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Aphid-YOLO: A Lightweight Detection Model for Real-time

Identification and Counting of Aphids in Complex Field

Environments

Yuzhu Zheng, Jun Qi, Yun Yang, Po Yang∗, and Zhipeng Yuan∗

AbstractÐAphids are among the most destructive pests that
threaten global crop yields, harming crops through feeding
and virus transmission. Accurate detection of aphids in fields
is a crucial step to implement sustainable agricultural pest
management. However, their tiny size of aphids and the complex
image background present significant challenges for accurate
identification and classification for in-field detection. In response
to the challenges, this study proposes a lightweight real-time
object detection model, Aphid-YOLO (A-YOLO), for in-field
aphid identification and counting. Specifically, a Tiny Path
Aggregation Network with C2f-CG modules is proposed to
enhance the detection ability of tiny objects while maintaining
a low computational cost through efficiently fusing multi-layer
features. For model training, Normalized Wasserstein Distance
loss function is adopted to address the optimization challenges
caused by the tiny size of aphids. Additionally, an optimized data
augmentation method, Mosaic9, is introduced to enrich training
samples and positive supervised signals for addressing the classi-
fication challenge of tiny aphids. To validate the effectiveness
of A-YOLO, this study conducts comprehensive experiments
on an aphid detection dataset with images collected by hand-
held devices from complex field environment. Experimental
results demonstrate that A-YOLO achieves outstanding detection
efficiency, with an mAP@0.5 of 83.4%, an mAP@0.5:0.95 of
33.7%, an inference speed of 72 FPS, and a model size of 30.6 MB.
Compared to the YOLOv8m model employing traditional Mosaic
data augmentation, the proposed method improves mAP@0.5 by
5.8%, mAP@0.5:0.95 by 2.7%, increases inference speed by 5
FPS, and reduces model size by 38.4%.

Index TermsÐYOLOv8, Lightweight, Aphid Detection, Tiny
Object Detection, Deep Learning.

I. INTRODUCTION

Pests in agriculture represent a significant threat to global

food security, with aphids standing out as particularly perni-

cious adversaries for a multitude of crops worldwide. These

small, sap-sucking pests not only cause direct damage by

draining the life-sustaining fluids from plants but also act as

vectors for a variety of plant diseases, notably viral infections

that can devastate entire fields. According to previous studies,

aphids are causing 20% - 80% yield losses through sucking
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the plant sap or viral transmission, representing economic

loss over $2.4 billion [1]. To prevent crop losses caused by

pests, monitoring the emergence and population density of

pests in fields is essential to support precision and timely pest

management practices.

In recent years, with the development of computer vision

and deep learning technologies, single-stage object detection

models based on the You Only Look Once (YOLO) series

have been increasingly applied to agricultural pest monitoring

due to their efficiency and practicality [2]. Existing studies

have improved pest detection performance to some extent by

incorporating attention mechanisms [3] [4] and dense feature

extraction modules [5]. However, these methods generally

suffer from the following limitations: (1) Most current models

are trained and evaluated under relatively ideal laboratory

conditions or in simplified trap environments, which limits

their generalization capability in complex and variable real-

field backgrounds, often resulting in false positives or missed

detections [6] [7]. (2) When dealing with tiny pest objects, the

semantic information extracted from deep networks is often

accompanied by the loss of spatial details, making it difficult to

retain crucial fine-grained features, thereby increasing the miss

rate for tiny objects [8] [9]. (3) Many high-accuracy object

detection models come with a large number of parameters

and high computational complexity, making it difficult to

meet the lightweight and real-time inference requirements of

edge devices in practical agricultural applications [10] [11].

Therefore, there is an urgent need for an object detection

model that combines lightweight, high precision and strong

robustness, specifically designed for tiny pest detection tasks

in complex field environments.

To address the limitations of existing work, this paper

proposes a novel lightweight aphid detection model, Aphid-

YOLO (A-YOLO). It aims to enhance the robustness and

accuracy of pest detection models in complex field environ-

ments through the collaboration of complementary modules.

Specifically, targeting the issues of insufficient model feature

expression capability and the absence of specific semantic

information in agricultural scenes, we integrate the lightweight

Context-Guided module [12] into the C2f structure, creating

the C2f-CG module. This module is capable of capturing

semantic correlation information between the target and its

surrounding environment, utilizing it as an important spatial

prior to more precisely focusing on and locating potential

aphid regions. Building upon this, to fully leverage multi-

scale features, we designed the Tiny Path Aggregation Net-
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Fig. 1. The overall workflow is divided into three main stages: Dataset Preprocessing, A-YOLO Model Construction and Training, and Model Evaluation.

work (TPANet) lightweight feature fusion network. TPANet

effectively aggregates fine spatial boundary information from

shallow images, complemented by contextual semantic in-

formation obtained after processing by the C2f-CG module,

enabling the model to both acquire the texture contours of

tiny objects and utilize environmental clues for auxiliary

judgment in complex backgrounds. The collaboration of C2f-

CG and TPANet constructs an efficient and complementary

backbone feature extraction system, significantly enhancing

Aphid-YOLO’s feature expression capability. Concurrently,

addressing the challenge of unstable bounding box regres-

sion in tiny object detection, we adopted the Normalized

Wasserstein Distance (NWD) loss function [13]. Compared to

traditional IoU-based losses, NWD more precisely measures

the similarity between tiny object bounding boxes, effectively

addressing the issue of unstable gradient information during

localization, and significantly improves the model’s localiza-

tion accuracy and stability for extremely tiny objects like

aphids. Furthermore, to further enhance the model’s training

effectiveness and generalization ability, we propose an opti-

mized Mosaic9 data augmentation strategy. This strategy, by

stitching multiple images, greatly increases the diversity of

training samples, variations in object scales, and the simulation

of complex backgrounds. This enables the aforementioned

feature extraction modules to adapt to various complex lighting

and background scenarios during the training phase, thereby

enhancing the model’s robustness in real-world environments.

The workflow of the lightweight Aphid-YOLO is illustrated

in Fig. 1. This model significantly improves the detection

accuracy of tiny aphids in complex field backgrounds while

ensuring real-time performance and lightweight design.

The major contributions of this paper are as follows:

1) The model deftly integrates the lightweight C2f-CG

for context awareness with the lightweight TPANet for

multi-scale feature retention, achieving precise detection

of tiny aphids in complex field.

2) The method adopts an improved Mosaic9 data augmen-

tation strategy to achieve an extreme variety of training

samples and utilizes the NWD loss function to ensure

precise bounding box regression. These strategies col-

lectively significantly enhance the model’s robustness,

generalization ability, and accuracy in localizing tiny

objects in real, complex scenarios.

3) A comprehensive experiment, including comparisons

with mainstream models and ablation studies, is con-

ducted to demonstrate the effectiveness of A-YOLO

through an aphid detection dataset with images collected

from an in-field environment.

II. RELATED WORKS

A. Lightweight Detection Architectures

Deploying object detection systems in agricultural scenar-

ios imposes stringent requirements on model real-time per-

formance and hardware adaptability. Therefore, constructing

lightweight detection architectures that balance accuracy and

computational efficiency has become a research hotspot. The

YOLO series, as a representative single-stage detection frame-

work, has continuously evolved from YOLOv1 to YOLOv12

versions, progressively optimizing detection accuracy, infer-

ence speed, and deployment flexibility. For instance, YOLOv5

[14] achieves a good balance between speed and accuracy,

widely applied in edge scenarios. YOLOv8 [15] introduces

the Anchor-Free framework and C2f module, significantly
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enhancing the detection expression capability for tiny ob-

jects and model stability. YOLOv10 [16] further optimizes

the inference path to meet end-to-end deployment needs.

Furthermore, YOLOv11 [17] and YOLOv12 [18] explore

introducing attention mechanisms or Transformer modules

into detection backbones to break the limitations of tradi-

tional CNN architectures. Meanwhile, lightweight strategies

such as network pruning [19], knowledge distillation [20],

and module reconstruction [21] are also widely studied to

compress model parameters and improve inference speed.

However, these general optimizations often encounter issues

of feature degradation and insufficient multi-scale feature

expression when processing tiny targets, which is particularly

prominent in resource-constrained environments. Therefore,

constructing lightweight detection structures tailored for tiny

objects remains a core challenge to be addressed.

B. Tiny Object Detection in Agriculture

In agricultural pest monitoring, the detection of extremely

tiny objects like aphids is particularly challenging [22]. They

occupy only a tiny number of pixels in images. They are

susceptible to background interference from leaf textures, oc-

clusions, and lighting variations, which can cause detectors to

lose their critical detail features during deep convolutional pro-

cessing. To enhance the detection capability for tiny objects,

researchers have proposed various improvement methods. Tian

et al. proposed MD-YOLO, which integrates DenseNet [23]

and attention mechanisms to improve the recognition of Lepi-

doptera pests. Dong et al. [24] designed ESA-Net, introducing

multi-scale semantic enhancement modules to improve small-

scale feature extraction. Zhang et al. [25] proposed the DiTs-

YOLOv10-SOD, which by introducing synthetic data and

customized detection heads, effectively improved the recog-

nition accuracy of citrus psyllids in trap images. Chen et

al. [26] proposed the Pest-PVT framework based on PVTv2,

achieving 77.2% mAP for efficient pest detection on the Pest24

dataset [27]. However, most studies are based on datasets

collected under controlled conditions, lacking robust validation

in complex natural field environments. Especially against high-

interference backgrounds, such as wheat spikes and leaves,

existing models struggle to guarantee generalization ability.

Furthermore, while some models achieve high detection ac-

curacy, their model complexity is unfavorable for deployment

on agricultural terminal devices. Therefore, while improving

the model’s perception of tiny agricultural objects, balancing

robustness with computational efficiency remains an urgent

problem to be solved. To address this issue, we propose

a novel approach that not only achieves high accuracy for

detecting tiny pests under complex field conditions but is also

lightweight enough for practical deployment.

III. MATERIALS AND METHODS

A. Dataset

Our dataset comes from a collection by the Chinese

Academy of Sciences, consisting of 1,000 aphid images

[28]. The Aphid dataset contains 1,000 high-quality images

of aphid pests, all in ºjpgº format. These images include

Fig. 2. Examples of data augmentation methods. The left (a) image represents
the traditional mosaic, while the right (b) image represents the improved
mosaic9.

4,755 instances of Sitobion avenae and 1,570 instances of

Rhopalosiphum padi. The pest objects are located in diverse

and complex backgrounds, including leaf surfaces, wheat

ears, and straw roots. The background environments in these

images are extremely challenging, featuring various textures

and color interferences, as well as changes in lighting, occlu-

sions, and other distractions (such as soil particles and parts

of other plants). These characteristics significantly increase

the difficulty of object detection, making this dataset highly

challenging and well-suited for evaluating a model’s ability

to detect tiny objects in complex scenarios. The dataset is

divided into training, validation, and test sets to evaluate the

performance of pest detection. The training set includes 810

images, the validation set includes 90 images, and the test

set includes 100 images. Most aphids occupy only 100±400

pixels, which is significantly smaller than the ºsmall objectsº

defined in the MS COCO dataset (32×32 to 1024 pixels) [29].

Therefore, we focus on a challenege task setting, detecting

tiny objects in complex field environments.

B. Data Augmentation

In the data preprocessing stage, this paper first adopts the

Mosaic data augmentation technique [31]. This method en-

hances the diversity of training data by stitching and cropping

four images, enabling the model to learn a broader range of

features in various complex scenarios and thereby improving

object detection performance. Particularly for the task of tiny

object detection, Mosaic data augmentation provides the model

with more background combinations and variations of objects,

thereby enhancing the model’s generalization ability. However,
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Fig. 3. Overall structure of the proposed A-YOLO. It includes a CSPDarknet53 [30] backbone for feature extraction, a neck integrating TPANet and lightweight
C2f-CG modules for effective multi-scale and contextual feature fusion, and multi-scale prediction heads to accurately detect tiny aphid objects.

the original Mosaic method generates a large amount of black

and gray borders when stitching images. These useless feature

information are not meaningful for the model’s learning and

instead introduce interference, which negatively impacts the

model’s convergence speed. To address this issue, this paper

proposes an improved Mosaic9 data augmentation method,

which reduces the proportion of black or gray borders by

stitching nine images. As shown in Fig 2, this significantly

mitigates the negative effects of useless information on the

model, effectively reducing the number of irrelevant features

in the training images. As a result, the model can focus more

on valuable information, thereby accelerating its convergence

speed. Mosaic9 also incorporates more cropping and scaling

operations during the stitching process, allowing objects to

appear at different scales in the training samples. This greatly

enhances the model’s ability to adapt to objects of varying

scales. For aphids, a typical tiny object with generally small

and uneven scales, Mosaic9 enriches the variations in object

scales, enabling the model to handle objects of different

sizes during tiny object detection more effectively. Therefore,

adopting the Mosaic9 method can significantly improve the

model’s ability to detect tiny objects in complex backgrounds,

effectively addressing the interference and challenges posed

by diverse environments.

C. Model Improvements

To address the challenges of aphid detection in field en-

vironments, specifically their tiny size, complex backgrounds,

and high detection difficulty, this paper presents a lightweight,

highly robust, and accurate object detection model named

A-YOLO. Based on the YOLOv8m framework, A-YOLO

introduces three targeted improvements to tackle the core

challenges of tiny object detection. Firstly, TPANet is designed

to enhance multi-scale feature fusion. Secondly, C2f-CG is

proposed to strengthen contextual semantic representation.

Last, the NWD loss function is adopted to improve localization

stability. As illustrated in Fig. 3, the overall architecture of A-

YOLO follows the classic one-stage ªBackbone±Neck±Headº

structure. The Backbone utilizes CSPDarknet53 to extract

fundamental features. The Neck incorporates the proposed

TPANet to aggregate multi-level features and embeds the C2f-

CG module to enhance the semantic representation across

multi-scale features. The Head adopts an anchor-free detection

head for bounding box regression and object classification.
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Fig. 4. Comparison of YOLOv8 Neck and TPANet. In the figure, P2
represents the 160×160 feature layer, P3 represents the 80×80 feature layer,
P4 represents the 40×40 feature layer, and P5 represents the 20×20 feature
layer.

1) Description of TPANet: In the original YOLOv8 architec-

ture, the Neck component combines the Feature Pyramid Net-

work (FPN) and Path Aggregation Network (PAN) to facilitate

multi-scale feature fusion, as shown in Fig. 4. However, this

traditional design presents certain limitations for tiny object

detection. Specifically, deep feature layers primarily capture

high-level semantic information but often lose essential spatial

details crucial for accurately identifying minute objects. More-

over, these deeper layers consume significant computational

resources and can introduce redundant information, which

may negatively impact both detection accuracy and inference

efficiency, particularly for tiny objects.

To overcome these challenges, we propose the TPANet.

This enhanced Neck structure introduces an additional high-

resolution feature path (P2 at 160× 160 resolution), and opti-

mizes the flow and aggregation of multi-scale features within

the FPN and PAN paths. This strategic modification enables

the model to integrate low-level, mid-level, and high-level

features more effectively. Notably, low-level features retain

rich spatial and texture information, which is indispensable

for detecting aphids and other tiny-sized targets.

To further enhance granularity and precision in tiny ob-

ject localization, our improved TPANet incorporates detection

heads at P2 (160 × 160), P3 (80 × 80), and P4 (40 × 40).

Concurrently, we removed the deep-level P5 detection head

(20 × 20), as it typically provides less useful detail for

tiny object detection. This architectural adjustment not only

reduces the number of parameters and computational overhead

but also allows our model to focus more on tiny object

detection, thereby significantly improving the network’s ability

to identify tiny aphid instances in complex field environments.

2) Description of C2f-CG: In tiny object pest detection

under complex field conditions, conventional detectors often

struggle to effectively leverage contextual information, leading

to missed or inaccurate detections. YOLOv8 employs the C2f

module within its Neck for multi-scale feature aggregation and

refinement. However, this module contains several bottleneck

layers that significantly increase parameter count and compu-

tational cost, which is suboptimal for real-time applications.

To address this, we propose a lightweight context-guided

variant, C2f-CG, which replaces the original bottleneck layers

in the C2f module with a context-guided (CG) block. This re-

placement enhances semantic representation while maintaining

computational efficiency. As shown in Fig. 5, the illustration

presents the internal structure of a single CG block, which

serves as the basic unit in our redesigned C2f-CG module.

The CG block integrates semantic cues from local regions,

surrounding context, and global features, forming a unified

and enriched representation for effective tiny object detection.
The CG block consists of four key components:

1) Local Feature Extraction (LFE): Standard convolution

operations to extract spatially detailed features from the

object region.

2) Surrounding Context Feature Extraction (SCFE): Dilated

convolutions to gather contextual information around the

target.

3) Joint Feature Extraction (JFE): Concatenates local and

contextual features followed by BN and SiLU activation

for efficient fusion.

4) Global Feature Extraction (GFE): Global average pool-

ing and a fully connected layer to encode image-level

semantic priors.

In addition, residual connections are introduced within the

CG block to enhance feature propagation and improve training

stability. The proposed C2f-CG module structurally replaces

the original bottlenecks with context-guided blocks, enabling

enriched semantic representation while reducing computa-

tional complexity. This design is well suited for real-time and

resource-constrained agricultural detection scenarios.
3) Description of NWD loss function: In traditional YOLO

object detection models, the loss calculation primarily relies

on the IoU loss function. However, for the aphid objects

studied in this paper, their extremely tiny pixel area results

in highly limited overlap between the predicted and ground

truth bounding boxes. As illustrated in Figure. 6, even with

slight misalignments between the predicted and ground truth

boxes, the IoU value decreases sharply. For larger objects on

the right, minor shifts in the bounding box cause relatively

small changes in the IoU value. In contrast, for the tiny object

on the left with a pixel area of only 36, a misalignment of just

1±4 pixels between the predicted and ground truth boxes may

cause the IoU value to approach zero. This high sensitivity is

particularly disadvantageous for detecting tiny objects, making

it challenging to stabilize the optimization of bounding box

predictions during model training. Consequently, this issue

leads to increased miss rates and negatively impacts detection

performance.
To address this limitation, we optimized the YOLOv8m

model for the aphid detection task by introducing the NWD

loss function as a replacement for the default CIoU loss

function. CIoU evaluates the similarity of bounding boxes by

integrating the IoU value, the Euclidean distance between the

center points of the predicted and ground truth boxes, and the

aspect ratio difference. Although CIoU improves upon the IoU

loss function by considering these additional factors, it remains

overly sensitive to positional deviations when handling tiny

objects.
NWD is a similarity metric that does not rely on the degree

of overlap of bounding boxes. Specifically, for tiny objects,
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Fig. 5. Overview of the CG Block. (a) It’s challenging to accurately identify the aphid in the yellow region based solely on local observation. (b) However,
incorporating surrounding contextual information (e.g., the crop area) significantly simplifies aphid identification. (c) Intuitively, when we further consider
global contextual information (the environment area), the accuracy of aphid identification within the yellow region dramatically improves. (d) The structure of
the CG block includes a local feature extractor LFE(∗), a surrounding context feature extractor SCFE(∗), a joint feature extractor JFE(∗), and a global
context feature extractor GFE(∗). Here, (∗) represents element-wise multiplication.

since most real objects are not strict rectangles, their bound-

ing boxes often contain some background pixels. In these

bounding boxes, foreground pixels and background pixels are

concentrated at the center and boundary of the bounding box,

respectively. To better describe the weights of different pixels

in bounding boxes, the bounding box can be modeled as a

two-dimensional (2D) Gaussian distribution, where the center

pixel of the bounding box has the highest weight, and the

importance of pixels decreases from the center to the boundary.

Specifically, to clearly introduce the NWD loss function,

we provide detailed explanations for the key mathematical

symbols involved. Given a bounding box, R = (x, y, w, h),
x and y denote the coordinates of the box center, and w and

h represent the width and height of the box, respectively. The

bounding box is modeled as a two-dimensional (2D) Gaussian

distribution N (µ,M), where the mean vector µ is the center

coordinates, defined as,

µ =

[

x

y

]

(1)

The covariance matrix M is defined as follows.

M =

[

w2

4
0

0 h2

4

]

(2)

In this formulation, the horizontal bounding box can be

described through the inscribed ellipse of a 2D Gaussian distri-

bution, with its center located at the bounding box center and

axes aligned with its width and height. Subsequently, the sim-

ilarity between two bounding boxes, represented as Gaussian

distributions Na(µa,Ma) and Nb(µb,Mb), is measured using

the squared 2-Wasserstein distance (W 2

2
), which quantifies the

minimum cost to transform one Gaussian distribution into

another. This distance is defined mathematically as follows

equation.

W 2

2
(Na,Nb) = ∥µa − µb∥

2

2
+
∥

∥

∥
M

1

2

a −M
1

2

b

∥

∥

∥

2

F
(3)

Here, ∥ · ∥2 denotes the Euclidean norm, capturing the dis-

tance between the mean vectors (box centers), and ∥ · ∥F
represents the Frobenius norm, which measures the difference

in the shape and orientation of the distributions based on

their covariance matrices. Then, the NWD similarity metric

is computed by applying exponential normalization to the

Wasserstein distance as follows equation.

NWD(Na,Nb) = exp

(

−

√

W 2

2
(Na,Nb)

C

)

(4)

where C is a scaling constant empirically set during model

training. Finally, the NWD loss function is defined as follows.

LNWD = 1− NWD(Np,Ng) (5)

where Np and Ng represent the Gaussian distributions corre-

sponding to the predicted and ground truth bounding boxes,

respectively.

Compared to GIoU, NWD offers the following advantages

for detecting tiny objects: 1) Scale Invariance: It prevents tiny

objects such as aphids from being misclassified as negative

samples due to pixel deviations. 2) Smoothness to Location

Deviations: NWD provides a smoother similarity score, even

when slight positional deviations occur between the prediction

and ground truth boxes. 3) Capability for Non-overlapping

Box Similarity: NWD measures the similarity between non-

overlapping bounding boxes, providing valid gradients to avoid

gradient vanishing in loss calculations. Hence, NWD loss is

more suitable for tiny object detection tasks.

D. Evaluation Metrics

Performance evaluation of object detection models is critical

for assessing the effectiveness of the YOLOv8m model. This

study adopts commonly used metrics, including Precision (P ),

Recall (R), Mean Average Precision (mAP), and F1 Score, to

comprehensively evaluate the model’s performance. Precision

measures the proportion of correctly predicted positive cases
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Fig. 6. Sensitivity analysis of IoU. In this Figure, each grid cell corresponds to one pixel. Box A serves as the ground truth bounding box, while Boxes
B and C represent predicted bounding boxes with diagonal biases of one and four pixels, respectively. The left figure shows the sensitivity analysis for tiny
object, and the right figure for normal object.

among all positive predictions, as shown in equation (6).

Recall represents the percentage of true positive cases correctly

identified by the model, as defined in equation (7). The mAP

reflects the global detection performance by calculating the

average precision for each class and averaging over all classes,

as shown in equation (8).

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

mAP =
1

N

N
∑

i=1

APi (8)

Here, TP, FP, and FN denote true positive, false positive,

and false negative, respectively. N represents the total number

of categories, and APi is the average precision of the i-th cat-

egory. To further assess the detection performance, this study

evaluates both mAP@0.5 and mAP@0.5:0.95. mAP@0.5 de-

notes the average precision when the IoU threshold is set

to 0.5, while mAP@0.5:0.95 averages the precision across

IoU thresholds ranging from 0.5 to 0.95 with a step size of

0.05. These metrics provide a comprehensive evaluation of the

model’s detection effectiveness across various IoU thresholds.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Environment

The experimental setup was conducted on a high-

performance hardware platform comprising a 12th Genera-

tion Intel(R) Core(TM) i7-12700H CPU operating at 2.70

GHz, an NVIDIA GeForce RTX 4090 GPU with 24 GB of

VRAM (driver version 525.125.06), and 24 GB of system

memory. The implementation of the experimental framework

was carried out using Python 3.10.14 and the PyTorch 2.2.2

deep learning library, ensuring compatibility and efficiency in

handling computationally intensive tasks.

Fig. 7. Precision±Recall curves for two aphid categories. The light blue
line shows Category 0 (Sitobion avenae, AP = 0.904), the yellow line shows
Category 1 (Rhopalosiphum padi, AP = 0.765), and the dark blue line indicates
the overall mean average precision (mAP@0.5 = 0.834).

B. Model Training

This study employed YOLOv8 as the base model and

accelerated the training process through transfer learning. The

model parameters were initialized with weights pretrained on

the COCO dataset and fine-tuned on the object dataset. Trans-

fer learning enabled the reuse of general features extracted

by the pretrained model, such as edges, textures, and shapes,

thereby reducing training time and enhancing generalization

capability, particularly for smaller datasets.

The hyperparameters were carefully selected to strike a bal-

ance between efficiency and performance. The initial learning

rate was set to 0.01 and gradually decreased with a decay



8

TABLE I
COMPARISON OF DIFFERENT METHODS IN APHID DETECTION

Methods mAP@0.5 mAP@0.5:0.95 Recall speed(FPS) Model Size (MB)

YOLOv8m 0.776 0.310 0.761 67 49.61

YOLOv8l 0.791 0.315 0.753 55 83.59

YOLOv8x 0.784 0.318 0.692 54 130.37

YOLOv8m + SEAtt [32] 0.776 0.318 0.742 38 65.81

YOLOv8m + TrAtt [33] 0.788 0.318 0.727 37 65.88

YOLOv9m 0.771 0.304 0.723 63 39.09

YOLOv9c 0.773 0.315 0.723 67 49.20

YOLOv9e 0.779 0.304 0.761 49 111.79

YOLOv10b 0.777 0.312 0.779 70 39.53

YOLOv10l 0.779 0.324 0.759 87 49.75

YOLOv10x 0.799 0.319 0.768 60 61.04

YOLOv11m 0.763 0.300 0.745 81 38.67

YOLOv11l 0.761 0.296 0.723 70 48.86

YOLOv11x 0.770 0.300 0.779 57 109.13

YOLOv12m 0.784 0.299 0.746 69 38.02

YOLOv12l 0.784 0.312 0.762 58 51.21

YOLOv12x 0.801 0.319 0.742 49 114.22

RTDETR-r18 [34] 0.795 0.313 0.743 80 40.00

A-YOLO 0.834 0.337 0.789 72 30.6

Fig. 8. Normalized confusion matrix for the classification of Sitobion avenae
(label 0), Rhopalosiphum padi (label 1), and background. The rows indicate
predicted labels, the columns indicate true labels, and the color intensity
reflects the proportion of predictions for each class.

factor of 0.01. The momentum was set to 0.937 to stabilize

gradient updates, and the weight decay coefficient was set to

0.0005 to prevent overfitting. Training was conducted for 300

epochs with a batch size of 16, and an early stopping strategy

was implemented with a patience parameter of 50 epochs,

halting training if validation performance did not improve

for 50 consecutive epochs. The input images were resized to

640 × 640 pixels to standardize the input dimensions while

Fig. 9. Visual comparison between YOLOv8 and the proposed method. The
left column (a) displays the detection results of the standard YOLOv8 model,
while the right column (b) illustrates the results after the improvements. The
top-right corner of each image highlights a red region with an enlarged view
of the detected area.
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TABLE II
RESULTS OF ABLATION OF DIFFERENT STRUCTURES

Baseline Mosaic Mosaic9 NWD TPANet C2f-CG mAP@0.5 mAP@0.5:0.95 Recall speed(FPS) Size (MB)

0.719 0.299 0.665 135 49.62

✓ 0.776 0.310 0.761 67 49.61

✓ 0.794 0.324 0.748 75 49.61

YOLOv8m ✓ ✓ 0.783 0.318 0.756 85 49.62

✓ ✓ 0.811 0.317 0.772 80 38.6

✓ ✓ 0.784 0.309 0.777 70 38.7

✓ ✓ ✓ ✓ 0.834 0.337 0.789 72 30.6

retaining critical features. The Stochastic Gradient Descent

(SGD) optimizer was employed to enhance efficiency in deep

learning tasks.

This configuration effectively learned domain-specific fea-

tures while minimizing overfitting, achieving a balance be-

tween model accuracy and efficiency. The improved model

ultimately achieved a mAP@0.5 of 83.4%, representing a

5.8% improvement compared to the original model using

Mosaic. Fig. 7 illustrates the optimal PR curves, providing

valuable insights into the enhanced model’s performance in

detecting tiny aphid objects.

C. Different deep learning detection algorithms

To comprehensively evaluate the performance of the A-

YOLO model, as shown in Table I, we conducted a com-

parative analysis with several mainstream single-stage object

detection methods, including different configurations of the

YOLOv8 series and the real-time detection model based on

the Transformer architecture, RT-DETR. All YOLO models

employed the traditional Mosaic data augmentation strategy.

Notably, only two of the models integrated attention mech-

anisms into their backbone networks in order to explore the

impact of structural enhancements on detection performance.

To ensure a fair comparison, all models were configured to

match the parameter scale of the optimized A-YOLO.

Experimental results show that the optimized A-YOLO

model achieved the best performance across key metrics:

mAP@0.5 reached 0.834, mAP@0.5:0.95 was 0.337, and

recall reached 0.789. Meanwhile, the model size was only 30.6

MB, and the inference speed reached 72 FPS. These structural

optimizations significantly improved the model’s capability to

detect tiny objects while maintaining computational efficiency,

demonstrating its strong potential for real-time applications in

complex environments.

It is worth noting that attention mechanisms, while benefi-

cial in improving detection accuracy and recall, often introduce

higher computational overhead and reduced inference speed,

reflecting a typical trade-off between precision and speed.

For instance, the YOLOv8m model equipped with the Tri-

Attention module achieved a mAP@0.5 of 0.788, but its

inference speed dropped to 37 FPS, indicating it may not be

suitable for time-sensitive tasks.

Overall, A-YOLO demonstrated excellent performance in

our experiments, surpassing other advanced models not only in

accuracy but also in inference speed and model compactness.

These results further validate the effectiveness of structural

optimization strategies applied to the YOLOv8 architecture,

particularly in enhancing detection performance for tiny ob-

jects.

To better illustrate the model performance, Fig. 8 and

Fig. 9 provide a visual comparison between A-YOLO and

YOLOv8m. Fig. 8 shows the confusion matrices of both mod-

els, highlighting their differences in classification accuracy.

Fig. 9 presents detection visualizations, where (a) displays the

output of YOLOv8m and (b) shows the output of the optimized

A-YOLO model, further supporting the effectiveness of the

proposed improvements.

D. Ablation Experiment

Based on the results of ablation experiments, as shown in

Table II. We found that the performance improvement of A-

YOLO stems from multi-dimensional optimizations in both

data augmentation and network architecture design. Experi-

mental evidence shows that each module plays an independent

yet complementary role in enhancing detection accuracy and

efficiency.

First, the proposed Mosaic9 data augmentation strategy

significantly increased the diversity and complexity of training

samples, effectively reducing the interference of irrelevant

background information during model training. This strategy

enhanced the model’s generalization capability in real-world

field environments and provided a more representative learning

foundation for further architectural optimizations.

At the architectural level, A-YOLO establishes a compre-

hensive capability chain that includes spatial structure percep-

tion, semantic context understanding, and precise bounding

box regression. Ablation results demonstrate that TPANet

effectively preserves and fuses shallow spatial details, mitigat-

ing the issue of tiny-object feature dilution in deeper layers.

Building on this, the lightweight C2f-CG module incorporates

contextual semantic priors, significantly improving the model’s

robustness in distinguishing aphids from background clutter

in complex scenes. Additionally, the improved NWD loss

function enhances bounding box localization precision and

stability from a regression mechanics perspective.

These experiments confirm that the ºdata augmentation +

architectural synergyº optimization strategy adopted in A-

YOLO not only significantly improves detection accuracy
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but also maintains advantages in inference speed and model

compactness. The final A-YOLO model exhibits outstanding

real-time performance in detecting and counting tiny aphids

under complex field conditions, offering a stable, efficient,

and deployable solution for pest monitoring in precision

agriculture.

V. CONCLUSION

This study proposes a novel lightweight real-time object

detection model, A-YOLO, which significantly enhances both

accuracy and detection speed in tiny object detection tasks

through systematic module design and synergistic optimiza-

tion. First, the improved Mosaic9 data augmentation strategy

greatly enriches the diversity of training samples and enhances

the model’s generalization capability in complex field envi-

ronments. At the architectural level, A-YOLO constructs a

complete capability chain composed of TPANet, the C2f-CG

module, and the NWD loss function, corresponding respec-

tively to three critical dimensions: spatial structure perception,

semantic context understanding, and refined bounding box re-

gression. This modular synergistic architecture breaks through

the performance bottleneck of traditional lightweight models

in tiny object detection, achieving a significant improvement

in tiny object detection accuracy in complex scenes while

maintaining real-time inference speed.

Future research will focus on expanding the dataset to

include a broader range of pests, diseases, and crop scenarios,

thereby enhancing the model’s generalization capability and

adaptability. Additionally, the integration of A-YOLO with

large language models (LLMs) will be explored to develop an

intelligent agricultural management decision-support system.

This system will combine the detection results of A-YOLO

with the reasoning capabilities of LLMs to provide users with

real-time explanations of pest detection results and targeted

prevention and control recommendations. For example, the

system could offer insights into pest characteristics, trans-

mission conditions, and management measures. Through this

integration, A-YOLO will further enhance its intelligence and

practicality in agricultural production management.
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