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Chaotic proliferation of relativistic domain
walls for reservoir computing

Check for updates

J. A. Vélez1,2 , M.-K. Lee3, G. Tatara4, P.-I. Gavriloaea5, J. Ross6, D. Laroze7, U. Atxitia5, R. F. L. Evans6,

R. W. Chantrell6, M. Mochizuki3 & R. M. Otxoa1,8

Magnetic domain walls in antiferromagnets have been proposed as key components for faster

conventional information processing, thanks to their enhanced stability and ultrafast propagation.

However, how non-conventional computing methods like reservoir computing might take advantage

of these properties remains an open question. In this work, we show how complex domain wall

patterns can form through the proliferation of multiple-domain walls from the energy stored in a single

seed domainwall driven tomove at a high speed close to the relativistic limit. We demonstrate that the

resulting magnetic texture, consisting of up to hundreds of domain walls with an overall conserved

topological charge as the initial seed domain wall, can possess chaotic spatio-temporal dynamics

depending on the strength of staggered spin–orbit field induced via applied current. These findings

allow us to design amultiple-domain-wall reservoir with high short-termmemory and nonlinearity with

respect to spin–orbit field inputs, that is suitable for ultrafast, energy-efficient, and non-conventional

reservoir computing.

Antiferromagnetic materials (AFMs) have garnered significant attention
due to their unique properties and potential applications in spintronic
devices. Unlike ferromagnetic materials, AFMs exhibit no net magnetiza-
tion, resulting in minimal parasitic fields and superior stability against
external magnetic disturbances1–5. This inherent advantage makes AFMs
highly suitable for applicationswheremagnetic noise needs tobeminimized.

Since the nineties, the study of the mobility of domain walls (DWs),
vortices, and skyrmions in ferromagnets has been theflagship in spintronics
because of its potential in data storage6 and logic devices7. However, the
principal difficulty in leveraging these technological proposals arises from
the intrinsic instability of these magnetic topological defects when they
exceed a certain threshold velocity. In the case of DWs in ferromagnets, this
undesired dynamical regime is known as the Walker breakdown8 and fea-
tures the dynamics that combine translational and oscillatory motions9.
Antiferromagnetic (AF) textures are not exempt from an upper limit of
speed associated with the maximal group velocity of magnons, vg

10–12. This
behavior stems from the Lorentz-invariant Lagrangian in AFMs that allows
for intriguing relativistic kinematics forAFDWs,with the role of photons in
conventional spacetimebeing replacedbymagnons inmagnetic systems13,14.
However, the robustness of the DW structure is compromised when

approaching the limiting speed. In particular, complex dynamical behavior,
with clear Walker breakdown signatures similar to those found in ferro-
magnets, has also been observed in theoretical studies of layered AFMs15–17.

Moreover, it has recently been theoretically proposed that aDWmoving
at relativistic speeds can produce a pair ofmagnons18, in an analogous fashion
with the vacuum polarization by a strong electric field in quantum electro-
dynamics known as the Schwinger effect19. In general, the energy required to
observe this phenomenon is typically achievable only with large-scale
experimental facilities like Hadron colliders and ultrahigh-intensity laser light
sources. However, in the field of condensed matter, indirect evidence of such
an effect has been reported in graphene, where the low system dimensionality
allows for an increased rate ofproductionof electron–hole pairs20,21, in analogy
with the electron–positron pair production predicted in the Schwinger effect.
In an AFM, the role played by the electric field is actually taken on by the
movingDW,where the energy shift due to theDoppler effect in the laboratory
frame matches the energy gap for the magnon creation, leading to sponta-
neous emission. Regardless of the type of the driving mechanism—either
spin–orbit torque (SOT)15,22, spin-transfer torque16, or the recently proposed
laser-optical torque23,24— nucleation of DWs with opposite topological char-
ges has been systematically predicted theoretically. Similar mechanisms of
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topological excitation have also been observed in ferromagnetic systems,
where skyrmion–antiskyrmion pairs can emerge from a single moving anti-
skyrmion under spin–orbit torques, leading to particle–antiparticle
proliferation25. This magnon pair emission not only enhances our funda-
mental understanding of relativistic spin dynamics but also has potential
practical implications for developing novel spintronics devices. However, a
deeper understanding of the nucleation process remains an open question.
This issue is particularly important because AF DWs moving at relativistic
speed can be compressed to a few nanometers and transport energy in a fast
manner26,27, making them promising for potential device applications. Most
studies to date do not explore the influence of the time-dependent driving
mechanism, the problem of whether the proliferation of DWs is a chaotic
process both in time and space, or ultimately the potential for generatingDW
patterns to perform computational tasks inspired by bio-systems.

In this work, supported by atomistic spin dynamics simulations, we
theoretically show that from a seed of relativistically moving AF-DW, a
pattern ofmultiple pairs ofAFDWscanbe controllably generatedunder the
application of time-varying electric current. The spatiotemporal dynamics
of DWs driven by the staggered spin–orbit field induced by AC current in
layered AFMs such as Mn2Au or CuMnAs22,28,29, where the two magnetic
sublattices are related by inversion symmetry, is analyzed in amodel of one-
dimensional ferromagnetic chainswithmutualAF coupling. Specifically,we
numerically solve the Landau–Lifshitz–Gilbert (LLG) equation, incorpor-
ating the effect of the current-induced staggered spin–orbit field as part of
the effective field. Two distinct behaviors are observed depending on the
strength of the spin–orbit field, with steady and periodic spin-wave emis-
sions under weak fields and chaotic dynamics with multiple DW pro-
liferations under strong fields. This chaotic proliferation of DWs can be
understood as analogous to turbulence in fluids, where the proliferation of
magnetic textures resembles the turbulent behavior propagating through
space and time, driven by complex nonlinear interactions.

Based on this investigation, we propose and demonstrate the potential
application of DWproliferation, interactingDWs, spin-wave emission, and
the high nonlinearity of the system to the reservoir computing (RC)30–44,
which is a newly established machine-learning framework that replaces
hidden layers in a recurrent neural network by a single reservoir45–47. The
reservoir, nowproposed as a texture ofmultipleAFDWs, plays a crucial role
in nonlinearly transforming input data into an output function to solve
linearly inseparable tasks48. We show that an array ofmultiple AFDWs can
serve as a physical reservoir with high capacities of short-term memory
(STM) and nonlinearity demonstrated in the STM and parity-check (PC)
tasks, respectively, leveraging the magnetization responses excited by the
input spin–orbit fields. The dependence of the performances on strength
and pulse width of spin–orbit fields, as well as the position of detectors are
studied systematically. These metrics provide insights into the optimization
of AF-DW-based reservoirs. By combining theoretical insights from
dynamicalAF-DWstudieswithpractical applications inRC, this paper aims
to advance the field of spintronics and open new pathways for developing
efficient, energy-conserving, and high-speed computational devices.

Results and discussion
Dynamics of domain walls

We consider two one-dimensional ferromagnetic tracks with mutual AF
exchange coupling. Within each track, the initial classical magnetization
configuration,M(x, t), at position x along the track and time t, is taken as a
single steady DW, with their magnetizations being opposite in direction in
the two tracks.After applying anACcurrent in x-direction to induce theAC
staggered spin–orbit field (with amplitude proportional to current28 and
frequency assumed to be the same as theACcurrent) that points in opposite
directions in the two tracks at each time (see the “Methods” section), the
dynamics of the x-component of the DW texture in the upper track, Mx,
along the track as a function of time is illustrated in Fig. 1, highlighting the

Fig. 1 | Dynamic states of domain walls. aDynamics ofMx along the upper track as

a function of time for a periodic state, with the value represented in a color gradient

(gray nearMx = 0, pink nearMx = 1, and cyannearMx =−1). The upper panel shows

the applied spin–orbit field HSO = 74.5 mT with a period of 25 ps. The lower inset

illustrates the initial condition of the system, obtained by relaxing the domainwall, as

well as the value of its topological charge (Q = 1/2) and the form of the AC current

applied along the x-axis (IAppl). The middle inset displays a magnified view of the

oscillations in the DW, revealing the emission of spin waves due to the relativistic

contraction ofDWs. bDynamics of the Sx component along the track as a function of

time for a chaotic state. The upper section shows the applied spin–orbit field

HSO = 78.0 mT with a period of 25 ps. A nucleation process is observed when the

DW reaches its maximal group velocity, causing the DW to contract following

Lorentz transformations until a point where nucleation occurs, giving rise to new

DWs while maintaining the same topological charge. The middle insets show

magnified views of the DW proliferation process. The conservation of Q ensures

that, despite the creation and annihilation of multiple DWs, the total topological

charge of the system remains constant, which is fundamental for the integrity of the

system.
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differences between periodic and chaotic states in an AF system under a
time-oscillating staggered spin–orbitfield. In thiswork, the current-induced
spin-transfer torque is ignored, as its effect on DW motion is prevailed by
the staggered spin–orbit field, as shown recently in ref. 16. Panel 1a shows a
periodic state, where the DW oscillates regularly under a spin–orbit field
amplitude ofHSO = 74.5mTwith a period of 25 ps. The inset at the bottom
of panel 1a illustrates the initial condition, depicting a 180° DW config-
uration and its associated topological charge Q defined by

Q ¼ � 1

2π

Z 1

�1
∇ϕðx; tÞ dx; ð1Þ

where ϕ(x, t) represents the angle of the magnetization in the plane of each
track. This topological number counts how many times the magnetization
wraps around the unit circle along the DW49, which is conserved during the
time evolution of the system, ensuring that theDWstructure is topologically
protected and maintains its stability against external perturbations.

The upper inset in the gray area of Fig. 1a reveals a magnified view of
the DW oscillations, showing the emission of spin waves. These periodic
oscillations lead to spin wave emissions due to Lorentz contraction, which
transports energy and angular momentum across the system. According to
Shiino et al.10, as theDWvelocity approaches themaximal group velocity of
spin waves, vg, Lorentz contraction induces spin wave emission in the ter-
ahertz frequency range. The relativistic contraction of DW width Δ is
described by

ΔðvÞ ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v

vg

 !2
v

u

u

t ; ð2Þ

where Δ0 = 19.8 nm corresponds to the DW width in the static state. This
equation illustrates that as the DW velocity increases, its width Δ(v)
decreases. This contraction is evident in the periodic oscillations as shown in
the upper inset in the gray area of Fig. 1a, where thewidth of the red-colored
region along the y-axis is larger near the motion-reversal instants at which
DW velocity is smaller. The spin wave emission is also clearly observed in
this simulation result. This approach highlights the connection between
topology and the dynamics of DWs in AF systems, similar to what is
observed in ferromagnetic systems.

Figure 1b shows a chaotic state induced by a spin–orbit field amplitude
ofHSO = 78.0mTwith the same current oscillation period. In this regime, a
complex behavior is observed where the initial DW undergoes nucleation
and proliferation of new DWs. The dominant energy of the DW texture
relevant to its width comes from ferromagnetic exchange (∝JF) plus easy-
axis anisotropy (∝K2⊥) energies along the track and can be written as

E = (γ+ 1/γ)E0 with E0 /
ffiffiffiffiffiffiffiffiffiffiffiffi

JFK2?
p / JF=Δ0 / K2?Δ0 and γ ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=v2g

q

is the Lorentz factor. At the initial static state, γ = 1 and the

energy is 2E0.When theDWstarts tomovewith Lorentzwidth contraction,
γ increases from 1 and the energy increases from 2E0. Together with the
energies created by the emitted spin waves, the accumulated energy incre-
ments until a critical point results in the DW breaking and subsequent
nucleationofnewDWs.This process reflects thedynamical instability in the
system, where accumulated energy is released to create new domain
structures. This instability is analogous to Walker-like breakdown in anti-
ferromagnets, where a DW reaches a critical velocity that destabilizes its
structure, leading to the formation of newmagnetic textures. In our case, as
the DW accelerates toward the magnonic limit, its width undergoes relati-
vistic Lorentz contraction, concentrating energy until a threshold is excee-
ded, triggering the generation of soliton–antisoliton pairs and ensuring the
conservation of topological charge. This mechanism has been reported in
Otxoa et al.15, where it is shown that in this highly nonlinear regime, some
DWs can even reach supermagnonic velocities, exceeding the theoretical

magnonic speed limit due to the breakdown of Lorentz invariance in the
system’s dynamics.

This phenomenon is distinct from spinwave emission since it involves
the physical reconfiguration of DWs. Although spin waves do not directly
cause nucleation, they influence this process by modulating local energy
distribution along the track. Spin waves can interfere constructively or
destructively, creating regions of high or low energy that affect DW stability
and rupturepoints.This effect is evident in thefigures, particularly inFig. 1b,
where the magnified view in the lower left corner highlights the spin wave
emissions that precede the nucleation of newDWs. FrequentDWcollisions
occur in the chaotic state, reconfiguringDWs, altering their trajectories and
velocities, and potentially leading to new DWnucleation if collision energy
is sufficient to overcome local energy barriers. The figures show areas where
contour linesmeet andmix, indicatingDWcollisions and reconfigurations.
The energydistributiondue to spinwaves is crucial inDWdynamics, as spin
waves act as an additional energy dissipation channel, allowing DWs to
release accumulated energy. However, when this dissipation is insufficient,
the remaining energy can lead to DW rupture and nucleation. The balance
between spin wave emission and DW nucleation defines the complexity of
the chaotic state observed.

In summary, Fig. 1 provides a comprehensive view of the transition
between periodic and chaotic DW behavior in an antiferromagnetic system
under an applied spin–orbit field. The distinction between spin wave
emission and nucleation processes is clearly highlighted, offering a deep
understanding of the dynamic mechanisms involved. Periodic oscillations
result in spin wave emission that dissipates energy, whereas in the chaotic
state, energy accumulation leads to DW rupture and nucleation. DW col-
lisions and the influence of spin waves on energy distribution add another
layer of complexity to the system’s dynamics.

In order to capture the details of spatio-temporal dynamics of the
system of DWs combined with spin waves, we use fast Fourier transform
(FFT) to analyze the magnetizations as follows. Figure 2a, b are enlarged
views of Mx corresponding to the periodic state in Fig. 1a and the chaotic
state in Fig. 1b, respectively. In Fig. 2a, stable dynamics are observed as the
spinwave emissionoccurs in a repetitivemanner in timewith afixedperiod.
The FFT of time evolution of Mx at each position into frequency-space is
shown in Fig. 2b, displaying distinct peaks characteristic of periodicmotion.
Specific oscillation nodes are observed, indicating both spatial and temporal
regularity in the system. To confirm this expectation, the time evolution of
Mx averaged along the entire track is shown in Fig. 2c, and regular oscilla-
tions synchronized with the applied field are observed. The FFT of the
spatially averaged Mx presented in Fig. 2d corroborates the periodic mag-
netization oscillations in time with a pattern of regular peaks in the fre-
quency domain highlighting the deterministic behavior of the DW
dynamics.

On the other hand, Fig. 2e depicts the dynamics of Mx in a chaotic
state. The dynamics reveal the proliferation and annihilation ofDWs and
their complex interactions, indicating chaotic behavior in both space and
time. The FFT ofMx is presented in Fig. 2f, revealing peaks smeared in a
broad and continuous distribution of frequencies, which is typical of a
chaotic state that reflects the irregular and non-repetitive nature of
magnetization dynamics. This complexity in the frequency domain
indicates the absence of a dominant pattern and shows a superposition of
multiple oscillation modes that are interacting nonlinearly. This chaotic
dynamics is highly sensitive to initial conditions and external pertur-
bations. The presence of multiple peaks in the FFT spectrum suggests the
existence of various temporal and spatial scales in theDWdynamics. The
spatial average of Mx being irregular in time as shown in Fig. 2g again
confirms this behavior. The FFT of this average value, presented in
Fig. 2h, reveals a broad and complex frequency spectrum, indicating the
nonlinear and chaotic dynamics of the system.

Figure 3 illustrates the phase transitions of the dynamics of our AF
DWs represented by a bifurcation diagram. To survey the dependence of
magnetization dynamics on the excitation spin–orbit field, we calculate two
primary dynamic indicators as the growth rate of new DWs, ξ, and the
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complexity, C, which allow us to characterize the transition between peri-
odic and chaotic states as a function of variousfield amplitudesHSO from65
to 85mT in an interval of 0.5mT, and periods T = 15, 20, 25, 30 ps. In Fig.
3a, we illustrate the chaotic dynamics of the DWs and their proliferation
process. An analogy can be drawn to the turbulence model in fluid
mechanics, where magnetic textures proliferate in space and time in a
manner similar to vortexes in a turbulentfluid. This detailed view enables us
to clearly observe the complex interactions and reconfiguration of theDWs.
In Fig. 3b, we present the number of detected DWs as a function of time,
represented by blue points. The pink points indicate the moving average of
the number of DWs, calculated by averaging over a window of 100 time
steps starting just when the DWs begin to nucleate that is, after a transient
period during which the DW still oscillates without nucleation. This
approach allows us to smooth out rapid fluctuations and highlight general
trends in the proliferation of DWs. The green line shows a linear fit of these
averaged points. The observed fluctuations highlight the nucleation and
annihilation processes of DWs, emphasizing the nonlinear dynamics of the
system.

Figure 3c shows the topological configuration of DWs at three instants
labeled by I–III in Fig. 3a. Above each DW texture, their topological charge
Q is indicated, revealing that DWs are produced in pairs with opposite
topological numbers, such that the net Q is conserved in time as shown in
the right panel of Fig. 3c. Hence, despite the chaotic proliferation and
complex dynamics, the system remains in the same topological class at
all times.

Figure 3d presents a characterization of the dynamical behaviors of the
system based on two complementary indicators: a bifurcation diagram (lower
panel) and a phase diagram (upper panel). These indicators provide insight
into the transitionsbetweenperiodic andchaotic regimes in theDWdynamics
as a functionof the spin–orbitfieldamplitudeHSOand theoscillationperiodT.
The lower panel of Fig. 3d displays the bifurcation diagram, where the DW
nucleation rate ξ is extracted from the slope of the linear fit of the moving
average in Fig. 3b. This slope quantifies the growth rate of the number ofDWs
per unit time. The spin–orbit field strength is varied from HSO = 65mT to
HSO = 85mTin stepsofΔHSO= 0.5mTfor fourdifferent excitationperiodsT.
The linear fits reveal that the nucleation rate follows a proportional trendwith
the field amplitude, expressed as ξ= aiHSO+ bi. The values of ai, which
represent the sensitivityof thenucleation rate to variations inHSO, are givenby
ai= {10.538, 7.86, 6.78, 5.56}mT−1 forT = {15, 20, 25, 30} ps, respectively. The
bifurcation diagram allows us to track the transition from a periodic to a
chaotic regime,where ξ= 0 corresponds to a periodic statewithnonucleation,
and ξ > 0 indicates the onset of chaotic proliferation of DWs.

The upper panel of Fig. 3d presents a phase diagram where the com-
plexity indicator C is used to distinguish between periodic and chaotic
dynamics. The classification is performedusing twodistinctmarkers: purple
squares represent C = 0, indicating periodic dynamics, while green circles
correspond to positive complexity values, signaling chaotic behavior. The
complexity measure, which combines entropy and disequilibrium, quanti-
fies the degree of order in the system (see Supplementary Material for
details)50. The diagram reveals that the system exhibits a transition between

Fig. 2 | Soliton proliferation. aDynamics ofMx along the upper track as a function

of time for a periodic state as an enlarged view of Fig. 1a. b Fast Fourier transform

(FFT) of the temporal evolution of Mx(x, t) at each spatial position from panel (a),

transforming the time-space data into frequency-space. Periodic nodes are observed

in both time and position. cMean value ofMx along the upper track as a function of

time, showing the stability of the dynamics in the periodic state. d FFT of the mean

value of Mx, indicating global periodic behavior. e Enlarged view of Mx for the

chaotic state in Fig. 1b. f FFT of Mx in panel (e), showing a broad spectrum of

frequencies characteristic of chaotic dynamics. gMean value ofMx as a function of

time for the chaotic state, highlighting the complexity of the dynamics. h FFT of the

mean value ofMx, revealing the broad frequency spectrum typical of chaotic states.
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periodic and chaotic regimes as a function of bothHSO and T, with lower T
values favoring a chaotic response. Interestingly, despite the strong corre-
lation between the complexityC and the nucleation rate ξ, certain regions in
the diagram show cases where ξ = 0 while C > 0, indicating that the system
remains chaotic even when no new DWs are nucleated. This suggests that
the magnetization dynamics can retain chaotic features without additional
DW proliferation, highlighting the intricate interplay between topological
excitations and dynamical complexity in the system.

Altogether, Figs. 1–3 offer a comprehensive view of how the AC
staggered spin–orbit field influences both the nucleation rate and com-
plexity of the system to induce the phase transition of theDWconfiguration
and dynamics between periodic and chaotic phases. The nucleation process
we observe is neither linear in time nor predictable, as it depends on local
fluctuations of energy. The instability suffered by the relativistically moving
DWdisturbs its regular motion and texture, and eventually producing spin
waves and new DWs to release energy, which interact with each other
nonlinearly. This creates an environment where small variations can gen-
erate significant changes in the system dynamics and result in chaotic
behavior. In summary, the interplay of relativistic contraction, energy
accumulation, and nonlinear interactions between DWs and spin waves
induces chaotic dynamics during the nucleation process. This is reflected in
thepositive complexity observed inchaotic states, even in the absenceofnew
DW proliferations. In these cases, chaos manifests through irregular and
sensitivemovements of the existingDWs, inducedbynonlinear interactions
and energetic fluctuations, without necessarily involving additional
nucleations.

These observations not only deepen our understanding of chaotic DW
dynamics but also provide insight into their potential functional implica-
tions. These results reinforce our understanding of how relativistic con-
traction, spin wave emissions, and nonlinear interactions collectively
regulate the stability of domain walls in antiferromagnetic systems. The
transition between periodic and chaotic regimes, quantified through com-
plexity measures and DW proliferation rates, highlights the fundamental
role of energy accumulation and dissipation in the evolution of these
magnetic textures. Beyond its theoretical significance, the ability to induce
and control chaotic dynamics in these systems suggests that these phe-
nomena could be leveraged in advanced spintronic applications, such as the
development of magnonic architectures requiring highly nonlinear and
adaptive responses.

Reservoir computing

After investigating the chaotic DW proliferation driven by staggered
spin–orbit field in AFMs, in this section, we propose the potential of a
proliferated multiple-DW configuration as a viable system for spintronics
reservoir computing (RC) by demonstrating the possession of short-term
memory and nonlinearity inherent in the magnetization responses to
external spin–orbit field inputs in this system. We consider two one-
dimensional ferromagnetic layers with mutual AF exchange coupling, as
illustrated in Fig. 4a. Each layer has a length of 6000 sites and contains seven
equally spaced DWs with centers located at site indices 750n with n = 1, 2,
…, 7 (see Fig. 4b). Each neighboring DWs have opposite winding numbers,
mimicking the texture generated by the chaotic proliferation from a single

Fig. 3 | Phase diagram. a Illustration of the chaotic dynamics of the DW and its

proliferation process, using an analogy with the vortex model in fluid mechanics.

This model facilitates the visualization and understanding of the complexity of DW

behavior in the AF system. Labels I–III indicate specific moments at which the

topological configuration is schematically shown in panel (c). b Number of DWs

detected as a function of time. The blue points represent the number of DWs

detected at each time instant. The pink points show the moving average of the

number of DWs, which smooths out fluctuations and allows for a better inter-

pretation of the overall trend. The green line is a linear fit of the moving average

points, indicating the growing trend of the number of DWs over time. cTopological

configuration of the DWs at instances I–IIImarked in panel (a). Each row shows the

DWs at different time instants, highlighting the conservation of the topological

charge Q. The numerically extracted time dependence of the topological charge is

illustrated on the right side of the panel, showing that Q is conserved over time

despite the proliferation of new DWs. The color code represents the magnitude of

Mx with blue for Mx =−1, red for Mx = 1/2, and gray for Mx = 0. d Bifurcation

diagram representing the DW nucleation rate ξ as a function of the spin–orbit field

strength HSO and oscillation period T. The nucleation rate ξ is extracted from the

slope of the linear fit of themoving average in panel (b), which quantifies the growth

rate of the number ofDWsper unit time. The spin–orbit field strength is varied from

HSO = 65mT toHSO = 85 mT in steps ofΔHSO = 0.5 mT for four different excitation

periods T, allowing us to track the transition in nucleation dynamics. The upper

section of panel (d) presents a phase diagram characterizing the transition between

periodic and chaotic behaviors based on the complexity indicator C. Purple squares

correspond to C = 0, indicating periodic dynamics, whereas green circles represent

positive complexity values, signaling chaotic behavior. This classification reveals

how the system transitions between periodic and chaotic regimes as HSO and T are

varied.
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seed DW that preserves the topological number. We evaluate the perfor-
mance of this system on two benchmark tasks of RC as the short-term
memory (STM) and parity-check (PC) tasks31,34,41.

For both tasks, the input data sin(Ti) consists of a sequence of random
digits, either 1 or 0, at integer time stepsTi. The goal of RCby using thisDW
system is to predict specific transformations of the inputs by an output
function, taken as a linear combination of the magnetization responses
measured on local areas in the DW-array. The correspondence between
input digits and physical excitations in the DW system is designed as fol-
lows. When sin(Ti) = 1, we simultaneously apply three local staggered
spin–orbit field pulses in ±y-direction for the upper and lower DW array,
respectively. These pulses are applied to three input areas located on site
indices from 1001 to 1500, 2500 to 3000, and 5001 to 5500, as indicated by
green areas in Fig. 4b. When sin(Ti) = 0, we reverse the directions of the
spin–orbitfieldpulses for both layers andapply themon the same local areas
with the same pulse width. The surveyed pulse width of spin–orbit field
ranges from 0.1 to 0.5 ps, while its magnitude is varied from 10 to 60mT in
this study.

Weplaced11detectors on theDWarrayas shown inFig. 4b. In the area
of each detector, the averaged magnetization at a number of virtual-node
temporal instants in each spin–orbit field pulse is recorded to define the
reservoir state vector. A linear transformation of the measured magneti-
zations is defined as an output function, with the coefficients being the
weight vector components being optimized to minimize the mean square
error between the target and output for a training set of random digits. The
optimized weight vector is then taken to predict another testing set of digits
by theirmagnetization responses (see details in the “Methods” section). The
target functions for STM and PC tasks are respectively defined in Eqs. (6)
and (7) in the “Methods” section. From these definitions, the STM task
investigates to what extent the input at a previous time Ti −Tdelay can be
reconstructedby the reservoir state at current timeTi, which is important for
applications such as sentence prediction and speech recognition45–47 that
involve time-series data. Meanwhile, the PC task examines to what extent
the reservoir cannonlinearly transform its components into a summationof
past inputs modulo 2, which is essential for problems like pattern classifi-
cation and hand-written digit recognition42–44 that require nonlinearity.

After the training procedure, the squared correlation between the
testset targets and outputs for each detector is calculated. As shown in
Supplementary Fig. 4, empirically we find when a detector is placed close to
both the edge of any input areas, and either to one of the DW centers (e.g.,
detectors 3 and 6 in Fig. 4b) or near the system edge (e.g., detectors 11), a
better-squared correlation is obtained for both tasks. This indicates the need
for both a large spatial gradient ofHSO and either a large gradient ofMy or

strong spin wave reflection near the system edge, to excite significant
magnetization responses that possess memory and nonlinearity relative to
the input. To quantify the performance, we calculate the capacitiesCSTM(PC)

for STM (PC) tasks31,34,41 for better detectors 3, 6, and 11, defined as the sum
of the squared correlations fromTdelay = 1 to 30.A larger capacity indicates a
better performance by the reservoir. We note that in literature many works
calculate the capacity including the point of Tdelay = 0. Since the squared
correlationatTdelay= 0 is trivially close to 1,we exclude this point to estimate
the capacity in a stricter way, following ref. 34.We achieve the highestCSTM

andCPC values of approximately 10.5 and 1.5, respectively, comparablewith
other spintronics reservoirs using a similar number of virtual nodes 31,34,36,41.
This finding clearly demonstrates the potential of a multiple-DW array
proliferated by spin–orbit field in AFMs for applications in physical reser-
voir computing. We have tested the reproducibility by performing
sequential runs of the tasks and compared the performances between the
proposedmultiple-DWarray and a pureAF state without DW textures and
find the multiple-DW array shows much better results (see the “Methods”
section for details).

To investigate the potential input dependence of the performance, we
compare the capacities carried out by different components of magnetiza-
tions under varying pulse widths and amplitudes of spin–orbit field, as
illustrated in Fig. 5. In Fig. 5a, the pulse width is fixed at 0.2 ps for all curves.
The results show that increasing the field amplitude from 10 to 60mT does
not significantly change the capacities. For HSO = 10mT, the capacities
carried out byMx andMy componentswere lower than those for higher SO-
field amplitudes. Interestingly, the data reveals a contrasting behavior
between the STM and PC capacities. Specifically, the Mz component has
roughly better results for STM capacities compared toMx andMy. On the
contrary, for PC capacities, Mz is worse than the other components. This
opposite behavior between STM and PC capacities is reminiscent of the

Fig. 4 | Schematics RC. a Schematics of the bilayer AF-DW system for RC. Black

arrows indicate the local magnetization vectors and the green thick arrows are the

local input SO-fields. b Initial configuration of the x-component of the DW mag-

netizations in the upper layer (blue curve). For the lower layer, the sign ofMx is the

opposite. Green shaded zones are input areas and the eleven detectors are labeled by

red boxes.

Fig. 5 | RC results.Comparison of the capacities as functions of a SO-field amplitude

and b SO-field pulse width for the three best detectors: 3, 6, and 11.
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empirical law of memory-nonlinearity trade-off51,52, which is frequently
observed indynamicalmodels or physical systems inRC, suggesting that the
introduction of nonlinearity into reservoir dynamics tends to degrade
memory capacity.

In Fig. 5b, we study how the capacities for STM and PC tasks change
with different pulsewidths, ranging from0.1 to 0.6 ps. For detectors 3 and 6,
as the pulse width increases from 0.1 and 0.4 ps, the STM capacities tend to
decrease, while the PCcapacities increase. This opposite behavior is another
indication of a memory-nonlinearity trade-off, where an increase in one
capacity typically leads to a decrease in the other. However, detector 11
exhibits a unique behavior. As the pulse width increases, both STM and PC
capacities follow a similar trend, which violates the expected trade-off. This
suggests that for detector 11, it may be possible to simultaneously enhance
the short-term memory and nonlinearity by fine-tuning the input pulse
width. This capability is particularly advantageous for machine-learning
tasks sincemany realistic problems require bothmemory and nonlinearity.
The common trade-off between memory and nonlinearity limits the
learning potential of reservoirs,making ourfinding significant. This distinct
behavior of detector 11 as compared to detectors 3 and 6 may be attributed
to the edge effects of the system. These edge effects might enhance both
memory and nonlinearity due to phenomena like spin wave reflection and
interference occurring near the system edge. It is left for our future work to
find concrete ways to overcome the memory-nonlinearity trade-off and to
enhance capacities for both STM and PC tasks in this multiple-DW
reservoir.

The results presented in this work demonstrate the strong potential of
DW-based reservoirs in antiferromagnetic systems, where the interplay
between chaotic DW dynamics and spin wave interactions enables efficient
and tunable computational performance. The ability to reconfigure the
reservoir by adjusting the amplitude and period of the spin–orbit field
provides a mechanism to optimize memory and nonlinearity trade-offs, a
fundamental challenge in RC. Furthermore, our findings highlight how the
mechanisms governing chaotic DW proliferation, previously analyzed in
detail, play a crucial role in enhancing the diversity and richness of dyna-
mical responses in the reservoir. This connection between DW chaos and
computational capacity suggests that DW proliferation dynamics could be
leveraged to improve the performance of physical reservoirs in spintronic
systems. While these results represent an initial step, future research could
explore strategies to optimize the interaction between DW dynamics and
input parameters, with the goal of enhancing the efficiency and stability of
these systems in neuromorphic computing applications.

Methods
Theoretical model

The system under study is the layered collinear antiferromagnet, Mn2Au,
characterized by its good conductivity, strong magnetocrystalline aniso-
tropy, and aNéel temperaturewell above room temperature. These intrinsic
properties make this material ideal for exploring the dynamics of anti-
ferromagnetic domain walls due to its intrinsic properties.

The total energy of the system includes contributions from exchange
interactions, magnetocrystalline anisotropy, and the spin–orbit field
induced by an alternating current. The configurational energy E can be
expressed as

E ¼ �
P

hi;ji J ijMi �Mj � K2?
P

i ðMi � ẑÞ2

�K2k
P

i ðMi � ŷÞ2 �
K4?
2

P

i ðMi � ẑÞ4

� K4k
2

P

i ðMi � u1Þ4 þ ðMi � u2Þ4
� �

�μ0μs
P

i Mi �Hi
SO

ð3Þ

where Si is the spin vector at site i, J ij represents the exchange interaction
between spins i and jwithJ 1 ¼ �5:468 × 10�21 J,J 2 ¼ �7:347× 10�21 J,
J 3 ¼ 1:587× 10�21 J, K2⊥ and K2∥ are the second-order magnetocrystal-
line anisotropy constants in the perpendicular and parallel directions,
respectively, with K2⊥ =−1.303 × 10−22 J, K2∥ = 7K4∥, K4⊥, and K4∥ are the

fourth-order magnetocrystalline anisotropy constants in the perpendicular
and parallel directions, respectively, with K4⊥ = 2K2∥, K4∥ = 1.855 × 10−25 J,
andHi

SO is the spin–orbit field at site i, induced by the alternating current.
The unit vectors û1 and û2 represent the in-plane xy-based directions, with
u1 = [110] and u2 ¼ ½1�10�.

The spin–orbit field (Hi
SO) is inducedby an alternating currentflowing

in the x-direction. Due to the spin–orbit interaction, this current generates a
spin–orbit field in the y-direction. This field can be described as
Hi

SO ¼ HSO sinðωtÞŷ, where HSO is the amplitude of the field, ω is the
angular frequency, and t is the time. This field introduces an additional
interaction that affects the spin dynamics in the material. To describe the
temporal evolution of the spins under the influence of the aforementioned
fields, we use the Landau–Lifshitz–Gilbert (LLG) equation:

dMi

dt
¼ �γMi ×H

eff
i � γαMi × ðMi ×H

eff
i Þ ð4Þ

where γ is the gyromagnetic ratio of the free electron (2.21 × 105m/A s),
α = 0.001 is the Gilbert damping parameter, and Heff

i is the effective field
resulting from all the interaction energies.

The effective fieldHeff
i is obtained by differentiating the total energy E

with respect to i: Corrected Si to Mi to maintain consistency with the
notation used in the effective field expression.

Heff
i ¼ � 1

μ0μs

δE

δMi

: ð5Þ

This includes contributions from exchange interactions, anisotropy,
and the spin–orbit field.

This theoretical model provides a solid foundation to explore the
dynamics of domain walls in the antiferromagnetic system Mn2Au under
the influence of an alternating current. By considering all energy con-
tributions and using the Landau–Lifshitz–Gilbert equation, we can simulate
and analyze how these factors influence the temporal evolution of the
domain walls. This analysis offers valuable insights for the development of
reservoir computing applications and other advanced spintronic
technologies.

Reservoir computing method

The commonly adopted target functions ytarget for the STMandPC tasks are
defined as31,34,41

ySTMtargetðT i;TdelayÞ ¼ sinðT i � TdelayÞ;
yPCtargetðT i;TdelayÞ ¼ sinðT iÞ þ sinðT i � 1Þ

� ð6Þ

þ� � � þ sinðT i � TdelayÞ
i

mod 2; ð7Þ

where Tdelay is a dimensionless integer delay time, and sin(Ti−Tdelay) is the
input digit (0 or 1) at a previous integer time of Ti −Tdelay. We placed 11
detectors located at sites 501+ 500nwithn = 0, 1,…, 10 on theDWarray as
shown in Fig. 4b. All detectors have a short length of 11 sites that corre-
sponds to roughly 3.7 nm taking the lattice constant of Mn2Au, which is
nearly Δ0/5, in order to capture the possible variation of the performance
carried out bymagnetizations located at different positions inside or outside
the DW region. For each detector, we measured their averaged magneti-
zationat anumberofNvn virtual-node temporal instants in the interval from
Tip to (Ti+ 1)p with p being the spin–orbit field pulse width, to define a

reservoir state vector at time Tip as RðnÞ
j ðT iÞ � hMðnÞ

j ðT ipþ p=NvnÞi;
�

hMðnÞ
j ðT ipþ 2p=NvnÞi:; . . . ; hM

ðnÞ
j ððT i þ 1ÞpÞi

�

, with j = x, y, z labeling

the component of 11 magnetizationsM(n) inside the nth detector area, and
〈…〉 denoting the average over the eleven sites within this detector. The

scalar output function y
ðnÞ
j;out is defined as a dot product between this Nvn-
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dimensional reservoir vector and a weight vector with the same dimension,

WðnÞ
j , then plus a constant bias W

ðnÞ
j;0 , namely y

ðnÞ
j;out ¼ WðnÞ

j � RðnÞ
j þW

ðnÞ
j;0 .

The number of components in the weight vector that are required for
training is thus Nvn+ 1, including one for the constant bias. Note that the

weight vectors WðnÞ
j ðTdelayÞ differ among the delay times Tdelay, the 11

detector positions, and the magnetization components j = x, y, z. They are
required to be trained independently for each delay time, each detector, and
each component.

In simulation, the DW system is initially relaxed for a sufficiently
long time until magnetizations are almost fixed in time. Then for each
delay time Tdelay = 0, 1, … separately, we stabilize the response of this
system by first injecting 1000 random inputs of 1 or 0 via the corre-
sponding sequence of SO-field pulses, then we take the following 100
random inputs for training, and their subsequent 50 inputs for testing.
The training is done by minimizing the mean square error between the
targets in Eqs. (6) and (7)) and the output function y

ðnÞ
j;out using the

pseudo-inversed matrix method53,54 for the 100 training dataset, after
which, the optimal weight vector is used to form the output function of
another distinct 50 testing inputs. The squared correlation between
target and output31,34,41 is then calculated as

Corr
ðn;jÞ
STMðPCÞðTdelayÞ ¼

Cov2½ySTMðPCÞ
target ðT i;TdelayÞ; y

ðnÞ
j;outðT iÞ�

Var½ySTMðPCÞ
target ðT i;TdelayÞ�Var½y

ðnÞ
j;outðT iÞ�

; ð8Þ

with

Cov½AðT iÞ;BðT iÞ� ¼ 1
N

P

iðAðT iÞ � �AÞðBðT iÞ � �BÞ;
Var½AðT iÞ� ¼ 1

N

P

i ðAðT iÞ � �AÞ2;
ð9Þ

for generic functions, A and B, where Cov and Var denote the covariance
and variance, respectively, �A is the average of A(Ti) over all Ti, andN is the
numberof time stepsTi. The standard squaredcorrelationCorr takes a value
within a range of [0,1], and a larger value indicates betterfitting of the targets
by outputs.

To quantify the performance of our DW-array reservoir, we calculate
the capacity, which is defined as the summation of squared correlations
from Tdelay= 1 to 30, excluding contributions from the delayed memory
with peaks located at finiteTdelay (see SupplementaryMaterial), as shown in
Fig. 5 in the main text. A larger capacity indicates that a larger amount of
memory or nonlinearity is stored in the reservoir state at the current timeTi.

Data availability
No datasets were generated or analyzed during the current study.

Received: 21 November 2024; Accepted: 19 March 2025;

References
1. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90,

015005 (2018).

2. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics.

Philos. Trans. R. Soc. A:Math. Phys. Eng. Sci. 369, 3098–3114 (2011).

3. Jungwirth, T. et al. The multiple directions of antiferromagnetic

spintronics. Nat. Phys. 14, 200–203 (2018).

4. Jungfleisch, M. B., Zhang, W. & Hoffmann, A. Perspectives of

antiferromagnetic spintronics. Phys. Lett. A 382, 865–871 (2018).

5. Fukami, S., Lorenz, V. O. & Gomonay, O. Antiferromagnetic

spintronics. J. Appl. Phys. 128, 070401 (2020).

6. Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall

racetrack memory. Science 320, 190–194 (2008).

7. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309,

1688–1692 (2005).

8. Schryer, N. L. & Walker, L. R. The motion of 180 domain walls in

uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

9. Mougin, A., Cormier,M., Adam, J.,Metaxas,P. &Ferré, J. Domainwall

mobility, stability and walker breakdown in magnetic nanowires.

Europhys. Lett. 78, 57007 (2007).

10. Shiino, T. et al. Antiferromagnetic domain wall motion driven by

spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

11. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic

domain wall velocity induced by néel spin–orbit torques. Phys. Rev.

Lett. 117, 017202 (2016).

12. Otxoa, R. M., Atxitia, U., Roy, P. E. & Chubykalo-Fesenko, O. Giant

localised spin-peltier effect due to ultrafast domain wall motion in

antiferromagnetic metals. Commun. Phys. 3, 31 (2020).

13. Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a

domain wall in an antiferromagnet by magnons. Phys. Rev. B 90,

104406 (2014).

14. Rama-Eiroa, R., Otxoa, R. M., Roy, P. E. & Guslienko, K. Y. Steady

one-dimensional domain wall motion in biaxial ferromagnets:

mapping of the Landau–Lifshitz equation to the sine-Gordon

equation. Phys. Rev. B 101, 094416 (2020).

15. Otxoa, R. et al. Walker-like domain wall breakdown in layered

antiferromagnets driven by staggered spin–orbit fields. Commun.

Phys. 3, 190 (2020).

16. Lee, M.-K., Otxoa, R. M. & Mochizuki, M. Predicted multiple walker

breakdowns for current-driven domain-wall motion in

antiferromagnets. Phys. Rev. B 110, L020408 (2024).

17. Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Ultrafast switching of

antiferromagnets via spin-transfer torque. Phys. Rev. B 91, 064423

(2015).

18. Tatara, G., Akosa, C. A. & Otxoa de Zuazola, R. M. Magnon pair

emission from a relativistic domain wall in antiferromagnets. Phys.

Rev. Res. 2, 043226 (2020).

19. Schwinger, J. On gauge invariance and vacuum polarization. Phys.

Rev. 82, 664 (1951).

20. Allor, D., Cohen, T. D. & McGady, D. A. Schwinger mechanism and

graphene.Phys. Rev. D—Part. FieldsGravit. Cosmol. 78, 096009 (2008).

21. Schmitt, A. et al. Mesoscopic Klein–Schwinger effect in graphene.

Nat. Phys. 19, 830–835 (2023).

22. Roy, P. E., Otxoa,R.M.&Wunderlich, J. Robust picosecondwriting of

a layered antiferromagnet by staggered spin–orbit fields.Phys. Rev. B

94, 014439 (2016).

23. Gavriloaea, P.-I. et al. Efficient motion of 90° domain walls in Mn2Au

via pure optical torques. arXiv preprint arXiv:2405.09253 (2024).

24. Ross, J. et al. Ultrafast antiferromagnetic switching of Mn2Au with

laser-induced optical torques. npj Comput. Mater. 10, 234 (2024).

25. Ritzmann, U., Desplat, L., Dupé, B., Camley, R. E. & Kim, J.-V.

Asymmetric skyrmion-antiskyrmion production in ultrathin

ferromagnetic films. Phys. Rev. B 102, 174409 (2020).

26. Otxoa, R. M. et al. Topologically-mediated energy release by

relativistic antiferromagnetic solitons. Phys. Rev. Res. 3, 043069

(2021).

27. Otxoa, R.M., Tatara, G., Roy, P. E. &Chubykalo-Fesenko,O. Tailoring

elastic and inelastic collisions of relativistic antiferromagnetic domain

walls. Sci. Rep. 13, 21153 (2023).

28. Wadley, P. et al. Electrical switching of an antiferromagnet. Science

351, 587–590 (2016).

29. Železny`, J. et al. Relativistic Néel-order fields induced by electrical

current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

30. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic

oscillators. Nature 547, 428–431 (2017).

31. Kanao, T. et al. Reservoir computing on spin-torque oscillator array.

Phys. Rev. Appl. 12, 024052 (2019).

32. Marković, D. et al. Reservoir computing with spin-torque nano-

oscillators. Appl. Phys. Lett. 114, 012409 (2019).

https://doi.org/10.1038/s44306-025-00079-y Article

npj Spintronics |            (2025) 3:14 8

www.nature.com/npjspintronics


33. Tsunegi, S. et al. Physical reservoir computing with spin torque and

electric double-layer transistor technologies. Appl. Phys. Lett. 114,

164101 (2019).

34. Furuta, T. et al. Macromagnetic simulations of spin-torque oscillator

and applications for artificial neural networks. Phys. Rev. Appl. 10,

034063 (2018).

35. Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin

waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).

36. Yamaguchi, T. et al. Reservoir computing with an energy-efficient

dynamicmemristor for temporal information processing.Sci. Rep.10,

1–9 (2020).

37. Bourianoff, G., Pinna, D., Sitte, M. & Everschor-Sitte, K. Potential

implementation of reservoir computing models based on magnetic

skyrmions. AIP Adv. 8, 055602 (2018).

38. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive

element: a potential buildingblock for reservoir computing.Phys.Rev.

Appl. 9, 014034 (2018).

39. Pinna, D., Bourianoff, G. & Everschor-Sitte, K. Reservoir computing

with random skyrmion textures. Phys. Rev. Appl. 14, 054020 (2020).

40. Jiang, W. et al. Reservoir computing with skyrmion memristors. Appl.

Phys. Lett. 115, 192403 (2019).

41. Lee, M. K. & Mochizuki, M. Reservoir computing using a skyrmion

memristor network. Phys. Rev. Appl. 18, 014074 (2022).

42. Lee, M.-K. & Mochizuki, M. Handwritten digit recognition by spin

waves in a skyrmion reservoir. Sci. Rep. 13, 19423 (2023).

43. Yokouchi, T. et al. Skyrmion-based neuromorphic computing. Sci.

Adv. 8, eabq5652 (2022).

44. Msiska, R., Love, J., Mulkers, J., Leliaert, J. & Everschor-Sitte, K.

Reservoir computing with skyrmions. Adv. Intell. Syst. 5, 2200388

(2023).

45. Tanaka, G. et al. Recent advances in physical reservoir computing: a

review. Neural Netw. 115, 100–123 (2019).

46. Nakajima, K. Physical reservoir computing—an introductory

perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).

47. Nakajima, K. & Fischer, I. Reservoir computing with spin waves

excited in a garnet film. IEICE Tech. Rep. 118, 149–154 (2018).

48. Godinho, J. et al. Antiferromagnetic domain wall memory with

neuromorphic functionality. npj Spintron. 2 https://www.nature.com/

articles/s44306-024-00027-2 (2024).

49. Braun, H.-B. Topological effects in nanomagnetism: from

superparamagnetism to chiral quantum solitons. Adv. Phys. 61,

1–116 (2012).

50. López-Ruiz, R., Mancini, H. L. & Calbet, X. A statistical measure of

complexity. Phys. Lett. A 209, 321–326 (1995).

51. Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information

processing capacity of dynamical systems. Sci. Rep. 2, 514 (2012).

52. Inubushi, M. & Yoshimura, K. Memory and nonlinearity in dynamical

systems with feedback. Sci. Rep. 7, 10199 (2017).

53. Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum

dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).

54. Strang, G. Introduction to Linear Algebra. (Wellesley-Cambridge

Press, Wellesley, MA, 1993).

Acknowledgements
J.R. and P.G. acknowledge funding from the European Union’s Horizon

2020 research and innovation program under the Marie Skłodowska-Curie

International Training Network COMRAD (grant agreement No. 861300).

M.M. andM.-K.L. thank the support fromJapanSociety for thePromotionof

Science KAKENHI (Grant Nos. 20H00337, 22H05114 and 24H02231),

CREST, the Japan Science and Technology Agency (Grant No.

JPMJCR20T1), and a Waseda University Grant for Special Research

Projects (Project No. 2024C-153). This paper is a part of the outcomes of

research funded by Waseda University Grants for Specific Research

Projects (Research proposal No: 2025C-134). U.A. gratefully acknowledges

support by grant PID2021-122980OB-C55 and the grant RYC-2020-

030605-I funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A

way of making Europe” and “ESF Investing in your future".

Author contributions
R.M.O. conceived the idea and designed the study. J.A.V. and R.M.O.

carried out the atomistic spin dynamics simulations. M.-K.L. and M.M.

facilitated the understanding and implementationof the reservoir computing

model. G.T., P.-I.G., J.R., R.F.L.E., andR.W.C. provided valuable comments

and interpretations of the atomistic spin dynamics results. J.A.V., D.L., and

R.M.O. developed the theoretical framework for the characterization of the

chaotic dynamics. J.A.V., M.-K.L., and R.M.O. wrote the initial draft and

prepared the figures. All authors reviewed the manuscript and provided

comments and/or edited the final version of the draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s44306-025-00079-y.

Correspondence and requests for materials should be addressed to

J. A. Vélez or R. M. Otxoa.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in the

article’sCreative Commons licence and your intended use is not permitted

by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44306-025-00079-y Article

npj Spintronics |            (2025) 3:14 9

https://www.nature.com/articles/s44306-024-00027-2
https://www.nature.com/articles/s44306-024-00027-2
https://www.nature.com/articles/s44306-024-00027-2
https://doi.org/10.1038/s44306-025-00079-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjspintronics

	Chaotic proliferation of relativistic domain walls for reservoir computing
	Results and discussion
	Dynamics of domain walls
	Reservoir computing

	Methods
	Theoretical model
	Reservoir computing method

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


