this barbell through these k circles using k applications of
equation (4.13) and hence obtain

cap? (1, ® bar(7) ® 12—1)cup;’)4“7”71 = (—1)*bar(cy).

xx—1
We therefore have that dil-(fork?  )dil-(forkZ”) is equal to

1 ® 1y @ (forkg - braidg S " (Lo ® bar(o1) ® Loy )braidg 5 forkg 57 7) @ 1,1 @ 1.

We can now apply the vo-barbell relation and show that the three resulting terms are zero exactly
as in the case of the tricorne, above. (See also Figure 61.)
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vrkla'y 1lg7'. ‘Tklav 1/«7"

FIGURE 61. Simplifying the lefthand-side of the circle annihilation relation (equation (6.5)) using
equation (4.13). Compare the righthand-side of the equation above with the lefthand-side of the
equation pictured in Figure 60.

6.4. The dilated null-braid relations. Let 3 € Sy~ and m(o,3) = 3. By inspection of Fig-
ures 43 to 48, we see that [ must be a singleton label and either (i) m(3,a) = 3, m(3,~) =
m(B,7) =m(B,0;) =2 for all 1 <i <k (i) m(B3,v) =3, m(B,a) =m(B,7) =m(3,0;) =2 for
all 1 < i < k. We assume without loss of generality that m(3, «) = 3. We must prove that

. . o . . )
dil, (1355) = —dil ((spot;g 5 )dil.-(dorkiJ)dil - (spot.. ), (6.7)
dil (1530) = —dil (spot”,? )dil - (dork?Z)dil - (spot7%7 ). (6.8)

B R R . R B R B S A i

é e S T S Qy S — / ,,,,,, .

’——’

. AT

B 21 a1 2 3 T 8 2 1 a~ 1 2

Ao N [Tz D)

T3 21 a1 2 T 3 T 3 21 a1 2 T3

Q =@

\

.

FIGURE 62. The six steps in proving equation (6.7). Read from left to right, one row at a time.

We first prove equation (6.7). We first apply the commutativity relations to the two [3-strands
in dil-(15,3) in order to bring them as close to the a-strand as possible (to obtain the top-right
diagram of Figure 62) and we then apply the a/3-null-braid (to obtain —1 times the middle-left
diagram of Figure 62). We then apply the ~o-null-braid (to obtain the middle-right diagram of
Figure 62) followed by the o0 -null-braids for 1 < i < k in turn (to obtain (—1)**! times the
bottom-left diagram of Figure 62). Finally, we apply the 7o-null-braid (to obtain (—1)**2 times
the bottom-right diagram of Figure 62) and hence obtain —diIT((spotggg )diIT(dorkgg)dil.r(spotggﬁﬁ)
as required.

We now prove equation (6.8) in a similar fashion. We first apply the 7o -null-braid relation to
dil- (15,3) followed by the ;0 1-null-braid relations for & > i > 1 (to obtain (—1)* times the sec-
ond diagram of Figure 63). We then apply the /3-null-braid and caxo1-null-braid relations (to obtain
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T 2 1 12 T
T 2 1 1 2 T
T 21 a1 2 3 21 a v 12 T

FIGURE 63. The three steps in proving equation (6.8).

(—1)¥ times the third diagram of Figure 63) and hence obtain —diIT(spotggg)diIT (dorkZ7)dil,- (spot”?7 )

oBo
as required.

6.5. The dilated barbell relations. We now consider the one and two colour barbell relations.

Lemma 6.1. For a,~, 7 € Siy, with m(c, 7) =3 = m(v,7) and m(c, ) = 2 we have that
fork? (1, ® bar(a) ® bar(y) ® 1, )fork.” = — (bar(cx) + bar(7) + bar(v)) ® 1.
= —1, ® (bar(a) + bar(7) + bar(~)) .

Proof. We prove the first equality, the second is given by equation (4.4) and recorded here only for
reference. We first move the a barbell to the left through the 7 strand using 4.3 (and hence obtain
3 terms); for the first two of these terms (in which the 7-strand remains in tact) we then again
use 4.3 to move the v barbell to the left through the 7-strand. We hence obtain a sum involving
7 terms, 4 of which are zero by the 7-circle-annihilation relation; this leaves us with the required 3
terms. g

We now “augment” the previous lemma so that it applies to augmented tricornes.

1

Lemma 6.2. Let o be an augmented tricorne, o = xayx™ 7 and x = oy ...01. We have that

fork? (1, ® capg,gc_1 ®1,)(1-; ®bar(a) ® bar(v) ® 1,-1,.) (1, ® cupfgff1 ® 1, )fork™"
= (=) 11, © (3K, 2bar(o) 4 bar(a) + bar(~) + bar (7))
= (=) 12K 2bar (o) + bar(cr) 4 bar(+) + bar(7)) @ 1, (6.10)

(6.9)

Proof. We proceed by induction on k& > 0, with the k£ = 0 base case taken care of in Lemma 6.1.
By induction, we can rewrite the left-hand side of 6.9 as follows

fork:Tspot:gZT(lf ® (=1)F1,, ® (28! 2bar(o;) + bar(cr) + bar(7) + bar(o,)) ® 1, )spot. ;* " fork ™.
which is equal to
(—1)*fork” (1, ® bar(o},) ® (Zle 2bar(o;) + bar(a) + bar(+) + bar(oy)) ® 1, )fork’".

The term involving a tensor product bar(o ) ® bar(o,) can be rewritten using equation (4.14). The
remaining terms involve a tensor product of two distinctly coloured barbells, one of which commutes
with the 7-strand; thus we can apply equation (4.12) to these terms. Rewriting all the terms in the
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above manner and summing over the resulting elements, we obtain 6.9. Equation (6.10) follows by
equation (4.4). O
We are now ready to construct the dilated barbell diagrams.

1

Lemma 6.3. Let o be an augmented tricorne, o = xayx™ "7 and x = 0, ...01. We have that

dil-(bar(c)) =1, ® (Ele 2bar(o;) + bar(ax) + bar(~) + bar(7))
(Zle 2bar(o;) 4 bar(a) 4 bar(~) + bar(7)) ® 1,
dil-(15) ® dil-(bar(c)) = 1,40 ® bar(a) ® 1,1,
dil-(bar(o)) ® dil-(15) = 1, ® bar(a) ® 1,1,

dil-(gap(o)) = 1+ ® gap(a) ® 1,1,

Proof. Equation (6.11) follows directly from Lemma 6.2. We now consider equation (6.13
equation (6.14). We have that
dil; (1) @ dil-(bar(0)) = 1, pep1, @ (S5, 2bar(o;) + bar(c) + bar(+) + bar(7))
=1 o1 ® (3K 2bar(o;) + bar(cr) + bar(+) + bar(7)) ® 1,
S P (Ef:_f 2bar(o;) + bar(car) + bar(+) + bar(o,)) ® 1,

where the first equality follows equation (6.11); the second from summing over relations R4 and R5;
the third from Lemma 4.5. We repeat the final two steps above a further k — 2 times and hence
obtain

dil-(1,) ® dil(bar(c)) = 1rzao, @ (2bar(ay) + bar(a) + bar(7) + bar(02)) @ 1oy,
=1 200, ® (bar(a) + bar(7) + bar(o1)) ® 1oy, .0+
= Loy ® (bar(a) + bar(vy) 4 bar(e1)) ® 1,-1,
=lrzay ®bar(a) ®1,-1,
=1lrsa®@bar(a) ®1, -1,

where the second and fourth equalities follow from Lemma 4.5; the third from equation (4.4); the
fifth from the ~a-commutativity relations. We now consider equation (6.14). We have that

dil(bar(e)) @ dil- (1,) = 1, ® (35, 2bar(a;) + bar(c) + bar(~) + bar(7)) ® 1q- 1,
=1, ®bar(a) ® 1,1,

where the first equality follows from equation (6.11) and the second follows by the exact same
argument as for the case of equation (6.13). Finally, we consider equation (6.15). We have that

dil-(gap(o)) = diIT(spot@”)diIT(spotg)
. -1 -1
= (—1)k+1spot:§g‘®;1:(17 ® cup;% ® 1,;)dorkI7 (1, ® capgi:_1 ® 1, )spot
=1,®gap(a) ®1 -1,

where the first and second equalities are by definition; the third follows by applying the 7o -null-
braid relation followed by the o;0;1-null-braid relations for £ > ¢ > 1 followed by the ~yo-null-
braid relation. O

TPzt
Trxoayz~lT

6.5.1. The dilated one colour barbell relation. Let o be a reading word of some 7-contraction tile.
We now verify the rightmost relation in (R4). We have that
dil-(bar(o)) @ dil- (1) + dil-(1,) @ dil-(bar(o))
=1, ®bar(a) ® 14p-1, + Lrza ®@bar(a) ® 1,1,
=2-1,®gap(a) ®1 -1,
— 2. dil, (gap())

as required. Here the first equality follows from equation (6.13) and (6.14); the second follows from
the one-colour-barbell relation; and the third from equation (6.15).



THE ANTI-SPHERICAL HECKE CATEGORIES FOR HERMITIAN SYMMETRIC PAIRS 53

6.5.2. The dilated two colour barbell relations. Let B € Sw~, as noted in Subsection 6.4, we can
assume that 3 is a singleton which commutes every label in o except a. We have that

dil, (bar(o)) @ dil, (15) — dil (1) @ dil, (bar(co))
=1, ® (¥, 2bar(o;) + bar(e) + bar(7) + bar(7)) ® 15
—1,5® (X2F, 2bar(o;) + bar(e) + bar(+) + bar(7))
=1, ®bar(a) ®15 — 1,3 ® bar(a)
= 1,3 ®bar(8) — 1, ® gap(B)
=dil-(1g) @ dil(bar(3)) — dil-(gap(3))

as required. Here, the first equality follows from equation (6.11); the second from the commutativity
relations; the third from the a/3-barbell relation; the fourth follows by definition.

We now turn to the other two-colour barbell relation (in which the roles of 3 and o are swapped).
We have that
dil-(bar(3)) ® dil-(1,) — dil-(1,) @ dil-(bar(3))
=1, ®bar(B) ® Liays1r = Ligays—1r ® bar(3)
=1,®bar(B) ® a1, — Liza ®@bar(B) @1 -1,
=1, ®bar(a) @1y -1, — lrza ®bar(a) ® 1,1,
=dil-(1,) @ dil-(bar(c)) — dil(gap(c))
as required. Here the first equality follows by definition; the second by the commutativity relations;

the third by the a3-barbell; the fourth by equation (6.13) and (6.15).

6.6. The dilated m = 2 relations. For o, 3,7 € Sy~ with m(o,3) = m(7,3) = m(o,7) = 2
we need to check the dilated versions of the relations

braidggbraidgg =1s, braidfggbraidgﬁg = braidgg:braidgfg
braidggforkggﬁ = forkggabraidggg (1o ® capga)braidgf_gg(cupaa ® lgy) = braidgf

and their horizontal and vertical flips, along with the diagrams obtained by swapping the roles of
(3 and o. Note that by Proposition 4.8, both sides of all of these equations vanish when (W, P)” =
(Ap, Apn—1), or (W, P)" = (Dy, Dp—1), or (W, P)" = (Dy, Ap—1) with {3, 0} = {50, s1}. In all other
cases, we have that o is a (possibly) composite label and 3 (and 7) are singleton labels which
commute with every constituent label of o. Thus all these relations are trivially satisfied.

6.7. The cyclotomic relations. We finish by showing that the dilations of the non-local relation
R15 and R16 are also preserved by ¢.. It is easy to see that

(1, ®1y) =1g,, @ dil (1) @ dil, (1) =0

whenever o € Sp- using (possibly) the null-braid relations, the commutativity relations, and the
cyclotomic relation in H gy, p). It remains to show that

or (bar(0) ©1,) = 0
for o the unique element of Syy+ \ Sp-. We will show that
1, ® dil-(bar(c)) =0

for such o and hence deduce the result. For the remainder of this section, we set Ty_1 = p1p2 ... pr
and we note that p, = 7.

Case 1. Suppose that o is a singleton. Then there exists 1 < j < r such that m(o, p;) = 2 for all
i # j and m(o, pj) = 3; this can be seen by inspection of Figures 43 to 48. We have that

17y, ® dil-(bar(c)) =1, p,..p. ® bar(o)
=Lpipop; @ bar(o) ® Lpjsropr
=Lpipopj1 @ (bar(o) + bar(p;)) ® Loipj1-pr
— Lpipaepsr @ 8P(P;) @ L1p i p,



54 CHRIS BOWMAN, MAUD DE VISSCHER, AMIT HAZI, AND EMILY NORTON

=1pipsp; 1 @ bar(p;) ® Lpipjiiepr
=0

as required. Here the first equality is the definition; the second follows by the commuting relations;
the third by the two-colour barbell relation; the fourth by the commuting and cyclotomic relations;
the fifth follows by repeating the arguments above.

Case 2. We now suppose that o = a7, a tricorne. By inspecting Figures 43 to 48, we deduce
that m(a, p;) =2 =m(v,p;) for all 1 <4 < r. We have that

17y, ® dil(bar(c)) = 1,,ps..p,_1 ® 1+ ® (bar(c) 4 bar(~y) 4 bar(7))
=1,p5..pr_1 @ (bar(e) 4 bar(~y) + bar(7)) ® 1,
=1p1ps.pry @bar(r) @1,
=0
as required. Here the first equation follows from equation (6.11); the second by equation (4.4); the
third by the commuting and cyclotomic relations; the fourth follows as in Case 1.

Case 3. We now suppose that & = zayz~'7, an augmented tricorne. By inspecting Figures 44
to 48, we deduce that m(cv, p;) = m(~, p;) = m(oj,pi) =2 for j # k, 1 <i <r; and m(oy, py) =3
(recall 7 = p,). We have that
17y, ®dil(bar(c)) =1, pp.pp 1 @11 Zle 2bar(o;) + bar(a) + bar(~y) + bar(7))
= 1p1p2...p,«,1 ®1- 2bar(a';,») + bal’(T))
=Lpipspr1 @ (2bar(o.) + bar(7)) @ 1.
P1P2.--Pr—1 ® bar(T) &® 17-

® (
® (

as required. The first equality follows from equation (6.11); the second from the commutativity
relations; the third from equation (4.4); the fourth by commutativity relations; the fifth equality
follows as in Case 1.

7. GRADED DECOMPOSITION NUMBERS AND KOSZUL RESOLUTIONS

We are now ready to determine the main structural results concerning the Hecke categories of
Hermitian symmetric pairs. Specifically, we will calculate the graded composition multiplicities
and radical filtrations of standard modules in Theorem 7.2 and Corollary 7.11. In order to prove
that the grading and radical layers coincide, we will prove that the algebra hgyy py satisfies the
strong cohomological property of standard Koszulity (see [BGS96, ADL03] for the definition of
standard Koszul); this amounts to constructing linear projective resolutions of standard modules as
in Theorem 7.9. Our treatment of this material is inspired by similar ideas in [BS10].

Proposition 7.1 ([BDE"25, Corollary 6.2]). Let (W, P) be a simply laced Hermitian symmetric
pair. For any A # p, we have that

> q*®® e qZoolg).
ScPath(At,)

In particular, all the non-zero terms occur in strictly-positive degree.

Theorem 7.2. Let (W, P) be an arbitrary Hermitian symmetric pair and k be a field of character-
istic p 2 0. The p-Kazhdan—Lusztig polynoials

Py (@) = Y AN = L(p)(k)l¢*
keZ

of hw,p)y are independent of the prime p > 0. For (W, P) of simply laced type, the algebra hgy,py is
basic and the modules 1y, hy, py for X € Py, py provide a complete set of non-isomorphic projective
indecomposable right h(y, py-modules.
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Proof. By Theorem 4.24, it is enough to restrict our attention to simply laced type. By Proposi-
tion 7.1, we have that h(y, p) is a positively Z-graded k-algebra with

dimg (h(w ) =0 = (Sre g o (S g, (AN gm0 = A A€ Pavp} (1)

where the latter equality follows again from Proposition 7.1. Now, we have that dimg(L())) €
Zso[qg+q~1] (by [HM10, Proposition 2.18]) and so by (7.1) we deduce that dimgy(L(\)) = 1 and that
the degree zero subalgebra of iy, py is isomorphic to ®)e P, P)L()\) (regardless of the characteristic
of k). Thus the algebra is basic (as all the simple modules are 1-dimensional) and we have that

Pryu(a) = Z[A(/\) P L(u) (k))g" = dimg(A(N)1,) = Z q'5) € qZ0[q]
kEZ SePath(\ty)
again by Theorem 7.2 (again, regardless of the characteristic p of the field k). 0

In the remainder of this section, we will prove the Koszulity of the Hecke categories for Hermitian
symmetric pairs. Using Section 4, we can reduce to the simply-laced cases where we will use the
Coxeter truncation to work by induction on the rank.

7.1. Induction. Assume that (W, P) is simply laced and let 7 € Sy . Define

€r = Z 1tu ® 1,

HEZ(w,P)
P<UT

We have that e h(y,p) carries the structure of a (hE'W Py h(w,py)-bimodule. The action on the right
is by concatenation of diagrams. The action on the left is given by first conjugating hiw,py by
a (commuting) braid so that the colour sequences match-up, and then concatenating diagrams.
(Recall from Remark 3.1 that this simply amounts to changing our choice of tableaux.) With this
isomorphism in place (and the isomorphism of Theorem 5.9) we are now able to define an induction
functor

G™ :h(WP)T —mod — h(W7p)—1'IlOd

M — M®h(W,P)"' eTh(WP)<_]‘>
using the identification hy, p)- = h(TW P) C hgw,p)- The degree shift in this definition ensures that
the functor G7 commutes with duality (see Theorem 7.5 below). We have that
@(TW’P) ={N€ Pwp) | 7 € Rem(N)} & P py-

and for \ € ‘@(TW py» We write Al for the image on the righthand-side (so that ¢ (Al,) =A). We
say that Al is the contraction of A at 7. In what follows, we will write 1, instead of 1y, to simplify
notations.

Theorem 7.3. The functor G is exact.

Proof. We need to show that e;hgy p) is projective as both a right hy, p)-module and as a left
hw,py--module. As a right hy p)-module, e hy, p) is a direct summand of hqy py (as e, is an
idempotent) and so it is clearly projective. It remains to show that e-hy,py is projective as a left
h(w,p)--module. We can decompose this module as follows

erhw.py = Suerhow,p) Ly
We will show that each of these summands is projective as a left h(yy, p)--module. For the remainder
of the proof, all statements concerning modules or homomorphisms will be taken implicitly to be of

left h(w,py--modules. In all of the following cases, we will use the fact that c%‘-,- € e-hqy,p) implies
S € Path(\,t,) such that 7 € Rem(v). This, in turn, implies that 7 € Rem(A) or in Add(\).

Case 1. We first assume that 7 € Rem(u). We claim that in this case

eTh(WJ;)lM = h(mp)'r 1/”“1/7‘ S h(W7P)T 1,@7_ <2>
The module e-hy,pyl, has a basis

B ={c1| S € Path(\,t,), T € Path(),t,), with A € Pw,p) and v € Py py}
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which decomposes as a disjoint union {3y € B | 7 € Rem(\)} U {cd; € B | 7 € Add(\)}. Now we
have

(21 € B| 7 € Rem(\)) = hiw,pyLlu = hw,pyr Ly -

Now consider the quotient ey, pyl,/ hZ’W P) 1,. It has a basis given by the elements cé\T + h?w P)l "

with 7 € Add()). These satisfy S = X~ (S') and T = X (T') for a (possibly different) choice of

T

X = A or R for each one. If we take U= X1 (S) and V = X (T’) then we can write
cst = cser = cf(1n ® gap(7))ev
If T=A7(T') and so V = AF(T’) then it becomes

st =y (Lu—r ® gap(7)).

If T=R;(T') and so V = R} (T’) then we can factorise 21 as
cst = c{y(1x @ (spotjcap? ) (e ® 1,). (7.2)
Now applying 1, ® spot?. to equation Figure 9 we get
1, @spot? =spot? @1, + spotacapgT — bar(7) ® fork? ..
Thus we can rewrite equation (7.2) as

A1 = (132 (1,@spot? ) (e @1,) =y (1@ (spot? @1,)) (e @1, )+ (1a@ (bar (7)@fork” ) (cm @1,

Now note that the last two terms belong to hZ’W P) 1, and the first one can be rewritten as

0¥ (Lu—r ® gap(7)).
where ¢}y, € h{w,p)Lu- This shows that the quotient is isomorphic to hfy, p) 1,1, ®gap(7)). As
it is projective, it splits and we have
erhw,pyly = hiw,pylu ® hiy pylu(lu—r ® gap(7)),
thus proving the claim.
Case 2. We now assume that 7 € Add(p). We claim that in this case
erhaw.pyly 2 hay.py- Lury (1),
To see this, we will show that
erhw,p)ly = hiw pyLlur (1 @ spoty ).

Indeed for any cdr € e hgy,p)ly we have that S = XF(S'). If S = X (S) then we must have
7 € Add()\) and we define U = X1 (S) and V = AF(T). If S = X (S') then we must have
7 € Rem()\) and we define U =S and V = R} (T). Then in both cases we can write
A =cuv(l, ® spoty ).

Note that cyy € hZ-WP)llﬂ' so we're done.
Case 3. It remains to consider the case that 7 ¢ Rem(u) or Add(p). We now consider the case
that 7 ¢ Rem(u) or Add(p), but there exists o € Rem(u) with m(o,7) = 3. Note that we can
assume that 7 € Rem(pu — o) as otherwise we would be in Case 2. This will serve as the base case
for the inductive step in Case 4. We claim that in this case

erhaw,p)lu = haw,pyr Lu-oy, (1)-

To see this, we will show that
erhw,p)ly = hZ—I/V,P)]'H—O'(]-,u,—a- ® spotg)

Our assumptions that o € Rem(u) and 7 € Rem(v) imply that there are two cases to consider:
o € Rem(\) and 7 € Add(\) versus o € Add(\) and 7 € Rem(\). In the latter case, we have that
T=A_(T') and so

csT = cs(em ® spotg) =csT ® spot?,
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with st € h{y p)lu—o as required. In the first case, we have T = RIX-(T') and S = X (5).
Setting U = X1 (S’) and V = X (T’'), we can write

csT = y(Ia—o @ tridZ,., @ spoty ) (cy © 1) = —cyy @ spot’

where the last equality follows by applying 1, ® spotg to the o7-nullbraid relations. Again we
have that cyy € hZ'WP)lu,U so we are done.

Case 4. If p is not as in cases 1 to 3, then we must have o € Rem(u) with o and 7 commuting.
We will show that e, hyy,p)l,, is either 0 or projective-indecomposable as a left iy, p)--module. We
proceed by induction on the rank of W. Note that as o and 7 commute, o labels a node in the
Dynkin diagram for (W, P)” and so it makes sense to consider WP ¢ haw,p)- and (W, P)77. We
claim that

(w.p)”

~ W,P)”
67—h(W7p) 1;,, = h(W7P)‘I’ Co ( )

Ohw,pyor €7 how,py1u, (7.3)

as a left hy p)--module. Note that any basis element in e;hyp)l, has the form cg‘T for S €
Path(A,t,), T € Path(\,t,) with 7 € Rem(v) and o € Rem(u). So either o € Rem(\) or o €
Add()\) and similarly either 7 € Rem(\) or 7 € Add(A). To prove the claim, it is enough to show
that any such cg‘-l- can be written as a product

csT = chcﬁv

where ¢gq € iy, py and Cﬁv € hiyy,py- There are four distinct cases to consider. If o, 7 € Rem(\)
then S = X1 (5), T = X*(T’) and we pick P=S, Q=U =ty and V=T. If o € Rem()\) and
7 € Add(\) then S = X-(5), T = XS (T') and we pick P = X+( N, Q = Af(ty), U = A-(t))
andV=T. If o € Add()\) and 7 € Rem()\) then S = X(S5'), T = X (T') and we pick P = S,
Q= A, (ty), U= Af(ty) and V = XI(T'). If o, 7 € Add()) then S = X;(S’),T = X (T') and
we pick P = X(S), Q = ATA_(t\), U= A7 AL (t)) and V = XF(T’). Hence we have proven
equation (7.3).

By induction, eSW’P)Uh(W’ p)o1lul, is either 0, or it is a projective indecomposable hy,pyor-
module, say hgy,pj--1,. Substituting into equation (7.3), we obtain that e hqy,p)l, is either
0, or

W,P)"
(W,Pr‘fgf ) Ohw, pyor (w,Pyr 1y

W,y Loo(n)
which is projective indecomposable. O

||2

erhaw,p)ly = h
h

1

Lemma 7.4. There is a graded (hw,py-, hay,p)-)-bimodule homomorphism
Y :echay,pyer = hay,pyr (2).
Proof. The module e, hy, pye- has basis given by
B ={cd1 | S € Path(\,t,), T € Path(\,t,), with \ € Pw,p) and 1, v € Py py}

which decomposes as a disjoint union {cdr € B | 7 € Rem(\)} U {cd; € B | 7 € Add()\)}. By
Theorem 5.9, we have a (hgwy,p)-, hw,p)~ )-bimodule isomorphism

h(WP)T = h(WP) <CST €B | T E Rem(A)) - eTh(Wp)eT
Following the proof of case 1 of Theorem 7.3, we see that
eTh(VV,P)eT/k{C%\T €B[7e€Rem(N)} =1 WP)(ZMQW(‘FWP) 1, . ®gap(7))
as left h(y, p)--modules and similarly, flipping diagrams across the horizontal axis we get that

eTh(VV,P)eT/k{C%\T € B |7 € Rem(\)} = (Z“Ey(w,m 1tu—7 ® gaP(T))hz-w,p)
as right Ay, p)--modules. This shows that
erhaw.pyer [k{cst € B| 7 € Rem(A)} = hiyy py(2) & hiw,p)-(2)

as (hw,p)~, hw,p)~ )-bimodules as required. O
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Let M be a right h(y, p)-module. Define the right Ay, p)-module M* by M* = Homy (M, k) as a
vector space and for f € M*, a € h(y,py we define fa € M* by (fa)(m) = f(ma*) where a* is the
dual element in Ay, p) (given by flipping a diagram across the horizontal axis).

Theorem 7.5. For M an hgy,p)-module we have that G™(M*) = (G™(M))*.

Proof. We have that
GT(M*) = M* ®h(W,P)T eTh(W7p)(—1> (GT(M))* = Homk(M ®h(W,P)T eTh(W7p)<—1>,k)

We define ¥ : G (M*) — (G7(M))* by setting f ® a +— Vg, for f € M* and a € e haypy(—1)
where

Viga(m @ b) = f(mi(ba™))
for m € M and b € e-hgy,p)(—1). Note that this makes sense because ba* € e, hy pye,(—2) and
s0 Y(ba*) € hgw,py-- Also ¥ is well-defined as 1 is a bimodule homomorphism.

We now show that o is a h(y, p)-homomorphism. On one hand, we have
19(f®a)x(m & b) = z9f®m(m & b) = f(mw(bx*a*))
On the other hand, we have
(V@0 ®)(m @b) = Vsea((m @ b)z*) = I jga(m @ ba™) = f(my(bz*a"))

as required. We now show that 9 is a vector space isomorphism. It is enough to check that
¥ :GT(M*)1y, — (G7(M))*1y, is a vector space isomorphism for each y1 € Py, p). We have

G (ML, = M* ®ny ) erhwp)(—1)1t,
(G"(M))*Ly, = Homx(M ®nyy - erhaw,p)(—1),k)1¢,
= Homy (M Oh . py- erhw,py(—=1)1t,, k)
= (M ®@nyy py- erbw,py)(—1)1t,)"

We have seen in the proof of Theorem 7.3 that e-hy,p)lt, is either zero or isomorphic to (possibly
two shifted copies of) Ay, p)-1t, for some v € Py py-. So it is enough to note that

MLy, = M @ny e w,py~ 1ty = (M @y pyr hwpy~1e,)" = (M1,)"
as required. O

Using our induction functor, we will relate (sequences of) hy, p)--modules labelled by A\ €
P w,p)- with (sequences of) hyy, py-modules labelled by

AT i=p,(A) and X =9, (\)—7T.
We note that this is the typical Kazhdan—Lusztig “doubling-up” that we expect.
Proposition 7.6. For each A € Py, py-, we have GT(P(X\)) = P(AT)(-1).

Proof. Recall that (W, P) is a simply laced Hermitian symmetric pair. By Theorem 7.2, the pro-
jective indecomposable modules are P(\) = 1t, hqw,py for A € Py, p). Therefore

GT(P(N) = Ly hw,p)r @hgy.pyr €rhaw,p)(—1) = 1, ey how,p) (=1) = P(T)(-1)
as required. O
Proposition 7.7. For each p € &gy p)-, we have
0= A(p™) = GT(A(n) = A(p")(~1) = 0

Proof. We have an exact sequence

0= Ay py = P(u) = Ap) =0

where h(<VIlj,P) = > v<p Luhw,p)lvhw,p). The modules P(u) and hfvﬁP) have bases

{1,671 | S, T € Path(v,—),v < p} {1,¢¢7 | S, T € Path(v, —),v < u}
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respectively. Since G7 is exact, we obtain an exact sequence

0= G (hiy py) = GT(P(n) = GT(A(n)) = 0

where G (P (u)) & P(u)(—1). Therefore G™(A(p)) = P(u“‘)(—l)/GT(hfvﬁP)) has basis given by

{cu(—1),ev @ spotj(—1) | U € Path(u*, —),V € Path(n ™, —)}.
It is clear that, as a right h(y, py-module
{ev ®@ spot (—1) | V € Path(p—, —)}
is a submodule of G™ (A(u)) isomorphic to A(u~) and the quotient is isomorphic to A(p™)(—1). O

7.2. Koszulity. We are now able to use the ideas of the previous section in order to prove that
h(w,p) is standard Koszul. First, we continue to assume that (W, P) is simply laced.

Definition 7.8. For \,u € Py p), we define polynomials py ,.(q) inductively on the rank and
Bruhat order as follows. We set px(q) = 1 and for X\  p we set py,(q) = 0. If X C p, pick 7
such that 7 € Rem(\). We set
an(q) = PALul (@) F g X pra—rp(q)  if T € Rem(p);
. g X pr—ru(q) if T ¢ Rem(p).

We write py ,.(q) = anop(;fth”-

Theorem 7.9. For A\ € &y py, we have an eract sequence
coo = Po(A) = PL(A) = Py(A) = A(N) =0

where Py(X) = P(X\) and for n > 1 we have P,(\) = @uep(wyP)pgzP(u)(n)

Proof. We proceed by induction on the rank of W and the Bruhat order on &y, p). If A = & is the
minimal element in the Bruhat order, then A(@) = P(@) and we are done. Assume & # X\ € Py p),
then there exists some 7 € Rem(\) and we have that A — 7 € Py py and A\, € Py, p)-. By
induction we have exact sequences,

o= PA=7) > Pi(A—7) > P(A—7) > AA—7) =0
= P(AL) = Pi(ML) = Po(A) = AMNL) — 0

in hgy,py—mod and hgy,p)- —mod respectively. Applying the induction functor G” to the latter
sequence, and lifting the injective homomorphism from Proposition 7.7 we obtain a commutative
diagram with exact rows.

C— PQ(/\—T) — Pl()\—T) R P()()\—T) — A()\—T) — 0

L GT(PAL)) — GT(PI(AL) — GT(Bo(AL,)) — GT(AL)) — 0

Taking the total complex of this double complex (that is, summing over the dotted lines) and
then taking the quotient by the complex

.= 020> AN=7) > AX—7) =0
we obtain
s> GT(P(M) e PAAN—T7) = GT(PAI(M,)) @ PBo(A—7) — G"(Po(M,)) — AN)(—1) — 0.
We have G7 (Py(M\l,)) = P(\)(—1). By induction, for n > 1 we have that
G™(Pa(M,) © Pyai(A—7)
= P AL @) D P -1

wr €EPw, pyT HEZ(w,P)
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= @ A Pwe-1 P P -1

wr€Pw, pyT HEZ(w,P)
-1 -1
= DY, T Pwe-1y @ S Pwn 1)
HEZ (. p) HEZw,P)\? (w, py
= @D ALrun-1
KEZ (w,P)

where the last equality follows by the definition of py ,(¢). Thus we obtain an exact sequence
- = Phy(A\)(=1) = Pi(A\)(=1) = Py(A)(—=1) = A(N)(-1) — 0.

Applying a degree shift (1) gives the required linear projective resolution for A(\).
O

Corollary 7.10. Let (W, P) be any Hermitian symmetric pair. The algebra hy, py is standard
Koszul.

Proof. Using Theorem 4.24, it is enough to consider the simply laced types. The algebra hy, p) is
graded quasi-hereditary algebra with (right) standard modules A(\); the linear projective resolu-
tions of these modules are given in Theorem 7.9. Twisting with the anti-automorphism * we also
get that its left standard modules have linear projective resolutions. Therefore hyy, py is Koszul by
[ADLO3, Theorem 1]. O

Corollary 7.11. Let (W, P) be any Hermitian symmetric pair. For u € P w,py, we have that the
radical filtration of A(u) coincides with the grading filtration

Ap) = Azo(p) D Azi(p) D Asa(p) O ...
where we define Asi(p) = {cs | S € Path(A,t,), deg(S) > k}.

Proof. We have that hy,p) is standard Koszul by Corollary 7.10. That the radical and grading
series coincide follows from [BGS96, Proposition 2.4.1]. O
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