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AbstractÐAI-based robots and vehicles are expected to operate
safely in complex and dynamic environments, even in the presence
of component degradation. In such systems, perception relies on
sensors such as cameras to capture environmental data, which
is then processed by AI models to support decision-making.
However, degradation in sensor performance directly impacts
input data quality and can impair AI inference. Specifying safety
requirements for all possible sensor degradation scenarios leads
to unmanageable complexity and inevitable gaps. In this position
paper, we present a novel framework that integrates camera
noise factor identification with situation coverage analysis to
systematically elicit robustness-related safety requirements for
AI-based perception systems. We focus specifically on camera
degradation in the automotive domain. Building on an existing
framework for identifying degradation modes, we propose involv-
ing domain, sensor, and safety experts, and incorporating Oper-
ational Design Domain specifications to extend the degradation
model by incorporating noise factors relevant to AI performance.
Situation coverage analysis is then applied to identify repre-
sentative operational contexts. This work marks an initial step
toward integrating noise factor analysis and situational coverage
to support principled formulation and completeness assessment
of robustness requirements for camera-based AI perception.

Index TermsÐRequirements elicitation, robustness require-
ments, noise factors identification, situation coverage analysis

I. INTRODUCTION

AI components are increasingly used in safety-critical sys-

tems such as autonomous vehicles and robots, which must

operate reliably under diverse and potentially degraded condi-

tions. However, AI-based perception, particularly when reliant

on vision sensors, is highly sensitive to such variations [1].

This makes their safety assurance particularly challenging.

Traditional safety engineering mitigates risk by identify-

ing hazards and deriving explicit safety requirements. In AI

systems, especially those involving perception, this approach

becomes intractable due to the open-ended nature of the

input space and their data-driven performance under noise and

environmental stressors [2].

To address this, we propose a structured method that

constrains the infinite input space and systematically defines

variations in the operational context (i.e., the set of environ-

mental and system conditions under which the AI component

operates). These contextual variations constitute the basis

for robustness requirements on the AI component. Building

on prior work that classifies camera noise factors using a

P-Diagram-based framework [3], we extend this foundation

to support systematic robustness derivation. We adopt the

situation coverage framework [4], not to generate test cases,

but to formally represent the space of degraded operating

conditions and guide robustness requirements elicitation.

Our motivation is twofold: (1) situation coverage provides

a principled and extensible way to model sensor degradation

factors and their combinations; and (2) this structured repre-

sentation enables systematic identification of the performance

boundaries within which AI-based perception must remain

safe. To our knowledge, this is the first approach to integrate

noise factor identification with situation coverage to derive ro-

bustness safety requirements in perception under degradation.

While existing frameworks [5]±[7] recognise the importance

of robustness, they do not specify how to identify the full range

of degraded conditions in a tractable, systematic way. Situation

coverage addresses this gap by enabling comprehensive con-

sideration of environmental variations and their interactions.

Although previously applied to system-level testing [8], it

has not yet been used for structured robustness requirement

elicitation in AI-based perception systems.

II. AUTOMOTIVE CAMERA NOISE FACTORS

IDENTIFICATION

Camera-based perception systems are highly sensitive to

both internal and external sources of variation, which can de-

grade image quality and impair the performance of AI models.

To support systematic identification and analysis of such ef-

fects, Li et al. [3] proposed a Parameter Diagram (P-Diagram)
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Fig. 1: Framework overview for noise-based requirement

derivation.

approach to classify noise factors affecting automotive camera

sensors. We adopt this method within our framework to derive

traceable and structured safety requirements for perception

under degradation.

The list of camera noise factors [3] was developed through

practical experience and expert consultation. It captures a

broad range of systematic or recurring sources of sensor

degradation. Currently, it does not include corner cases such

as surface reflections that result in object ghosting, which fall

outside the scope of regular degradation patterns.

The P-Diagram approach categorises noise factors into five

groups. The first category, piece-to-piece variation, refers

to manufacturing or assembly inconsistencies, such as sen-

sor±lens misalignment or variability in lens material prop-

erties. The second, change over time, includes degradation

mechanisms like electronic ageing and mechanical loosen-

ing due to prolonged vibration. The third, usage, captures

operational stressors such as scratches, sensor misplacement,

or the accumulation of contaminants during vehicle oper-

ation or maintenance. The fourth, environmental factors,

covers external conditions that can lead to camera sensor

degradation. Finally, system interactions refer to integration-

related effects, such as electromagnetic interference, unstable

power supply, or optical distortion introduced by the vehicle’s

windshield curvature. Each identified factor is evaluated for its

impact on key sensor outputs: frame rate (FR), pixel intensity

(IRGB), pixel position (P(x,y)), and dropped frames (DF).

III. THE GRID COVERAGE-BASED FRAMEWORK

Our framework, illustrated in Fig. 1, comprises three high-

level stages. Stage 1 constructs a noise factor table that

includes relevant degradation factors, their discrete operational

states, and inter-factor dependencies. This table focuses on

factors that are relevant to the AI component within the

specific application and task. For each factor, discrete states

are defined based on the operating context specifications.

Operating context refers to the environmental, spatial, and

temporal conditions under which the system must operate

safely.

Stage 2 generates situation coverage grids, enumerating all

possible situations resulting from combinations of the noise

factors defined in Stage 1. In this work, we adopt the term

situation to refer specifically to aspects of the operating context

related to camera degradation.

Stage 3 uses the situational grid table from Stage 2 to derive

coverage tables that span the full set of operational context

attributes. Each row in these coverage tables corresponds to a

robustness safety requirement for the AI perception system.

A. Stage 1: Generating an Updated Noise Factor Table

Stage 1 focuses on identifying and organising the noise

factors that affect camera sensors. We build on the taxonomy

of thirty noise factors proposed by Li et al. [3], extending it to

better suit safety-critical AI-based perception tasks. Our pro-

cess begins with expert consultation to assess the relevance and

severity of various degradation sources, taking into account the

specific operational context and perception functions. As this

is a proposed framework, expert input is used illustratively to

highlight how this process would be conducted in practice.

For instance, we assume consultation with sensor engineers

and safety assessors to validate factor relevance. For assurance

purposes, merely listing degradation sources is insufficient; it

is essential to understand how each factor impacts the camera

image data, as this directly affects AI performance. Therefore,

this stage prioritises the analysis of image-level effects to

identify degradation sources likely to impair perception.

To support this, we classify each noise factor based on its ef-

fect on image-level outputs, specifically whether it alters pixel

intensity (IRGB), pixel position (P(x,y)), or both, following the

methodology in [3]. Factors that only influence FR or DF are

excluded, as they do not directly affect the spatial or visual

content processed by the AI. In some cases, the effect of a

factor may not be known a priori and may require targeted

testing or simulation as illustrated by experiments block in

Fig. 1.

We also capture dependencies between degradation factors

in this stage. The dependencies might include relationships



TABLE I: Noise factor states and dependencies

Factor Type ID / Noise Factor State(s) Dependency

Piece to Piece

1. Alignment False (Normal), True (Misalignment) Ð

2. Fabrication Variability False (Normal), Low, High Ð

3. Lens Shape, Purity False (Normal), Low, High Ð

4. Dark Current Variability False (Normal), True (High) Ð

5. Image Signal Processing (ISP) False (Normal), True Ð

Change over Time

1. Ageing of Electronics False (Normal), True (High) Ð

2. Degradation of Lens False (Normal), Low, High Ð

3. Vibration of Mounting False (Normal), True Co-occurrence with Misplacement

4. Pollutant Ingress False (Normal), Low, High Ð

Usage

1. Misplacement of Sensor False (Normal), True Ð

2. Vehicle Impact False (Normal), True Co-Occurrence with Misplacement

3. Chemicals / Contaminants False (Normal), True Ð

4. Obstructions False (Normal), Low, High Ð

5. Lens Scratch False (Normal), Low, High Co-occurrence with Obstructions

6. Vehicle Dynamic Settings False (Normal), True Co-occurrence with Misplacement

Environment

1. Sensor Saturation / Depletion False (Normal), High Ð

2. Extreme Temperature False (Normal), Low, High Ð

3. Low Illumination False (Normal), High Ð

System Interaction

1. Malicious Attacks False (Normal), True Ð

2. Windshield Distortion False (Normal), Low, High Ð

3. Power Supply False (Normal), True Ð

4. Electromagnetic Interference (EMI) False (Normal), True Ð

such as co-occurrence or mutual exclusivity, as shown in

the dependency column of Table I. These usually depend

on domain assumptions (e.g., obstructions and lens scratches

often co-occur) and are determined in close consultation

with domain experts. Once relevant noise factors and their

dependencies are identified, we define discrete operational

states for each factor. These may be binary (e.g., normal vs.

degraded) or categorical (e.g., low, normal, high), depending

on the nature of the factor. For instance, lens scratches may

be classified as: normal (visually insignificant), low (tolerable

for AI perception), or high (impairing object detection). These

classifications are informed by expert input, empirical data,

and the operational context specifications. Capturing factor

dependencies and discretised states at this stage is essential to

constrain combinatorial complexity in the situational coverage

analysis conducted in Stage 2.

B. Stage 2: Generating Situational Grid Coverage Table

Situational grid coverage [9] offers a structured method

for evaluating autonomous systems by mapping real-world

conditions, such as lighting, obstacles, and human presence,

into a multi-dimensional grid. Each cell in the grid represents

a distinct subset of operating context, supporting systematic

testing across a variety of environmental contexts to assess sys-

tem safety and robustness. Unlike traditional coverage metrics,

which focus on internal aspects such as code execution paths,

situational coverage highlights external influences that affect

system behaviour, particularly under complex or dynamic

conditions [4], [10].

Stage 2 of our framework constructs situational coverage

grids based on the noise factors, their discrete states, and

known dependencies identified in Stage 1. The noise factor

table (Table I) is organised hierarchically across three levels:

Type, Noise Factor, and State. Situational coverage is applied

at the most granular level by generating combinations of

states within each type, while preserving logical consistency

through dependency constraints. incorporating consistencies

helps to prune infeasible combinations, thereby reducing final

grid sizes. For the five noise factor types, (1) piece-to-piece

variation, (2) change over time, (3) usage, (4) environment,

and (5) system interactions, we obtain pruned grid sizes of

n1 = 72, n2 = 36, n3 = 108, n4 = 12, and n5 = 24,

respectively. These values exclude invalid or contradictory



state combinations, as reflected in Table I.

As an illustrative example, Table II presents the situational

grid for the Usage type. This approach enables structured

reasoning over a reduced but representative set of feasible

situations, despite the theoretical infinitude of real-world sce-

narios. The resulting situational grid defines part of the oper-

ational contexts, associate with sensor degradation, in which

robustness safety requirements will be derived, as described

in Stage 3.

C. Stage 3: Specifying Robustness Safety Requirement

Assurance of Machine Learning (ML) for Autonomous

Systems (AMLAS) [5] is a six-stage guidance framework

for constructing a safety case for ML components. Stage

two of AMLAS focuses on the development of ML safety

requirements, which address both performance and robust-

ness. Performance requirements define the expected functional

behaviour of the ML model, while robustness requirements

determine the range of operational contexts, including camera

sensor degradation, under which these performance expecta-

tions must continue to hold.

We argue that performance and robustness aspects are inher-

ently coupled and should not be treated separately. Instead, ML

safety requirements should be formulated as performance re-

quirements qualified by explicitly defined operational contexts.

These operational contexts express the robustness dimension

and are used to specify the range of conditions (e.g., sensor

noise factors) within which the ML component must maintain

safe performance. For instance, for a pedestrian detection task,

we extend the performance safety requirement (RQ) in [11] to

include an operational constraint as follows:

RQ: When the ego vehicle is 50 metres from the crossing,

the object detection component shall identify pedestrians that

are on or near the crossing in their correct position under all

conditions defined in [PODs#1].

In this formulation, [POD#1] denotes a bounded opera-

tional context subset corresponding to the first row in the

coverage table II, where the performance requirement must

hold. For example, this represents an operational context

without camera degradation.

We propose that robustness requirements are best conceptu-

alised as these POD specifications, which collectively define

the valid operating envelope for a given set of performance

requirements. The union of all PODs should span the complete

intended operational context.

Expressing safety requirements (SR) in the form perfor-

mance SRs + [PODs], where the performance requirements

are explicitly qualified by the robustness context, enables

targeted evaluation of ML models across well-defined slices

of the Operational context. This approach enhances both the

traceability and modularity of the resulting safety case, while

supporting systematic robustness analysis.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a structured framework for deriving ro-

bustness safety requirements for AI-based perception systems

TABLE II: Coverage grid for usage type factor

ID Misplacement Impact Contaminants Obstructions Lens Scratch Dynamics

1 False False False False False False

2 False False False False False True

3 False False False False Low False

... ... ... ... ... ... ...

108 True True True High High True

affected by camera degradation in automotive settings. By

combining noise factor identification with situation coverage

analysis, the approach produces performance requirements tied

to bounded operational contexts (SRs + [PODs]), improving

traceability and evaluation. Future work will address the

scalability challenge by developing methods to prioritise the

most critical PODs for efficient testing and validation.
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